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JORDAN STRUCTURES WITH APPLICATIONS.V,
JORDAN ALGEBRAS IN ANALYSIS,

Radu IORDANESCU,

The principal results in Jordan-Banach sgebras are dis-
cussed in this paper, Section 1 and 2. Section 3 deals with @
class of parti=xlly ordered Jordan algebras which are non-
assocliative generaslizations of semifields, while completse nor-
med Jordan algebras over the conplex fleld are treated in Sec~
tion 4, Section 5 is concerned with two kinds of structursss
certain infinite~dimensional Jordan algebras admitting an innax
product, and certain Banach spaces whose open unit balls are
bounded symmetric homogenaous domains. Jordan algebras and
positive projections on operator algebras are examined in Sec-
tion 6, while theta~functions for Jordan algebras are construce
ted in Section 7, Section 8 glves several applications of Jorp-
dan algebras 'to the Riceati equation, soliton equations and
- Hua equations, as well as to Szegd kemel, and to the (repro-
ducing) kernel functions., 4 large bibliography supplements the
text,

8 1. JB - and JB%nalgebras

The relationsh;p 5etween formally real Jordan algebras,
self-dual homogeneous cones and sjmmetric upper half-planes in
finite dimensions due to KOLCHER /787 a,b ;47 18 the background
for the ;tudy of the infinite-dimensional case. The objects
. here are analgebras and their real analogues (Lhe so»ca¢led

JB-algebras). Using the results reported by KAUP 784 a’/
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together with more recent results, in the first two sections of
this paper we shall discuss the principal developments of this
_topilc,

A generalization of formally real Jordan algebras to the
infinite-~dimensional case was introduced end studied by ALFSEN,
SHULTZ and STYRUER /"6 7 as follows:

Definition, A (linear) real Jordan algebra }with unit ele~

ment e which is also a Banach space and in which the product and

the norm satisfy

(L =y || 2=l v,
(11) || | = = ®
(iii)]]x2 l 5;]]x2 + yeﬂ,

for all X,y & '[ 1is called a Jordan Banach algebra (or, briefly,a

JB~algebra),

Remark. In the finlte-dimensional case, condition (ii1) is
equivalent to the fact that 4 18 a formally real Jordan albebré@

Comments 1. mhe term JB-algebra arose as the Jordan ange

logue of B* ~8lgebra, much the same as JC- algebras and JW-algebras
were termed after ¢* - ang W“ualgabras, respectivelys

Comments 2, Nonunital JBmaloebras have also been conside-

red, but a ncnunital JB-algebra cen always be alvebraically and
isometrically embedded in a unital JB«alﬁebra,(see SMITH /125 ;7
and YOUNGSON /7141 d 7). Addition of unity was proved for TB~al~
gebras as defined above by BEHNCKE Bl i,

Examglée Y O T important examples of JBnaigebraa_
is the selfadjoint part of a real or complex C%malgebra equipped
with the Jordan product xy : = }2_ (Xo¥ 4 JoX)o

Rem&rko One can prove that the.nom oﬁ'} is completely de-

T the
termined byYJordan product in . which was, denoted in the example
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above by jaxtaposition of elementa, .
Comments, HANCHE-OLSEN and STﬁRMEP introduceqd £f63;7 the

Cconcept of JB-algebra gg followss 4 Jordan Banach algebra is g

real Jordan algebra A (not Necessarily unital) équlpped with a
complete norm satisfying lanv| £ lall ol , a,bca, 4 IB~al
gebra is a Jordan Banach algebra 4 in which the nom satislies the

following two additional conditions for a,bec4,
§2 [ a® = {[a] 2, and 2°, I a2 f/ é{/az + b2,

Theorem 1.1, 4 Teal Jordan algebra of finite~dimension ig

a8 JB-albegra if ang only if it is formally real,

The algebras Hp(rFf*J(see dSAI, §1) can be extended to arbi
trary cardinality p as follows. Let F = R, ¢, orH, and let g
be a (right) [F-Hilbert space of dimension p over. |y, Denote by
Jf(H) the algebra of a1l bounded F-linear operators on H, Then
theres exists a natural involution (the adjoint = ) on J? (H) angd
?5P(IF}: = {‘Qé;f(ﬂ) R. A } 1s a JB-algebra with
Tespect to the operator norm,

Remark, For every compact uopological'space 5 and every
JBmalgebra 4 » the algebrs A (S, 4) of all continuous functions
.8 ww%-}-ls also & JB~-slgebra. In particular, %f(a,‘m ) is an
associative JB-a lgebra.

Proposition 1.2, Every as socigtive JB-alg@b"a is iuomaﬁriu

cally isomorphic to %?(S, m) -Tfor some compact topological spsce S,
ALFSEN, SHULTZ and ST@RUER /76 7 showed that Hy(0) ig
éssentially the only JBmalgebra which’ cannot be realized as an
algebra of selfadjoint cperators on a complex Hilbert apace, by
bproving the Gelfand-Neunark theorem for JB—algebras (see Theovem

33 bGlOW)n

Theorem 1,3, Let 2} be a JB-algebra, There exists a com-

Plex space H and g compact'tppological space S such thatlg is
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lsometrically isomorphic to a closed subalgebra or 74 (H)

éacg(s,ﬂ3( )

Notation. Let J be a JB-algebra and denote by .

:{};2 I %€ J} the positive cone in} .

Remark., ;Lg is a closed convex cone and the interior - of
;lg 1s an open convex cone which is not empty (one can show thet
S is the connected identity component of Inv(J)).

Definition, The elements of .<o are called positive dofi-

nite, end an ordering < on J is defined by : x<y for x,yc:—;[ if
and only if y~-x € L '

Definition. A subcone ﬂ of g i1s said.be a face of ;{ ir H
contains all elements » ofat such that a £ b for some b e,

Definition, 4 JB-subalgebra B of 7 is said to be hereditary

if its positive cone B is a face of 32
EDWARDS /45 a_/ proved the following results (see also
[ 4837 )

Theorem 1.4, The nom-closed quadratic ideals of g JB-alge~

bra f coincide with the hereditary JB-subalgebras B of J , and the
norm-closed faces of 32 are the positive cones B* of such subal-

gebras B,

Proposition 1.5, The norm closure of a face of 32 is a face

of 220 o
' PUTTEZR and YOOD /= 1osjgenera11zed a number of well- known

Bana;oh algebra :t'esul’cq to the Jordan algebra situation by appro-
priately Lnodifying the proofs, They confined themselves to special
JBwalgebras., ' '

Notation. Lot & ( 7) be the algebra of all bounded operators.
in 3 énd put, for every subset A C;[, GL(4 _: % géo'ip(g f inver-
tible and g(4a) = A'} .
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ﬁor every t of S the quadratic repfasentation P(t) is in
GL({ S+ ) and sends e to tz, l.es Plr)con{s) generétes a transi-
tive linear transformation group onSL 3 in particular -SL ig g
(linearly) homogeneous cona,

The isotropy subgroup of GL{<Z) at e€ XL , il.0. the sub-
group of g € GL(sL) with gle) = e, is the group Autz} of all
algebra auiomorphisms of J . |

Remark. The uniquensss of the JB-norm on J implies that eve-
ry algebra sutomorphism of ;} is an isometry end, in particulsr,a
homeomorphism.Therefore GL(<SX) = P(S% ) aut f,

Consider now the complexification‘é¥c:=:z 4y i;} oféfa é?c
is & complex Jordan slgebra with involution (x+iy)§:= X=-1¥,

Defini‘tion° D 2 = D(SL) := { ze;Z}m }Im(z) & Jﬂﬂ’} is called
the tube domain (generalized upper half-plene) associated with the

cone L&,

Let us mention here that TSAO0 /131 7proved that under cor—
tain conditions the Fourier coefficients of the Elsenstein series
for an arithmetic group acting on a tube domain are rational
numbers. The proof inveolves & mixture of Lié,groups, Jordan al-
gebras, Fourier analysis, exponential sums, and L-functions,

From the results reported by ALFGEN, HANCHE-OLSEN, SHULTZ
and STYRUER 767, [ 473t follows that for each JB-algebra .
there exist a canonical G%algebra 06 ana a homomorphism _

W t ] —> 0 such that " (J) generates U4, Tho kernel of 4
~1s the exceptienal ideal ;]_in 95,7Using Takesaki and Tomiyama's
methods, BEHNCKE and BOS showed i?u:? that J may be described as
an HB(@)—-fibré bundle over its primitive ideal space. |
ggggggggq.As was observed by UPMETER /7133 v7,a promising

épplication of JB-algebras is to be found in complex analysis,
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based on the one-to~-one correspondence between JB%algebras and

bounded symmetric domains in complex Banach spaces with tube reg-

lizatilon{KOECHER /[ 87 47, and BRAUN, KAUP and UPMEIZR /38 b 7).
If we identify GL(4) in & natural way with a subgroup of

GL( g@), then the group of complex affine transformations

ALL(D) = {z — A7 o+t ]AeGL(.SL g téSL}
is transitive on D and, in perticular, D is (holomorphically)
homogensous,
Remari, If 7 =R, then J® = ¢ ana p = {ze 6| m(z) > o}

is the classical upper half—plang. The Cayley transformation

A i(z-i)(2+i)~lfmaps D biholomorphically onto the open unit
disk A,z{zeﬂ}l{zl<l}o
Every z € D 1s invertible and z ~—> 1 (z~ie) (z+ie)“l defines

a biholomorphic map from D onto the bounded balanced and convex

domainAC}Eﬁ Actually A = {z & ELG P (z)p (zﬁ)lo_ <1 },
where ] {G~ denotes the spectral radius. Therefore,

- 1
(1.1) ol s = 2l o= |etapa)]

defines a complex norm on 3@ such that A is the-open unit ball

of ;}m. This norm extends the JIJB-norm on } @

Definition. The above A." is called the generalized unit

disk and _E - :{:;e ZC E z invertible, z* = 2=t -} is called

the generalized unit circle,

- Proposition 1.6, 4An.elenent_z of ;}® is in E 1% and

only 1f P(z) 1s a surjective isometry of é}ma_

One can show that the extreme boundary Sor A isoa
closed real analytic submanifold of ;}G, and that E is =

L] L L) N )
union of certain connected components of S. 4ctually, s & S is in
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E if and only if the tangent space to § in S is a8 real form

of ;} The set exp (1]) is a connected subset of E s and

for a@very connected component T of E" (or, more generally,

of 8) .A  is the closed convex hull oo co T of .T in ;} In a

norm on E} in which the unit ball co(exp 1é} )5 & closedJ
WRIGHT /71397 showed that 7® is a JB®a1gebra (= Tordan c*-alge-
bra). However, the norm (1.1) is equivalent to the JB%-nom G
Wright, |

Definitionl). A JBﬁnalgngg is & complex Jordan algebra J

with unit element e, (conjugate linear) involution # , and com-
plete norm such that

(1) A=yl <=l Ny,

(11) [ Plz)2% | = | 2 |i°
for all x,y,z¢ J .

Comments. YOUNGSON /7141 47 studied J5%-algebras in the
nonunital case, He stated, among other results, that nonunital
JB*~algebras are C* ~triple systems in the sense of KAUD L 81 v 7
(see also, Tsa VI, § 1. |

Example. Every unital Oﬁmalgebra endowed with a Jordan prqm:
duct 1is a JBﬁaslgebraq _

Noto,Thore exist JB*-algebras which cannot be embedded in
any mealgebraa

| Remark, Every closed associative x - subalgebra of a
JBﬁualgebra is a>commutatiVQ_mealgebrao.

Pr0p031fian 1.7. The selfadjoint part of g Jngﬂg%gfa ls
a JB-aLgcbra, '

1} The concept of IB ~algebra was formulated by hAPLANbKY'/"&2;7
and introduced as "Jordan ¢’ ~al“ebra“"
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WRIGHT /1397 proved the converse:

Theorem 1.8, For every JB-algebra o there exists a unique
complex norm on E}G such that JE is a JBﬁwalgebra with selfad-
jéint part 2-0 The correspondence ] <> gm defines an equivalan-
ce of the category of JB-algebras onto the category of JBﬁualgebras

RUSSO and DYE /71127 proved that the closed unit ball of
8 C¥~algebra with identity is the convex hull of its unitary
elements, The same result was proved by WRIGHT snd YOUNGSON /1407
For JBﬁnalgebraso

Using the fact that the extreme points of the positive unit
bsll in a JB-algebra are projections, WRIGHT and YOUNGSON first
showed /140 b’/ that a surjective unital linear isometry between
tﬁo JB-algebras 1s a Jordan isomorphism, and then used this to
obtain the same result for JBﬁnalgebrasa _

BONSALL /337 showed that if B is a real closed Jorden
subalgebraAOf a complex unital Banach algebraga containing the
unit and such that B N iB = { 0] and BcH(B) @ iH(4), where H(4A)
denotes the set of Hermitlan elements of A, then B @ iB is
homeomorphically m~isomorphic to a JBﬁ-algebia, Using WRIGHT's
and YOUNGSON's results /7139 7,/ 140 a7/, [ 141 a,b7uInNGo /987
gave a JB%manalogue of a Cﬁ;algebra result STPRMER [127 47/, as
follows,

Proposition 1.9. Suppose A ls a JB%malgebra and B 1s a real
. selfadjoint éubalgebra_mitn unit such that B- OV iB z{ O} . Then
.B@® iB is a JB"-algebra, |

Mingo,used Proﬁositﬁén-1;9 fé‘pioﬁe—thé.ébdvenméntibned‘re;
sult of Bohsall, dispensing with the assumption B 0 iB = o
and als§¢§rofs thet the isomorphism is anaisomefryo |

.Definition. A bounded domain B in a complex Banach space is

celled symmetric if for every a of B there exists a holomorphic

5"

mAap S_ 1 B ewcmed = o . " L
gl B With 8, = Ia, 2ud a ap isolated fixed point.
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(sa is uniquely determined if it exists ang is called the gym-
metry at a. )

Remark, The generaliéed unit disk A g (holomofphically)
homogeneous and so'(z) = ~2 is the symmetry at 0; i“@; A 4s
symmetric, |

Definltion. For every open cone C in a real Banach space

X, the domain T := { z € X ix \ Tu(z)e C_} 18 called a Synme-

fric tube domain if T is biholomorphically equivalent to a

bounded symmetric domain,

Theorem 1.10. Let J be a JB-algebra and let 3%= J @ 1
be the corresponding JBﬁmalgebra, Then D ::{2630 Jlm(z) G-_Q_}
1s a symmetric tube domain, The symmetry at the point leeD is
given by s(z) = -z_l, and z -m%-i(zuie)(z+ie)"l maps D biholo-
morphically on the open unit ball Asof g In particular, A 1s

a homogeneous domain,

BRAUN, KAUP and UPMEIER / 38 a_7proved

Theorem 1,1)l. If B is a resl Banach space and D is the

symmetric tube domain for J@G g ES @i B y then for every
e € {L there exists a unique Jordan product on P such that Jgiﬁ
a JB-algebra with unit e, and D is the upper half-plane,

Remark. It follows that JB-algebras, as well as JB*-al-
gebras, are in one-to-one correspondence with symnetric tubg
domains,

In the tneory of fcrmally real Jordan alg gebras of flnltb.
dimension an important fact is the minimal dccomp081t10n of ele~
ments of such an algebra with respect to a complete orthogonal
system of primitive idempotents { €ys ceoy k} The 1mportance

of the minimal decomposition follows from the Tact that
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éel, o0y ek}' determine a Peirce decomposition of the algebra 
which, for instance, diagonalizes the operator L(x), and hence
also F{x)q

The analogue for an arbitrary JBmalgebra:] is the fact
that for every «e githe unital closed subalgebra G(0<)-generated
by of is isomorphic to some (%f(S,ER), where S is a compact LOPO~
logical space, However, in case § is connected, o is the only
hontrivial idempotent in C{«}) and the Peirce decomposition can-
not be applied.

