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. JORDAN “'RU””URES WITH APPLICATIONS,.VIT.
ALGEBRAIC VARIETIES (OR IAKIFOIDS ) DEFINED

BY JORDAN PAIRS

Radu IORDANESCU,

The description of the algebraic vari;ties defined by simple
finite-dimensional (quadratic) Jorden peirs over an aslgebraic ally
closed field is given in Section 1. The next two Sections focus on
local and global Jordan menifolds, a kind of manifold for which the
underlying algebraic structure consists of (1inoar) Jordan pairs
Worth mentioning is that many familiar .manifolds are Jordan

manifolds,

& 1. Homogeneous algebraic varieties defined

by Jordan pairs

LO0OS [z4e/ showed that every (quadratic) Jorden pair defi—
nes an affine a

lgebraic group, the projective group of the Jordan
pair. On the other hand, he observed 45{57 that every Jordan pair
defines an algebraic variety, related with the projocfive group of
the Jordan pair in a nstursl manner.

Ve give a brief review of the. above-mentioned construciions.
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rieties defined by simple finitemdimensional Jor-
dan pairs over an,&lﬁebraically closed field are listed. Then

comments o

—~

| the results of PETERSSON [3 0.7 ';«.nd JACOBSOW /48 7
are nade.

Let K be an arbitrary (commutative) ring of scalars and let

G be a separated K-group sheaf,



Definition. An action Y of the multiplicative group [K_ of

K on G by automorphisms is called elementary, and the pair (G, ¥ )

is called an elementary system, if there exist subgroup sheaves

H, U+, I generating G, such that H is fixed under LF 3 ut and
U

=4
are vector groups on which V) acts via tVt(u):zt"lu, and S2 :=

1

UTH, U is open in G,
Remark. The conditions in the above Definition determine

H, U, and U™ uniquely.
+ +
The Lie algebra V™ of U~ is s finitely generated and pro-
+ o+
Jective K-module, and there exist unique 1somorphlsms exps V’ e o B O

1l

with Iie (exp) = Id such that ‘+%(eﬂo(y)) = exp(t ,X) for all

CCIK) and x € V  (see L00S /24d, 3 3.5 7 Vs

) : ; i e
There exists a unique Jordan palr structure on V = (V',V7)

+

with the following property: for all (x,y) € Vg X Vs , R being a

(commutative associstive unital) K-algebra, we have exp(x)exp(y) &
’ D

e 2. (») 1f and only if (X,j) is quasi-invertible, In this case,
exp(x) exp(y) = exp (yx)b(x,y)QXp(xy), with a morphism biW —- I,

wvhere H is the subschefe of qQuasi-invertible pairg. Also, H norma-

: +
lizes U

and U~ and acts on V by automorphisms vie the adjoint re-
presentetion (see L00S /24d, 4,17 ). V is called the Jordan pair

essociated with (G, ¥ ),

In general, (G, (P is Pot uniquely determined by V. However,
_f

given a Jordan nair Vwith V& finitely genera ted and projective,

there exists an fessejii:]ly uvicuL)JK—groun sheaf G = PG(V), the

projsctive group of V, and an elementary action %/om @, whose ag-

sociated Jordan pailr is V, and- such that the homomorphism H —s~ Aut (V)
induced by the adjoint representation is an 15@mozpﬂlsﬂ. If Y" l{—~€>

—> H < Aut(V) is the unique ﬂouomornhlsm such tﬂat Ad )”(L) X =
g +
=t . x for TEK , xEVZ , then %) is given by conjugation with
Cis



5 g

¥ (see 100S /344, 5.14 and 5,157

Let V = (vF

s V7) be a finite-dimensional Jordan pair over
an alvebralcally closed field ' and let X = X(V) be the quotient

of V+>< V™ by the equivalence relation

(x,5) ~ (x', y') if and only if (x,y-y') is quasi—inverfible and
p R xy"y!. (Ls us ual, x7 denotes the quasi~inverse in the Jordan
pair V), LOOS /24 <7 vroved that X is a quasi-projective variety
containing V' as an open dense subset, and that is projective if
V is semisimple. Moreover, Loos showed that under the projective
group of V the space X is homogeneous in a natural way, and that
this projective group is isomorphic to the group of automorphisms
of X if V is semlsfmole.-his is essentially due to CHOW / & 7 in

four clessical cases., For a geometric characterization of "the pro-

jective group see CHOW [/~ F 7/, PAULKNER /Maf/, FREUDENTHAL & -V
HUA [464%, SPRINGER /37a/, and, also, JSA.II.
Remark. The assumption that P be an algebraically closed

field is not essential: in fact, @ may be an erbitrary wing of
| +

scalars, provided V

and V_ are finitely generated and pro jective
F-modules. Then X is a smooth guasi-pro jective (P~scheme, Semim
sinplicity has to be replaced by Separability (a finitely genera-
“ted and projective Jordan pair V over a ring [ is called separable
if V'Q961k: i9 semisimple for all fields k which are Fualgebras),
IT V is éeparable, then X is a projective [P-scheme and the UfﬁJCC»

tive group V is 2 semisimple FP-zrou scheme, isomorphic to the
[} i o 5

-

automorphism group scheme of X,
For each of the Jordan pairs from the classification of
simple finite-dimensional Jordan pairs over an algebraically

closed field W given by L00OS 24b, p,201 / the veriety X is as



f6 1 ToMe: !

Byps T N (), (p X q)~matrices over Fi{p < 4,
Psq PsQ

with Q(x)y:=xy'x, where y' denotes the transpose of yo In this case

X is isomorphic +to +the Grassmannian G (Fp q) of p-dimensional sub-
+

spaces of FPTY,

P e =k (F) alternat1n~ (n X n)-matrices

Type IIn’ v
with Q(x)y := Xy'x. In this case ¥ is isomorphic to the subvari lety
of Gnﬂﬁ2n) consisting of all totally isotropic subspaces of F°Y of

fixed parity with respect 4o +he quadratic form q(xl, é ki Xn) P =

1

= E b
i*n+i®

it
Type III . N HP(@), symnetric (n X n)-matrices with
Qx)y := Xy'x. In this case X is isomorphic to the subvariety of

ey oy . . : : : - .
G (F°7) consisting of all meximal isotropic subspaces of " with

respect to the alternating form o (x,y):= z : (Xiyh+i pqu )

Type IV . Vi = v =" with Qx)yi= alx,y)x - q(x)y, where

: 5 ‘ ~ i .
q is the standard quadratic form of [P s Siven by

m
q(xy, - Xom) :::Ez:: X; X5 Aif W o= Py
=T :
'S -.n'l- - a
q(xo, > ?2m):: xs + Ez:: . X;% .9 1f no=2m«+ 1 °
T ' :

In this case X is ivomoronlc to the qudurlc of ell ¢notr0njc LL”O

through the origin in F

1) These Jordan pairs arise in a fairly obvious way from separable
JOlQan pairs over Z by reduction moaglg char ! and extending

the prime LJGWd to ', Thus, we are dealing with the fibres of a

smboth projective Z—zcheme.
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Type V. vh =V = l 5 ( 0/ 3% a)mmatrlces over the oc-
tonion (Cayley) algebra ¢ over I, Here X is isomorphic to the pro-
jective octonion plane 52)(0V) defined by the exceptional Jordan
algebra, HB(O/_) see PAULKIER /M2 7 and, also, JSA.II, §§ 1,2).

+
Type VI, V' = 3 (0/) Hermitian (3 X 3)-matrices over the
octonion (Cayley) algebra Cr‘over,ﬁq In this case X 1s isomorphic to
the space of lines [Ffu, where u is an elenment of rank one in the 56-

. : . =< a
dimensional space of all matrices , o #36E3 a,begﬂg((jlﬁ)

b G
(see PAULKNER /41 b7 ).

