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JORDAN STRUCTURES WITH APPLICATIONS, VITI

JORDAN STRUCTURES 1IN CLASSICAL AWD QUANTUIL MECE 1ANICS.

Radu IORDANESCU

As is well known, JORDAN [64 a] stressed that the most
fruitful attempt at generalizing of the standardlﬂilbert space
structure of guantum mechanics would be to change the algebraic
stpuctures (see also the more recent opinion expressed by DIRAC
in [ 5]) JORDAN [04 b] formulated a quantum mechanics in terms
of commutative, but not assoc iative (ilnlteud1Aﬂnulonwl) algebras
of observables, noﬁ called (finiteudimensional):Jordan algebras.
JORDAN, von NEUMANN and WIGHER [65] showed that this approach is
equivalent to the realisation of the standard quantum mechanics
1n4fin1tom¢1m:nsiona1 subspaces of the physical Hilbert space
with the single éxception of H3(®)+a (The infinite~dimensional
case was studied by von NEUMANN in L 37 ﬁ])e A more recent temtati-
ve axiomatization was given by BNCH [55 é]_(mb § 1)

Exceptional guantum mechanics was reinvestigated Dy alnaY -
DIN, PIRON and RUEGG [55] and shown to be in accordaﬁce with the
standard propési%ional formulation, with a unique probabilityA
function for the Moufang (non-De esarguesian) plane (see § 2).
| © TRUINI and B‘“DHIAhRN’[llé 5] conétructéd a quantum mecha-
nwcs for the coaolcxmfmod octonion plane by nognﬁ the Jdrdam
paire technique (see § 3). m |

In the Jordan technique, by contrast to the Dirac q-number
approach, commutativity'is replaced by non-comuutativity and non-
associlativity by as ssociativity. Section 4 deals with PEDROZA and
VIANNA'S results QCJ concerning the~dynamical variables for cons-

3

trained and unconstrained systems described by the symmetric for-
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mulation of classical mechanics. These results can be connected .
with the recent researches on supergymmetriy and supermanifolds
of BEREZIN [11].

AR&KK&:ﬁ} improved the characterization of state spaces of
JBmalgebras given by AL¥SEN and SHULTZ f2 5} to a form with more
physical appeal (propesed by WITTSTOC h,[IZT]) in the simplified
case of a finite dimension, JBmalgebras were fruitfully used by
W.GUZ [60 é] in a tentative amiomatization for nonrelativistic
quantum mechanics and IL(QQE{L7il gave recently a new approach
(see § 5).

Results on Jordan (quantum) logics due to MOROZOVA and
CHENTSOVJ“BB a,ﬁ}, and on order unit spaces arising from sum lo
gics due to ABBATI and MANTA [ﬁ a Bj are sketched in § 6, BUNCE
and WRIGHT's resu [19 a 5] are also referred therein,

The important role hat Jordan algebras should play in string

theories is examined in § 7.

1. Special Jordan algebras in traditional
axioamtic quantum mechanics

It is well known that there are three different formula-
tions of q“%ntun mechanics, namely, the Hilbert space fcrwu,uujon,
the Jordan algebra formulation and the propositional calculus ap-
proach of von Heumann. |

In the Hilbert space 10pmulat*on the Sfate of a physical
system is ronromvnted by a ray. The rays of the Hilbert space are
represented by projection operators in the Jordan formulation,
and these in turn correspond to realizations of pfOOOulthD (yes
10 e xperiments) in the von Meumann formulation.

%

The Hilbert space formu l&thD is equivalent to the Jordan

algebra formulation. except in the case of the exceptional Jorda
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algebra for which there exists no Hilbert space formulation,

In the present section we shall review briefly EMCH's (ten-

Aol Y B et ot < . - 5 = 1 2 4 LI | o
tive) axiomatization of quantum nmechanics L;) a]r which empha-

QD

s
&

s the role played by special Jordan algebras, -
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Note. EMCH L)j 5] atated two “postulates" and ten Mstruc-
ture axioms" (see below for these postulates and structure
\
axioms) . The two postulates sumarize the structure of traditio-
nal quantum mechanics, as it emerged from the work of von Neumann
(1927-19%2) , The axioms developed by Emch from what he thought

would be a more intuitive approach, nemely the systematic explo-

itation of the constructive interplay between the structure of

two sets: the observables and the states of a raical system,
P Sys

In puftl@ﬂ]ur, Bmch wanted to avoid the art1f1c1a11ty of intro-
duc.lnn Hilbert spaces too carly in tne theory, a point of view

which everyone learned to appreciate upon reading SEGAL {iO?]

Postulate i, To each observable A of a given physical sys-
tem corresponds a linear selfadjoint op@rator-ﬁ(ﬁ) acting on
Hilbert space ¢b;, and conversely.