SHULT? £ 1207 proved that the bidual of JB-algebra with
the Arens product ig 4lso a JB-algebra, Hence, every JB-algcebra
is & norm-=closed subalgebra Ofeijalgebra which is & dual Banasch
Space. Algebras of this type admit not only a continuous but also
an L° ~functional caleulus,

Remark EDWARDS /745 ¢_7 showed hoyw some of the results on
nmultipliers and quasi-multipliers of C*-algebras can be extended

to JB-algebras,

§ 2, JBW-algebras
o

Definition., 4 JB-algebra P 5 called a JBW-slgebra if Fis
. @ dual Banach space (i.e, there exists a Banach space /y with
] = Agx as dual Banach space;'ig is unlquely determined by F
(see SAKAT /71137) and is called the predual of F ),

Example. The sélfadjoiht part of a von Neumann algebra is
2 JBW-81gabra, - s

Remari, For every « in the IBW-algebra J the w'-closed uni-
tal subalgebra W(« ) of 4 8enerated by « is a eommhtative von

Neumann algebra, i.e, W(X ) A %?(S, R) for S hyperstonian o

equivalently, W« ) v LPOE/MJ, where M ig a‘localizable measure



PR [
(see SAKAT f“113:7)
Eﬁfikkflfﬁfli JBW-algebras (weakly closed analosues of JB~aleebrag)

are the abstract analogues of von Neumann algebras in the Jordan

case,
SHULTZ / 123 7proved the Gelfand-Neumark theorem for
JBW-algebrags: |

Theorem 2,1, Every JBW-algebra J is a unique direct sum

(as algebras) Z}z:}SPGQ :}sx’ where ;}sp is isomorphic to a
weakly closed Jordan subalgebra of F6(H) for some complex
Hilbert space H, and E}ex ~ %?(S, Hy (0)), where S a is a com-
pact hyperstonian space.

Comments. Jap a0d E}ex are called the gpecial part and
the exceptional part of :} i respcctjvely Bvery Jw- al"ebra

(i. e. & weakly closed subalgebra of 7§ ) H a complex Hilbert
space) is_a JBW-algebra with ] = E}spo Let us mention in this
respect AYUPOV's recent study /16 h 7, which starts from results
given by EFFROS and STYRIER /748 a, b, 127 v,d4_/. The principal
aim of /716 h/is to complete the research of .connections between
-properties of JW-algebras ang their enveloPing von Neumann al-
gebras in the general case. Ayupov obtained ﬁhe types criteria
for JW-algebras in terms Of the existence of normal traces.These
results are similar to those for von Neumann algebras. In particu-
lar, he considered the problem of the extension of traces from
a JW-algebra to its enveloping von Neumann algebra. This problen
is of interest in its: own :ight;énd is also used in the above-men-
tioned results. Additionally, it gains in importance by applica-
tions in thg fheory of integration on Jordan algebras (see
AYUPOV /716 ¢, the details being given by AYUPOV in L1647
Definition, A JBW«algebra_giis called a factor if the

[Lﬂx), L(y)!]: 0 for

g e 3 } , reduces to Re or, eguivalently, if there does not

centre of'3~, defined by Z(})::{:(ez
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exists a direct sum decomposition';[z ]l & 32 into proper

subalgebras,’ '
Remark., 4 good substitute for the minimal decompogition

Of the finite-dimensional case is ths Laifunctionél éalculus in

JBW-algebras,

Proposition 2.2. If '} is a JIBW-algebra, then the unit

circle E :{zeze[zﬁzzwl}in }{E:Z 4> i} is conw

nected, Actually, E P exp(i'z), and GL{ A ) = P ( Z) aut a5
2% being the open unit ball in ;fa

Remark. The group Aut J 1s a real Banach Lie group. Its
corresponding Banach Lie algebra will be denoted by aut _J-,
Note that aut J is the set of all derivation of the algebra e

For every X, y € [, the commutater [ L(x), Liy)] 1is
contained in aut E} 3 every finite linear combination of such

commutators is called an inner derivation of J. The set int L

of all inner derivations of J} is an ideal of aut _f . In the
finite-dimensional case we have aut J = int f, while in general
this 1s not true. '

UPMEIER /"133 b/ proved
Theorem 2,3. If J is a JB-algebra, then .aut ] is the

closure of/int:} inéf (F) with respect to the strong operator
.topblégy (i.e. the topology of siﬁplg convergence on ¢ ). If;}
is a JBW~-factor that is not isomorphic to a factor of-infiniﬁe
diﬁension,_théﬁ'a&t}}- is the norm closure in-éf (F) of int F
Remark. The methods and results given in Lfi33 b;? are
applied by UPHEIER /133 é:?to deduce fundemental algebraic

properties of the Lie algebra sut ] of a JB-algebra 7,



e 5

Recently, UPHEIER / 133 ¢/ showed that for g JBW-algebra
Z} the connected identity component of Autz} is algebraically
generated by involutions of the form P(s), where se;I = e and
P denotes the quadratic representstion (see IS A.I, § 1). The
only éxception to this result are spin factors of infinite dimen-
slonsy in this case, Aut :} is only topologically generated by
the transformations P{s). Applications to several algebraic_and
geometric objects associated with & JB~algebra z} -~ lilke the
positive cone of J, the Jordan pair (dsd ), etec. - as well as
to dynamical systens are slso ¢ given in /_ 133 ¢ 7.

Definition., A JBW-factor ;} is called of tvpe I if &

contains a primitive idempotent.

¢Rmbh [fJH? b“/ gave. a oom“lete classification of
JBW~factors of type I :

Theorem 2,4, The JBW-factors of type I are precisely the

following algebras, where p is an arbitrary cardinal number,

Type algebra

Ty R

I, \Np » P23

I, HP(IF)H'), ® =®, ¢, H, O, and p> 3

(p::3 i B ::@)l)o

Definitions, Let'gf be the dual Banach space of a JB-al-
gebra ;C and denocte by {) ég Z 0 } the dual

cone of gzi Then K= { [')je) = X } i1s called the
"state space of :} he

l nts of X being called states on o
Remark. K is a w*nﬂom;dct, convex subset: and Z} can be

*
identified (as a Banach spuace) with the space of all w-continuous

1) /., ¢alled the spin factor of dimension p, corresponds to
D ‘



- IH -

affine functions on K. The bidual of 2} coincides with the set-
of all bounded affine functions on. K,

In a comprehensive study of state spaces of g JB-algebra
ALFSEN and SHULTZ /B 7 gave fecessary and sufficient conditions
for & compmct convex set to be a state space of a JB-algebra,
ARAKI /711 7improved the characterization of state spaces of
JB-algebras given in £f5;7to a form with more physical appeal in
the simplifieq finite~dimensional case,

ALFSEN, HANCHE-OLSEN and SHULTZ [ 47 characterized the
state spaces of Cx-algebras among the state spaces of all JB-
-algebras, Togethe:,[fBi? and /[ 4 7give a complete characteriza-
tion of the state spaces of C*.algebras.ds 1s shown in LT
a JB-zlgebra ;} is the selfadjoint part of = Gx-algebra if and
only if _J is of complex type and the state space of J is orien-
table, STACEY /7126 ¢/ showed that the state space of a JBW-8l-
gebra of complex type is orientable if and 6nly 1f it is locally
orientsble., For local and global splittings in the state space of
4 JB-algebra see STACEY /7126 b7, Recently, IOCHUM and SHULTZ
/7737 characterized normal state spaces of JBW-algebras among
convex sets by proving that they alone are spectral and elliptic.

Every state e K defings by (x| y{x := A (xy) a positive -
inner product on'} and, in particular, by‘!ilf: )(32)1/2 a seni-

norm on g’n

Definition 1, A state * on a JB-algebra 4 is called
faithful 3| lxﬁctually”is norm on J, i.e. if A (%) = 0 implies
that x = o, ' '

Detinition 2. A stata.)» on a JBW-algebra 7} is called

normal if lim )E(X“) = :X(x) for every increasing net xoiin.giwith

X = sup X, € z}.
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Definition 3., A normal state A on a Jmealgebra Z} 1s cge

lled a finitse trace if it is sssocistive in the sense that
A ({xy)z} = A (x(yz)) for all .x,y,,z@;lu

Remark. The condition from Definition 3 above states thét

every L(y), yééZ}, is selfadjoint with respect to the inner pro-
duct ( l )) i

A complete study of JBW-slgebras with a faithful finite
trace was undertaken by JANSSEN /78 b 7. On the basis of this
paper, JANSSEN /778 ¢,I_7 studied the properties of the lattice
of idempotents in a finite weakly closed Jordan algebra. He DI Qwe
ved that such an algebra admits a unique decomposition into a
direct sum of a discrete Jordan algebra and a continuous Jordan
algebra, JANSSEW /78 ¢, II./ zave a completely deseription of
the discrete finite weakly closed Jordan algebras by finite-di-
mensional simple formally real Jordan algebras and by simple
formally real Jordan algebras of quadratic forms of resl Hilbert
Spaces. A JBVW-algebra of type 12 is a direct sum of weakly
¢losed finite Jordan algebras in the sense of JANSSEN /778 biyele

STACEY [ 126 a7gave a structure theorem for IBi~alge-
bras of type Iaa The case n > 3 was treated also by STACEY
L 386477, _

PEDERSEN and ST¢RMER [ 10577 showed that the different:
definitions of trace on a Jordan dlgebrd are all equivalent for
JBW-algebras, and that conditions that do not involve projec—
tions are equxvalentr+or JBmalgebrasOVThey have.congidered only
finite traces. IOCHUI {68 n/ exténded the results to semi-
finite traces. By a suitable definition of semifiniteness, he
showed that fof any JBW-algebra we have a unique central decome

position in finite (semifinite) and proper-infinite (pure~infi-
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nite) parts exactly as in the case of von Neumann algebras {see
Theorem Vo1.6 /769 a_/). Iochum proved also (for the semifinite
case) the eguivalence betwsen the category of faclially homo-
geneous self-dual cones and the category of IBW-algebras of
selfadjolnt derivations (see /69 a, Theorenm Ve5.1.7), and(/769 a
Chapter VII /) his main theorem, which establishes the equiva-
lence between the category of facially homogenaous self-dual
cones In Hilbert spaces and the category of JIBW-glgsbras (see
also /25 a ] )

Assume now that z} is a JBW-algebra with a faithful fini-
te trace A . Then A 1is essentially uniquely determined (every
other faithful finite trace is of the form Ae P(h) ::lOL(hg) for
some h> 0 in the centre of E}), and ]ﬁ is a complex pre-Hilbert
space with respect to the inner product (z | w) 2= (z ‘WJj_f=

= 2—(ZWE), where A 1s extended &alinearly to gcg

A
Notation, Denote by"g@ the completion of '}@ with respect
1/2
to the norm || z H2 - “Z{kkgz )~(zz§) , and consider the

A /E- 2 . (o
closures _OL and —c_JL of :( and z in 7%, .

The operators L(z) and P(z), ze'}l”, can be continuously

et o1
3

. A

A
 extended to bounded operators on '}m satisfying L(z
A . %
and P(z)® = P(z" )}, The cone :}2 is self-dual 1n‘} s satisfies o

certain geometrical homogeneity condition, and has g as trace
A

8 o
Yeotor (.., as - quasi-interior point of ;} fixed by every con-

A
set of isometries in GL(}) ). On the. other hand, every

necte

<l

cone of this type in a real Hilbert space is obtained in this
way from a JB-algebra with faithful finite trace (ses BELLISSARD

and IOCHUM /725 a_J). This result can be viewed as a generaliza-
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tion to the infinite~dimensional case of the following theoren
of KOECHER: The seclf-dual cones with homogeneous interior in.
real Hilbert spaces of finite dimension are precisely (up to
linear equivalence) the cones of squares in formally real Jordan
algebras,

The connection between formally real Jordan algebras with a
trace and cones in an infinite-dimensional Hilbert space was Gl
ven in 1971 by JANSSEN /78 a_/. He found a class of domains of
positivity In pre-Hilbert spaces that are in oneg-to-one CoOrrese
pondence with the formally real Jordan algebras that have one-~
dimensional centres, Since Bellissard and Tochum held the opi-
nion that facial homogeneityl) 1s 8 very crucial property in
the category of cones, they have re-considered this problem in
1978, by giving s self-consistent exposition of the results
L a5 a_/. Later on, they showed [fES b_/ that a JBW-algebra can
be assoclated canonically witﬁ a feecially homogeneous self-dual
cone. This construction generalizes the case where there is a
trace vector in the cone,

Proposition 2.5, The 78" -norn (I on:}ﬂ

"t satisfies

l ”2 < || Um on }d}’ and A\ = {ze'}m ) 1 - P(z)P(2)* > O},
Z: = BXD (i})‘z{Zégm jP_(z) unitary on —C}@}:{ZGE \Hz“ezl}u

Proposition 2,56, If ZFis a JB-algebra, then the following

conditions are equivalent

(i) there exisﬁs-a-maximal aasociative subalgzebra of
‘finite dimension in &
(ii)-i} 1s locally finite (il.e. every finitely generated

subalgebrs has finite dimension);

1) Recall that a cone in s real Hilbert space is facially homooe-
ncous if for any face T, the operator %?-T}L ls a derivation
ere pF(xcsp”PFL ) is 'the rrojector onfto the closed linear gub-
space generated by F (resp,,FJ-,-the orthogonal face of ¥),
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(11i) for every a ef}.the operator L(a) & &? satisfies g
polynomial equation over IR i
(1v) there exists a natural number r such that every a€t
admnits a rapresentation a :0<lel+°,;+£xrer, where
gel, ceoy ef} is a set of orthogonal idempotents and
o(l, o0y p Em o
(v) there exists a faithful finite trace )-on.} such that

the corresponding Hilbert norm || xl[2 = )~(x2) oa ;P

is equivalent to the JB-norm || xllpo;

) Jis reflexive,

Definltion. 4 JB~algebra ;} is called of finite wrank if one
of the conditions from Proposition 1.16 is satisfied., The number
T =g T(Hﬁ) from condition (iv) is uniquely determined, and is |
called the ranmk of . o

The classification of JBW-factors of type I (see Theorem 2.4 )
implies |

Wheo;em 2.7, Every JB-algebra J of finite rank is a unique

divect sum ;} 'Z @ .0 P Z} of JBW-factors - '33 with r (:}

=T :}l + oot T ‘3@ The JBW-factors of finite rank are preci-

~

. sely the following algebras:

& r{ &)

R 1

VY ; - p an arbitrary bardinality > 3
& §

'Hp(m) ' P, 3<£p<es and ¥ =R,C, or W,

Remark, JB-algebras of finite rank, except for spin factors,

are formally real Jordan algebras.
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‘KAUP /84 & Jgives

Theorem 2.8, Every symmetric tube domain D in s reflexive

. Bansch space is linearly equivalent to a dlrect product .

(2.2} ' DRI XDlFo) X eeo XD(F ),

'where7gi, e.u,:}K are uniquely determined (uﬁ to order) alge~
bras from.the list in Theorem 1.17 and D(:}j) is the upper half-
plane .associated with 'Bau On the other hand, every domain of
the form (2.1) is linearly equivalent to a symmetric tube domain
in a complex Hilbert space.

