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JO?D&N STRUCTURES WITH APPLIC JATIONS, VI,
JORDAN TRIPLE SYSTEMS AND JORDAN PAIRS IN ANALYSIS,

Radu IORDANESCU,

The first three Sections of this paper describe the equiva-
lence of symmetric complex Banach manifolds with Hermitian Jordan
triple systems and that of symmetric Hermitian manifclds with
Hilbert triple systems. Properties of Siegel domains involving
Jordan algebras (or pairs) are given in Section 4. Finelly, this
paper includes the construction of theta-~functions for Jordan pairs,
and gives results on differential.squations in Jordan triple

systems, and the Riccati equation in Jordan pairs.

§ 1. Jorden triple systems and Banach manifolds

Using the classification of smmnle complex Lie algebrss,
CARTAN éwlo 7 gave the classification of symmetric Hermitian com- .
plex manifolds of fln_lte dimension. In 1969 KOECHER /29 b 7 and,
more recently, LOOS [733 bL?gave a Jordan theoretic approach, the
‘-main result being that boundea symmetric domains are in one-to-one
correspondence with Hermitian Jorden triple systems (for definiti&nn'
see below) for which a certa;n trace form is positive definite
Hermitian.

In 1977 KAUP [ 27 a_/ studied sjmmetrlc complax Banach ma-
nliolcs (pos31bly Ofrlnllflte damenglon) and proved an eou1va1&nce
theorem with Hermltian Jordan triple systems (see Theorem l.l.‘bem
low). KAUP's result { 27 c¢_7on bounded symmetric domains in complex

Banach spaces is also mentioned below (see Theorem 1.2 ).



‘Notation , lLet E, ¥ be two complex Banach gpaces and denote
by L(E,F) the Banach space of all bounded operators E —» F endowed
with the norm I loo (for the definition of || | co ,see below).
We shall write L(E) := L(E,E), and GL(E) will denote tho group el
all inver'tiblé elements of L(E).

Recall that if EU?‘ ieT is a family of real (or complex

+
Banach spaces, then 69 ¢= )Lu = E ‘ Htl < e2 r ywhere
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is called the p-sum of Ui'
Definition. A complex Banach space U together with a con-

¥*
tinuous map U X U —» L(U), (X, (5 ) — 94[21(& , which is 1inear in

the first argument wndl antilinear in the second, is called -a Hermi-

tian Jordan triple s;,rs'tem (or T -'triple) if, for all °<,/3, }f‘,, x;

ys 2 & U, the following conditions hold:

* *
1. the triple product % 0((5 f} £ o(n[} (Y) is symmetric in the
variables & ,7{” : '

%oq'}, {XV z}} = g{dﬁ*y} y z} o= {xg(’?x y} z}-i—{xy‘{o(@ z}j
z eo(m{%é L(U) Yo w Hernltisnopepator-onUo— v

Remark. An operator Aof L(U) is called Hermitian if

exp (it')\)é GL(U) is an isometry of U for all t & R.

. e
Comments. KAUP /27 a/ defined the notion of J -triple system

: o B
in the ‘following manner: let L°(E) be the Banach space of all con-
tinuous homogeneous polynomials E —> E of degree 2, For every

»



n

.
e

2y .
g <L (), g qu} = s (a{wtz) = alw) - q(z)) is bilinear in (w,2) ELL2

and for every s B, # ag = {a:qz)' defines an operator in L(E).

*

Then a J -triple system (U, * ) ig a complex Banach space U together
7 'Lh o) .r\ yvx 11ryo~tr) T4naan (A 3 5 ALY - P L s - S %
with a conjugate linear (continuous) map * (for every ot e Uy

will be written instead of * (& )) such that, for all Py Xyyez &0,
(2

conditions ) and (3) hold.

Definition. A continuous linear map/M : U —> V between two

Jm~tr101es U and V such that M {L,a(vv} i/&z g/ud)jk wz} for all

& 32y W el s called = J‘~m0$ﬁhié@.

* ;
Remark. It is obvious that the class of all J =triples is a
category.

%
Definitions, Let U be a & -triple, If, for every real number 1

. : 4 t * ¥ : :
we define, a new triple product gxy z‘}:= %xy'z } g U for-alk

p . €3 * . 3 ) 3 .
x,y;2€U, then U is again a J =triple with respect to this new triple

product; it is denoted by tU. For t#0, U and tU are ealled proportiondl,
and “1U is called the dual of U.
Remark. In general, a J%«triple U and its dual ~'U are mnot
isomorphic.
We'now consider a oomnlﬁy manlfoldL) M, the tangent buhdlé
functor T, the corresponding tangent bundle TM, .and the canonical DI~
jection 7 : TM —> M, If V is an open subset of a COmplex Banaoh

space E, then the tangent bundle TV can be identified in anatural way

¢ . 3 ) % G J . .
with the direct product VX E, and #/ : TV —>» V-is the canonical PIO -~

-jection-onto-the-first factor.,- buppose that ¥ ¢ 'TM —> - R is a-lower

semicontinuous function. The function Y is called a norm on TM if the

restrietion of ¥ %o every tanwent space T %* x&M, is a norm on TX with

1) By a complex manifold KAUP /27 a, p.43 7 means a Hausdorff
manifold(possibly of infinite dimension) modelled locally over open

subsets of complex Banach spaces via b]hOlOnO“DﬂiC coordinate

transformations.
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the following pfoperty: there is a neighborhood V of xeM which can
be realized (i.e: by a biholomorphic map) as a domain of a complex'
Banach space E such that el all £ V(u,2)4Cfl all for all (w,a)€ VXEE
~

= T(V) and suitable constants 0<c &€ C ,

Definitions. A complex manifold M together with a fixed norm

Y on TM is called a complex Banach manifold. If every norm V i ik
_ X
a Hilbert norm then M is called a complex Hilbert mhnlfoLd (or,

also, a Hermitian manifold).