Remark. Lmmediately after the above postulate, Emch made
the following remark: "We should notice that the ‘converse' part
of” the postuiate is now known to be untenable (existence of
"superselection rules"); since, however, von Neumann made & ra-
thér mild use of the second part of the postulate, we shall keep
it on a temporary basis and naturally ezclude.it from a more de-
finitive axidﬁatizaﬁion“, (ECH [éﬁ‘a, p.34])~7ﬁccording.to this
remarh, we confine ourselves only to coherent Hilbert spaces ana
to the observables rea1lued by selfadjoint bounded operators.

Conventlon, The set of all observables of the physical

vatem considered will be denoted by:#

Remark 1. 1r 4,B€4, then ¥ (4)7 (B) does mot, in general,
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belong to 7 (M), whereas T(a) T() + T (B) 7 (A) does. Therefore ‘tho

symnetrized product

Teay = 7(D) 1= 5 (AT (8) +7 (B} 7 (&)

elongs to 4 (A for any two observables & and b of # ., This pro-
duct'is comnutative and bilinear. Its definition does not require
the knowledge of the ordinary product of two I noncompatible obser-
vables (i.c. two observables such that the corrospohding opera-

tors do not commute in the ordinary sense). Indeed, we have
-, — — 2 g - -— \.
Ta) o F (B =% [(J/m) +7(3)° - (T(4) _J,m,)?],

Remark 2, The above symme trized product ig, in general, not

o e RS RITE

associative, i.e. the operator

%m), T(B), 7 ()} 1= (F(A) o (B)) 2 T (C) = (8) = (H(BY = 7(C))

can be different from zero. The 1mportqnt concept of compa atibili=
ty can be expressed by using only LAO weakened noi ion of synmmne-

trized product and not the ordinary product between operators.

)
yrk 9. The aet ﬁ(#) has the property that %ZT&)‘, T{B),
T (& )} =0 forall 4,B of A , which is the characteris tie axiom of

JOTan alzebras. Then the set T, with addition, multiplication

by reals, and s mmetrized product is a real Jordan & gebra.

g understood 1nLu¢ilvoiv

!,.30

The state of a physical system
as a way to express the simultaneous knowledge of the exoect ybion

values of all observable of the physical system considered,

Pos TULQLV 2. To each state_# of the pny g anl syutew congl=
dered corresponds a "density matrix”, ¢ =T ($), acting on the Hil

of Postulate 1, and such that the expectation value

bert space 3

- (EF < AP czlml be computed by the rule (49; AV 1= Tr (F(éf’} T(4)).

Remark. From this second pos ulate follow the four proper-

of states that are listed below:

ot
e
)]
(53]




B

i

a} for any A Fﬂ and any )\ e\R we have TrJ7 (&) Zli Zr(éfxi)
ST T TG =) s A
b) if AeA thcn Tr 7 (§) T ( 8)%s > 03
T 1‘(115) I=1;
d) for any soqucence{@ig of states and any po sitive 1real
numbers A; with Zli = 1, le(dg ;3 A7 defines a state
with properties a)-c) above,

Structure Axiom 1, To each physical system, one can asso-

¢ atefn*fmplo (-75’, S, {;> ) formed by the set A al all its obser-
vables, the set S of all its states, and a mapping (;) : (4,8) —>
—> R which associates with each pair (A,4) in (#4,5) a real num-
ber <cf7, 4> , This number is interpreted as the expectation va-
lue of the observable A when the system is in the state 43 .
Remark. The elements 4) C—Sbcén be considered as mappings

from A o, andr conversely, and we can regjard' each element Aéﬂ
as a mapping (49; A : S =>R, Accordingly, if T is a subset of.

S, the restriction of this mapping to T will be denoted by & g

Convention. One says that &|n £ B, whenever (4) &> <<¢$B>
for all Cb in T, In particular, one writes 4 <B if the above ine-

qualit;y holds for all states on J[} and A»0 if and only if
<<f> 2l Zorall 5}36 S so that by definition states are pogitive
'fw}cz'tiozls on JAI .

Definition. & subset TES is said to be full with respect

to. a subset Be 74 if thv inequality A[TA }T between any two ele~

ments & and B 03';“93 implias that A £B,

(3

Structure Axiom 2. The relation & is a partial order rela-

tion cqu . In particular A4 B and B4 4 implies that A = B,

Structure Axiom 3. (i) There exist 3!1-4 two elements O and

I such that, for all<?é3, we bave(cf) O> 6 and (49 T 2e 1
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(1i1) For each observable A inaQ and any real number,l there
exists an eclement (A4) in ﬁmmﬁlﬂﬁt{@;lA>=l<¢);&>:%r

all® € s,
(iii) For any .pair of observables & and B in;4 there exists

Ay +<{J; B ror

i—-ic

s e

an element (A+DB) in\ﬁ~such that<(q); A+B>==G¢
all 43 10 Se

Remark, The setJ4 of observables becomes a real vector snace,

whereas the states are real linear functiona on‘ﬁ

The state of a system is a way to characterise the method
used for its preparation. The state then manifests iteelf to the

observer when for each obscrvable & be performs a sequenc¢e ( in

principle infinite, in practice large enough to reach a reaso
nable degree of confidence) of independent trial measurements on
systems prepared in an identical Qay. ‘