CHU /[ 41 a_/ studied the Radon-Nikodjm property (for defi-

nition see below) in the context of JBW-algebras.

Definition. 4 (real or complex) Banach space X is said to

possess the Radon-~Nikodim property. if for eny finite measure

space (S, E:’,/“ ) &nd /M-—continuous vector measure

L E 2 X of bounded totul variation, there exists a

Bochner integrable function gi €2 =~ X such that L(B) = jﬁg%/x
: . o

for g1l m in E .

Using Theorem 2,1; due to SHULTZ /12377, CIU / 41 a7/ esta-

blished the following result.,

; Theorem 2,9, Let z& be a JBVW-zlgebra. Then its dual g/ has
the Rédon_Nikodﬁm property if and only if :}*is a finite direct
sum of Jordan algebras, each of which ls one of the following al-
gebras: 7 - T R CH :

(1)' Jordan (n X n) - matrix algebras over R, €, or H;
(11i) spin Tactors; '
(iii) the exceptional Jordan slgebra-of Hermltian (3 X 3)

matrices over 0,
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‘Recently, CHU /[ 41 b/ proved that the dual of a'JBwalgebra
‘& possesses the Radon~Nikodjm property if and only if the state
space of-g ls the 0 - convex hull of its pure states. Namely, he

proved

Theorem 2.10. If "] is a JB-algebra with state space K, then

the following conditions are equivalent:

(i) K 18 0 -convex hull of the pure states (i.e.

/ o0
Bn : ln - E,,_., kn = 1, Ang,o, k- pure states } )
= o=l :

(ii)-glhas the. Radon-Hikodym property;’

(iii)Z]”is a @irect sum of type I JBW-algebras (i.e.JBW-
~algebras which contains a (non-zero) minimal idempotent).

A generalization of the comﬁutant of a von Neumann glgebra
in the more general setting of JBW-algebras was investigated by
KING [fSﬁ ai?.King's formulafion seemstb be of advantage in
the study of the foundations of the quantum - theory, as it ohly
involves objects and operations that have a physical interpre-
tation, |

In general, a JBW-algebra does not have a concfete realizag-
tion as an operator algebra acting on some Hilbert space; hence
the notion of commutant éhould be revised from the start.

| King did this as follows . Let ] be a JBW-algebra and e
normal state; he studied the order ideal generated by x_in the
dual Qf:}o Thié bfde;'ideai wés denétéé by‘l?SJ; ﬁhen g is-ﬁhe
selfadjoint part of a von.Neumann algebra«¢”, then ‘V)_can be
identified in a-naturé& ﬁanner with the selfadjoint part of the
commutant of the GNS representation of dvﬂwith.respect to A .

Note. KING's /86 a7 conjecture is that whea X is a faithfu

normal state, there exists an order isomorphlsm of E'onto O
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In /786 a, Chapter II/ it was chown that.this conjecture is
Qatomic TBW-algebvas
true fomsee Theorem 2.11). Xing proved the conjecture to be
-true for a faithful normal trace, and, as an application, proved :
Radon—uNikoﬂ&m theorem for normal traces (see Theorems 2.12 snd 2,
13). For an interpretation of these results in terms of physical

concepts, see EMCH and XING / 50/

Definitions, 4n idempotent p in g JBW-algebrs J is called

an atom if it is minimal (i.e. if 0€£q<p with q°=q implies thal
¢ =00x q=p)le J is said to be atomlc if every idempotent is
the least upper bounded of orthogonal atous.

Hotation. If X is & state on the JBW-algebra J s then

Thecren 2.1X, Let } be an atomic JBW-algebra and let l be a
falthful normal state on J, Then there exists an order isomorp-~

hism ¢ ¢ Vy —> [with ¢ LY o= e

Theorem 2,12, Suppose that a JBW-algebra Efadmits g faithiful

M s

normal trace A (1.6, for all ldempotents p,q we have
k(qu - qu) = 0, where qu := {palg -~ (qp)a + qap). Then there
exists an order isomorphlsm ({) 2 V)L R 3 with CF (l)' = & JMore-

s N # :
over for every positiveju(ioe./u e(}“) ) fron Vy , there exists a

positive element y in Bsuch thst/’t(x) é).(er)o

_ . 3 \
‘Theorem 2,13; Let J be a JBW-algebra satisfying the guadra-
o . =

,—f-

. j . " / . -
.1¢ Radon-Nikodjm property (i.e. for any f,ge " Jwith 0 £r(x7)g

|

IN

- ; . . .
g(x") for every xe }, “there exisbts g-positive-y-in } such-that

A

L)

(
states on g, Then V/u and Vy are order isomorphic,

) = g(Uy:f:) for every xé}) and let/k' and ¥ be faithful normal

Corollary. Let ] be as in Theorem 2,13 and suppose that -

admits a faithful normal truce. .Let'l be a faithful normal state

on}. Then \TX is order isomorphic to}‘,
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-Recently, HAAGERUP &nd HANCAR-OLSIN /[ 617 attempted +o
generalize the Tomita-Takesaki theory to JBW-algebras. As was no-~
‘ticed by HANCHE-OLSEN /762 a/: ™When trying to extend the notions
of Tomita-Takesaki's theory to Jordan algebras, one immediately
runs into a msjor ohstacle: One cannot, 1n genergl, associsate g
“CNS~representation®™ with a state. So, there is no Hilbert space
on which to define the operators of Tomita-Takesaki theory. More-
over, if the product in a von Neumann algebra is reversed, then
the modular automorphism group is also reversed; hence it cannot
be determined in terms of Jordan structure alone. The 'symmetri-
zation' @, = (T4 o_+) /2, however, is left unharmed by this
reversal of product", An analogue of et can be defined on any JBYW-
algebra with a faithful normal state.The definition .of A givén
By Haagerup and Hanche-Olsen, uses the structure theory of JIBY-
~algebrasy however, the characterization of et does not depend on
this structure, In.particular, this ylelds a new characterization
of G% + 0., In the von Neumann case,

In order to recall below the main result of Haagerup and
Hanche~0lsen; let us first give the following two definitions;

Definition. A family (v )tewR of linear operators on a li~ .

t
near space M satisfying 7, =L and the cosine ldentity

V.V, =
2 S % vs+t 2 vswt ’

1s called a (one-parameter) cosine family on Il,

qﬁgnarkollf (ut) is & one-parameter group, then ((ut+u*t) /2)

1s & cosine family,

Definition. Lebt J be a JIBW-algebra and X a normal state on .
A bilinear, symmetric, positive semidefinite form s on d setisfy-

ing



(1) s(a,b) 2 0, a 20, bz U,
(i1) s(l,a) = A {a), a € J,
(i) qe c)%/tél, there is 0{b<1 so that

Mla) =" s(a,b), ae f,

is called a self-polar form associated with )-.

remark, There exists at most one self-polar form sssoecisted
with A .

Theorem 2.14, Let ;} be a JBW-algebra and let X be a
fdithful normal state on J . Then there exists s unique cosine
family (6 ) of positive, unital linear mappings of g into itself,
having the following properties:

(i) for each a € ], t —=> g, (a) is weakly continﬁousg
1
(1) Alegla)eb) = X (a6 (v));

(i14i) s(a,b) := u/:l(aﬂet(bj) cosh (ﬁ’t)"tdt defines a
self-polar form associated with Ay
Finally, let us mention the following result of STZRIER
[f1?7 g_/, related to Ji-algebras,
Let M be a von Neumann algebra and let % be g central invo-
lution of I, i.e. «K is g #¥-antlautomorphism of order-2 leaving

o«
the centre of elementwige fixed. Then the set M := {x:eiﬂ‘x =

= i*l: & {x) } is a JW-slgebra with Jordan product Xyt=

2= 1/2 (X.y + yix), STERUER studiéed the relationship between M~ .
and mﬁ’ for .two central invoiutions ® angd @ . The.main result
states that o« and @ are (centrslly)‘congu tate, 1.e. there exists a

x-automorphism %’of M leaving the centre elementwise fixed, such

that'@;:#}« %:"l if and only if ™ ana P are isomorphic &s

Jordan algebras via an isomorphism which leaves the centre el ement~

: & ' .
wige fixed. Now M " generates If g 9 von Neumann slgebra (except
5 . ~ RIS Y (R <
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in @ few simple cases) and there are von Neumann algebras with
many conjugate classes of central involutions,

Thus there maj be many, even an uncountable ﬁumber, of non-
isomOTphic.JﬁLﬁlgebras which generate the same von Neumann alge-

bra. Such examples may be found in /7127 g, Section 5 /e

§ 3. OJ-nlgebras

4 class of partially ordered Jordan algebras, called 0F-gl
gebras (see below for definition), was introduced in 1979 (see
AYUPOV /716 a_/, S4RYMSAKOV and AYUPOV /[ 1167) ana studied
by 4TUTOV [fl6 b~J:7o These algebras are nonassociative genera-
lizations of semifields and can be used for en algebraic ap~
proach to quantum probability théofy (for the notion of semifield
see SARTMSAKOV [ 1157/7). Thié section deals with the results
given by AYUPOV in /16 a-j 7.

Notation. Let 4 be a Jordan algebra over R,

Definitions Two elements a,b € A are called comﬁatible'(den
noted by @ <> b), if the Jorden subelgebra Ale,b) generated by
these elements is strongly associative (i.e. (xy )z :'x(yz) for all
X,z€4 [a,b) and ye a)

Definition, 4 partial order » on A is said to be consis-

.tent with the algebraic operations if

(i)- azb 1Implies that a + ¢ 3b + ¢- for all ce4 ;

(11)  apb impllies that Xa 3 b for all LeR, A% 0;
(1i1) a3€, b9, a &>Db implies that ab>e 5

(1v) agzve for all a .4,

vhere € is the null element of A,
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Definition. &4 real Jordan algebra 4 with unit element e

is called an OJ-algebra if it 1s equipped with a partial order
consistent with the algebfaic operations and such that: 1) 1f (x,)
is an arbitrary monotone increasing netv in A bounded from above,
then x = sup %o exists and x <—» y for sll v&e A compatible
with every x4 3 2) every maximal strongly associative subalgebra
of 4 1s a lattice ordered with respect to the induced order,
Note, OJ-zlgebras were introduced for the sake of an
axiomatic aﬁproach to gquantum probability theory. The elements
of an OJ-zlgcbra can be interpreted as obs ervables, its idempo-
tents form & complete orthomodular lattice and can be interpreted
as events, This OJ-algebra approach i1s s synthesis of SARYUSAKOV's
approach 17115:7 to classical probsbility theory and the'algebraic
approach to gquantum mechanics suggested by JORDAN éfBO a,b,c#?
end JORDAL, von NEUMANN and WIGNER / 817. The class of OJ-al-
Sebras 1s sufficiently large and contszins as particunlar cases
semifields (the associative case), selfadjoint parts of von .
Neunann algebras, and Jordan algebras; these sppear in the forma-
1lsm of the gquantun mechanics, Additlonally, OJ-alzebras are
endowed with a structure rich enouszh to obtain analogues of
heorems of classical PTObelllﬁJ theory in 0J-algebras,

Bramples of OJ-algebras, 1. Every algebrs of measursbls

functions on a measure space is an associative OJ-’lﬂebrao

2, Let A be a von Neumann zlgebra on a Hilbert space ?ﬁ

Iiét”ﬁ(adnbgwfﬂc hwul cbrq of.ééé;ufSﬁiéwdpéféfbrg ﬁfflllqted

with 4., Then the Tamily of &1l selfadjoint operators from M({)

Toris an O0J-algebra with respect Lo the natural order and the
g .

symunetrized product ab := 5 (a.b + b,a), where a.b is the

ordinary associstive product of a and b,
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3; ﬂﬁery'Jﬁ—al”ebra is an OJ-algebra. In particular, tﬁe‘
selfadjolint part of a von Neumann algebra is an 0J-algebra.
M 4, An arbitrary JIBW-algebra B is an 0J-algebra if the oT~
der defined .by the cone B2 = { b2 1b 6?3}°

‘Theoren 3:1. The set of all idempotents (i.e. 02 = 6 ) gF

an Q0J-algebra, endowed with the induced order and with orthogonal

complement defined as ok ¢= €~C, 1s a complete orthomodular latti

Ce,

Definition. An element a € 4 is said to be (order) bounded

if -=de € a £ e for some positive Le IRo

Definition, 4 family { e;hk léam.ﬁf idempotents of A is

called a spectral family if

(1) ey o for )\%A;'
(4] inf{csk 3 =9, sup { e)_& = e 3

(i11) e, = sup e for every melR ,
><ﬂ{ »J /

Theorew 3.,2. Given an element a in an 0J-algebrs A, there

(24
exlsts a unique spectral family { e)‘} such that a = _f ldc;)L i
. - oo
and for beA we have b €~> g if and only if b <= €y for
a1l heR |

Definition. 4n OJ-algebra containing only bounded elements

is called an 0JB-algebra,

‘Theorem 3.3, ILvery 0JB-zlgebra is s JB-algebra with respect

to the norm“} | : = inf { A>o0 —)% e gx< e }

Theorem 3.4, Every monotone complete IB-algebra is an OTB-
algebra with respect to the order defined by the cone of sll

squares.,
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Remark. From Theorem 3.4.,it follows that the class of 0JB-
algebras coincides with the class of all monotone completé JB-gl~
gebras.In particular, it contains the class of all JBW~algebras.,

Theorem 3.5.For every OJB-algebra A there exists s central

idempotent ¢ & A such that the CJB-algebra cA admits a separat ing

set of normal states and for the OJB-algebra (e-c)4 there exists no

normsl state on it.

Remark 1l.4n 0JB-algebra is a JBW-algebra if and only if iv
admits a separatiﬁg set of normal states,
V Hemark 2. Every OJB-algebra is the direct sum of two idesals,
one of which is a JBW-algebra, while the other has no normal states.
The following nonassocdiative analogue of the Vitali-Hahn-Saks

theorem holds:

Theorem 3.6.Let 4 be an 0JB-algebra, let {Cfn } ve a
seqguence of normul states on A pointwise converging.to ¢ (i.e.
lim ‘fn(a) = ( (a) for all a € A), Then ® is also a normal state
on A.

As was uentigned in the Note on page Y , the elements of a
given OJ-algebra are interpreted as observables; and its idempo-
tents, which form a logic, correspond to the guantum mechanical events.
Furthermore, the order bounded elements in the given OJ~algebra cor-
respond to the physical states, Therefdre, Theorem 2.1 <can be consi-
dered as & representation theorem for the algebra'of.bounded obser-
vables. AYUPOV's/ 16 j 7 main result is a fepreseﬁtation theorem
for srbitrary OJ-algebras of observables, cqgtainiﬁg_pnbogndgd_elgfﬂﬁ‘f
ments as well.. l |

In order to formulate the above-mentioned representation tﬁgorem

of Ayupov; we give sone definitions.

Definition, Let A be a JW-algebra in a Hilbert space :ﬁf .

A projection p in A'is ssid to6 he mcdglar if the projection
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1attice [ 0,e] ¢ = {I‘EA , f<p } is modular (i.e,
(fvg)ah = £v(gah) for all T,e,h €/ 0,p] , £ £ h j sece
L1307 )

Definition. A selfadjoint operator T (not bounded, in gene~

ral) in the Hilbert space His said to be affiliated with the

Jﬁwalgebra A 1f all its spectral projections P>L (in the spectral

L .
resolution T = J{ A d Pl) lie in 4.
- o

Definition, 4 self-adjoint operator T affiliated with a
JW-algebra A is called: |

. L
a) measurable 1if the projections P4 and ?A are
’ [}

-]

modular for some positive lo £ R j

b) locally measurable if there exists a sequence (qn) of

central projections in 4 monotonically increasing to e snd

such that an i & measursble operator for ell B = 1,2y ewe o

Definition, A Jordan subalgebra Al in an OJ~zlgebra A 1is

called & solid-0J-subalgebra if it 1s an OJ-algebry with res-

pect to the indueced partiel order and if for X,v £ 4,
0£x€ y e 4, implies that x S
Definition. An 0J-algebra 4 is said to be universal if, gi-

ven any spectral family {(31 3 in A, the integrél
%
_f )\ge} SXIS?S °

—

Definition of the exceptional 0J-algebra 99(:’3,1-13(@[1J).