Comments. 1"27 a;7aovo not require that the restriction
of ¥ to every tangent space T, x € M, is a Hilbert norm (otherwise
he would exclude many interesting examples such as the open unit
ball in the Banach space L(H) of all bounded operators on a Hilbert
space H wifh dim H = @< ), That is why KAUP's notion of Hermitian

Jordan triple system cannot rely on trace forms

Definition. Let M be a connected complex Banach manifold and

”

L the Lie group of all biholomorphic isometries of M. Then M is
called symmetric if there exists a point a&ll such that:

(i) there is an involution s € L with a as isolated fixed

i/

point,
(ii) the map L —= I defined by g —> ga is a submersion.
Definition. Let Ml and M2 be two symmetric Compiex manifolds.
A holomorphic map h ¢ M *“%f M, is called a morphism of symmetric

manifolds .if hes o -h for all xeil.
e 4 e

x = Snx

Remark. It is obvious that the cléss of all symmetric complex

Banach-manifolds is a category.

The main result established by ’KUP Z_Z/ aﬂ7Ls
Theorqgwwjiﬁ The category of simply -connected, symmetric,
complex Banach manifolds with base point is equivalent to the cate-

gory of Hermitian Jordan triple systems.,



."‘(‘ N\ - - - . . -)é
The notion of J ~triple leads to a generaligation of C -al-
’% . e o - - .X. s . . . 1,
gebras as follows. A J ~triple U is called a C ~triple if: (1) it

* .
ig positive (i.e. the spectrum J((ak ) » 0 for all e U); and
_y

gebra is a O -triple.For details, see KAUP /727 a, 0D 54-58_7 .
The following result has been recently obtained by KAUP

L2t e Js

Theorem 1.2. Every bounded symmetric domain in a complex Ba-

nach space is biholomorphically equivalent to the open unit ball of
a C*~triple, Thus, in this way, the category of all bounded symmetric
domains with base point is equivalent to, the category of C%—triples,
Comments. BRAUN, KAUP and UPMEIER / 9_/ proved that the
open unit balls of (nrittal) JB*maIgebras are precisely (i.e. up to a

biholomorphic map)-those bounded symmetric domains which admit - a

_X..
realisation as the upper half-plane. Consequently, the C -triples

o
(e

from /727 a_/ are called JB -triples in / 27 c¢_/. The mein result in
/27 Cm7 is as follows: Every bounded symmetric domain in a complex
Banach space is biholomorphically equivalent to the open unit ball
of a JB ~triple; Hence, in this way, the category of 21l bounded syn-
metric domains with base point is equivalent to the category of
* . )

JB -triples. A

A problem emerging from Zm27 a / is %o find under what con-
ditions a Jordan triple system is isomorphic to a bounded symmetric
domein. In the finite-dimensional case LO0S / 3% b_/ gave a neces-
sary and sufficient condition (a certain Hermitian form has t0 be

. \ ,,

positive definite). For the infinite-dimensional case, VIGUE 507

‘gave a condition in terms of a certain spectral property.

§ 2, Classification of Hermitian Jordan triple systems

As is well known, the notion of idempotent is of much

importance in the structure theory of algebras., The analogue notion



_there does mot exists a decomposilion ¢sm+? with nel, ve Usp),

i B

for triplé system is that of tripotent:

Definition. An element c #£0 of a Hermitian Jordan triple |

i 1. The coef-

. ¢ - =" o . » % o
system U is called tripotent if {_co c} = B¢ with @ =
ficient € =a@ (¢) is called the sign of c¢; c is called positive %

(negative)if its sign is +1 (-1).

s

i

Remark. The element d = G (¢)e is also a tripotent. It is

. called the tripotent associated with c.

-

Let ¢ be a tripotent of U and let d be its associated tri-
potent. One can define on U a Jordan algebra structure by means of
_‘;(_ v
the product xy :=.%xd y } , and ¢ is an idempotent with respect to

this product. The corresponding Peirce decomposition 1is
o * ‘
U=U, @ Uy /o @ U, where for every V.-& 1R the . ¥=space of ¢ o d “I5]

denoted by Uy i= Uy(c) = { x( x € U, cx = QX_}. The l-component U is

a complex Jordan algebra with respect to the above-defined product on

Definitiont. Let ¢ be a tripotent of U.If the Jordan alge-

then ¢ is called minimal, while in the case when UO(C) = 0, the
tripotent ¢ is called maximal. A tripotent ¢ ig called primitive f

Definition. A set & of tripotents in U for which {WWX(ﬁ =0

. / ; . ; o
for all-Ag B frOHl(E is called an orthogonal system of ‘tripotents.

Such a system is called complete if Ve 0 (For U

\

00! See below, )

For all ,@ from.an orthogbnal system EZ, the following
U'é( aes are defined . ... . - s Bl
. U O(O( ¢ = Ul (O< )

U oL (b
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: - A ; :
it ﬁi ;_ﬁ g - hnen UOO:: U, Let us denote by %E the ‘set of all unorde-

Sy
S

=Ve 1 Yo D( 7t focd s -1 ey A : T
red pairs ( ,(5) with %56?2 U/iO}' such that QxG& Ifq,@(
well defined for every (K JE %fahd

BUEY 3= @AU"(@

(Rpe

ig an algebraic direct sum in U (called the Peirce sum with res-

pect to ii )

Definitions and notation. If a complete orthogonal system of

*
minimal (resp.,abelian) tripotents exists in the J -triple, then U is
called atomic (resp.discrete). The minimel cardinality of a complete
orthogonal system iz of minimal (resp.,abelian) tripotents in U is

called the rank (resp.,degree) of U; it it is denoted by r(U) (resp.s

e

a(U)).For a complete orthogonal system of tripotents <€ in U one

defines

H

2 C;
(Z) y= 40 { dim U 1 <, € S }
b(é)::s%a{(ﬁmUxo ) « € E }
(£ mo: ol 4 S E s X # (3 exist,then one takes a(g) =.2),
Tor atomic U we also defines
gl )= sup.8 (EJ,

b(U) :=inf b (),

where ?i runs over all complete orbhoﬂoral systems of minimal tri-

potente dn U, dL U s 11aecoppoquble, then, by means of r, -a, dﬂd

b, we can defins anotherfinvarlant,rnamely”,m , ”ﬂﬁ‘“.“T,W_M Lo et
g ¢=2 + (r-l)a + b. .

A s ;
The construction of J —triples of types I - VI. Let H, K 'be

complex Hilbert spaces of arbitrary dimensions n,m, respectively.

Notation,. —The adjointbof an operafor Ae L(H,K) will be de-

*
noted by ;L .
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[

: : : ‘ .
 For xe K, yeH, by z —> (2| y)x an operator x & y&IL(H,K)

is defined. Ve have ('x &K y% IICB = H X]!CX,[LY ” o and
x® 5y ) =y&x.