In 1984 the fundamental paper /307 by PETERSSON appeared. It
provides a uniform framework for generic splitting fields of associa-
tive algebras studied by HEUSER /457, XOVACS /227, SALTMAN /337

MITSUR /2_/ and ROQUETTE /344¢/ , and generic zero fields of

42

quadratic forms investigated by KNEBUSCH /20 /., This is achieved by

=5

first observing that both, central simple associative algebras over

] 3

a field K of arbitrary characteristic and absolutely nondegenerate
guadratic forms over K, are exam§les of absolutely simple Jordan
pairs over |[K, and then constructing generic reducing fields of Jor-
dan pairs in a classification-free treatment.

+

Let V. = (V', V') be an absolutely simple Jordan pair over XK.

A nonzero idempotent ¢ of V is called reduced, if the Peirce space

£ - | : - |
Vy(e) =Kec*, €=% , and V ifself is called reduced if it con-

tains a reduced idempotent.
o f ~ oo . c : | . .
Ro nark. For Joraan structures Hanlit! is a more restrictive
concept than ”reduced”, however "split" = ‘“reduced! if v is  the

Jordan pair associated to a central simple associative algebra,

A field extonsion.jéﬂiis called a reducing field of V in

case the extended Jordan pair WK is reduced, and Uch,qn extension is
d L



.

called a generic rcducwn field if an arbitrary field extension

-cZ/K reduces V if and only if there is a K-place from X to 2%

' Petersson has comstructed two, in general not K~igomorphic,
generic reducing fields. Both are [K-retional function fields of
irreducible projective [K~variables associated to.V, A detailed

~discussion of examples, most natably Brauver-Severi varieties, and

with an application to exceptional simple Jordan algebras arising

from the first Tits construction is also given by PETERSSON /S B 7,

In 1985, JACOBSON /13 7 considered two classes of projective
verieties, namely norm hypersurfaces and varieties of reduced
elements defined by'finite~6imensional centrel simple Jordan alge-
bras. JACOBSON's paper /7§J7 overlaps substantially with the peper
/307 by PETERS:

U)

ON. However, the methods and points of view are

different, supplementing each other.
J‘ J.p o

§" 2. Local Jordan manifolds

ATSON ﬂZa)Cha[fCer II_/ defined a class of manifolds, called
local Jordan menifolds, where the ground algebraic structure con—
ists of (linear) Jordan pairs., For the sale of simplicity we shall

omit the word "linear"., A

&
o

ne can see from the examples given

below, many familiar manifolds are local Jordan manifolds.

Note. All Jorden pairs considered in the following will

bed
i

be finite-dimensiona

vector spaces over R and. the vector spaces
'V+ and V~ of a Jordan peir V will be assumed %o.have the ordinary

real topoloszy.

Definition. A Jordan chart on a topological space M is

a pair (43, V) consisting of a Jordan pair V =(V', v7) and a map
Cb r U —— V+, where U # ¢ is open in I, and <#> is a

- s with
homeomorphism of U onto an open subset of V
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Definition. A Jorden atlas on a topological space M is a

set 62 of Jordan charts on I satisfying the following two condi-
tions:

(a) the domains of the Jordan charts in A conver M;
. - : +
G C? : V., syt an 43 : e 5 here U,
open in M and Vi is a Jordan pair) are elements of A ang 1L
L%_n U2 # @, then in a neighbourhood of each point in

PyUp V), P, b7t iy (U, aU,) e V] —> 7} is the

restriction of a map from L P (Vls Vg)-

Let 43. : U. ~ﬁ>—V; y 1 = 1,2,'be two Jordan charts in a

Jordan atlas U on I, Supposge that U f](f2 o . Then for every

-1
W Ulf?(]z, in a neighbourhood of le(u), 4?2 q51 is the res-

S

triction of a unique linear fractional nap, called the coordinate

AL

u
trensition map and denoted by (j # .
_ cl):.. £

o w oo
Remark 1. Note that u n_;.(j¢)¢ 1s locally constant,
1

- -+ .
Remark 2. Let Cij Ui ~m§w-Vi y 1 =1,2,% be an element

W 3 (l“ : Y
ofczenm let ue Uln u, n (JBf Then. Cj¢?%l (R#ﬁ: C%#:ands

in partic ululg (%fh <(l¢1 ) and <1:3¢ledj A

Uern*+ﬁon. Let_Cz ~be a-Jordan atlas on a topological

e

space I, Then a set 58 of Jordan charts on M is said to he compa.—
tible with 7 if 62‘/\23 1s a Jofdan atlas on I,

Now let le be the class of all Jordan charts on M
compatible with 6?. It can easily be checked thaf BE C¥1 is a
set, if CZ < 61 and f the domains of the charts n(? cover M,
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A A
then 621 ls a Jordan atlas on M, and CZ CZ . The class A is

callga the Jordan structure of I,

Definition, A local Jordan manifold is a pair (M, X )
A

nr

‘where I . 18 a topological Hausdorff space and A is a Jordan struc-

ture on M determined by a Jordan atlas CZ on i,

N

Remark. Note that M is not assumed to be connected, nor

nust all components of ¥ have the same dimension. However, eve

component of M is a resl analytic manifold.
N N

Definition. et (s, &) and (8, 0(,,) be local Jordan

manifolds. A morphism from Ml to I, is a continuous map f: Ml |
[

\L.-\.
[

. . R i
such that, for every pair of charts 491 :U:L e W

1
d) : U —> V! in A, witn U.ne (o ) A% , in a neish-
A =2 £ % Weebd ) v g ) gl

in.ag and

bourhood of each point in its domain the man 432 fc#zl :

=
—
Lj
)
|
—
<
no
s
~—
V
P
o
rj
D
(]
-+
3
Y

riction of a map from

Remark, The composite of two morphisms (as maps) between
local Jordan manifolds is again a morphism, and in this wav the
local Jordan manifolds and +the morphisms between then form a cate-
gory, denoted by LJI. Every morphism in LJI between connecte iooal
Jordan manifolds is = morphism in the category of real analytic
manifolds., -

Definition,  Let 'V be a Jordan peir and let M be a topo-

logical space. A Jordan chart on M of the form (Cb, V) is called

tart . A Jordan V-atlas on I is a Jordan atlas €L

Rt

g Jordan V-c

- A .

[

on II congisting of Jord“n V—charts. -
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Definition. Let V be a Jordan pair. A local Jordan

“VY-manifold is a topological Hausdorff space M with a maxinmal

The standard local Jordan,V—manifold is e .
Remark 1. Every local Jordan V—maﬂ¢fold is a local Jor-
dan manifold,

A
Homark 2. Tet (M, (&) be a connected local Jordan mani.-

fold. One can see that on M we can specify a Jordan V-atlas don-
tained in CA , where V is any Jordan pair ocecurring in a Jordan
chart ’in,CZ. The various Jordan pairs V generated by a Jordan

T

atlas_cz on I need not be isomorphic,

Remark 3, A morphism f Hl e M2 between two local

-

Jordan manifolds I, and M. can be a diffeomorphism but can never

be an isomorphism in LJI,

Theorem 2.1, Let f : Ml S MP be a morphism between
two local Jordan manifolds Ml and I,. Suppose that Ml is & logal
. .