Let S be a hyperstonesn space, and let q o :‘{3(@) U {‘“}
be the one-point compactification of the finite-dimensional
TBW-elgebra 1, (0 ). Consider the set 7 (8, Hy ( ©)) of &ll

G
continuous maps £ ¢+ 8 =——>» H such that f % (#= ) is nowhere
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dense in S. The algebraic operations and s partlal order on this.
set are deflned as follows, Let f,ge Sf(s, Hb( ®))s then ¥ : =

e 8~ { th(eo) U

f[z)lg(zjé}%( ® ) for

._l(

e}

o) }' 1s an open dense subset in S, and

]

&Y . Define the map f+g from ¥ to af by
(f+g){x) := f(x) + g(x), x € ¥. Since Y is a hyperstonean space,
it .coincides with the Stone-Cheéh compactification of every dense
subset Yc 3. Therefore f4g can be unlguely extended to a conti-
nuous map T+g : S wwé-'g and, obviously, f+g & Sf’(s, HB( o).
Similarly we can define other glgebraic operations on ff(s,ﬁ3(®)),
Since HB(D) is a Jordan algebra, 75/ (s, H3(®)) also becomes &
Jordan algebra, |

Remark, If one considers on SP(S, H3(®)) the pointwise par-
tial order £ (i.e., T £ g means that £(x) £ g(x) for 8ll x& 5 -
- {f*l [ @) Y 5"1 ( oo )}'); then the Jordan algebra
%f(s, H3(®}J becomes a universal 0J-azlgebra, and its subalgedbra
of bounded elements is isomorphic to the JBW-algebra %f(s, 3, (o))

.LAB
(see £ 16 j, Theorem 57,
Theorem 3,7. Let A be an arbitrary 0J-algebre,let B be

the JBW-algebra of bounded clcmcnts in 4. Then, there exists a
.unioue central idempotent ¢ € A such that '

(1) the algebra ¢B of bounded elements in the 0J-al-~
gebra ¢ 4 is isomorphic to a JW-algebra ZK,“and the OJ-algebra
c A is isomorphic to @ so0lid OJ-subalgebra of the uJ—Jl*vaa

S{J) of all locally measurable selfadjoint Opcratorb afflTlute

(11) the algebra (e-c) B of bounded elements in the 0J-al-
gebra {(e-c) A 1s isomorpic to the IBU-algebra Q?(g,’; (@)), and
the 0J-algebra (e-c¢) A is isomorphic to a solid OF-subalgebra of

the universal 0J-zlgebra -9p(3, Hq (0) ).
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‘Note. As was noticed by AYUPOV /16 k7, Theorem 3.9 was
given in /1177 only for a particular case, because it was pro-
ved in the general case only after the manuscript had been sent

to thie publishers

Definition. Let 4 be an OJ-algebra and let T be g
Hausdorff topology on A such that (4, &) is a topological vector
space. Then (4, &) is called sa topological OJ-zlgebra, and & is
sald to be an R-topology, if the following conditions are
satisfied:

1. Tor every neizhbourhood U of zero in A there exists &

"normal® (or so0lid) neighbourhood V¥V cU i.e. such that

1. & x¢ y eV implies that x & V;

g

A

EP. yeV implies that P(p) Yy ¢V Tfor every ldempotent or

syametry p in A ;

3 Mg B {C:x B ls an arbitrary net of idempotents T -conver-

z to 8, then for every net % Kx% from A net { X, cq% also

[“\ B

G ~canverges to 6.

Definition. Let 4 be an OJ-algebra, lst W/ be the logle

of ildempotents of A, and let E be a topological semificld, 4
function & : Y ~» E is called a measure if

1) dle} > 0, for gll c &N/ , and d(c) = 0 1f and only’

a1 i TS
2) d(cl) = d{ec,) if ¢, and ¢, ure equivalent ;
<
A 1 . Lo e P o]
1) Two idempotents oy and ¢, of 4 ure suid to be gguivs lent it
= Y -
there exists a finite family of symmetries Gag soo, 5,
2 \
. o B Vo Rl — n G 2Y
(1.@.‘3? = 5, i == }_, 200 1’1) sucn tii t .(u@j a s 8 L(S.‘»Yl) C-i—- (;»:.3
1. e e -
. - o . - (r - -~ -
where 'P 1s the quadratic representation.of 4 (see :3574.*,u
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'3) d is completely additive.
Here DE 1s the null element of T,

construction of the topology Gae Let 4 be an OJ~algebra,

let B be the JB-algebra of bounded elements of 4, let 7 be
the logic of idempotents in Ay and let d be a measuré on Y with
values in a topological semifisld . Consider'ths topology z;d
of convergence in the measure 4 in which the base neighborhoods

of zexro consist of sets of the fornm.

U(sﬂ)::{xea JpeV ,alpt)ev, 7, ) X€B, H p(p) x”gz}, ;

\p

where € is a positive number and V is g neighborhood of zero in

E.

i

Theorem 3.8, Let A be an 0J-algebra and .let 'Zd be defined

as above, Then (4, 'Cd) 1s a topological Jordan algeﬁra (feme the
linear operations and the product are continuous in both varia-
bles simultaneously in the topology ‘Gd)o

Theorem 3.9, The above-defined topology '@d ls an R~topo-~

logy.

Theorem 3.10. Let 4 be an OJ~algebra, The following condi-

tions are equivalent:

1) A admits an R-topology;

2) 4 is a finite 0J-algebra (i.e, every orthogonal family .
of mutuglly equilvalent idempotents .is finite), and its centre isgs
a topological semifield;

3) the lattiqe_ofwidpmpqﬁgntsnoﬁ Am}simodgggy}“and“the_ g
Boolesan algebra of its éontral idempbﬁents is. a topologicel

Boolean algebra,

Theoren 3.11, If A is an OJ-algebra, and 'Cl and ©, are

two R-topologies on 4, then T = G
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Theorem 3.12, Lvery R-topology on an OJ-algebra A is the

topology of convergence in measure with values in the centre of

.(19

iheorem 3.13. For every topological OJ-algebra (4, & )
there exlsts a unique (up to isomorphism) universal topological

A A
0J-algebra- (4, &) such that 4 is isomorphic to a subalgebrs of

A ' A
4, and such. that the JB-algebras of bounded elements in A and 4

are isomorphic,

Remark., Further results due to AYUPOV on toéologioﬁl CJwal~-
gebras majg%ound in /716 a7,

We now recall some results concerning several agpects of
probability theory on JBW-algebras.

Given a JBW-algebra 4 with a finite faithful normal trace,

= VAN

AYUPOV 716 g_/ constructed the OJ-algebra 4 of measurable ele—
ments for A and defined the space of integrable snd square-inte-
grable elements from Qo Then analogues of convergence in measure
and almost everyvhere convergence (i.e. convergences in probabi-
1ity and almost sure convergence) are introduced. Mean and point-
wise ergodic theorems for lMarkov operators on Jordan probability
space are also given.

In /716 £7 ayupov gave some Tesults on martingale comver-
gence and strong laws of large numbers in é JEW-algebra 4, Let
us mention that somne of these results are nonassooiafive geﬁara~
lizations of almost sure convergence theorems for martingales
and, in the particular case when the JBW -algebra 4 is isomorphic
to the selfadjoint part of a von Neumann algebra, they coincide
with the Tesults obtained by CUCULLSCU [ 437,

Let us finally mention that the recent ATUTOV 's book

LS

ZTiB r;? may be considered ‘ss s good suprlement to the well-knoun
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monograph of HANCHE-OLSEN and STARMER /63 7.

Wo first recall some

Definitions. 4 nonasgociative real or complex algebra &

vith unit element e in which a norm [l [ is defined and satisfies

lavll &£ Wall Ivll ana e =1, for all a,b€ A, ig called s

unital normed algebra, If g i1s an element of such an algebrs 2

]

then the numerical ranfe of a, denoted by V(U, a), is defined by

V(a4 { T from the dual of 5?, [l = f(e):l'};
the numerical radius of 3, denoted by v(a), is defined by

v(a) = sup {[c[ lceV(Q, &) } 5

and the numerical indey of A, deroteda n(A), is defined by

n(A) = inf { v(a) } a & Cl lal =1 }

Definition. 4 complex unital complete normed algebra Cz_

satisfying /A = IA)® 1 31 (ﬂ), vhere H(A ) denotes the set of

its Hermitian glements (i.e. elements whose numerical ranges

are subscts of IR ) 1s called a (Vidav) V-zslgebra,

Definition. A V-algebrs vihich is zlco a Jordan algebra-is

llcd a JV-algebra,

MARTINZZ /93 a_; founded a general theory of complete
~normed Jordan xlc ubrng.similar $o--that-o Banach -algebras, The
complex case was considered in de 11o It has been proved that

the set of invertible eleuments of & complete norted Jordan gl-

’ SN Q i L = . i1 i ooy _"l . 9 o B B R =
gebra over ¢ is open, that the ap 8 =—> g is differentiable,

MARTINIZ [ 93 a / siovied that the resolvent function
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._,{ ; y
2 =——3> (a-z6)- 1s analytic, that the spectrum of an element

aéﬁ(i&o{z[z €C, ze - a & Inv(Qq) } I
Cis a (nonempty) compact subset of € and established 4 “spec~
tral mapping theorem™ /" 93 a, Chapter II, § 67. A theorem for
the unlqucnc s of the norm on semi-simple Jordan algebras of type
a“{ A being a real or complex assocliative algebra, has also been
given (compare with BALACHANDRAY and REZA's results L eg fe)
Other results from /[ 93 a_/ are the following two theorems,

Theorem 4.1, Let & be g JV-algebra and let a be an element

2 ,
of H(A) such that a“ = b 4 ic, where b, ¢ &€ H(&). Then

o
Vi, a=) e R,, and so agé Ha),

Theorem 4,2, Let & be a JV-algebra, Then the mapping

8 + ib —> a - 1b, a, b € H(A ), is an algebra involution on &
which converts it into a JB};--algebra°

Remark. For Theorems 4.1 and 4.2, see also MARTINEZ
£ 9307

By analogy with the assoclative case, MARTINEZ /[ 93 b_/ de-
‘fined tno notion of gompuct elements in a complete normed Jordan
algebra. He proved that the set of compact elements of such an
algebra 1s quadratic ideal, For the principsal results of Rlesze
Schauder thedry {concerning compact operators) for this case,
sec also £ 9357,

RODBIGUEZ /[ idla 7 continued the study of noncommutative
JV-algebras first undextaken by MOJTAR KAIDI /101 7. The basic
tool is a theorem of Tidav-Pulner type due to MARTINEZ /93 a_/
and YOUNGSOW /[ 141 a, b /. It shows that the clsss of ( commu-
tative) JIV-algebras coincides with that_of the JE*-algebras. In
particular, the following theorems were established (see Theorems

8 and 10 in [7111 a7 ") :
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Theorem 4.3. If A is & V-algebra, the following statement

are equivalent:

) (X is a noncomnutative Jordan algcbra;

S

b) the natural involution % of A is multiplicative (i.e.

—~r - -

(ab)™ = v* a® for all a,p€A),

¢) the natural involution ® of { is isometric.

Rgmark. Tor a complete and simplified proof of Theorem 4,3,

see [ 95 7.

Recently, RODRIGUEZ / 111 b 7 proved

Theorem 4,4, The natural involution of g V-3lgebrs is
always multiplicative,
Comments. It follows that the class of general nonssso-

clative V-algebras coincides with the class of unital noncommy—

. % :
tative JB -~algebras. In parulculu¢, every V-algebra is a noncon-

mutative Jordan algebra.

Theorem 4.5, Let 621, i=1,2, be two noncommutative IV-al-

gebras with unit elements Sy and let F be a linear bijection
rom CZ onto nga The following statements are equivalent:
a) F is & symmetric (i.e., F(a®) = (F(a))¥) homomorphism
Trom ng) onto Cﬁz)
'b) Fis isometric and F(el).x €n3

-y _ a3l
¢) the numerical range of aan%n (A, coincides with the

1
numerical range of F(al) in 6329

-

Pemark. The equivalence of a) and b) has been proved by

WRIGHT snd YOUNGSON /7141 b7 in the edimutative case.

Subsequently RODRIGUEZ /[ 111 a_/ showed thut the bidusl o

o

given noncommutstive JV-slgebra is sgalin a noncommutetive JV-cl-

gebra with the drens product in which any multilinear identity

)

, : s
from the given algebra holds, Consequently, the biduzl of a IJB -g!

E‘:

cebra is also g I ~2lgebra, The numericasl index of a noncomau-

&
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tative JV-algebra is shown to be 1 when this algebra is esso-
cistive and commutative andl/2 when it is not so.
Aé s generalization of C —algebras (including TB*.algenras Yq
.PAz{, TEREZ snd RODRIGULZ /[ 104 87 defined the concept of
noncommutative Jﬁxnalgebra %

Definition. A complete normed complex noncommutative Jordan

ale

Clz

ebra  with a multiplicative involutlion z satisfylng
o)l = ) all’, uéll,

where U{a)b := alab + ba) - a v, a, o€ , is called a poncommu-
» # 5 ' - %
tative JIB _iiggggi (or, briefly, en n,c. JB ~-alg cnra)
Comments. The class of n.c, JB -slgebras contains the

& -hff = B W o ; - "?
class of JB"-algebras introduced by KAFLANSKY [ 827 in the
unital cuse (see IS4V, § 1), and studied by YOUNGSCN [ 141 47
in the non-unital cuse. In /104 a7 a normed szlgebra (Lis
understood to mean,as 1n the definition at the beginning of this
section, an algebra A vwita compatible norm I | such that
N aell & all | v |l for all a,b in A , so that this axiom
is no longer required by the above definition. A characteriza-
tion {in terms of the numerical range) of unltal n.c. i O O

ne N Snlyd syt T

/
gebras was recently given by MARTINEZ, IIA, PAYA and RODRIGUZEZ

. ER
Remark., If ¢ is a n.c. 8" -algebra, then (2(’)15 a commuta-

tive JB" -slgebra, Hence ~many results for-the new concept can

be duccl to t w11—“no m conqubatlva CasS€,

In /7104 u_7 PAYA , TERIZ and RODRICUZZ deal with those

results for n.c. JB -algebras which camot be easily reduced to
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Theovem 4.7, The produet of an h.0. kanﬁlgebra fan n.e.