Convention. The Hilbert spaces H and K are, in a natural way,

‘identified with L(€, H) and L(C,X), respectively; the operator
x @ y is written as xy .

Type I . Let U := L(H,K). Define

: ¥ % *
(2.1) {Xy'z } £ % {‘xy z + 7y }{} : N
#* ; .
for all x,y,z € U.Then U is a J —-triple with respect to (2.1).
Pollowing HARRIS /22 b_/ (see also KAUP /27 b,I7), it is called
it i

a Carlan focotbr of type I, and s denoted by I .

n,m
Remark, As I, end Im n are isometricaelly isomorphic, it
ST g iy 1L

is sufficient to consider the case n £ n only.

Type IT. Let x —> X be 2 éonjugation.(i.e. an isometric,
antilinear, involutive endomorphism) of the oomplek Hilbert space
H, Define a C-linear transposition z —% z' in L(H) by B (x) 1=

* ¥

t="g (X), Comegider U 2=4 5| sal(H), 2" = gz €. MThen U 48 & T ~triple
{ ’ X

) ‘ J

with respect to the norm of L(H) and the triple produet (2.1}, The
.X.

J -triple U is called a Cartan factor of type I, and it is denoted

Iype III. Using the notetion as in the case of type II  above,

we define U := {z( zeL(H), z' = z:},'The U is called a Cartan factor

of type III, and it is denoted by III_ . A

Type IV. Consider again a conjuggtion,x_féééh.i,onﬁﬂﬂandﬂ”,” =
suppose. - 3, Then osoell 16 & J*~trip1e with respect'to the tripie
product | - |

‘{ Xy*z.} ::.% (x]|y)z + (z]y)x - (x| E)?)}
A subset %2 of U is a complete orthogonal sysfem of minimal tripo-

tents if E :ét?( ,p } , where « ,@ are unitary vectors with (°<“°>):O



- g -

and ﬁ =« . For all z&U there exists a decomposition z=s &+ t /3
with s,t%0, and «,( orthogonal tripotents. By taking || z ||, :=

= mex (s,t), we define on U another (equivalent) norm and U ig again

v : _
a J ~triple. This new norm has the following' explicit form:

Ce R, =R e s N G122 - ) ).

U endowed with this norm is called a Cartan factor of type IV (or

complex spin factor), and it is denoted by v, .

Type V (resp.,VI). Let U be the triple system which correg—

ponds to the exceptional bounded symmetric-domain in ®l6 (resp.,

2 - . % . ) . 7
£7) - see [ 11 b /. Then U is a J -triple with respect to the spec-—

tral norm || Il .. (sce £ 11 b_/) and it is denoted By V (resp.,VI).

The types I-VI mentioned above occur only once in the following

list: ‘
r(U) . (U) =(U) b(U)
’ 1
In,m’ n 2 n+m =N ) m>n=> 1
: n 2 n&2N+1
Iy { 2] t =2 '{O other ways n 4
IIIn n 1 n+1l 0 ny 2
Iv 2 n-2  n A 0
n \
v 2 6 12
VI 3 B 18

The following classification theorem holds (see CARTAN /710 7,
KOECHER /29 b_/, L00S / 33 a,b 7).

e e o' Bl s 255 555 e e et . g R
Theorem 2.1, Every J -triple U of finite dimension admits a

unique (up to the order) decomposition as direct sum U:UO & Ui SESSE

oo < U_, where UO is a trivial ideal in U and Ul’ Jeey U_ run over
b . oo,
- . ’)’{- . -/ . . -
the simple ideals of U,The simple J -triples of finite dimension
are (without repetition and up to & J -isomorphism) exactly the

systems

T Por n-< n, sen de the . lesgst cardinal Nimmber o S s



= 0

In,m with e hdmd o g IIn'w1th.4»<rl< e
IIIn with 1<n< &2 i IVn with 41 <29
v ~and VI,

and their duval systems.
*
- Tet us recall two results on J —triples of finite rank
(goe BETR /0% b )%

Theorem 2.2. Every atomic J -—triple U of finite rank admits

a unique (up'to the order) decomposition U = U.l ae ... & Ué where

U S Us are simple ideals of U, We have r(U)zr(Ul)+;.°+ d QLES

hw)

1 $
z *
The simple atomic J —triples of finite rank are (up to an i somorphism)

exactly the triples of types I-VI of finite rank and their dual
triples.

Remark. Every J%~algebra of finite rank in the sense of
HARRIS (see /22 & 7 and, also, JSA.V, § 5) is isomorphic to a finite
direct sum of Cartan factors of types I=lV,

To formulate the second result on J*—triples of finite rank

‘we need the following preliminaries:

Tet U be a (not necessarily simple) atomié J*«triple of fi-
nite pank ey Then thefe exists a complete orthogona system
%i:: { ei] i=1,2, eees T :} of minimal tripotents in U. A%l tripotents
e, are positive and have norm 1. The corresponding Peirce spaées
Uéiej will be denoted Uij,-where e =0, Then every x €U has a unique

®

decomposition x = E 2 -Xij with Xijei%j . F:ﬂ§g469,.. P Repr is
: , e S e e a5

armaximallR—linear subspace of U with the property that

%0((»5%{\, }__%@ &*f)} for all cof (blv,,](éF, We define

Z ::{561nn (U) ] Q(F) =& .?’



e ‘ ' ‘ '

whére Tnn(U) is the group of all inner automorphisms of U. The
following result holds: There exists a one-to-~one corr spondence
between the set of all norms éb of U with respect to which U is a
J*mtriple and the set of all Ez: -~ invariant norms on - ;
| We now consider the case when U is simple. The :g: -~ invariant
norms é@ on F with %?(ei) = 1 correspond.to the norms <§5 on R¥

with tHe following properties

el

(11) P (t))=F(t) for a1l t, wnere |t :=(lt5l , ..oy [l 3

(1i1) P (s) =:¢?(t) if s and t differ only by a permutation of
: . _

1 A . . el vy ; :
A norm é%’on.ﬁ with the properties (i)-(iii) is called a symmetric

sauge function (see SCHATTEN / 43, p.61_/).By the above-mentioned cor-

: : . Y o ;
respondence such a function éb on R yjelds an Inn(U)-invariant com-

plex norm d? on U, If we consider U endowed with the norm.é§7, then

it is again a J -triple; it will be denoted by U<% llor- 4 € R -{O} .
tU denotes a J -triple proportional to U(§ ’

Theorem 2.3. Every simple J -triple of finite rank r is iso-

N :

metrically isomorphic to a J ~triple tU*% , where t &R - {O}, é?is a
- * :

symmetric gauge function on RY and U is a J —triple of type I-VI o

rank r. The set (r,a,g,%, 45 ) is a complete system of invariants for

the set of all isometric isomorphism classes of simple J ~triples of
finite rank.