T " . g - ; : : ;
Jordan V-manifold, where Rad V' = 0. Then f is an isomorphism in

LIM if and only if it is a homeomorphism,
A e
Le (‘ 611) an (IP, 622) be local Jordan manifolds.
Since any (fl, ) & LF, W )‘x LT '2, ”?) can bhe 1dent'JLea
in a natural way with an element of IF (V I 12. iy B ) A

clear that I X 1, possesses a natural Jor an gtructure. The @i-
L o "

rect product) local Jordan manifold M i has the expected uni-

r

versal property requiring that whenever i'is a-local Jordan mani- -

fold and p; ¢ Mol od, o 1,8 y are morphisms, there exists a

4]

unigue morphism p 2. M —s Hl,K i, such that ﬁﬁp = p,, wher

ot

(_. . . . ) 2 - -
/7T o )(“l — R% 18 the projsction morpnism, for i = 1,2 ,



. AL

Moreover, any other local Jordan manifold M' having this property
!
: 7, L i r . . . .
(for a pair of morphisms -ﬂi M Mi’ i =1,2) is isomorphic

in LMJ to iy 4 My
Remark , If My is a local Jordan V;-manifold, i = 1,2,

then Ml,X'Mz is a local Jordan V, > Vo-manifold.
A
Definition Let (M, A) be a local Jordean manifold., & non-

—empty subset N of M is called a local Jordan suvhmanifold of M

A
if there exists a set ({, < (A such that for every n & I

: + . :
there exists a Jordan chart<i?: U — v 1n_521 with ne U
and such that c¢> (Unu) is an open subset of a vector subspace
+

r

L]

of V+.

Open subsets of local Jordan manifolds and affine subspaces

+ + -\ ; :
of V', where V = (V', V™) is a Jordan palr, are simple examplss

of local Jordan submanifold

e}

Proposition 2.2, Let ﬁl and HB be local Jordan sub-

m
1l L
2

0

nifolds of Hl and ll,, respectively, and let f = Ml ]

be a morphism, Then- ff & N, —3= i, is 2 morphism. If f(Nl) ol

N
Ny

[
end T3 Ny N, is an open mapping, then f : Ny = N, is a2
moxpnism,

Defihitlen, Ted £ :_Ml b M2 be a morphism between

local Jordan manifolds. Then f is called a local isomorphism if

every point p € M; has a neighbourhood U such that £ (V) is
y point 1 3

open in M2 and £ : U —>= f (U) is an isomorphism in LJH (where

-

U and f£(U) are local Jordan submanifolds of M., and Mg, respecti-—~

i

vely).
. PAN '

Provosition 2.3. Let (M, GK) be a local Jordan manifold and

let X be a topological Hausdorff space., Let n : X —» WM be &
P 5 { 18 e

V
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local homeomorphism. Then X has 2 unique Jordan struciure such

that p dis a local isomorphism,

~ . i
Let M be g covering space of a local Jordan manifold M
g

and let p : M =~ II. be the covering map3y3r0p051tlon 2.3 41
follows that % has a unigque Jordan Otructuv"e such that p is

s
a local isomorphism. If M is a local Jordan V-manifold, then U

r~ ~ ~
is also a local Jordan V-manifold, Let f : M — N be a conti-

- ~
nuous map which lies over a continuous map £ ¢ M —>U (pf = Fp);
'
then £ is an LJM morphism if and only if £ is an LJM morphisn,

ol
If M is a connected local Jorden fhanifold and G is a

group of LJM automorphisms acting freely and properly disconti-
~ ~
nuously on I, then the orbit space I = M/G possesses a unique
' o~
Jordan structure such that the natural projection p : M —> I is

1

a local isomorphism. A Jordan atlas for M is constructed by
LA 7 =
taking charts of the form 4>= qb p - 8- pl ) e V+, where
p : U—=> p(U) is a homeomorphisn aadcb : U—> V' is a Jordan
i :
chart om M, If Ui and qgi sy 1 = 1,2, determine two such charts

on M and if x & 0 (Ul) p(J ) ae¢ there exist Xlé L& Xzé'bé
b ]

and g€&€G such that p(xl) = p(x?) = % and g(xq) = X5 « Hence

A -1 _ A | .
432#71 = CP2 gf#h in a neighbourhood of #91(X) y and hence

locally it is the restriction of a linear fractional map.
: _ e .
As an example of an orbit space, let I =V', where

T

5 ¥ is‘a.Jordan pair, and let G be a group of brfﬂoﬁ?“
tions of V' acting froclj and pfopurlv d1u00ﬂu3nuously Then
M = M/G 18 4 local Jordan® V -manifold. This shows that a torus,

fop instanoejmopueﬁﬁeu many local Jordan manifold structures.
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Examples of local Jordan menifolds. 1. Affine guadrics., -

Let X Dbe an n-dimensional 1‘"eal vector space equipped with s
symmetric bilinear form < x,y > . Consider the Jordan pair

(X?X) with  Qxly:=2 < %,5> x - < x,x > y (see
Example (b) of § 4 of JSA.I ). Suppose that M := %}: E X \ {x,x > *:-1}
is not empty. Then M is a local Jordan sulsmanifold af X,

————

2. Projective quadrics. ILet X %be a real vector space

with the symmetric bilinear form < X,y > as in above example. Foxr
o e | 5 :
x&eX, let x 1= y € X {x,y> =0 [. Let P(X) be the mani-
fold of one-dimensional subspaces of X. For =x X, x #£0, et
. (s mh
L,

e p(X)
and x ° # X [ is not empty. Let I be the set of all ordered palrs
(p,r) € X X X, where p#’%, I'#é ¥ooand Lp,r># 0

X “denote the space (R X. SUuppos

]

that M:= % 3%

For every (p,r) & I a Jordan chart is constructed on II,

#rfé r#

for X e

M, x s the projective line through r and
s :f?{_ ; 4t .
% " mee ts (p ) in Ifx ) = ( <ryp0% - { x,p> 1) « The projee-
tion of I(x') on'L‘Q the vector space ko) is
o (v#) (ﬂ x> I( <T v ‘ l" B.= _<Psr>x & (}§,D> Lo <3"~3r > D
» a9 = .

Dy L <]‘(y , .r> ‘ <X,I‘>.

for x#e M with <x,f> # 0. It is easy to P%tablloh that
S : { _é{é ltl

<X 33>f~/ } Ll °O P nr , and 1ts inverse is

PsT
S e A
(u) (2 {p, r> (utp) - <u,u_>r) for uw €p"n r.'['. Hence
" ; " : ST W L 1
Sh p 18 a lkind of stereographic projection of M onto B o
il | i
gt X e the subpa X A 4
L‘“tz.p,r be the subpair (XF 5y ),r) oi__x_? where



AL [
el : - oy 4
pl =0 AL Ene X R Q(Xp’r)x e iy g

X
P, Py

g

H

Defining convenient isometries of X and performing some

calculation, one can state that if (pl,r), (pg,r) & I, then

=1

N b 5 ]
“pprr P SR, Q{-pl,r’ ﬁ{-pg,r) and 1f (p,r1), (pyry) e T,
then
-1 :
% A ) ~ I, ® X X :
psrg Psrlc L+ (._.p,rl’ ___p,rz)

Since M # @ , one can split the argument into two cases:

s
(i) gim X + 2< dim X

13
(i) d3m X + 2 = dim X

. +

(1) In this case, M is connected and for all p e M, the

(p,r) € I } is a dense Zariski open subset of If.

. + .
Let’/{p,r) &€ I. Then <',:> 1s non-zero on X y and since

. Pyl
' —~ ot :
Qlulx= 2 <:u x> u - {u,ud x, we can see that X = X How
g S farly o] L g A Ly ¥V ne jw] Lailc - & L ¥
‘ > D,T Dy T 4
' ik e ., . : . o1
an element u &€ X is invertible if and only if Q(u) is invertibls.
U,If‘ ) J

But this holds if and only if éi u,u:> # 0. Hence En r 1is a fvign oV
y :

- T T o] b} A g - o
Jordan pair., The Jordan charts 5p r:‘gx;%é M (X,r> # O?S—wér Xp )
. 5 ; .o
for (p,r) € I, form a Jordan atlas on M.
A
(ii)-In-this-case- M -has- two -components (because of-the

agssumption that N # gﬁ P My and M,, end (p,r) € I if and only

if qﬁ'amﬂ r it belong to different components. Moreover
p & L b

s L

S : % Kﬁ&é_lzt <X:r:> # O} = My e X; y where pq%é I



Bl S

Wote that X =X and that X, p is 1ot unital,The maps sp,r5

(p,r) & I, form a Jordan atlss on M.
Therefore ¥ is a local Jordan manifold.