~
i

x £ ; ,
JB"-algebra vwhich is a dual Banach spaces) is w ~continuous in

each variagble,

Proposition 4.8, Every derivation on an n.c, J¥-algebra

% .
is w ~continuous,

Theorem 4.9, Let Czi’ 1=1,2, be two n,c. IV -algebras.
Y ¥ 4 1 @ r}E 17 e
Then every isomorphism fTDu-Czl ontocﬂé is w —~continuousg,

Theorem 4.10, The closed two-sided ideals of an Mia 8 5

JBﬁnalgebra A are gxactly the M—idealsl) in the underlying
Banach space of CZ e

Theorem 4,11, A primitive il-idesl in an n.e. JB* —ql ebra

CZ is the kernel of a finite representation of‘CZ,ance, ({ has 3
faithful family of factor representations (a factor is an h.c,
T -algebra without central projections),

Recently, BRAUN /37 a7/ proved

Theorem 4.12, It U is 1 unifal Dy JB"—ulTCbTJ, then A

has a falthful family of type I Pactor represzntations namels
J oK by 3 J

that of Cf*) 8 type I -factor 1ls a factor with-minimal projec-~
i Foryic)

Remark, Theorem %4.12 reduces the study of n.c. IB -al-
Babras to that of factors.

In order to foraulate (see Theoren 4,13) the main result

established by BRAUN /737 a_/, we first give some

f M-ideal was introduced by ALFSEE and EFFROS

1) The concept o
£ 37 as follows:
A clbsed subsﬁébe Y of & real Bansch space X 1s suid to be an
L-idesl 1T there exists a c¢losed subspace Y' such that
X = YEBﬁF, snd for respective elements y gnd y' of ¥ and Y
we have ][“%y'H = ly]] + ] v*]l - & closed subspa ace 7 of g
real Banseh space X 18 s2id to be zn M-ideal if Z 1s an

L-1decal in the Cual of X, These ccncepts were extended in a
natural way to complex Esnach spaces bty taking the real

restriction,
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Definitions, Let (A Ve an srbitrary nonassocistive [K-sl-

: @)
gebra and let L ¢ X. Then the A_—ggiation 4 ) of A is the

X complete normed nonassoclative z-algebra 6? is

called a guasi C-factor if thers exists a real- number A with

; (X
0 £A€ 1 and a 0= algebra 53 such that A and JB )dre isome—
t

rically =-isomorphic gnd Jg is & factor. An n.c. JB° -factor

is ca]led guadratic i1f therée exist & complex linesr form
¢ l ~—= € and a symmetric €-bilinear form n : XA = ¢

such that for all elements z in A we have 22 i 2t(z)z+n(z,z)1zoa

. % ; -
Theorem 4.13., IfA is an n.e. I8 -factor then eithers

1) A= ¢1; 2) ¢ is quadratic; 3) A is « quasi meﬁactor; or
A is a commutative JEﬁ—factor;

d
Comrients, lore on the same topic can be found in PATA

¥

TELREZ and RODRIGUELZ £ 104 b/, in which also a concrete construc—

tion of n.c. JB*—algebras which are quadratic algebras is giVeh.
In an nnc.~JE%~ulgebra B 1s in fact alternative, then the a

xiom [|u(2)a®| = [| & ﬁ3 ie equivalent to [ a"s || = )l aZ/];

and PATA, PEREZ and RODRIGUEZ /[ 104 a_7 call B and zlternative

i - . "
B -glgebra. For alternative Bhu&lgﬁtT s they praved

Theorem 4,14, An altcrnative factor 1s eilther dss ocia-

-

gl - :
tive or the DB -algebra of complex octonlons..

Thco*eﬂ 4,15, The primitive ll-1deals of an alternative

.

Hlururq (] are exactly the prinitive Ideales-fin the-slgebraic

sens) oI“CZo

Comments. “UJ“ICU“”'Q study /111 a Jarose from the

*

interest in C¥_glternative glgebras., By definition, a C7-alterns-

tive gleebra 4 1s g unital nonassoc¢iative complex algebra A with

conjuzate linesr involution # : 4 =3 A such that the alterna-



B

tive laws ab = a(ab), ubz = (ab)b, a,b € A are satisfied, and

such that 4 1s a complex Banach gpace with respect to a nomm
satisfying the ¢¥ « nowm condition || a* a[{ Ja ME for all a in- A,
Recently, BRAUN {737 v ] proved a Gelfand~Neumark theorem for
such algebras,Let us mention in this respect that G%mélternative
algebras appear also in complex analysis as induced substructurss
associaled with symmetric Siegel domains of the sgcond kind in
Banach spaces (see BRAUN, KAUP and UDPMEINR £f38 b/, and KAUP
and UPMEIER /[ 857)

0cAlA 103 7 focussed prineipally on two problems for
a Jﬁ‘ﬁalgeu*a endowed with the weak topolog ¥y Damelys: the conti-
nuity of the involution (in Chapter II), and the separafed
continuity of the product (in ¢ avrtev ITI). He gave an affirmative
answer to both problems (sece [ 103, Theorenm S5.4., Chapter II and
Theorem 3.7, Chapter IIIL?}.Also,OGAﬁg {103 7 - established
theorens for the stabilify of the structure e¢nd a characteriza-
tion of we&kly closed idesls, the set of ”Ojcct¢0ps of @ P
Gebra being orcv1ouslv studied. The C»t?b]lbﬂdcﬂt of the gbove~

nentioned results, led 0CATA develop some aspects of the theoey

o
5
4
I
i
=
C 3
[O)]
o'

ras. In psrticular, he obtained a characterization of

s

the positive linear functlonals, the existence ang unicity of the

ositive roots of order n for positive elements, =and, hence.,the
P I 3 ’ 3

orthogonul deconposition of Termitian elements (see [ 103,Chapter

N\

tL, 3;7 .
Finally we have AUDSTIT's 713 7 recent result concer
ng the equivilence of complete norms in seml-simple JB-aly:

45 well as the charscterizations of sssocis ative Ju—ql GbTuS qnd

y
by AUPITIT and ZRAIBI /715 7.

s
<
(4}
5



Noteg., There are two different notions related to the Jor-

£

bures re ed to as J -algebras. In the first part of
i . ® i . 1 , ¥ e "
this section we deal with J -szlgebras in the sense of VICLA DEVA-
T -'rrr % #* A s T - A ”
PArKIA, and denote them by 7 -algebras, while in the second part

we shall treat J -algebras in the sense of HARRIS, and denote

1. VIOLA DEVAPAKKIANM and REMA /1327, /1357 studied

the structure of certain infinite-dimensional Jordan algebras ad-

o

mitting an inner product. These algebras, called J° ®.algebs a8,
had alrecady been considered by BALACHANDRAN and REMA /227 in
conﬁection with the norm uniqueness problem for nonassociative

algebras. |

Definition., 4 linear Jordam algebra (J over the complex

field € is culled a ] -algebra if
(J is equipped with an inncr product ( , ) under
wilch 1T 1s a Hilbert space,

(ii) for each-element x &€ ZT there exists an associated ele.

* - I n o . H - L F .};r1 -8
ment x7, called the adjoint of x , such that (xy,z)= (y,x"2z) for
all y,Z 1n E}e

Remark. 7] -algebras ure the Jordan anclogues of 3CIUR's

L™ <algebras [T 122 7(or AEROSZ's H -algebras [ 9.7).
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o

Renark. Any qualgebra gives rize to a E]“ualgebra H*,,tha

L)

myltiplication in u™ being the usual Jordan multiplication

1 . " .
SR = [xoy+yox)’ the = ~operation gnd inner product being the

i . e 5 e s
gsame &s 1n H. Ej ~subalgebras of H' arising from & semisimple

o

I"-algebra H are called gpecial. Bvery specisl J »ul:ebra ig sem
simple.

Troposition 5,1, Every finlte-dimensional semisimple Jor—

r{c&

‘dan slgebra is a C] ~alzebra,

o~

Theorem 5,2, (Nedderburn Structure Theorem.) Every semi-

. *® s 4
simple C] ~algebra E] 1s the orthogonal sum (=closure of thg alg

o

brzic direct sum with pairwise orthogonsl components) of its

0!
£
=

simple 1deals,snd, further, any ideal of{] is the orthogonal s
of 3 subcollection of these siample ideals,

Notution. Let (] be a
poten’c ey of U'pu”c:f.. {
s

of orthogonal idChrObeQ

Scuiuluple [] ~algebra.For an iden-

b
ﬁ\

X ey = x.} , and for a pair

ei, _j’ j?u't UlJt-{XEJ

|
poj-

“”J}

Theoren (Peirce decomposition,) Let C] be a semisimple
E}y—u1 ebra, Then for a maximel family { ei}, i e I, of
orthogonal selfadjoint idempotents, (J 1is the orthogonsl sum

i ; { . %
Theorem 5.4, Any semisimple C] -algebra- Z] is the clo SUTE

y wWhere summation 1s over all distinct -subspaces

2o
C__..

of the Unlen of &-net of C}rhsubalgebras with an identity.

o 5,

=

ER
u

J—ta

e

Pronog

J1

sional 1f-znd only if it hﬁs afnl ident 1'” element.
Using ANCCCHZA's result /[ 10, Theorem 12,57, VIOLA-.

TATHRT 8%y ArrTr ATy
PRSI B ._.hx_“.IJ-L 4

O
t

oy s f o q 1) : 2 ("}' A . R = .
RIMA /[ 1357 proved tha it ﬂq(&)} denotes the

Jordan clgebrsg of all complex (n¥ 11 ) - matrices and Cf is a

€-

s w4 Bhecial C]"Aql;€bru Z]ﬁis finite dinmen~



Jordan isomorphism of M, ( 7 onto & special Z]Kwulgebra {I,then
1 (C) lS an ﬂ3~u1 ebra such that %’is 8 ¥ -preserving isomor-
rhism of W (Tf” onto (j » This result permits the explici
structicn of cancnical bases for speclal simple finite-dimensiona:
Ej_ ~tlgebras isdmorphic to Jordan slgebras of types QSB; and C
from Albert's classification (see d54I, § 1) s considered over €,

Notation. Let # be a complez Hilbert space with | s 4 Ag
lnner product. Denote by H tne (simple) 1“_Ql rebrys of 411 Hil-
bert-Schnidt operators on H, 4 conjugate linesr map K on H is
called g conjugation or asnti- conjugation according to whether
€5 Lome sl Re, = L Ty i Asnetine. tie identity operator on I.

The following threec types of []%Hulg brus have been shown. to
be simple (see /[ 135, pp.313-3147):

b -~ + = < - 3 . b [ 8 ~ 4
I. The Jordan slgebra P{," of &ll IIilbert-Schmidt operators

—

II. The Jordsn glgebrs of all dilbert-3chmidt operators
T on II such that T°K = KT for s fixed conjugation Hoon H;
III. The Jordan zlzebrs of all Tilbert-Schmiat operators T

on X such that K = EF for g fixed anticonjugation ¥ on H,

T . AT AT AT v o o 1 ¢ = B R A
VIOLA DEVATARETAY and RV Z 135 7cona1ésreL Infinite~
)

~dimensiongl separable (l.e,, the underlying Hilbert spacte ls se-.
- _
arable in the tepeclogical sense special 271—3135br23 and showed
that any (infiniteée-dimensional) simple separable special E].Ha1~
gebra 1s of type, I, II, or TILl. ’
Zu HARRTE /“C a_7considered large class of Panach spaces

wiose open unit bzlls are bounded syumetric howogensous doisins,
1“hese Banach spuaces, 1o which MHarris referred 0'34—:lu60fds, are
pping one Hilbert space into another

. .
Lavi10n seeg



below). In pﬁriLcu r, all Hilbert spaces and all Ekmulgebrps

S

)
3
1)

'g?nal;ebr&so Mloreover, =ll four types of classical Cartan

mains and thelr infinite-Adimensionsl analogues are the open
unit balls of 7J-algebras, and the swume holds for any finite or
infinite product of these domains. Thus, this-is a setting in

which a large number of bounded symmetric homogeneous domsins

may be studied simultaneously, A particular advan ntage of this

tic problems and problems of functional analysis

Notation. Let I and X be complex Hilbert spaces and let

;{ Clﬂx) denote the spuce of all bounded lines > operators from B

to K withn the operator norm, TFor each Aéwf(Ith there exists g
uniquely detserained operator A%e Z? (K,H) such that (ax,y)={x,4i%y)
for 2l ¥« H and ve %,
Definition. A closed complex subspsce A or (H,K) suel
that A47A & ({ vhenever 4 € A 1g called o T —ulpchru,
Delfintiion, S—slesed sourlen—tbemer———of (¥} -cuch
et : oo P ety

55 i 4 ' . & =2 e i
Comments., KAUL ey © 7 suve sn sbstract version of

:}- -21lgebras, cslled C -triple systems by him (see also
Js4.VI, 3 L ).
3 b
Examples. The sets i (H,X), ‘{nl raegzp AF e A}, and
A|- aeZ (1.% A = - A vhere x —>» T is 2 given conjuzation
& 2 : ? . " L U M

on i and A'x : = AX for all x € H, are J -algebras, They are

called Csrtan factors ol type I, II; and III, respectively., Also,
plex subspace A of.f(:), such that A% dana

A€C I whénever A€Q, is culled a Cirtun fuctor of type IV,
. (vesp. Ie¥-algebre)

| e [N Y- - s . i o B i R
o oepsall- v g C 1“}x”£ 13 & cloged couplex

subspnee A of Zf(:) such that ¢ contains products (respesquares)
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and sdjoints of each of its elements. A ternary algebra is a

closed complex subspace of (L of J?(H,K) such that AB°Cc € &
whenever 4,B,C & a, Every Cﬁmalgebra is & Jcﬁnalgebra and a
ternary algebra, and from / 64 b_/it follows that JG%*algebras
and ternary algebras are }ﬁmalgebraso

Comments, gﬁ~algebras are not algebras_in.the ordinary sen-
se, However, they contain certain symmetrically formed products
of their elements. E.8.,1f A4,B, and C are elements of a 3%~alm
gebra & and p is an arbitrary polynomial, then AB C + CBKA,l
A(B¥A)® = (4B%)MA, p(4B®)C + Cp(B¥4), and p(aB®)Cp(B™4) belong
to a

s ez 8 =t T
Proposition 5.6,The open unit ball of any J -algebra is a

-

bounded symmetric homogeneous domain,

HARRIS é764 a;7 gave an explicit algebraic for&ula for the
iMobius transformations of these balls and showed that the ori-
2in can be mapped to any desired operater in the ball by
ifobius transformation. He has also proved that the open unit
balls of two gﬁfalgebras are holomorphically equivalent 1f and
only if the }?~algebras are lsometrically isomorphic under a
mapping preserving the }%—structureoﬁnother result is that the
open unit ball of a }?—algebra is holqmorphicul;y equivalent to
a product of balls if and only i the'}ﬁ—algebra is isome-
‘trically isomorphic to a product&ﬂ?gﬁ—alg*ﬁrés (see / b4, a
g 3.0 | '

Convention.If the open unit ball of aF-slgebra ({ is

holomorphically equivalent to a Cartan domain of type I1I-IV,

then (L is called a finite-dimensional Qartan factor. We de-~
note by C(S) the space of all continuous complex-valued func-

. : \\/}éfll‘l;s'hfmj b "hﬁ_rﬂ:,'lfj P
tions on & locally compact Hausdorff space S and’ 4 map L

- X 5 ‘ : i : %
vetween two:F ~alzebras ({ and j% is gaid to be 3 } ~150=

morphism if itisa tounded linsar bijection-ofCQ onto j% such

P e e e G B Sy e R e S S e S ,\Fﬁ
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e Lo

metrically szisomorphic to & product of finite-dime

Cban factors. I

than 16 is-is

mensiongl Cartan

9. 0.

gebres

Bvery

particular

ometrically I~ -

finite-dimens

y EVETY

factors of types

The open unit
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HARRIS éf64 0'7 showed. that the infinite-dimensional

analogues of the cl¢¢~10al Cartan domains of different tjﬂ‘”

are not holomorphically equivslent and

Hdermitian metric on a class of hounded

s o oy
Linagcn

spaces (including all classical

intro

symie

.
"

duced an invariant

tric domains in

which yields the best constant in the Schwarz-Pick inequality.