§ 3. -Hilbert triple systems and Hermitian manifolds

; We. first recall a result /27 b, I 7 {see Theorem 3.1 below).

on atomic, triple systems of infinite rank. In.order to formulate

given

this result, some_preliminary congiderations and notations,

by BRI pp.62-6% 7, are necessary.



s 19 o ,
The space of all real sequences t = (t],t?, e With t,=0
for almost all n is a real algebra with respect to componentwise

/)
multiplication. For every t €4 , put | 4! = (| tll, )tgl Rt
m- ’ s
and G (t) := E s A norm ¢ on 4? is called a symmetric raugse

=l

function if

el e e
g (%)
and g (S)

tation of coordinates.,

i

@ (%)), for all +;

i

g () ofor all s,t,éffg which differ only by a permu-

Using @ we define another symmetric gauge function @' by

gr(t):= sup { G(st) [ gk Gl ) } .

Let E be a complex Hilbert space. Then L(E) is an associlative

[6)]

% -algebra, We denote byfg the ideal of all operators of finite rank

and by Ll(E) the ideal of all trace operators. let B :Ll(E) e

be the usual trace (i.e. & (x) :::j% '(x:ei [eﬂ) for every orthonor-

B

12l basls %ei} c E). Tor every symmetric gauge function ¢. on % and

every Xé.@.put {x)i= ﬁ(tl,t?, eesy 5.,0,0, +.u), where tystoy ceayt

»

.x_ - 5
are nonnull eigen values of | x| =Y\ x x. Then ¢ can be -extended to

a function ¥ : L(E) —> R VU foeo} , as follows:

g(x):= sup g Z(Xy) l -yegg and g (y) =1 }.

- is~aOOmpleﬁe'normAOnLd(E):::{x1 x&L(E), Cf(x)‘< @07}-,-- s
For “ Hp we shall also write Lp(E);'in particular, LQ(E).is the
ideal of Hilbert-Schmidt operators.

Let U be a Cartan factor of type I,II or III (see KAUP.
Zf27 b,In7), We'embed Uiinan L(E),aE being a complex Hilbert'gpaoe,

as follows:



TPypels Choose H,K such that B = H€ K, Then ly=L{H,K) sén

be naturally identified with the space of all xeL(E) such that

%(K)=0 and x(H)eK, Suppose we have a conjugation preserving H and X

defined on E, The: corresponding transposition z —> z' of L(E) gene-

ratesg then U,

Tvpe II (resp.,ILI). In this case we have (see / 27 b, I,

Sepdion L) “Ues {zg e LR, al= } (resp. '“{Z‘ zeL(E),zs:z})a

In all cases, UcL(E) is w -c”'osml and T ; Uﬂ.% is &

-X- 5 . . .
J -ideal in U,For every symmetric gauge function 7 on /( ek

o

U'::UflLﬁ(E) be endowed with the norm c ¢

o swhere the factor
U
¢c> 0 is defined such that the norm of every minimal tripotent in
Uis 1. The norm on Ud thus'obtained will be also denoted by 7.

: i o
Let Uy be the convex hull of J in U7,

*
Theorem 3.1, Let W be a simple atomic J —triple of infinite

rank. Then W is proportional to a Uy , where U is of type I,1I, or

Q b

ITI, and 7 is a symmetric gauge function onzg o 1famd only if therve

@
exists a complete orthogonal system & € W of minimal tripotents in
W for which the Peirce sum P(é;) is dense in W,
-0
Comments, In the case # = H NC@ we have U=U for every
Cartan factor of type I,II,I1I, and Jﬁ is the subtriple of all com-
pact operators in U,In the case ¢ = U {/?,‘for every + # 0 and

s - eyt . el e mahl A
every J -triple U of types I-VI, the triple "U” is well defined.

~ . y
: i t 3 :
Convention . In what follows we shall write U instead of

:ds N (-

Wy T E e et Deinoleade £ T o

*
Definition, A J ~triple U is called a Hilbert triple system

3% Ay : : . ;
(or JH” —triple) if the complex Banach space U is a complex Hilbert

space.
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Remark, JH —triples are generalizations of JH -algebras :
A JH%»algebra is a complex Hilbert space H together with a éomplex
Jordan algebra structure and a continuous involution-x -— x* such
that the Jordan product is continuous and L(a)* =L(a*) for every
ael, I being left multiplication. By defining o«a ﬁ%:: L(°<€%)+ E
+ {n(), L( )] , H vecomes s JH" ~triple.

RAUR o 27 b, T1-7 proved'the following classification theorem
for Hilbert triple systems, 7

Theorem 3.2, Every Hilbert triple system U is isometric to

an orthogonal sunm 659 Ui, with O¢ I, Ub is a trivial ideal in U,
iel < :
and Ui’ i # 0, run over the simple closed ideals of U, The simple

Hilbkert triple systems are (up o an isometric isomorphism) the
g

triples W, where % o 0 are real numbers, and W runs over the

Fh

triple systems of type I~-VI.The set (r,a,g,t) is a complete system
of invariants for the classes of isometrically isomorphic simple
Hilbert twiple éystems, |

The main theorem proved by KAUP /27 b, II_/ is

Theorem 3.3, Every symmetric Hermitian manifold M admits

<

a unique decomposition as orthogonal product M = HO>4M' of symmetric

W)

Hermitian manifolds, where MO is flat and M' is nondegenerate and

imply connected, The category of nondegenerate symmetric Hermitilan

L49]

manifolds with base point is equivalent to the category of nori-
s P i
degenerate JH —triples.