3. Projective svace. Let X be an (n+l)-dimensional

.ﬁ. -
(n % 1) real vector space and let X be its dual space. The
¥ %
action of X on X and that of X on X will be denoted by

{y

{x [ y> for x€X and y = %", For x& X we

6}
@
o
74
Il

% *
{ W e XK } x| wy = o} s and, similarly for y &X,we
i ‘
sel ¥ = {Vé X } (}r [ v> = E .
Let P(X) and x# be as in Example 2 above., Let I be +he

*
set of all (v,w)& X X X such that (w | v}/ 0. Given (v,w) & I,

construct a Jordan chart on P(X) a 110\10. Define

S, LxTe R | x & fig—%L ”

#~

The inverse of S,{r i is 'v \r(u; = (utv) g WS . Consider now
b LA v . : .
Wl P . ‘
the Jorden peir X := (v, v ) with Q(x) y ::(X l y>:§ . Hence,
’!

X =] - nhi - R .

1s isomorphnic to R i@ i i

g T e ~1pn  (R) (see Bxample (¢) in § 4 of JSA.I).

The Jordan charts S, (v,w)ETI , form a Jordan atlas for P(X).

Indeed, one can prove that: if (szl), (v,wg) & I, then
A

i Bitey

g R e T ol - ot e ot o . : N

ovng A + (—v,wl’ ~—v’w2); if (vl,w), (vg,w) & I, then

~ ""'1 = : J - -

S STreLP. (% X ; 7o , 1o

i rzswgvls\-'f P - -—.Vlyw, "f“'sz‘«'v") 3 1f (—Vl’ ‘rl)’ (VE’WZ) € I, then
("‘1 T X k. # '

S e el R o e B o )RR A ) =0 . Clearly

it follows that P(,fi) is a local ‘Jordan f_ LB )-na nifold.
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Comments. It would be interesting to reconsider MARTINE LL]'@

results /27 a,b_/ on gquaternionic projective planes in this more

— SO 00 Y yos o - o I .’! \ _. e . 5 e . -
general setting of Jordan pairs. An open problem is to find an al-

{‘\

gebraic choracterization of integrability of a

“

ordan manifolds: a)!R; R is the +
o~

<y

4. One-dimensional local

space of the Jordan pairrgo = (R,o), and as such it is a local
: e
Jordan R ~man1fold, denoted by R.) ;
~0
b) R, (R is also the + space of the unital Jordan pair

El sz (B, B ) with Qlx)y z= X2y. Hence it is a2 local Jordan

(by Example 1, S™:= { (xl,y

d) 8= (Consider the covering nap piR —» S
p(t) = (cos %, sin t). Then by virtue of the considerations made on

page A1 y B possesses a unigue Jordan siructure such that p is =a

local isomorphism. This local Jordan B, -nanifolé will be denot
—~
] b
By 573

f. ; y i)

roup of rotations of 5~ generated

-

e) Let G be the by rotea-—

o7 : o T -
tion over *ﬁ- 5 ( n= Ls & e w g Dl S”/fn ig a local Jordan

ﬁl“ﬂ”“l fold, topologically isomorphic to S

i8 8 local Jordoniwl( L) -manifold (see Example 1 above and the
JSA.I);

¢) the real projective plene J

i

examples in § 4 of

(”) is a local Jordan

L Q(E)—minifold (see Example 3% above and the examples in § 4 of



e |t

)

= 0, being the

d) by Ezample 1 the cylinder ¢ := %\(Xl,X25K3)f§ G

is a2 local Jordame&Lé@ EE(E)—manifold, G (E), 52

algebra of dual riumbers,

By constructing the universal covering manifolds of the exan
ples &), ¢) and d), the following local Jordan manifolds afe
obtained:

a') the plane R® has a local Jordan R, ® R,-manifold

© > 5T X 31, p(s

@]
ct
i~
il

structure derived from the covering p:R

s= ((cos 8, &in 8), (ecos 4, sin %))

-
(a5

c') the sphere S° has a local Jordan El 203)—manifold
~Ly

lerived from the covering p: §°

structure — P®7), plx)i= T ;
th’.e B l:.ﬁ;flc F-: nas a lO C :’..—L Jordan F: 1 )
structure derived from the covering p:R™ —= C, p(s,t) = (cos s,

sin s,%t).-

By teking orbit spaces, the following local Jordan mani-

| , sl 1p @l - .
a'') the torus 5~ X S8~ is a local Jordan V-menifold, .
PRI g _—p G e o = ik : .
V being any Jordan pair with two-dimensional V , Since 4t can be
g g il 5 2 P W b gt
identified with the orbits of a group of translations of V' (gee

page M );
¢'') the real projective plane is a local Jordan mj(m)“
-manifold, since it is the orbit space of the group ‘{Id, —Idk
A\
d'') the cylinder C is a local Jordan V-manifol, V

: . ; ; . . = | 8 .
being a Jordan pair with two-dimensional V , since, like the torus

: ' . ot
f a group of translations acting on V',

(@)

At is the orbit space

Definition. Iet V Dbe a unital Jordan pair, and let n:

7o

= (?Z+,}? ) 65(~(V, éF) be an iﬁVolution i (i.e.\qh;‘lwéld‘

o
L ‘ b
T b The set (v, ) of orthosonal elements in V
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is defined by OG—(V, 3]) - {X = va‘ io.(x) 2 Vlo_(:c) ’}

Remark, Note that 10. is defined at x if and enly if x dis

invertible.

Proposition 2.4. Let V and M be as in the definition above.
then v & (J (v, W) if and only it =+ &€ (Q(v, 1 ).

Definition, Let V be a unital Jordsn pair, and let 11 be an

involution of V. The tangent space. of (:)g(v} n ) at the point

p E(CLWsW)iS ip<2ﬁﬂwlﬂﬁﬂpC%ﬁ=%@€Vd di¢(pwquguﬁ.

Theorem 2.5, Tet V e a unital Jordan pair and let M be
an involution of V. Then (:%(V}Vz) is a local Jordan submanifold

of ¥, =5

-

Examples. a) Affine cuadrics. Let X, X, and M be as in
af:ave/»

zxample 1' The Jordan pair X is unital, Let 11'3 ldxn Then
_ i & o

11: (‘Q+, n _) is trivially an involution of X . Obviously, li=

:Oﬁ-(-“i’\] )3

b) Orthogonal, unitary, and. symnlectic grouvns., ILet F be
&) 3 o [ ) Ic. 5

E, €, or H, and let X be 2 right vector space over ' with a positi-
’

.ve definite Hermitian form <x,y>. Let V7 = V™ be the real associc-
. = - 2 - - WSrr
tive algebra of ﬁ’«ilﬁear enQOHJLJQLO“S of X, Let V= (V', V) be the

* 2 3! T ] AR (818! .
real Jorédan pair ju-'-.rltﬂ Q(u)v := uvu, for ueV and veV . Then V

is isomorphic to B E?) n is the [ -dimension of X (for B ()

-]
LL

and other Lfnnalu JO“Gdﬂ pairs, see § 4, Examples of JSA.T1) .lloreover,

% —1 : -1 . .
V is unital ang id_(u) = u~ ", where u ~ is th le inverse of u . in the
: ' IR . . .
associative algebra V =7V « We now define an involution
. N \ ‘
Y = (}Z+, YE“) of V by Vz¢(u):= u , where u ds e adjoint of u

with respect to £ » > + Then for @ =R; €, and I?E,O_{_(V, \? ) is
the orthogonal, unitary, and symplectic group, respectively. For

n 3 2, ) (”‘f,vl) is a local Jordan SH (P )-manifold.
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~¢) Gragsmann manifolds. Let @, X be as in Exémple"b) above,
Tet H be the real vector space of Hermitian IP~linear endomorphisms
of X. Thus uel 1if and only if u = u', where u" is the adjoint
of u. Let H := (H,H) be the Jordan pair w1ﬁh Qlu) vi= ﬁvu; Then H

i ; . Can -1 g .
-is a unitel Jordan pair with 1G,(u)::u y where u £ is the inverse

of u in the associative algebra of [F-linear emdgmorphLum of X.Note
that H is isomorphic to ﬂnﬂF ) , where n is thetF_dimension

of X. Define now an involution % = (W%J n_) of H by Vlw(x)::

:= %, xeH. Given an P-subspace Y of X, define p(Y):pe(:)+(§,¥z) by
p(x)i=x for x &€ Y and p(x):= =x for x € ¥, Then the map

Y —=p(Y) defines 2 bijection between theansubspaces of X and
C)+(H ,>1){ The components of C) (H, are the Grassmenn’ manifolds

of [F-subspaces of X of a fixed dimension.