The domains conside

gebras,

‘ - %® ] ;
Definitions, 4n operator B ot a BL-algeora A is

mininsl element of ({if for each

B :}jﬁ Two: !
B & = 05 The ek of

tually orthogonal non-zero minimul

‘ . 3%
in the za~u¢bebrd

g

rators 4,B6Q
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3“ —-uluuurd ig i

red were just the open unit

A € Atnere exists a AG@ wit
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o

e

I

elements which casn be

balls of }*dlw '

called a
n

"

aximum nuaber of mu~

found

Ved-byﬁﬂﬂﬁﬂlﬁ.

The Schwarz-Pick inequalities are pro

g 7 R & s A ._ %
/[ 64 ¢/ for +the open unit balls of ~algebras JJVlnb finitse

13 1 % - 3 G R, |
rank, The ratik of 4 finite~aimensional ngalgebra coincidegs with
the ragk of its open unit ball as Hermitian syumetric space.
On dC)'g gebra of finite vank v, Harris defined asn inuver
product, in terms of the minimal elenents, and showed that -1t
induces an invariant infinitesimal Hermitisn metric on the open

-l

—

nsional Car—

bounded symaetric domains)
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unit ball of the J ' -algebra with Schwarz constant V7 . He
glso showed that any other infinitesimal metric having these pro-
perties must be one of its scalar multiples. This contradicts the
results obtained by Lock and Kcrényi for the Bergman metric.Fi-

n

the)

11y, Harris gave necessary and sufficient conditions for each
of Kordnyi's inequazlities to hold for & classical bounded Symmne-
tric domain and obtained an expression for the integrated forﬁ of
an arbitrafy infinltesimal Hermitian metric on such a domain,
Recently, HARRIS /[ 64 4/ explored an algebraic theory

J . % .
parallel to that of C®-algebras for - -algebras. In particular he

stablished the following spectral theorems,

o

Theoren 5.9, LCba be &8 }rﬂql zebra end let AEG{ A # 0.
Then the spectrum of A®A4 has no nonzero limit point if and only
1f there exists a set { Vn } of mutually orthogonal nonzero par-

tial isometries in g and a set{ x’n k of distinct positive

numbers, such that ’/ n' moreover, this representation
of 4 is unique (up %o Lhe order of terms) when it exists, and

{c( } is the set of square roots of the nonzero eigenvalues

’

-

. . o - 2 . .
Theorem 5.10, Let 62 be @ Z}- —-algebra which is supposed

"to be W -closed Let A € and let Z; be the set of sguare

: *
roots of the nonzero elements of the spectrum of A" A. Then tncrc

exists a.unique - valued spectral measure -0 —3 V(G") on

'; = myelr-brat i Gl;'waa,'crn i8- a-partition-of ‘E e

consisting of Borel sets and cutz fying aian Oﬁ £ E and

A (EC, Tor k=l, ..., n, then

I ng_}(K v(a )11 L& . woreover, V(G ) comunutes with A
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for each Borel subset g of z; and V{ E ) convers A,

zr

Theorem 5.11. Let lz be a:}'»algebra, suppose that A has

semifinite rank (i.e. the spectrum of A"4 has no nonzero limit

point for each Aéééij, and let A €A with A # 0. Then there
yminimal

exists a se?l { Vn } of mutually orthogonal nonzero®partial

isometries in‘CX, and a, possibly finite, sequence { an}

of positive numbers, such that A z‘> L V . In fact, the

n .
terms of the sequence % ﬁn!] are precisely the square roots of

n

all nonzero elgenvalues of ATA with at most finitely many repe-
titions.

HARRIS / 64 4/ also discussed indecomposability, transi-
tivity and irreducibility {see / 64 4, §§ 4 and 5/). An extenﬁed
notion of .irreducibility is used, since there are many'gfmalge—
bras and even Jcﬁmalgebrus which cannot be fsgithfully represented
by any transitive :}%—algebraa A theory of ideals for é}ﬁnalgem
bras is then presented. A nuwaber of equivalent conditions for a
;}ﬁmalgebya to have finite rank are also given 1764 d, 3 6;7.
lhese include refléxivity, a variant of voni Wewnann regulerity
and the existence of finitély many mutually orthogonal minimal

elements whose sum is an extremal element . [ecessary and suffi-

!
pri

cient conditions for a g%“algebra to be '2%-isom0rphic to & J6T
~algebra, to an adjoint olésed }%walgebra, or. to a complexified
spin factor are also given. Finully; Harris listed gight open

pfohiems'which.suggést some- directions for further development of

the structure theory oi’}ﬁ~algebraﬁo



§ 6. Jordan sglgebras and positive projections

on operstor algebras

Let B be a unital C%~algebra and let P ¢ B =B be a unital
positive projection, i.e. P20, P(1) = 1, and P2 = P, As is
known(CHOI and EFFROS J 407 and TOMIYAila / 1297 ) the image of
B is a Cﬁmulgebra under the product a.b:= P(ab) if and only i B
is completely positive. Thus, when B acts on a Hilbert space H,
P(B) is a Gﬁnalgebra if and only if there exists a linear iso-
metry V of H on g Hilbert space K and a m-representation # of B
on ¥ such that !

(6.1) , P(x)=v" 7 (x) v,

for all - & e Bs
EFFROS and STPRUER /[ 48 b_/showed that with the product a#b 1=
t1=P(aob), where aeb 1= % (ab+ba), in the image 4 of the self-
adjoint part Bh of B under P, A has a faithful representation
as a JC-algebra (ioeo'a norm closed Jordan algebra of selfadjoint
operators on a iilbert space). / 48 b/ may be regarded as an
attenpt to place ARAZY and FRIED.JAN's monograph Z_l2;7 in a
seneral setting. The latter authors have characterized the ranges
. 0f contractive projections in the algebra of compact operators on-
a separable iHilbert space. 4 closer inspection of their results

5¢

L€)

ems to indicate that what they are doing is to clagsify cer—
tain Jordan and Lie algebras of operators, EFFROS and ST%RJER'S

apbroach / 48 v/ might explain the unexpected occurrence of

6 }, then A+¥ 1s a JC-~subal-

gebra of Iy, stricted to A+N is s Jordan homomorphism

of A+l onto 4 with kernel iH. as therelexist hosts  of gXamples in
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which 4 is not the selfadjoint part of a ¢®-algebra (see /L8 Wl
in general we cannot expect ﬁhaf P is completely posifiveoﬂowever,‘
we might expect that if one symmetrizes the definition of ¥ in |
(6.,1) to be a Jordan homomorphism, then a decomposition like
(Bl) migh® hold, In this case, 2 is decomposable in thé sense of
STPRUER [ 127 e_/, namelys

Definition. Let B be a G -algebra and let H be a (complex)

Hilbert space. A& positive linear map Cf of B into the bounded

a

operators B(H) on i is called decomposable if there exist

Hilbert space K, a bounded linear operator V of H into X, and a
Jordan #-homomorphism 7 of B into B(K) such that {f(x) =
- vEF (x)V, for all xé& B.

Itgnark. ¥or such mups the term®™Jordanian type map“is al-
so used (see WOROWOWICZ /1387 ).

STPRIIER characterizésréflz? e7 those projections P which’
are decon

iposable, the characterization being in terms of the

JC~algebra A+N,

Definition, 4 JC-algebra is called reversible if it is

closed under symnetric products By8p000By + Bpeee 258, , when the
3 i 3 Ltk

aj's lie in the algebra.

The main result given by STLRUAER £f127 ci?is_the follovi-
ing theorenm (Scﬁrmer’s extra asumptions on 4 or P lead to tne
"1gss technical®™ form given below). .

: . : JKE -
fheorem 6.1, Let B be & unital G -algebra and let ¥ be

a unital positive projection of B into itself, Let 4 = P(B, ) and

P(ad) e £ ., If A4 is s JC-subalgebra of Bh

let: No= {:i é};‘-h

then T is decomposable if and only if 4 is reversible, If the res-
B . yFE hod At s

triction of P to the O ~alfebra aenerated by a 18 fgithful , Shen

o

P is decomposable if and only if A+H . 1s 2 revérsible JC-subalge-

el el
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Remark 1. 4 unital positive projection onto a spin factor
whose Teal dimension exceeds six is never decomposable (for :
examples,see /[ 48 b 7)

-~

Remark 2. If 4 is the set of fixed points in By under a
family of Jordan sutomorphisms of B, then & positive projection
onto 4 is automatically decomposable, |

Remerk 3. Let ¢p be a normal unital positive linear map of
a von Keumann algebra il ofitt: 1teelt and let 4 .= aéi%I}Q(a):a },
As was noted by Connes (see / 48 b , Corollary 1.6_/) there exists
a positive projection of il into itself with P(ify) = 4, hence A has
a faithful rapresentafion as a weakly closed JC-algebra., It can
be easily seen that if @ is decomposable then so is P, hence the
representation is onto a reversible JC-algebra, Since 4 is the
eigenspace in ﬁh for the eigenvalue 1, an algebraic condition on
one of the eigenspaces, necessary in order that q7 be decomposa-
ble was thus oébtained. This result, which was for a long time an
open quesfion, shows that & future theory of spectral subspaces
of positive maps might be extremely fruitful.

RODRIGURZ [Tlll b;? proved that every unital n.c. Jﬂﬁ—al~
gebra can be linezrly snd isometrically embeded into the alge~
bra of bounded linear operators on a suitable complex flilbert
spauce {moreover, w;th preservation of the unit). ¥rom this it is
deduced that unit-preserving positive linear maps betveen n.c.
JBK—algebras have norm one. This, together with Theorem 4.4.,1s
used to Lﬂ?.dle@ theé résalts of Ci0I and EFFROS /[ 40/, &nd

EFFROS and SZJAHMJ /. 48 b/ on ranges of unit preserving positive

Ire

projections in associative § ~-ult.w“as sand JB-algebras, respective~
ly.
Starting from the remark f@ut if oA is an ahti-sutomorphism
then the elements of B satisfying &(x) = -x form a Lie algebrsy
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with respect to the natural Lie product [x,y']:: Xy-yX,
ROBEINSON and :1%"ER [ 110/ explore relations hetween this Lie
. structure, the Jordan structure of the Ffixed points, and posi-
tive projections associated with anti-automorphisms, They show
that there exists a pairing between the classical Lie algebras
gnd their infinite-dimensional anslogues, and the irreducible
reversible Jordan algebras of selfadjoint operators or the
scalars.

- As has already been noted on page 42 » ARAZY and FRIE
AN characterized the contractive vrojections on the Gﬁualgebra
of compact operators on a separable Hilbert space with contrac—
tive complements (see /[ 12, Froposition 7.7 and Corollary 7.8 7).
Recently, RULERTSON and YOULGSON /[ 109/ studied positive con~

tractive projections with contractive complements on unital JB-

Remark. A unital projection P (i.e. P(1) = 1, where 1deno-
tes the unit) on a Jb-algebra is positive if end only ir it is
contractive,.

Let us recall ﬁhe following two theorems of ROLBERTSON and
TOURGSsCow / 109 /s

Theoren 6.2, Let P be s unital positive projection on s

p~o1“co‘J}' Then Id ~ P is contractive if and only if
H P(X ) f - ” }:2 ” , whenever P(x) = 0, }{E}o

nd

s'l?

Remark. This problem has been- studied extensively,

jer]
bt
o T
o
W

; ~ _ . : . £ _ Ny
falrly general results -have -been proved ths -G wease, STLRIER

g g A 3 1 i+ =R cn e ¥ 1 3 P -~ a1t du e
/127 £/ showed that, for a CT-algebra 4, & unital positive

projection P ¢+ 4 —» A is of the form P = % (Id-+ € ), € a Jor-

56 £ o

dan automorphisi of owvder 2, if and only if Id - P is contrac-

h iy )

tive, This result was extended by Friedman znd Russo to Jordan



5
triple systeas, their proof being rather involved. A very short

proof was given by KAUP /[ 84 0;70

—~

Theorem 6.3, Let 2} be a nontrivial JBW~factor and let

5 fZ}nmm%-EP be a unital positive projection with cont ctive
complement. Suppose that P(J}) is commutative and atomic (that is,
~the identity is the sum of minimal idempotents in P(F)). Then F

.

is a spin factor and P(}) is at most two-dimensional.,

Comments, FRIEDUAN and RUSSO (see ZE?:?) cshowed that Jordan
triple systems appesar naturally as the fixed point set of a
contraction on an operator slgebra. lamely, they proved that if
P i1s a contrective projection on a C ~zlgebra, then the range
of P is s Jordan triple system. The fact that the range of &

- ) _
unital positive projection on a C -algebra is a Jordan algebre

follows from this result.

As, we have seen (Theorem 6.1 ), STYRUER /127 ¢ 7 linked
the decomposability of positive projections to the theory of
JC-algebras, ROEERTSCN /[ 1¢8 a7/ further elsborsted this con-
lection. LE.g.,he considered automorphisms of a 6-dimensional spin
factor.embedded in the G mdl ebra of complex (4% 4)-matrices.
In fact he proved that asutomorphisms not lying in the. connected
commponent of the identitf de not ‘even extend to decomposable po-
sitive linesr maps (in the sense of [ 127 a:?)o The aim of GNO~
ther rTecent paper by FOBERTSCL /7108 b /is to show that this
result can be generalized to spin Tactors of dimension 4k + 2,

o but met to those of any other dimension.

$ 7. Theta functions for Jordsan algebras

In 1975 RESHIKGFY / 107 b /introduced theta functions in-

\

trinsically associated with formally resl Tinite~dimensionsl



Jordan slgebras, If the Jordan algebrs consists of the real Syl -
metric matriges of a certain order, then the thets functions in-
troduced by SIEGEL / 124/ are the “nullwerte™ of the theta func-
tions essocilated with that algebra, whersas if the algebra
consists of the Hermitian complex matrices of a certain ordsr,
then the "nullwerte®™ of the associated thets functions are the

theta functions introduced by BRAUK / 357 and used by FREITAG

As wss Ccbserved by RESNIKOFF / 107 b7 thets functions can
be considered as functions of variables of two typess: the first,
called "toroidal¥ veriable by Resnikoff, is an elcment of p? for
some n; the secend, called “modulus®, characterizes a given
lettice in C%, The above-mentioned “nullwerte®™ sre the func-
tions of the modulus vhich result when the toroidal variable is
0. For theta functions associated with Jordan slgebrsas as defi-
ned below, the toroidal varisble and fhe modulus are elemcnts of
the 8lgcbru, with the consequence that the modulus cen be made

4

to act on the toroidal varisble. For the Jordan aslgebra of real
symmetric matrices of a certzin order, this action is the clas-
sically known action of the modulus on the toroidal variable for

"abelian theta functions®™ (i.e. the thets functions studied by

o

Riemann. These suffice to represent rbitrary abelian functions).