Recently, FRIEDMAN and RUSSO / 21 e / generalized the well-
lmown Gel'fand-Neumark embedding.theorem for JB-algebras due to
AIRSEN, SHULTZ, and STPRIMER / 1_/. The main result shows that every

* . . i
JB ~triple can be isometrically embedded into the direct sum of a
i : . .
JC -triple (of Hilbert space operators, with triple product

: . ¥
{ab*c}: (ab¥*c + chb*a)/2) and two exceptional JB -triples related to

the exceptional Jordan triple systems of 16 and 27 dimemsions. In



particular, thereare only two exceptional JB ~triple factors.

| Remerk. The above-mentioned result of Friedman and Russo is
of fundamental importance to the structure theory of Jb ~triples and
is also of interest to infinite-dimensional holomorphy, via the
relationship betwéén JB*mtriples and bounded symmetric domains {cf.
paper of KAUP Zote 7 |

Last but not least, let us‘mention the recent reséarch momno ~

graph / 35_7by NEBHER, where a theory of grids (i.e. special families
of tripotents in Jordan triple systems) is presented. Among the ap-
plications given are structure theories for Hilbert triples and

*
JBW ~triples.

§ 4. Jordan algebras (or pairs) and Siegel ‘domains

io]

This section deals mainly with the results of DORFMEISTER
/718 a,d_7, T00S /733 b_/, and SATAKE /41 7 on Siegel domains con-—
nected w1th‘certain Jordan structures (algebras or pairs).

We shall firstly recall the principal results on homo~
geneous Siegel domains, as given in / 18 c¢_7/.

Notation. Let X be a fini'e~dimensionél redl vector space
and let ¥ be a regular cone in X, As usually, xti= £ @ iX denotes
"the complexification of X. Re is the real part, Im represents tl
imaginary part, and z —> 2z is the conjugation. Let U be a finite-
dimen%ional complex vector space and let S : U XU —> XC be’a_
Y~Horml*"an form.

In z - S{u,v) éZY‘}

" Definition, DET,S):- '{(7 u eX >< U

called a Siegel domain,

Definition. Let D(Y,5) be a Siegel domain gnd let Aut D(¥,8):=

::}éf‘ f ¢ D(Y,8)—> D(Y,S) biholomorphic.}. If Aut D(Y,S) acts
transitively on D(Y,S), the Siegel domain D(Y,S) is called homo-—

geneous.



= 6 = 4 J

Note.All Siegel domains that shall be considered in this
section are assumed to be homogeneous.

We denote by é = 9 (Y,S) the Lie algebra of the ILie group
At DT, S) I 9 is assumed to be iéerrti:ﬁ‘ied, as usually, with the
Lie algebra of complete holomorphic vector fields on D(Y, S.) then
its elements are holomorphic maps of D(Y,S) into X )( U, -and are
therefore represented by a pair of maps, X (m,u)i= (%1(291J)9%)&z,u))
where X (z,u)e qu and 9(

As was shown 'by K UP, MATSUSHIMA and OCHIAT [2‘8__7, the ele-—

ments of 9 are polynomials and there exists a canonical grading
L ® 4,
é—/_]_@jml/z@fo@gl/z fl’ ‘
where L%, 9/,&:(6 9)\47% 3
and ’9_& = {(3,0) \ a eX }»
/ful/g = {(21 S{uyd),d) ‘ déU} s

0

# :

o= {(T,T) & Endy X X Endy U 3 T€Lie Aut Y,
: - n

TS (d ,W) =5 (T a 9W) “+ ( 3 Wu ,WE U

From / 18 4_/ it follows that

. 9 : (25 (u, ¥ (Z)w), i@ (z)w + 2 (S(uy‘N})U.) e 3
142 (( -
Gy = { gz ¢ ) ¢ \>u§X6P]_}1>’

where 3/2 is a complex subspace of U, I—’l s a real subspace of

il

(ior a detailed description ' of P and: Ps see DORFMEISTER
1/2- 1

[18 d_7/), while- A ) and Cf(y are defined as follows: let

((zy5u9)s (zg,ugn — W (-(1/2)(z4-3,) - S(ul,u2>> be the
Bergmann kernel for D(Y,S), where V( R R* is some positive
fw ction which can be holomorphically and continuously extended to

X @ iY. Choose an element e of Y and keep it fixed, Denote by o the

1A detailed analysis of the representations of the formally real
Jordan algebras that arise from the ele ments of§ can be _found in

e
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second differential dg log@l at the point e; then T is a positive
defined bilinear form on X. The C-bilinear extension of T %o X@
will also be denoted by 9 . We now compare the third diff erential
a2 logn with ©,

125 -
T(xy,a) t= - 5 d; og M (x,¥y,2), e e L,

‘he oduct (x L AT g X imposes on X the structure of
Thprdut(,)‘»b'A() poses on X the struct f

a commutative algebra (= 4 (¥,5,e) (with identity e and left mul-
tiplications A(x)). In the complexified algebra C%g of ( we have
T, y.8) =8 5, 00) Tor 2,7z <567 . The parameter space P, is a
subalgebra of {{ (see DORFMBEISTER /18 d, Corollary 5.2 7) and bt
& upE By which we denote oy P . *

G

AY<Z> in the expression for J. denotes a new product in

i
the vector space X, defining the mutationwg; of 5?, namely

Ay(a)b := (ax)b + a(xb) - x(ab).

Tf we set g(u,w) i= ¢ (e,S(u,w)), with u,weU, then ¢ is a positive

definite Hermitian form on U, Finally, with g (Cf Ja,w) =

o - T : T - .
:= @ (z,5(u,w)), where zeX and v,wel, o bnd® Uis a
€-linear map.

Putting.Pul = X, P~1/2 y=- Uy and PO 1=/ ,s We see that

P by is a parameter domain, foz*j&. The elements of ﬁi are therefore
£ g /
often written as [w], we P

Defiy jt‘on (SATAKE / 41_7). A Yomogeneous Siegel domain

D(Y S) 48 called ouaoLoymmetrjo if the alpebra,éz 67(z ed-dnm

Jordan algebra,

Rennrn . From G (ab,c) = @ (a,be), it follows that His a

formally real Jordan algebra,

From DORFMEISTER /18 2,d_7 the following theorem is

immediate:



"

18 =

e

Theorem 4.l. For a homogeneous Siegel domain D(Y,S) the

following are equivalent:

1) D(Y,S) is quasisymmetric;

) Ais a Jordan algebra:

W

Y is selfdual with respect to T .