Co nts . At the OAGR Conference, Neptun-Romania,September
1980, Gel'fand gave a lecture on "Integral geometry", mentioning
the results obtained by himself and some of his coworkers on trans-—

formations between .Grassmann manifolds. In a discussion with Gel'fand

after that lscture, IORDAIESCU AT/ suggested him to rccoﬁgider
these results in a Jordan algebra (pair) Séttlng.

Remark .Let V be 2 unital Jordan psir, and letlwl be an
involution of V. Then each component of the set of .invertible ele-

. + . . : S
ments in V' becomes a symmetric space in the sense of L00S with

the symimetry around the point p given by p.x:=Q, (p)x (see LOOS

L 24a_/ and, also [47T%V , Chapter II, § 2/), Furthermore; each
component of (7 (v, L Yis a Symmetric.space.'The'symmetric spaces
'1

arlsinﬂ in this manner have been studied by HEL/IG (see A4 7, in’

(5]

wnicn it is shown, in pa JLLCWWMrB‘hat many symnetric spaces have

o
g
i
]
Hy
O
I
=
=
e

see, also, /ATb Chapter II § 2 ﬁ7) imilarly, each

component'of (:L (V,72)-is a symmetric space with p.x :=-Q (p)x .

-
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Comments 1. TORDANESCU's resulis on quaternionic

Grasgmenn manifolds /4T a,e_/ can be developed in this more genc
ral setting. An open problem is to study the mep %? (see Propo-

sltion 5,28 in Zfﬂqfem7} in terms of Jordan pairs.

Comments 2. Results reported by GEL'FAND and MacPHHRSON

on polyhedra in real Grassmenn menifolds / 43 7 could be

-reconsidered in a Jordan pair setting, as IORDANESCU /474
p (=5 |

: B
suggested to MacPherson 1980,

OO

Proposition 2.6, If V is a unital Jordan pair, and Y]

is an involution of V, then the map i_: C:L(V,q) ——%><:l(v,1z)
(see Proposition 2.4) induces LJINM isomorphisms and symmetric

space isomorphisms between corresponding components.,
{ A
Definition. Let (M,AA) be a local Jordan menifold =nd let

p € M. Denote by F_(M) (or P ) the real algebra of germs at p

o]

m . o LI & .
of real C functions defined in a neighbourhood of p. The

veetor space of ‘derivations of ¥ is called the tangent space

of M at p and is denoted by T_(I7),
P
Remark. Let sz be the class of all Jordan charts

A A
L(E A vith p& Dom ¢f . If Cfé QT,, Cg YRS v then ¢

e . : g o b ¥* o U S
induces a linear isomorphism (f (p) ¢+ T (1) —» V', abbre-

viated as (P*, and defined by v(f) = d(f ?ul)((F(p);lf%{v)),
A
f* P- and .v-e-T- (4 Froa- : U % o " i =
for £ & and . vE ip(m), If (fiéiﬂf’ %1 e ,.1

: e w3 | |
- 1,2, ten 4§ T - dC?azc}ol(Cfl(p)) €[, (v,v,). so
' - A

TP(M) is a local Jordan manifold and {<¥7*’CPGECZP } is con-—

tained in its Jordan structure. Moreover,(f : T (M) ——V
Y :
for LF é} Clp, is a LJI isomorphism,



DG,

Definition,A map & : U w«ébT d) where U is open in the

local Jordan manifold i, is called & tangent Jordan chert if

o ((U") is open in Tp(M) and 0% 3 W e o () Sa mn LI mA

morphism, (Here U and « (U) are local Jordan submanifolds of
M and T (M), respectively.)
p o, A
Remark, Let X be the Jordan structure of M, If Cfff CZ%
= *el
Cf ol S o , then Cf 'CF O — Tp(M) is a tangent
Jordan chart.

Definition.Let (M, 5K) be a local Jordan manifold. The set

of tangent Jordan charts on M is called the tangent Jorden struc-

o -
ture of M and is denoted by o/ (i, A) (or simply by J ).

Let ok : U —>T (i) be a tangent Jordan chart, and let
CFé 6“% Then (f*(p) >~ is a Jordan chart, Now let °<i: UiuevaFM)
L

i =1,2, be tangent Jordan charts with IjlfW i)2% # . Then for any

u € U} nl/g, in & neighbourhood of o(l(u), o<?o<Il , the resgtric-

w : A u
tion of a unigue rational map q; P T (1)~ T, (1), The
LS o | Po
rational map %( o is called a coordinate transition map. The
< s S

u .
have the same propertiss as-those given in Remarks 1 and 2

%

.on 3“;e '( for the coordinate transition maps belonging to the

Jordan structure.

E / \('/-—-" . .
Definition. A subset 6/7of such that the domains of the

charye in 577 cover II is called a tangent Jordan atlas on M,

Lis® i Ml — mz be a morphism bhetween local Jordan manifolds.
A

e
and (i, 612), Let p, & I

(Ml’ 611) , and set p, f(pi)' Then £ in-—

duces a map df(pj): T (M) —>T (M,) defined by [ ] (h):=
3 Py T Dy 2

peyllf); oo v e.Tpl(&l) and h.e;Tpg{mg).

!

- ' + .. :
flor ¢, & 5 e . S 2 we have
¥ @ Ql¢£ p f} (Jl ;o 1 =1,2 we hav



2 () a2(p) P10 = al eyt @ TH) (o)) € (L, T
2 o 30 Bl CFE C?l Jo: 1

Hence df(pl) : Tp, (1 ) —>— T (Mg) is a morphism,
Ps
The linear map df(pl) is called the dli]ﬂrmﬂb7%1 gt T gt

o
§ 3. Jordan manifolds

In this section we shall focus on the inportant subcategory
JM of LJM comsisting of the global Jordsn manifolds (or simply, the
Jordan manifolds) (see VATSOW /42 a, Chapter IIT_/). Bvery + space

o e . S s ' +y
of a Jordan pair V' can be embedded in a Jordan manifold /\ ()

such that every f é;LF+(V1,V2) admits an extension to a morphism

Ay + A (VI) T A(Vg). The Jordan manifold A\ (V') is called
the completion of V¥, ang plays a central role in the theory of
Jordan manifolds, In pa wrticular, the completion is used to anmine
the image of a morphism between Jordaﬁ manifolds. The completion has:
been constructed for’various special cases by de BRUIJW /H?7M/, A