3028 DORFLEISTER L 44“7 gave another approach, which is

-~

mnore Eengral since algebras of degree 2 aremincluded; He showed
how the main properties of theta functions, proved by RESHIKOIF
/7107 ©77, cerry over to the more general situsbion.
In order to recsll the msin results established oy RESHIKQER
{107 b7, we first give some
hotztion, Let e & (finite-dimensional )formally real

Jordan algebrs with unit element e. We denote by o the redu-



ced trace form asscciated with xf]l » If we put Z(?}) : :7{‘ +

+ 1 E}ijg*c%%? €, then Z(#) is biholomorphically equivalent to
a8 bounded symmetric domain of tube type (see KOECHIR 58? b:/’h

Set Z (341/2): - .?41/2 1@9 ¢, where ‘74'1/2 is the 1/2-Peivce

i

component of tﬁlwi‘ch respect to an idempotent c¢. Denote byrzﬂl/f)
s . TR

a lattice in 74 (i.e. & free Z-module of maximal rank in the

/2
~linear structure oj J{L Define t lua _
R~linear structure of l/a)o Define the duasl of 1/ in

t>74—1/'2 by

0(9,n) & 27 for all ne VE }a

Definition.let ¢ be an idempotent of ‘74, % = 0.8, LEd

;{l/?_’ - ﬁl/a be a lattice, and let v & X P ..740,,, The theta func-—
tion of order v associated with ¢ and fl/? is
1 " .
. 2 —
[ L ¥ =Y d‘ = o 'ﬂ}.l. ~
‘eiﬂl/g(zl,zl/env)."(nol{l/e) > exp 17 (I(n).al«z-r..r?l/d,v)

where (Zl’zl/EJ & L(ﬂl

) X zhﬂ

1/2) and vol 1/p Genotes the volume

of a fundsmental domain for %.i

e

/2 relative to a Hacr measure on

the R-linear space J%l/go

k|

¥ 5

(1)

Let Jar: @fq ve the deconposition of J§L into simple
ik : -

summands, If 326‘74 then % :@x(l) with }:(1)5 (3')° it 8 &%
: ’ 3

it :
write I}‘% o I ]Iv“) ] ®i, where l x(l) l denotes the reduces
1 - 3 i::l - .. oy = 7 dis. = S5 & = i F =2 X

norm of :1(1) in the simple algebra ‘74(1)

a
Hotation. For a semisimple algebra JAf y with the decomposi-

M

tion into simple swmnands as denoted above, we introduce s vector

i(?q) C Lo oy qi(J4) := dinm \74-(1-)/?"&:1’:(: \74;(1)9



B e

"I‘heorem Pels PUL & 4 i=e~-C. Then
A 2 "":1 2 '_""’_L & = "_l o
—e;{l/’d ( 217 s 4oz (51/2 V) 2 v T) =
-t o )-al4 ) _ i
= ln121+c [ ]v+cl exp J,Ifd"xP('zl/a)zl"',v) X
X {2,,2 : V).
Theoren 7.2, Let W e:].f:ndﬁ]‘ satisfy P(Wa) = W P(a)W for

-
aéJl} , where W denotes the 0 -adjoint of W. Further asswne that

is an automorphism of JﬁLO,' and

‘-.-v} & Ead.‘fafi, that w]
+ 4.

finally that W preserves zl/.&o Then

65 (g, W ,o t W) = Zyy Zyyp % V)
SPPR T I PP TR T S

Definitions., A lattice %Cﬁ is ealled a Jordan lattice if

4 g ;s o . . o 5 2
there exists & ¢ € 7" such that nﬁflz‘aplles That gn éo{,

(see HELWIG Z65 By by p‘,}-?’é:'j)o If i is & Jordan lattice, -then

gf is & Jordan lattice such that n éfzﬂ implies that n E¥ =

4 lattice having the latter property is called a. standard Jordan
lattice (see RuSHIKOFF / 107 b, p.90 7).
“ Remark. HELWIC (see 65 a, II, § 3 /) .showed the existence
J,LCI-lf}EIl‘\;o .LLAJI_JJI()’ (sJ66 [ ) C-i, l 3 3 L .snowe e sXl8tence
of Jordan lattices for formally real Jordan algebras,
Theorem 7.3. Let Z;Clﬂ be & standard-Jordan--latiices Put

, | A ‘ |
{i::f g JqLiaiie't f: { /r\;_éJ‘Hn&'g implies G'(fl\,n)é 2 Z}o LT

A

3 A . 3 » s - o -y s 'r
vé.fo, then nlé Zl implies that -9/\91/2 (Ll_f"r‘l’z‘l/?f'v) =

= (8. B = i,
Lz il
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The following theorem gives the Ffunectional equations,
L
describing the periodicity of the toroidel variable.

theorem 7.4, If XCJ[} is & stendard Jordsn lattice, ef.:

:fﬂflli, and Vé:{o’ then

A
A Fay
. " e e ) b sl = e )
&) 67\”1/2(51’21/2“11/2”) i fl/g(él’z’l/?v) if Ny /0 fl/& ;
= 7
b) 4 1/2(21‘21/2“‘) 2y nl/grv)- P
= @Xp i_?'f“@*(l?(nl/g)zl-f-a‘ 111/22.1/2,\7)6 (zl,z-l/a:v)

172

g L ,

1L By ‘{l/ g*
Remark, If Mf.‘: M(Z(Jﬁl)) denotes the ring of holomorphic

functions on z(f?) and, ) denotes the set of holomorphic fume-

k)
tions on Z(ﬁrlJ o Z(-?Dfl/g) which satisfy the functionsl equations
a)and b) in Theorem 7.4, then A, is an 4 ~ilodule.iioreover, the

following theorem holds,

Theorem .5, Fop ZoCﬁ a standard Jordan lattice, put

‘;{‘,—;;ﬁam‘?ﬁ, 8nd supposse véf o Then
i i o
dim(ﬂe/%: (vol 2v:£1/2)/(x.r01 Z l/fa‘)g

where EV‘;fl/g: {(_xn) nefl/g}o A basis ford‘(ﬂ over ﬁ is given by

the functions

s O B -0 T B S T 7).
exp i (n}_/g)ﬂ 1/2(&1"2]'/& P4y (aln) S V),

where n runs through the di,u@r/z e¢lements of a fundamental domain

170 vzl/,{: in %l}/;—;o
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el e Y W e A '
Gorollary, If v = ¢ and CfE} é‘, then there exists a func.
s o i ey ot
tion heséﬂ(b(Jfﬂ)uugh that CF(zl,zl/q )=h( @za/h Ll’élf Ve

Definition. Denote by q7: Z(ﬂ) -3 § a holomorphic Tunction

possessing & Fourier expansion of the form

wiiere the argument n takes nonnegative values and belongs to a

lattice. Suppose further that  satisfies the equation

where kK is s constant and we R ddkj4° If a(n) 40 implies that

]n[ =0y then q’ 5 sgid to be a sinculsr form of welght w,

Theorem 7.6.85uppose that A is & simple Jordan algebra.Let

éf be a standard Jordan lattice in~ﬁ'and put R{izifﬂﬁ%flurther
P ; b

assume that if y :ég ~» Then Z(ﬁ') 2z, > D 1

Sl 6 1/ } 1 1 1/ 2(215 020 )

is a singular form of weight q(ﬁ} - Q(Ai) if and only if 2 rank\44>

> rank j}s For-every possible singular

o

7eight (i.e. weight of

oy

g singular form) associsted .with ;41, there exists a -1P"ul

theta function of that weight.

RESHIKOFF /107 v/ slso proved that, apart from thets
Tunctions in one toroidal variable, two theta functions coin-
cide after a linear traﬁsformatisn of their srguments if and only
tif the cofrespéiﬁiﬁ@'&ﬁvaan'ﬁlgebraf-urc L,Omc; phic.¥Finslly, he

showed how the- theta functicns associastcd wit n(;omually resl)

ns 0f abelian theta

O

Jo“ua aligebras can be realized as restricti

fas

functions to submanifolds of, in general, larse  codimension in

the snace of the modulus variable,
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Lo 1993, RIS SWIKOFF /107 &/ showed that singular forms
have singular weights., Two years later, he proved /107 ¢ Jthe
converse, which is substantially more difficult and requires
the introduction of the entire apparatus of the theory of theta.
functions associsted with formally real Jordan algebras,

Remark. Resnikoff defined a theta function for each
Tormally real Jordan algebra which is a Peirce~l-space of another
formally real Jordan algebra, This condition is not satisfied -
spart from some exceptions - for algebras of degree two.

In 1978, DORFUBISTER / 44 7 showed how the above-mentioned
restriction can be removed. ile changed the setting, and, instead
of dealing with a Peirce-~l-space of s formally real Jordan al-
gebra, he considered a formally real Jordan ulgébra.together |
vith a representation of that algebra. So, Dorfmeister's setting
is very close to that of the classical theory of theta functions,

We shall recall now the rTesulbs given by DORFEISTIR
£y 7,

iotation., IT U is a real finite-dimensional vector space

and G is a positive definite symmetric bilinear form on U, then-
. L., L
Sy (U, T =4 & IA & anﬁb, 4 = A(, where 4 denotes the
P
zdjoint endomorphism to 4 with respect to & ,
Remark.ds is well known (see BRAUN and KOLCHER / 36,

Chapﬁer XX_7), sym (U, ) is & formally real -Jordan algebrs with

- Ao AT l ™y r 4 y oy i
respect to the Jordan product AB:=%(4.B + B.A), ﬂ,bé-pym\U,Z'),

where the dot de iotuu'oh@'OfdJuary product in Eﬁqu;’

Definition, Let;A , &, and CP te as followsstﬁ is a

(finite~dimensional) formally resl Jordan alg bra, © is g positive

2]

lefinite symmetric bilinear fora on a fin ite- dlncn sional R-vector

i

space U, Cf i1s an injective homomorphism of Jordan slgebras,



CF :Jlj' > Sym{U, % ), which satisfies (F(e) = Id (e is the unit
of JQ’, which exists by / 36 Theorem 3.4, Chapter XI /). Then
(A, CIQ , b ) is called .a © - triple.

Froposibion 7.%. JIE ‘71} is a special formally real Jordan

algebra, then there exist (‘F and © such that (09“,(70 36) is a

@ -~ triple,

Hotation. The set of all invertible elements of qu will be

denoted by Inv. (J‘l'}‘ ), while Inv (J[T].‘) will denote the connected com-

0
ponent of lnv(ﬁz}') containing e,

Proposition 7.8, Let ('74, LF s G) be a @ - triple and let

A A A
(W, W) €GLph X LU sueh that ¢ (Wx) = W P(x)¥  tor a1l xed.

Then W Invo( 31 ) = Inv ﬁ)

Detinition. Let (4,9, ) ve s & ~ triple and let

positive definite self-adjoint endomorphism with

A E ii:ndﬁU be & 1
respect to & such that AC[’(X) = C?(}L)A for all }:Eﬂa Then 4 is
called @ weight for (A, 4,5 ),

Conventions, If (Jq',ﬁf’, T) is s (B - triple, then © is ex~

i

.

N

tended to & £~bilinear form on the complexification U™ of U.This
exbtension is aguin called G, I rther, Cf? is extended to a wmap

-of j?-q' to Bnd, U by linearity. This map is agaln written as SD o

L
We put Z(Jér) jfil @ i Inv J?)o
De'fl;}_ition.Let ',(f s G) be s @ ~triple and let 4 be a
welght for (J[}L,({’ ,'C ). 1 Z is a lattice in U, then, for all
z Z(“JQ') and f-jl'l:a'e’Uq;," we define”

r\\-a }‘-A

¥

>-—-- GXI;? ijfﬂd(cf(z‘) '{]-a« 214,41}2)
Led

where vol?f denotes thne volume of a Tundamental domain for Zf rielf-

@ f} (10 T,7) (z,u,4) vol:/f

tive to a Haar measure on U, The funetion (z,u) -
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called a (:D ~function for 74

adalor Ci)bﬁﬂ? o {z,u,4) is

(with weight 4).

Proposition 7.7 implies
Theoren 7.9. For each special formally real Jordan algebra

theres exists a e function,

Remark. Let jg be a formally real Jordan algebra with unit
b, left multipliecations IL(x), and reduczd trace form F’a Let
be an idempotent in 2%. Consider the Peirce decomposition

&P 231/2 & 230 or B relative to ¢, and define

i
i ) e T, (= & . (T o — € — 2 _43:
H =B, Plx)e= 2 n(x) By, ¥ B, v 31/2’ C=p B2
From the properties of a Peirce decomposition it follows that
= L{y) is & weight

(ﬁ’ T,%) is a @ - triple, that A4 : 51/2

for (J%,Cf, %) for all y'eInvo(f%), ané that © KP(n)zl+

+ 2 nzl/E,V) :-'@(Cf(zl)n & 2 7y o An ) for all 74 € 2(04),

_ B : . ) .
T o U U nv and = v o low fo
i/cé Uy neé U, v & I O(BD) alldh A L( ) 3 ks OW xr

1/e
2?:- 1 /09 Resnikoff's definition of theta functions coincides

with Dorfmeister's definition of C) —functions.

Notation.Consider a fixed -triple (ﬁ‘,tf s By

a welzht
a tor (4,9,T), and a latticeX in U, Put’
iy : :
% m{x X & ) Zm,jhgzﬂ mraMIfez}
.-'f.‘..) o

A
‘PTOFOSi@iGh-?rlulﬂL€t~(1L;3)étuﬁ$4><(ILHU"SBtiSfy ﬁf(uﬁ

for all z & Z(fg), u é;Um, We

VA
T - (\‘?; D ey - e \74 s o~y
| W fon gll % o LITEL

T2 a8

A A 1/ v ek
@f(;’ Wa, 4) = (det w)"Y/2 @{;—;’f (“"‘l"”

3]
Lot o
&
—
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Theorem 7.11. For 8ll 2z ¢ 2.(34) and all ue U we have

-1 s =1, f owd
@:3{"2' g 29(z"")Au, = A7) =

)

={det E.«";)l/"a (de‘tﬂf(-—iz))l’/“ exp 170 ?(z"l)u,ﬁu)o @{{zgu,a,}u

Proposition 7.12. Let z C—Z(JQL), B e UU" and 116‘3963 such

that © (‘f(n)ﬁ : J\fz V€ 2 T for.all'géfo Then @f (z+n,u,4)=

¥

= @ﬁ (BBl s

Preoposition 7.13. Let z & Z(-"?) and n‘z:aU{go Then

[
a) @t{(Z,u—&n,n) i @z (Z,U,A) for sll n ég__é A-—-lz ;

b) @Zﬂ’(z,u +@ (z)m,4) = exp - 17%( ¢ (z)m+2u, am) @z(z,u;h)
for all m €2 .

Hote. Assume now that 2 A L cd .