‘§Q is reductive;

U

-
Lo SRR S I

90 is selfadjoint with respect to &€ ;
)y 1 %G e U forz 61,

N
~—

For a

H
i

g
X,cX and U,cU (uniquely determined up to the order) such that X

.,
J

jection of Y on Xj and by Sj the restriction of S to Uj, then D(Y,8 )=

::GBD(YJ,S.),'where D(ngSj) are irreducible. The cones Yj are also
* (2 o

irreducible and the formula »l( E Lid = i] vj<xj> holds, where
o
Ik

sz is defined via the Bergmann kernel bf D(YJ S.). It follows that

A (18,2 ::€E CZ%, where Czj:: 6{(YJ,S%,Q.) and e = E e
o ¢ S &

g
Proposition 4.2. (DORFIMEISTER /18 4 /). a) A Siegel domain

is guasisymmetric if and only if all'ite irreducible components ar
quasisymmetric.

b) A gquasisymmetric Siegel domain D(Y,5) is irreducible

if and enly 4L A (Fes,e) da simple,

Proposition 4.3, (SATAKE / 41 7). Let D(Y,S) bé an irredu-

Cjblﬂ’quaoioymmetriC'Siegel domain. Then either D(Y,S) is symmetric

91/2 < e ’ ‘

Remark, Proposition 4.3. is an immediate consequence of /184,

Corollaries 5.2 and 5.9 /.
Notation. Let X be a finite-dimengiona 1 real vector space,
and let U be a finite-dimensional complex vector space. We denote
by Q(X,U) the set of all triples (Y,S,e), where e & Y, and DEE.8) 4
: : s el e : i o
a quasisymmetric Siegel domain in X° X U, We denote by @/(X,U) the

set of all triples (4, Cf ,‘f ) satisfyiﬁy the following four

D

uasisymmetric Siegel domain D(Y,S) there exist subspaces

6515, and S(Ui’Uj) C;Xj hold.If we denote by Yj the pro-
oJ

iR s

RN

PO .

SRR

b At A
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e

Do %

CZ ig a formally r@a] Jorden algebra on X (with unit e)§ ?

§ is a positive definite Hermitian form on Uj |
tf —> Sym(U, ¢ ):= IéEnd_@U ‘ )(f;xiia

homomorphism of Jordan algebras; {

4) © (e) = Ia. %

Theorem 4.4, (SATAKE Zf4lm7j, There is a canonical bijection %

from Q(X,U) onto Q?(x,u)@

Remark., DORFMEISTER gave Zm18 b 7 an- ad hoe proof for

!
§
I
)
1
i
i

Theorenm 4.4, and explicitly stated the canonical bijection.

X ~S .
o
~ . B . s - S V(D o
O l;o tion. Congider the. rational mnaps N/ and=s of X >< U i

into X ¥ Udefined by

Tlzyu) 1= ((z-ie) (z+ie) d(%(z+ie)"lu), ' |

~ ;

(z,u) := (ife+z)(e-2z) ", [ Cf(em u),

=N

where  ,p & € satisfy «xB= 21, ;

C-‘ a1l A o i

Theorem 4.5. Let D(Y,8) a quasisymmetric Siegel domain.

Lyt ~ 5 3 ), b g . )
Then ¥ maps D(Y,S) biholomorphically onto a homogeneous bounded

)

domain,

Remerk 1., LO0S /33 b_/ developed a theory of bounded symme-

b st

tric domains using, in particular (Hermitian) Jordan triple systems.
b4 i ‘

O ?
~

£ G (o
He also mentioned the maps / and 7 .

Remark 2., Using the above-men tioned results, the theory of

\

representations of Jo“oan al eux and the theovy of “leford 8l-
gebras, it is pOSSLble to describe explicitly 21l gquasi s;mmetric

Siegel domains. This has been cerried out by DORFMEISTER Z 18:%
Definition. A Siegel domain D(Y,8) is called gymmetric

if for each x€D(Y,S) there exists a biholomorphic map

O~

I

})

s : D(Y,8 ) —=>D(Y,8) satisfying g, o g, = 1d and ha ving x as



({3

ST

isolated - fixed pointl)e

Theorem 4.6. A Siegel domain D(Y,8) is symmetric if and

/

only if 9:(Y,S) is semisimple.

Drowo ition 4.7. 4 symmetric Siegel domaln is quasisym-~

-metric.

Remark .Proposition 4.7., stated in4[7ﬁlm7, also follows

; - - /‘*.- 4 ” oy
from the Theorem 4.6 above and / 18 d, Theorem 3.12_/.
Comments. A characterization of symmetric Siegel domains

4

in terms of quasisymmetric Siegel domains was given by DORFVEISTER

/18 ¢y §.3.7.

Using a construction which associates Jordan pairs to cer-

. . 2 W
tein Lie algebras ), DORFIEISTER /718 c_7 constructed for every

Siegel domain a Jordan pair. This Jordan palr induces another Jordan

3

1

¢}

TR TS M & : — ; o5 s i
re DORPMLEISTER's results / 18 ¢, § 5_/ ¢concerning the Jordan pair

and only if it is homo-
e e
by a result of VEY / 49,

(Y,8) is homogeneous may

1) A Siegel domain.D(Y,:

seneous and J (Y¥,S) is semisimp“e.;gus

W

~—
}—
o
:L
o
pars
=
s
Q@
i

[ ) )
Provosition 6.2 the assumption that D
; =4

~

be omitied.