IMAKAREVICH ZPQ s . ROZENFELD et al. /3257 and for more general

oo ~ 3 . ; > : +
Jordan pairs by LO003 gCé4D_]. For a detailed study of Z\(V') ang

linear fracitional group E (V) the reader is referred to
. +

ATSON /Z_a (ﬁJ

Notation and construction.let M be a connected local Jordan j

V-manifold and let < be the maximal Jordan V-atlas on M. For
e( & ﬁz 4 . o 6 + v -
» 1et Dom ol = U, , and thus X : Ug =3 oW, Leb G0V) (o8
E e " 4 = < + 4 s I
briefly, G) be the group.of .aul UMngﬂlmmu of V' in the guasi-cate~ i
i

sory LE see JSAV, §.1). Endow & with the discrete tovolosv.For
& o e 3 _9_ : ke . } - i )

d,d? 5“62,_there 1s a map Cﬁ;( : Uy, N EIP—her G, defined by

W (npte that Um N Uﬁ may be empty), It 0(,& ,rcfd?,

T =
C@K.
Hhan. 0wt = Cu fon @1l we U, 6. Uy Urnlls mans L

" e fgp 4 TADRM UL Uy 8- Up i U ps “pu
oz A,@,é A , can therefore be used 4o define a principal fibre

bundle with structure groun ¢ and base Sp%C@_M in which they are

the bundle coordinate transformations  (see STEENROD (38,5 5 7).,



S

we e :
BelowYpresent WATSON's adepted version (see /42 a,p.817) of

STEENROD's construction /38 ,3.27.
Let X be the set M X G X A . Bndow (X with the discrete topo-
X with the product topology.Consider X! :=g(u,g, & )e X

d
b R % and endow X' with the subspace topology. We defire an

equivalsnce relation~ mX!' by

(U_l,gl, O<l) e (uz,gé, °<2) if and only if u, =u, and

Let the equivalence class of (u,g,« ) € X! be denoted by alu

o
a5 )

% )

1d let E(M, A) (or, briefly, E) be the set of cquivalence classes.

P

Thus, g :X' — E, The topology of E is determined bv the reouwire-
5 + Ee [ J Al

ment that W& E is open if and only if q”l(i’{) is open in X',There-

=3

fore, g is continuous. Now, define p : E —3= I by pa(u,g, = )i= u.

Lemma 3.1. The map p : B —>- I is a continuous surjection.

i et s

pi"*(l.l) % { alu,g « ) ] g € G }

Lemma 3.3, The sets q(UXgX X ), for UX g Xo¢ € X' and U

Lemia 3.2. Let u € Uy, X€ A, Then the fibre over u is

open in i, form a basis for the topology of £. (Here UX g XX wasg
written instead of UX {g] x{x}.)

~

Lemna 3.4, B is a Hausdorff spac

D

Lemma 3.5. For U X gx X €X' and U open in M, p:q(UX gX& )-»
R ‘ ' (ge4,

~——> U is a homeomorphism. The opeén sets g(U X gxX &), are pairwise

5

disjoint.

Lemma 3.6. For h ef, define R, : B —= E by th(u,g,%) 4=

v=oglmeg Vi, o4 ) - Then R, is a homeomorphism of E and p Ry = p.
J' - .



s

The Jordan structure of E. Since p is a local homeomorphisn,

B has a unigue Jordan structure such that p is a local isomorphism
(see Proposition 2.3.,§ 2).5ince M is a local Jordan V-manifold,

E is slso a local Jordan V-manifold.

Lifting of eurves, Let & E'a,b;I —~> I be a curve and let

x = qw(a), g, € ) belong to the fibre over ¢« (a). Let a=t, <<
...-é:tn: b an increassing sequence in L-a,b_], and C(::ﬂqa, ﬁ(l,...

T S 2 il such thai f e |
’Oénml a sequence in CZ, uch that tl,tl+1jlcfu&& for

i=0,1, «vsy n-1. Set ug= @ (%), 1 =1, ... n. Define W[ a,b]~>

—> B by W (t):= q(ai(t),g,oko) for HE Eto’ti] and a;(t) g

W “q
v= g W(%), (:M;“bwo"‘o C:Mtxo° g,oﬁ) for te Eﬁ’ti+1] 5

1 =1, seey n-l. Then W 1is well defined and continuous. It is the
unique curve lying over w (p w = &) with initial point x.

w

Proposition 3.7. Let = B, and let Ex be the component of

% inh B. Then p =+ B~ Il i8 & regiilar. convering of M,

Remark . The Jordan structure of E_ arising from the cover-

e

Al

s that given to EX as & local subma-

5

{
8]

ing p ¢ E,Z ~—> I is the same

nifold of Z.

Definition., Let M be a connected local Jordan V-manifold. If

the covering map p @ Ey —> Il is an injection, then M is cal-

T .

led .a global Jordan V-manifold, or simply & Jordan V-manifold.
t

P

Remark. By Lemmas 3.2. and 3.6, it follows that this con-

cept is independent of the component of & chosen.Since p is a lo-
cal isomorphism, M is a Jordan V-manifold if and only if p : Et—ew I
is an isomoprhism.An arbitrary local Jordan V-manifold M is called

A

a Jordan V-manifold if. each component of I is a Jordan V-manifold.

Definition.Tet &{ Ye a Jordan atlas on a topological space

M, Then CZ is said to be transitive if whenever & : E a,bj e



o et

- 24 = %

}

1

?

is a closed curve, a = % £ iy . awia <:tn = b is an increasing g
A

sequence in [:a,b:], and D<O’Ni’ Y afnﬁl is a sequence of 5
charts in.cz, such that u}[ti’ti+1]<: q% y 1 = 0,1, «esy n=l, we
\ = - i, |

M'h l&“,_,' M—J{ : .

ha-ve o C O Wi W e C = Id Where u., = w (t) i
o + 3 il 1 i 24 ¢

oo %y et Bz %%y Vv ’ !

%o

j_:l? LR 2 ] no . ;

Proposition 3,8. Let i be a connected local Jordan V-mani-

/ 75 e
fold with maximal Jordan V-atlas £2 . Let 52 C A ve a Jordan atlas
on M, Then I is a Jordan V-manifold if and only if 6ﬂ is transitive.

A
Definition., If (M, A) is a connected local Jordan manifold

then, by virtue of the considerations made on pp. I—A P
is a local Jordan V-manifold for any Jordan pair V used in A, How

il is called a global Jordan manifold, or simply, a Jordan -manifold,

if i is a Jordan V-manifold,

+

ordan manifeold 4if and

ey

Hemark 1. By Proposition 3.8, i is a
“\
enly LE A is transitive, in which case all Jordan atlases 521C161
on M are transitive. An arbitrary local Jordan manifold M is called
a Jordan manifold if every component of I is & Jordan manifold., It
is eagy to see that this is equivalent to i having a transitive

Jordan atlas (contained in this Jordan structure).

Eemark 2. Jordan manifolds possess many properties which lo-

cal Jordan manifolds need not possess.

ot
1=
Q
toy
N
@

3.9. Let M be a local Jordan manifold .,If evéry
component of i is simply comnected, then i is’'a Jordan manifold,

P2roposition 3.10. Let M be a Jordan manifold,If N is a lo-

cal Jordan submanifold of II, then N is a Jordan manifold.

Definition. In the above situation, ¥ is called, a Jordan

gsubnanifold of M.

A
Proposition 3.11, Let (M, X) be.a local Jordan manifold.If

the Jordan atlas (A has the properties:
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a) for every three charts D( 0<2,0<7 in 0( ﬂ 'UD< £ 0
i=1 2

s nstan N o ;
is constant on qx Uﬁé for all,

s £ .
b) the map u }»CD( i ;

D<l,o<2 E:CZ)
then M (s & dordan manifalal,
Fropesition J3.12. If Mi, 1=1,2, are local Jordan manifolds,

1

then Ml X;ME is a Jordan manifold if and only if Mi’ 1 =1,2 , are

Jordan manifolds.