Hotation. Denote by 2 W(Z(ﬂ)) the ring of holomorphic
functions on Z(#) ana Dy M tne C-vector space of holomornhic
—— MY 5 wni ke { miPer H e -
functions on Z{ )XJ which satisfy the functional equations
G
FiAd
in. Proposition 7,13 for all ze Z(\#), w éUfl, n €:7f , and &ll
S+ %
aark. From 244 €L it follows that a7t Z > Lience,

by Proposition 7.13, the function @;{ is an element of 77/(

Theoren 7.14, a)m is & free w—-modulc;
b) dimmw = (vol 24 _f) (volf)_lg

¢) & basis for WI cver “ is given by the functions

exp 17 T (qg,u) ) 2 (z,u + L:E A"’_lq? (z)a,A), where q runs

through the di:am% eleuments of a fundamental domsin for

syd and .
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Remark. FARAUT and TRAVAGLIVI /53 7studied Bessel funcs

tions on the symmetric cone associated with a sne lal forwﬁlly

1o

g 1)
3

3
{
a

A

Al

[4)3
-

PR 3 :-"‘ e b i [EERENN -+ 3 " - -
real Jordan algebra. Thevy ext d the classical results of

radial Tourier GLQIVSLS and proved an asymptotic formuls,

Finally, let us mention & classical result of NEULLANN

b}

47109;7: Let Pk be the Legendres polynomigl of dc“ree ks the do-

"‘:} I
ki (2)

L)

main of convergence of the Legendre series f(z):= ;> 2]
&...—.-

1s bounded by an ellipse. LASSALLE /7 90 a_/ has given a group-

8]
o

—-theoretic interpretation of this result.FAR4LUT , 51/ presented

¢

’ _
the results obtained in collaboration with KORANYI (see /52 a /)

concerning expansions in series thut generalize Legendre ceries.,

§ 8. Differentisl equations, Kernel functions, and
Jordan algebras
This section is concerned with applications of Jordan ol-

gebras to the Riccati differential equation (see 1), to soli-

u

ton eguations (see 2), to Hua equations and Szega Kernel (see 3),

and to the (reproducing) kernel functions (see 4)0

1. The Riccati differential equation
(8:1) : X = plxj,
xelR” and p ¢ IR —»> (B homogenecous uand quadratic, plays an
inportant role in biology,'genetics, ecology, and chemistry.
gonchzr /87 b,u e7 and WEYSERG /[ 97 /studied the relations of
this unatlon,wlth nonassocliative algebras, in particdw‘with
Jordan algebras,

we conslder a commutative slgebrs over IR7 with product
Xy = & p(x+y) = p(x) - ply)), and leth¥a be the mutation

of.ﬁ'with respect to 3 (sec 3,5;4, I, 8 1)
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Notation., Denote by jen the vector space of power series in

R™ converging in a neighborhood of zero,

For p,q e '?n we define p.qe 21 by
- Jp, (u)
E(w)(u)]l B ; 3 qJ(u).,
i e u

<

Remark.The vector snace.%n with the product (p,q) — p.q

becomes a nonassociative slgebra over B ,

20
How define gﬁ(u)éwgg by gﬁ(u):: z; = gm(u), where
. =0
g (nys=u, g = 2. W] and p(u) = ugu(PowerQ in Vi are defined
o} : } Smael O &8 s : e - S
&s follows: ul - um+l B uum,)

The elements i’e.Qn such that f(x( %)) is & solution of
the Riccati ecuation (8.1) whenever x (2) is & solution, form a
group S(ﬁd under composition, the solution-preserving group of
(8.1),
e et ) (A e B s _ , S e
Notation, Let e ) dencte the subspace of all selfl gatis-

fying 2uf{u(ua)) + HBH = Eu(uda) + uﬁ(ua) for all ueR",

Theorem 8,1, IFf 7 has a wunit element, then a8 —> ¢ L

an isomorphism of the additive group Z](ﬂ) to 8{A).

i Al , s i o ‘ noo.
Theorem 8.2, Ifjé 1s & commutative algebra over R, then
J (#) is a Jordan subalgebra of ¥F .

lioreover, the following theorem holds

Theorem 8.3. TP %L is & finite-~-dimensional commutstive al-

gebra over a field of characteristic different from two or

three, then (] (M) is = Jordan subalgebra of A .
2. In the winter of 1960=1981 , B8AT0 proved that thes totg-

lity of sclubions of the Redomtsev-Fetviashvili (xP) ecuation,
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Buyy + (~4 G S S uu}:)X = 0,

forms an infinite-dinensional Grassmann manifold GM (see /119 &7),

Note.Let us recell that the KP equation was discovered
1970 in an effort to understand the propsgation of long,shsllow
waves in plssma (see B.KADOMTSEV and V. PETVIASHVILI, Dodl.skad.

eg
Wauk SSSR 192 (1970), Ho.4, 753).

\J

d

(‘1

The evolution of u in the variables X,v,t is interprete
&s & dynamical motion of & point on GiI by the action of & threec-
(or more) parameter subgroup of the group of sutomorphisms of Gil.
Generic points of Gil give generic solutions to the KP equation,
whereas points on particular submanifolds of Qi give solutions

Of particular type. E.2. ', rational solutlons correspond to

B

points on finite-dimensional GT““SMJHH subménifolds of Gif..slso,

different kinds of submanifolds of Gii give rise to generic solu-
tions of other solitom equations, such as the Korteweg - de
Vries (Kav) unation, the modified KdV equation, the Boussinesq-
equation, the Sawada-Kotersa equation, the non-linear Schrddinger
equation, the Tods lsttice, the equation of self-induced trans~
parency, the Benjamin-Ono equation, ss well as to solutions of

£

type. of these soliton ecustions,
o 1

b
6]
b
prt
.._J
o
=
}-—:
‘ﬂ

loreover, a multicomponent generalization of the thsory
auows'that‘solutions of' other soliton equations'(such as the
equ&tion fer three-wave interaction , the multi—cémponen% non-—
linear Schrodinger couatlon the sine— Gordon equation, tnp Lund-—
Regge equation, and the gguation for 1ntcrn”014te lonw nave )
slso constitube submanifolds of Gil.

SATO /7119 a 7 conjectured that sny soliton equatiéﬁ, or
coripletely integraﬁle system, is obtained in this way. It follows

to

(@7

£

vhat the classification of solition ecuations would be reduce



the clessification of submanifolds of GM which are stable under-
the subgroup of automorphisms of GM describing space-time evolu-
tion,

Let us recall the construction of GM given by 3410 /119 a7.
(4 treatment using a Young disgram can be found in a2 7]}

: ; 2 i A m~dimengsional stibe
Consider the Grassmann manifolgd Gmm,n of m-dimensional sub

41

spaces of ¢ « ©ince such a subspace 1s spannsd by an m-fraue

E:: ( 3(1), o006y :§(m)), consigting of m linearly independent
vectors E(l), s v, g(m) e ™" | we nave

Ny = 40 ! V40 — i
m,n ¢S { m~frames in € _} /GL(m) * GL(m+n)/GL(m9nJ )

where GL(m,n) denctes the subgroup of GL(m+n) consisting of ele-

& &

ments of the form g = (o o
4

) with . g € GL(m), giﬂLE?GL(n)e

e also set

~
G% :

i

({ m-frames } X GL(1))/GL(m) (= EmaframesjkésL(m) ?

. : : : .
15 0, j\m(®m+ﬂ) 1= m-th exterior product space of ®4+nﬁ

and hence we have the following situetions

, Gf;’n s AME™™) - {o)
(8.2) ‘
| lGL(l) - |erni)
Gﬁ . - projective space of |
N dimension (m;n), -1

where the embedding of the upper line 1s defined by letting

—

4 (1) (m)
g Eiag,n’ represented by an m-frame } = E 9 ovog 'g )

correspond to z(l) B i, B E(m) _65'4/\:3‘(®m+n)-_ :{O }u
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Remark., The diagram (8.2) gives the standarad way of embed-

o

ding Gg n into projective space,
~ ,—-ﬁ
el
Definition, Gg n 18 called the standard line bundle over
1y 1 s
¢
9 i

Denoting by 'EZ y coey ¢ the minors of _E (i.es the
L m _
determinants of (m ¥ m)-matrices consisting of ﬁlwth,oeo, fmwth

rows of the (m+n) X m-matrix } ), we have

Bl e 3 S e ol iy w20
1<4h) < e <&f&un

where O1s eooy " denote the unit column vectors in ¢,

5]
-+

Definition, g ( 4 are called the Pllicker coordina-
rl"’“‘)_m' %

mofgo

They satisfy the Pliicker identitiss

nel g
(8.3) [l
| lZT_ % e

1t 9 e G
B'E”J}.ai];\;’. Il’l (8.; 2)? Gﬂl,n

o, 5 f |
m-11 Seeekysmnlt, g = B

coincides with the intersection of

the quadrics defined by (8.3) in projective space,

The infinite-dimensional Grassmann manifold GM and its. stan~

i

[ =
dard line bundle Gil (needed to parametrize the solutions of

Kadomtsev-Petviashvili hierarcy) are obtained as the topological

~ Al
closure of the inductive 1limit of Gﬁ and Gg'n as m and n tend
g Vi ; =gz, gorwn T pHagdd S i

I;_g.oo R

Explicitly, Gil is defined by

".‘T- ° o "'C_,-F‘ ames J
Gu,l. .—-—I { ll\l rrames } /G']-.J(E:C)
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i ¢ I , = =
where by an N ~-frame we mean an infTinite-sized matrix

g:'z(%/‘”) /A@Z ve i°

whose rows and columns are labeled by integers Z and strictly ne-
gative lntegers K = 7 - W, respectively, satisfying the condi-
tion that there exists an m € ¥ such thats (1)_§‘V = é;; for

/a <-my and (ii) m ‘column vectors for V = ~m, ~M4+l, soo, =1 8T6

linearly 1ndenenaent GL(IC) consists of the matrices
(R pev)
" e’
satisfying & condition similar T the above.

Remark. SATO /7119 b7 defined the notion of universal

Grassmann manifold (UGH), which is a canonical form of GIL.

Open problen (suggested to Sato on the occasion of the

OATH Gonference, Busteni - Romania, 1983)., To £ind an algebraic
description of Gil (as well as of Eﬁ and UGH) analogous to the
Jordan algebra description of finite~dimensional Grassmann manis-
folds given by HBELWIG [ 65 b;7 and recalled in.JSA.III,§ 2 +» This
is an open problem of mathematical'interesf but by solving it
one obtainsan algebraic description for the solutlons of soliton
equations which could be useful in quantum meohanics°

Comments. Rational SoluthM“ of the KP equatlon can be
described in terms of Jordan algebras. It would be inte esting to
make use of this description in solitoﬁ theofyo

Note. As we have predicted in 1983 (télKS.given”aﬁ the-
UniVersities.of Timigoéra and Iagi);‘SATO's result /119 a_/ is
an outstanding contribution with a deep impact in physiecs (For
details, see dSA.VIII, § 7).

Let us recall that GERBER /59 a_7 clarified a Jordan

algebra strueture in the study of solitary wa es. As is known, A
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large number of physically relevant differential equations exhi-

biting solitary wave benaviour have been successfully analysed

v

¢yl

.by the inverse scattering method. A key step in the development
2

C

of this method was the finding that the transformation v:uy+u

tS

maps the modified XaVequation

2
Wi 6u B o~ uXXX:O

into the XdVeguation

- Byy

Yy X" xxx 0

. , . . : n
In order to extend this method to systems (equations in R7),

A
Gerber sel conditions of f, H, and H such that

(8.4) v=1{u,u,)
nans _
(B.5} U= o+ H{u)
into A
(8.6) MR H(v)vX Q

After giving precise assumptions on (Bl ) g=1Be5); (B4€6), he
proved a theorem in which a Jordan algebra étructure basically
participatess

3. 4f W = é/K is a bounded symmetric domain and S = K/L is
its Shilov boundary, then one can define a Poisson kernel on
M X S:and the Poissqn integral for any-hyperfunction on 8, An
open problen, formulated ten ysars ago by Stein, is to characteri-
Ze these integréls as solutions of g syéﬁem'bf difféfent{al équa;'
tions, established for certain cases by HUA (ses L6871 .

In [ 90:8 7, LASSALLE dealt with bounded symmetric domains o
tube type. Poisson integrals oven the Shilov. boundary are then

B

characterized by the system of differential equations given by
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JOHNSOL and KOHQNYI 70;7 Resultupof KORuffi and MALLIAVIN

[ 89 7 for the Siegel disc of dimension two prove that the
JOHNS Ol-~K URANYT system / 797 has, for these particular cases,
too many equations, Lassalle proved that thig is a general pro--
perty. In particular, he established that among the dmK dif-
ferential equations of the Johnson-Korényi system, a subsystem
of dim S equations ig sufficient to characterize the bounded
functions on i1 which are Poisson integrals of a function on S.
This new characterization has a very natural interpretation in
terms of Jorden algebras (see LASSALLE /790 a, pp.326-327.7)

As LASSALLE /£ 90 b_/ proved, such an interpretation is
also possible if i is a symmetric llermitian space of tube type
with Shilov boundary S and can be realized as a bounded symmetric
domain. The main idea is to formulaﬁe the Hua differential equa-—

tions /90 ¢/ in terms of “polar coordinates™ with respect
to S,

Consider, again, a bounded symmetric domain D, §its Shilov
boundary and let S(z,u) be the Szegd kernel on D X S . HUA /68 7
was the first to calculate explicitly the expression of S(z;u)
for each of the four series of irreducible domains.Later
Kovanyi gave a general proof that made Hua's case-by~case calcu-
lations unnecessary. ﬂowever,'Korényi's proof is not direét; it
uses the unbounded realization of D as a %generalized half-—
plane®s; in unboundéd reslization the Szegd kernel is given by
an ihtégral; Which"éduld'be calculated by methods -of Bochner and
Gindikin. lIn bounded realization, on the other hand, the Szegd
kernel is given by a Fourier series, and for this no methods of

calculstion had been dewvised.
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LASSALLE's result /790 h_/ offers a solution to this pro-.
blems he manages to calculate the Fourier series defining S(z,u)
directly, without going through the unbounded realization of De
In fact Lassalle is in position to solve'the'folloving muchk more
difficult problems For every positive real number )., what 1s
the Fourier series expansion of (S(z,u))’l ? This difficult pro-
blem had been open for nearly thirty vyears., The only known s0lt-
tion had been given implicitly by HUA /68, ps25 7 in the parti-
cular case of an irreducible domain of type I,,me But the solu-
tion was unknown in all the other cases, including each of the
three other series of irreducible domains,

LASSALLE's goal in /90 h/ is to present a general answer
to this problem, onse independent of any classification argument.
Wnat is noteworthy in /790 h7 is that the framework and tools
of Lassalie's proof are provided by Jordan .algebra theory. 1In
particuler, his central result is & “binomial formula™ in the com-
plexification of g formally real Jordan algebra. The solution

thus obtained is particularly simple and natural,

4. Whereas the study of Toeplitz operators for the strongly
pseudoconvex domains uses methods of partial differential equa-

‘ 9 : * = :
tions, their structure and Toeplitz C'-algébras cver symmetric
domains is closely related to the Jordan algebraic structurs

underlying these domains (see UPMBILR /133 f, Section 2 7)s Rela~
tion between bounde5 Toeplitz operators and Weyl operators of
boson guantum ﬁechéniésfwasiexamined by-BERGEE and COBURN in
L 31 7 | _

As UPKEIER pointed out in /7133 T, p.42 / even though
finitendimensional bounded symmsetric domains have been classi~

fied and their geometry is fotally understood, there are still
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many open problems concerning their analysis (i.e., the struc-

T{me

ture of function spaces defined over these domains).Since syn

tors

retric demains are homogeneous under a {semisimple) Lie gBroup,
these problems are related to harmonic snalysis and the theory of
group representations. On the other hand, the ocecurring function
spaces are often Hilbert spaces of holemorphic functions which
&ive rise to (reproducing) kernel functions.These [kernel funce
tions can be defined in terms of certain hasic "norm functionsg®
derived from the Jordan algsbraic structure,

10N and SCUTARU /7757, and ION /74 a,b 7introduced new
scattering theories via optimal states. These states are repro-
ducing kernels in the Hilbert spaces of scattering matrices, just
as the coherent states are reproducing kernels in the liilbert
spaces of wave functions,

Using reproducing kernels, UPMEIER / 133 f, Section 6/
outlined a quatization nrocedurs for certain curved phase spaces
of poésibly infinite~ dimension, namely the “symmetric Hilbert
domains™, In the finite-dimensional setting, BEREZIN 30 a5 7
has considered quatizations for more general conmplex (K#hler)
manifolds.,

The general formalism for quantum fields on any reproducing
kernel Hilbert space is presented by gCL”u;}L LB T alonF with
a discussion of the operator and dlstrlbutlon properties of
those fields. Galilean and Poincaré examples are given along with

cons 1derat30na of the general -relativistic cases: -
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