2) If W is a real or complex vector space and J/: yD(W) is the set

of polynomial'mams from W to V, then we deno te by JQ = ~/9 (W

the subset of ¥ of polynomials of degree?Y + 1. For X,Yeé'ja,
_we define a product by L}K,Y’j(x)-:: d. Y(A(J))‘n dWX(Y(x)}.Thus
gabccombw o Lie algebra and we have E jD 2& ] & 7 o If

D(Y,S) is a Siegel domain, then j;(Y,S) is a .subalgebra of

1

b
b}( U). The following theorem h@ldu: Let j;]_‘?y/

o~ N— 2y
G & _/vO f Py ;Dl be subspaces, and agsume that 9 ?l@ 50 D 9

o’ Y1

is & subalgebra of S, Then \9 T 5;l ogether with the

trLllnoar maps

Lo ?}(9 ><§ M>§ , E=23, {Xa Y—«azéi’:"D:Xz , Y—»-s]’zg

is a Jordarn pair, :

air - dernoted below by /” - on (X?)< U, Pi,K Pl/z),‘ﬁé shall recall

V.
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cieal
Notation . Given a homogeneous Siegel domailn B, 80, 1he

s A N4

+ + . ;
explieci t expressions for %A & ])\ . A == 1/2, = 1, show that

Pl 0 Ry 5% P). Ve yut T = F(X,8):-
i (J+9 J7), where J£::§ \7

From the theorem _recallcd in the footnote it follows that

51, together ‘,-Ji'th%Xa s i Zi [LK 5 —J’Zg] e

. 3
Jordan pair over €, If Xey , then we denote by % (respe, X

‘x/L b

9 ; 3 i .
¥ ") the constent (resp.,linear, quadratic) component of ¥ 1n§

It is obvious that X = }{k :for}(/'éfwl,%z 3{1 for é‘fo, and }( :XQ

for k/ éﬁl‘.
We set V' :::X@@ B, ¥i= 'P(.{]i b P1/2 , and impose on

Fs g . _— g .

V" +he canonical C-structure, while on V" we impose the dual compl
. ey ¢

structure (L.e. XL{zw) 1= X 2 B LW, XEC, z &€ F, WePl/”/‘ -

.

where « is the complex conjugate of X and « z, resp. & w, is

1
- gcalar multiplication in Pl , resp. .Pl/,))o Let U/::'V (Y,8,e) :=
ot >
:= (V', V), and
€ +
Fot o d , Eme i

bt [&J + X1 i E

j_(x@w) i= %l[i‘j &y & o %~

Y & € + is an
JmokSle el e
igomorphism of con*plcx vector spacese. -

Pmpo ifion 4.8, The map

- Gopollary. Putting k Y+ v° X T IVE LBOGEE

¢ £ o 1 . € . - . i . 30_‘ A
A%vl ¥y }” g {Jg<v1)f J_JJVZ o Jg (Vg )} the structure

of a Jordan pairs is defined on V: (v
Remark. Using the description of § as recalled at the
beginning of. this section, TOiu‘“"“ STER []8 c_/ gave an explicit

formulation for the triple-produet J{ } of Virx terms of (/Z

W s e B e 0% e

©

E /

~r
e
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As an application of the decomposition of D(Y,8) into irre-
ducible components, recalled before as Propo ogition 4.2, we give the
following proposition.

Proposition 4.9. Let Blr.5) = é%%D 'j> be the deconpo=-

sition of the Siegel domain D(Y,S) into 1rrcquc1bLe components.

Then'\]“ v{ holds, where U; it Vﬁ(Y

5 (X5 Sj’ ej) is the Jordan pair

constructed for D(Yjs Sj) and ey

Theorem 4,10. a) With Ra VV defined as ind8A.I, § 4,

il

i X
we have Rad V/ o Pl/Z’ 0), where Pi is the orthogonal compo-

nent of Py, 1 =1, .
+ & gyt
N [ P 3 " A § ra o e e gl
b) Set Vs o= Pl 69 P1/0 and endow | with the CdLOHLL?L

gt o= n o + - : :
complex structure; put V_ :=V , Then t= (V V™ ) is a semi-
L S S R
k] s wo )

}\/
simple subpair of U .

¢) The Jordan pair of a symmetric Siegel domein is semi -

Tor a given homogeneous Siegel domain D(Y,S), DORFMEISTER
/718 ¢_7 applied the above-mentioned results to prove explicit
: ; aws - P ;
expressions for l-parameter groups of elements of ). This yields
a description of the bOEﬂOCuPﬁ component of Aut D(Y,S) that con-

tains the identity (see / 18 ¢, Theorems 6.3, 6.4, and 6.7 i
¥ c 2 $

§ 5. Theta functions for Jordan pairs

RESNIKOFF' /37 b_/ defined theta functions associated
with complex finitemdlmensional Jordan pairs admitting a positive
Hermitian inmvolution. Using an abstract of his talk (see L3

below we sketch this construction,

= =l o sy e .
Let (V7, V7) be a complex finite-dlmensional Jordan pair
admitting a positive Hermitlen inwolution ¥ 3 U e W,

R




*

S Dy

B

'Q_omrf‘v tion. Lhe triple produ.ot ' S >< YT - willv be
denoted BY (u¥, v,‘xw""") e %u.vw} , where U, VW &, and we wrilte
w,w in the pro duct 1in gtead
= - he fripotents such that eq * €s ig mexima als
i & \,T‘j“j be the corresponding Peirce decompositlore We
nave Vi1 @ Vi P Vo = [Fa o, woers & is & formally real Jordan
algebra. |

Conventiof. Write \T;j = ai;']@ g for e £ g é' 2w

—“'MM

se-lattices = and & a lement
Choose 1attices 2{12 6212 14 cZ?lO VlO , e clemen® 1

such thav 0: 4 B & Czll’ and let 2 7 22269 Z20€E V22 45) VZO pelons

the siegel domain of type 2

/1,-\? —-‘

- o 3 *®
.= 7 - 7 .-——%wwwa—- — T , .
b 3o R g & V50 @ V20 4 gy S0 6273

T1et UE ‘\le@ V;O‘ G U5 Ly AR 1y D(u, v), where D(u,VIW:=

s = {jﬂN:B and the COﬂstant ¢ is determined qo that Gﬁ
: I €7 g
& - s . o T
concides with the reduced trace. inally, put Q(x)y P {xyy;ja

Definitiofe The theta function of order 1 ussoolatea with

o 7
the'lattice Qf:z d{lzéa 1\30 and the giegel domain D is.