Notation. Let 3 : X —> Il be a local isomorphism between

local Jordan manifolds X and M. Let A be a Jordan atlas on % such

that, for every q>: UQ —> V' in 4 , the map § : U, ~—%- ? (U ¢ )

is an isomorphism, For c{tECZJ construct the Jordan chart CF %3§~

t E UQFJ e V%, in the Jordan structure of i, Select a Jordan

atles ({, in Il such that ¢ & (; tor all = A, Wote that if
§?fﬂ)

& Ca then Cf = for &l =R Y] T 5
To ¥e T My T fth B e TR

Proposition 3.13, Let Il be a Jordan manifold, X a local Jordan
2 5

manifold and E ¢ X —> Il a local isomorphism. Then X is a Jordan

Examoles of Jordan menifolds. a) V' , the + space of a Jor-

dan pair V, evidently has & transitive atlas (and is also simply

b) affine quadrics (see Bxample 1 , § 2); since affile
quadrics are local Jordan submanifolds of + spaces of Jordan pairs,
they are Jordan manifolds;

'¢) projective quadrics (see Example 2,§ 2); every component of .

o

a projective quadric has a Jordan atlag satisfying the conditions of

Provosition 3.11, hence is a Jordan manifold;

=

d) projective space (see Example'3)§ 2}y ag dn e), real projec=

. - e ATt - - B T =5 P S P L B P et T Ll %
tive space has a Jordan atlas satisfying the conditions of Proposition

3.11, hence is & Jordan manifold;



e) one-dimensional Jordan manifolds; the local Jordan mani-

ro1ds BY, BY , 5%, and 5“1 (

manifolds;

see Bxample 4, §2) are all Jordan

i : : . . 1 il
£) two-dimensional Jordan manifolds; the torus o ){ 5 - bhe
2 o j) -3 : _
sphere 8%, the projective plane (R’), and the cylinder C (sece
Example 5 a), b), ¢) and d), respectively, § 2) are all Jordan
manifolds, as are thelr universal covering manifolds;

z) sets of orthogonal elements; the set C)UIV,VI) of orthogo-

- hit -‘rq*. 1 B I I . lé_f f “
nal elements in ¥ (see the ﬂeflﬂlulonﬁmrf. §§ ) de 8 Jopdan
submanifold of V.

Comments. Taking into account Sxample &)above , it would be
interesting o reconsider MARTINELLI's results / 2T a,b 7 on
quaternionic projective planes in this more reneral setting of
Jorden pairs. An open problem would be to find an algebraic charac-
terization of integrability of a jeometric stiructure.

MIa

Definition. Let i be a commected local Jordan manifold. Then

al

pair '(C,p), where C is a connected

40
-t
ot
o
=
n
<
o |
=
3
o
(®]
O
.
=
b
O
_*
i._'
0
o]

sl

Jordan manifold aad p ¢ C —> il is & local isomorphism, such that,

whenever ‘E: £ > 1l is o local isomorphism of a comnected Jordah
manifold X, there exists a local isonorphism//{: X = C such
that p m = E

Definition. Two transitive closures (C;,p;), 1 = 1,2, of I

ot

are called isomorphic if there exists an is somorphism ?-: Gl i

s

such that'p9g Py v

i

W he

]
)

Theorem 3.14., Bvery connected local Jordan manifold

N

a unique (vp to iSomorphism) transitive closure.
Gorgllery. if (C,p) is the traansitive closure of a connected
local Jorden menifold 1, then I is a Jordan manifold if and only

if v is injective, in which case p is an is WO“pth.

e
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Examples. a) The sphere S° is a Jordan B, fW)mmanlfold (see

Lxample 5 b,§ 2 and Example f above), and the orbit spsce of the
: e _ : s
group {Id, - Id:5 acting on o leads to a covering p : Sa »wa-uﬁ%m)ﬁé
5
(see example c¢'', § 2); then SDO“) is a local Jordaanl(ﬁ)mmarifold
~ ; :

and (5%,p) is its transitive closure;

w

'b) four examples of transitive closures of locsl Jordsn ma-

nifolds homeomorphic to a torus are listed below: .

i) the torus Sl,X\Sl (see example 52,8 2) is a Jordan
E&Lﬂaiﬁl—manifold, hence its own transitive closur

ii) the cylinder C is a Jordan [R. Q@ R( € )-manifold (see exam-—
ple 54, § 2 2nd example £ above), and the orbit space of the group
of automorphisms of C generated by T(xl,xz,XB):s (Xl,$2,x3+l) leads
to.a covering p ¢ C —= II, where I is a local Jordan}@lébjﬁ( £ J=mae
nifold homeomorphic ts the torus; the pair (C,p) is the transitive

= U

closure o£f4;

iii) consider the Jorden B, ® R -manifold Sl><,j; , and take
the opbit spaece of the greup of autcmorphisms of Sle E; generated
o Blxay) o= {x, 51}, x & Sl, yfé §; ; this produces a coVering
o Sl>(jﬁg —> I, where Il is a local Jordan R, 63!&3_1ahifold homeo~
norphic to the forug; the pair (u‘)K'Eg 5 p) is the transitive clo-
sure of M;

iv) let V be the radical Jordan nair (R?, 0) and take tkre

orbit space of the group of automorphisms of V' genera fca by
(xl,'X2+1); we then obtain
: + s e . ’
a govering p . V. .=—w I, where M is_a local Jordsn V-manifold-
homeonorphic to the torus; the pair (V',p) is the transitive clo-

sure of

Important remark. The Jorden manifolds, and the morphisms

(in LJII) between them, form a subeategory of LJl, -denoted by Ji, The

categery Ji is closed @ith regvect to direct produets, covering spaces
and local Jorden submanifoldis.lioreover, a local Jordan manifold is
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covered by a Jordan manifold.

Definition. et ¥ = (V+s

V") be a Jordan pair and define

on

+ ;s : .
X G(V) an equivalence relation ~ by

on [_y
it

xp5 @)~ (xps §))

equivalence class of (x,

m
ligaks

os e
tion of V' and will be deno-

E&%@G(v}, let Ug?'“ {[x\q] \

comnle

AUG 1 X4 e Dom( ? ?1

+
) et X
H:xlcf] , the set of equivalence classes of ~ will be called ©

ed by A (vh),

and

G(V) will be denoted

1{:}57‘

he

and define

ﬂi: U%-A;- vt by Eﬁ[f ?] —x. Porx eV and ye V, let {"
::S:x [’; éyi] z Thué, [}j,! yli} 2 [‘XZ ’ ygil if and oply i
(x,yl 2 yz) is quasi-lnvertible and xilmyg = X. Let Uy:z
P= [ﬁ( i] x& vV .

Theoren 3.15. It V = (v, v7) is a Jordan pair, then the

completion LAY ) ok V" has a

) C‘OG‘G(V)y

<

struc

~
[
o}
—
=
ot
o
Lde

Jordan structure is connecy
+ S
The map Ig+ : V' —= JANCAD.

ig an injective morphism,

unique Jordan structure

form a Jordan V-aotlas
ture) .

+ed Jordan V-mani

called the canonical embedding

such that

on . I\ (V)
Woreover Ae(y ) with this
folds

defined by Iy+ (%) -1

of V N

: 3 + . o i ot
Remerk , Note that Ly+ 3 Vi —= T, is en 1somornhlsm g 3
. ) T rd #'ﬁ" -
onto. the Jordan nuo“?ﬁ Fel.d UO of AQ&LM Ve The inverse moxX nh sm
is Iﬂf .
The most important property of the completion is expressed
by
Theorem 3.16. Let V and W be Jordan pairs and let
= IE%(V,W). Then there exists a unique comtinuous map PATGISR

ol

(¢ ) (x=,,



wr D s

¢ AT~ A W) such that A (£)Ty+ = I+f on.Dom T,

/

Moreover, /N (f) is a JM morphism,

An extension of Theorem 3,16 is

Theorem 3.17. let V., and V2 be Jordan pairs. Let U be a
- . e o
_nonempty connected open subset of /\ (Vl) and let £:U —> A (Vg)
. = . T * P T I (7o I K=t x| W]
be a morphism (U is a Jordan submanifold of A (V )) Then there
+ + , .
exist & unique morphism P : Z&‘(Vl) —wéhgl(vg) such that I'|.= £,
The next theorem gives a relationship between Jordan ma-
nifolds and completions,

Theorem 3.18 .Let I be a connected local Jordan manifold,

1 T :

Then M is a Jordan manifold if and only if there exists & local
'5_ . ?.i “ i-
morphism ¢ : M —>= /\(V
By extending Theorem 3.17, the following fundamental nroper—

&

ties of Jordan manifolds are obtained,

Tneorem 3%.1¢. Let Mi be Jordan manifolds and let

A

?i: Mi — é&(ﬁ; be local isomorphisms, i= 1,2. Suppose that U is-

a nonempty connected open subset of M and T 5 U === Mﬁ a.