:ijgi;' mw:iﬁGWQ(k)Z*‘l { lwol M)% +Sl U}%

o Mﬁ)%o

Comgggj§, Thig series satisfies analogues of ST us ual
funotional and ujfferential equatlonse Tt reduces to ‘the theta,
function agsociated with & JOlQﬁﬂ4u1ngfﬂ when,vlo = Voo = O

. a S
(see RESNIKOFF ] nd also I88.Vs 57 )

R s
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§ 6, Differential equations in Jordan triple

systems and Jordan pairs

@

Let T be a (quadratic) finite-dimensional Jordan triple

system over a field KK of characteristic # 2. Define, as usually,

the trilinear composition by { xyz} := P(xt+z)y - P(x)y - P(z)y

(see JSA.T, § 3). Let B(x,y)z 1= 2 = { Xy 2 }+ P(x)P(y)z. Let

e b g e & T : .
= (jj be the subgroup of the group of birational transforma-
—J

)s

a4
tions of T X T generated by the structure group and all (ta, t

a

~ o~ <3 =]
(ta, ta) with a € T, ta(x) t= x+a, and ”a(x):: X a, The group ¢:J(T)
has been studied by - KOECHER /29 a_/ (see also /29 b_/). This

,roup 1s the group of K-rational points of an affine algebraic
8 0 g O Lt B &
K-groupe.
e§ ]
KUHN /730 / defined the group @ (T) of all (f,z), whered

s

and g are birational maps of T with the property that

2 £l
B(f(X), ig;(:}r)) = J"‘(:’:‘)‘ B(:’:,y) I’zjs(r (y);

o % :
and
et PR A & v N d_l')"(",{') =
Blefz) flp)) = ——=-=LB(x,y) B G,
2 x g i
for suitable rational maps H and H! i >
: : fsg f,e
In general we have e o e <i> (T). She proved that
e n . m o i 1 3
= T N cas har K =0 T hasg 1 vtreme radical,.
MJ(’l) ()1n\oxec il or no extreme ic

Por charecterizations of these groups involving a norm on T the
z e . . e O W o T - . ?

reader is referred to KUHN BT

Concerning the Riccati differential equation in Jordan
pairs, BRAUN /7_7 proved a result recalled below (see Theorem
6.1 ). Linearization of the matrix Riccati differential equation

derived from (m ¥ n)-matrices (see LEVIN /32 7) and the Riccati

o S S A A A SN

R P
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differential equation for operators in a Banach space (see
v Of Eh oy

/"46_7) are assumed to be known tothe reader.

TARTAR

Tet V be a Jorden pair with ¥V , @ = ~, Banach spaces; and

1et D and Q be the derivation and the gquadratic representat

ned as usuelly (see JSA.I, § 4). Let I be an [R-interval, le

an initial point in I, and let k be a given initial value,

ion defi-
i h be

xev,

Tet v (%), w(%) be given continuous functions, v i I = V7,

+ = p v 1 . + .
w i I—> V', and let D and Q be continuous. The Riecati differens=

tial equation (without linear term) is defined by

2 ~r
£

== = QIX)V + We.

2% Ry

The solubion X3 L KT -e>~V+ with initial value k at the
will be denoted by x( % , % Js

o

Notation. RBilm s = Lg o= D(u,t) + Q(uwa(s), o

v

s = B(u,t)"l (a-Q b)), for we Vi, eV, if the ingepse of

exists.

Theorem 6.1. Let X he the solution of the Riccati

tion with initial vaiue k= 0 &t n‘ O Pu

4

S 'h 4
x(i ,Y) t=x, + b (k)““(7)
ne: Ix I—> hut v 24 IX I —» V. Solve the linear

.>'h+. P b ;
= = D(XO,V)h+ . ﬁ;mm = - D(V,Xofh_ 3
5 o

Z

point i

Bl t)

equa-—

sy A
systen

so that =5 = h;l(V> wial o o (e ) = Tds m(n,) =00 Then x(3 ,0) is

ez

the solution with initial value x(q,n) =k (in a neighborho

Recently, WALCHER / 51 a_/ gave a characterization

Jordan pairs and its application to the Riccati differentia

od of gl
of regular

1 equation

as follows. Let V be a finite-dimensional vector space over IR,

P : V—> Hom (VPV) a quadratic map, G<V open (G-% Q)’ a

nd
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%753 C]‘,(G?'V)s Suppose that for all & € V one has (d/dt)éf(z(t)):

--a whenever z(t)eG is a solution of the Riccati differential equation

x = P(x) a. By differentiation D ¢ (x). P(x) = -Id. Moreover, Wal-
cher showed that the identity P(x, P(x)z)y = P(ng(x)y)z ig satis~-
fied for all x,y,z € V. Thus there exists a Jordan pair structure
(?,0.) on \F= (V,V) and by Theorem 6.1 the following is true: Let
a:I—>V,c:I—> ¥V, (8,B):I—> Der | e conti-

nuous. If z(t) solves

x = P{x)a + B,x + ¢

and P(z(t)) is invertible, then P(z(t))"l 7z(%t) solves

= -Q_(x) ¢ + B x ~ a,

o ¥

Let us recall that a system of ordinary differential equa-—

tions x = F(t,x) is said to have a fundamental system of solutions

if there exist finitely many solutions that determine (almost) all

other solutions; it is called a system of polynomial differential

quations if, for all values of %, F(t,x) is a polynomial in x. A

theorem of Iie implies that a system of polynomial differential

£ AR B BCd ann oy N TR T TN g - 0
28 a fundamental system of solutions if F(u,z(

S
!

equations 1}

= EZi: %i({)fi(x) and the polynomials fi(x)~generaﬁe‘a finite-
dimensional:subalgebra of the Lie algebra Pol V, where V .is the
vector space on which the system is defined. |
Recently, WALCHER L 5%/ determined these subhlgebras in the

case dim V = 1 and'showed'to'they'dorrespond to the Riccati (incluw‘j
ding linear) and the Bernoulli equation.

“For dim V > 1, Walcher investigated the finitemdimensional, graded

subalgebras L of Pol V. Denoting by PoliV the subspace of all

polynomials of degree i+l, it is shown that the semisimplicity of

§
i
§
i
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L:Lml @TJO@ O.Q@Lnl

with L, < Pol.V, implies m = L.

V. By a result of

i

L. is said to be transitive if LMk
Kantor, it is known that a finite-dimensional,graded, transitive
subalgebra with m > 1 is reducible; that is, there exists a sub-
space U of L_5 with O £ U # V such that for all k with 0 <k < m
and all p € Iy D(V, «vey V,U) & U, This allows one to reduce the

s
discussion of transitive»subalbebc”@ to those whose degree equals L.
The latter are shown to arise from finite-dimensional Jordan'pairse
In case dim V = 2, this permits a complete ennumeration of all
finite-dimensional, maximal, transitive subalgebras of Pol V of

figxed degree m., Walcher also discussed how these results can be

used to find all solutions of certain types of systems of .poly-
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