) . M o a1 N ) ATt et ,+ \ . «,'l'\

morphism. Then there exists & unique morphism £' : A (VD) “"~%~ZK(MQ,
L _ £ 1 5/ |

such that f'Q, = ng on U,

2

Theorem %,20, Let M be 2 connected Jordan manifold and let U be

: ‘ ' S - vty s e
a nonempty connected subset of i, If £ : U —> N (V") is a morphism,

) L . . F ik
then there exists a unique morphism F : M —= [S(V ) such that

Proposition 3.2L. Let M be a_lobal Jordan manifeld and let
D : Zﬁ;(v+) 3 T be & ﬁurjéétiﬁé-1dcal-isomofphism, Ir E :
P X M.is a morphism on the connected Jordan manifold X, then
there exists a morphis n//{ y g A (V) such thaf p,u.;.g.
Corollary. Let M be a local Jordan manifold and let

ot ANGTY) —> M e a surjective local isomorphism, Then ( DN (VT )

£
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is the transitive closure of M and p is a regular covering map.
The main theorem shout images of morphisms between Jorcdan

menifolds is

Theorem 5.22.'Let | .1 be a connected Jordan menifold and let

i

5 be a Jordan menifold, If £ : My —> M? is & morphism, then

1

= f(ml) is a Jordan submenifold of Mz and f. Ml e e Np_is an

N
open morphism.

Results concerning morphisms between local Jordan menifolds

are
Proposition S.2%« Lle¥ Ml and_M2 be local Jordsn manifolds.
If 1 ml is connected and f ¢ ﬂl o MP is a morphism, then the rank

of af(p), p €llj, is constant.

L]

Theorem 3.24. (Open mavving the orem.) Ledt iy end Mg be local

Jordan manifolds. If II, is connszcted and f: I, —> M2 is & surjeec-=

tive morphism, then f is open.
Three applications of the preceeding statements are

Theoren 3.2%. Let #l be a connected local Jordan V-menifold
l

-

1-;2

locel Jordan menifold Ii,, then f is an isomorphismn.

i is a bijective morphism onto a

Theoren 3.26. let Ml be a co"‘ﬁcteg locael Jordan V-manifold,
where V is 'simple. If £ ¢ i —= HZ is a rJGCblVL nonconstant

morphism onto the local Jordar manifold ﬂz,-then i is g local iso-
morphism.

Theorem J.2fe L&t M1 be a connected open Jordan submanifold

e . it : ? - % y
of A ), -where V-is a simple-Jorden pair. If E'nl ?-2%2 is a

nonconstant morphism into a Jordan manifold H?, then N?:z f(ﬂl)

is a Jordan submenifold of Hz,'and £rlly MZ ig an isomorphism.
A result concerning the fibres of a morphism is given by

5 T

BronoE 1F10ﬂ Bedtsliet £ 2 iy —= I, be a morphism between

i ) ._'1 ; . -
local Jordan mgnifolds if, and l,. Then f ‘(ug), u, € liy, is either

ot SO A



enpty or a local Jordan submenifold of Ml‘

Remerk 1. The resultspresented above indicate that properties‘of

the completion A (V) to a large extent determine properties of Jor-
dan V-manifolds. Fer this resson WATSON undertook a detailed study

[l

v . e - N
of the completion A(V') and the linear fractional group E V),
: +

for which the reader is referred 1o WATSOL 's ZZJL &l E.g.qthe inter-

play between the idempotents of a Jordan palr vV, the topology of the
2 A T‘“+ = " §

completion (V7"), and the one-dimensional Jordan submenifolds of

A (vF) is examined in-/ 4-2. a, Chapter v /s

Remark 2. For every nilpotent akgebra A and local Jordan
manifold M, WATSON /42 a, Chapter IV_7 has constructed a local Jor-

dan manifola A(M), called the A-scalar bundle of M, The various jed

pundles on 1 are realiged as special cases of scaler bundles on il.

Remark %. The properties of linear fractionel meps needed

for the theory of Jordan manifolds are easily derived by consider-

ing the group Zl % (Vv), acting on the completion of a cusgl~
+ ;

invertible dense Jordan pair V- (as recently defined and studied by

VATSON /420 /).

T+ 4s obvious that the Jordan menifolds defined by Watson
have much in common with the theory of differentiable manifolds.
|

the mein examples are differentiable ma hl]Oluo.)

Open problem,. To £ind an exact relationship between the

s and that of differentiable ﬁanifolés.

In 1951 VAGNER beg san (se [Z% v,c_7) a series of studies which
led to a2 mathema tlcal tooL ,C’gﬁﬂry to rmulaL aﬁd‘solvé fhe -
problem: To find the geometrical pTOpertloq ok differen—

tiable manifolds which are derived only from algebraic properties

of the pseudogroup of loce .1 homeomorphisms and tﬂc atlass



‘ _ = :
By means of [a,b,qj += ¢c.b —.a, where a,b,c are elements
of en atlas, 2 termary operation is defined end this led to the

algebraic notion of hea (heath), a structure defined by a weake-—

ned set of a group postulates (see CLIFFORD T ERTAIN/™ 8_/,
susHKEvaEJKU
This algebraic notion was used in aifferential geometry by
VAGIER (see/ 441 b,4 e /). In Zf‘4/f 9“57 the following question
hes been reised: Do there exist properties of differentiable
manifolds which depend only on the atlas ?

BRANZET /5" 2/ has answered this question affirmatively
snd has defined a kind of generalized manifolds, called TH ~mar -
folds, which he studied in detail. A large number of examples .
have been given by him,

Open problem, To compare the category of Jordan manifolds

with +the category of JH -manifol du

il P8 '

Remark. It would be of interest to re-consilder the resulis

n the above-mentioned ternary opsration, as well as the resulte
of BRANZET Zh5"n 7, in the theory of Jordan manifolds.
Tet us mention now other categories whose objects are coOn-

structed in a similar way as di f!oreltﬁauL manifolds.Amnong them

we note topological manifolds, VAGINER's compound manifolds ’F4'f§y

ABRAHAM's [A_7 (¢F, ¢%)-manifolds, STKORSKI' ZTB%:7 differen—.
tiable spaces, SHITH's V& gifferentiable spaces ,ARONSZAJN's
/T2 7 and MARSHALL's / 26/ ¢ lsubcartesian spaces (for the
differential topology of these spmdes‘see ZT?A?b_7), and SPALLEK's
4“36;7 N-differentiable spaces . e AT ‘

HOTREAﬁU el 8;7 (see also Zfé.g c_/ has corstructed a
category of so-called prI reringed manifolds, which contains as
p:rficular casés all categories mentioned above. Roughly spea i g;
a pCeTLn”ea manifold is a topological spacé M which 1s locally

Enl

determined by a triple (B, ¢ ; V) where B is & topologlcal ©pace,
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—

o i a presheaf of real-velued functions on b, and V is a vector
space, two such triples being compatible with respect TO ohangé of
gharts, Here T describes locally the topology of M and V plays the
role of tangent space to M. By =a suitable choice of E, F and V one
obtains the particular theories-&called above. So, the following

problem is immediate:

e

{
|4
}
L
4
t
t
|
;
i
%
1
i
b

{
i
f

Open oroblem., To describe the Jordan manifolds in terms of pre-

ringed manifolds.
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