What the observer receives is- a distribution of real num-
bers, whose “proper" average he calls the expectation value
& #); 4> of the observable & in the state P ,

Definition. A state is called dis Dev“}ODw»Tﬂe on the obser-

vable A& when the %bovL distribution is concentrated on a single

number, namely { 43 2 A>

Notation. Denote by S, the set of all dispersion-free sta-
tes on 4, and by U" the set of all values sssumed by & on its
‘dispersion-free states, -

Remark, The‘notion of disweréionwfre@ étates is closely re-
latbd to that of Simuliaﬁedﬁs ob CPVJOL]LLy Two ‘obs Crvable Ar
and B can be'simultanoously measured with arbitrary precision
whenever the csystem is in a state dDinASAKWSB.

« .

Defjnz fion, ¢

©

subset T€ S is said to be complete if it is

=

full with respect to the subsatd,HC:ﬂ'definod by o z;éﬂ f,>”‘n
p . y \

IJ"

/'

A complete subset T€ S is said to be dete raninistic for a subset
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jﬁ.g/}wheneverﬁg’ "458" A subseéet ﬁgﬁis caid to be compatible
if set Sg = (ﬁ\ S is complete.
pelh

Structure Axiom 4. For every obscrvable & ‘the sel oy is

deterministic for the one=dimensional subspace of

A; for any two observables & and B, Sﬁﬁy,255f1SB and Sy = S,

Structure Axiom 5, For any element & in # and any nonnega-

tive integer n, there exists in/d?at least one element, denoted
n
by 4, such that

w o o
(l) uAn,_ DA 8

(1) {P; Ay =(d; A)T for a1l P in S,

Definition. With each pair A,B of elements in.ﬁ'one asso=-

ciates an element A ° B oqu , called the symmetrized product of

2
A and.B, defined by 4° B =3 [(A%“)“ 4% B ]
.Notaiigg. Denote by‘%A,B,C.S:x (AeB) eC .- Ao (BeC) the

associator of the observables 4,B,C€JT .

/

Structure. Axiom 6. For any triple 4,5,C

of observables in
which & 2nd C are coumpatible, the assoclator gA,B,C}Ivauishos,
Remark. Note that since all powers (in the sense of the
Structure Axiom 5) of an observable are compatible, we have
Nl = g'f A and non negati : N
K7D,k = Q for all.4A,B€4r and non negatlive integers n and n,

In particular, A bBafa) = (A°B)= A ?.

Theoren 1,1, The set‘ﬁ‘of all observables on a physical
gystem is & Jordan algebra. ' ‘

Note._As was noticed by EMCH | 3% a, p.47 . there are "“two
: Y j P! 2 :

.

significant (and actually relatcd) diff renceﬂ“ between the work'

of JORDAN, von NEUNMANN, WIGNER [ 5] and his approach [55&3]':
"Eﬁfyf the notion of state does not appear explicity b 95

L6)] al,hou5q it was certainly‘lylng in the background of their

for instance, from the papers

w

A o S s o 5
investigation, as can be guessed,
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by JORDAN [64 b,c] and von NEUY rWli:87 a,ﬁ]; in particular, von
Neumann's discussion contains the germs of the sysmmetric postu~.
latioﬁ we are presenting., We indeed introduced the postulates in
an inductive sequence, devised to emphasise the complementary ro-
les played by the observables and the states... The!rela{ive ©m-
phasis given to observable over states, or conversely, varies

from one extreme to the other in the various axiomatic schemes

.Lu

to be found in the literature; ... so does the approach followed
by HACK ‘Vl 75], who st&fﬁs with an axiomatization of the probabi-
lity measure p which associates with the triples (&,43, ) (for-
med by an observable 4, a state dD, and a Borel subset I of R),
the probability p(A,4>, 1) that the observable A4 will take a va-
lue in M when the system is in the stéte ¢3% PiROﬁ’[Ql!]iS pri-
marly concerned with the structure of a certain class of observa-
bles, whereas states appear later; so is SEGAL [102i]who, hdwever,
considers from the outset a much larger class of observables; at
the opposite extreme we mention-a paper by EDWARDS [/?J who

starts his account with an axiom on the structure of the set of

193]

all states on a physical system",
"The second difference between the axioms of Jordan, von
Neumann, wWigner, and ours is that we do not restrictxﬁ to have a

finite linear basig; this restriction is obviously a severe one

and had to be dropped from any general theory,since 1t excludes
any OT!.z vy quantum theory formulated on an'infinite~"iménsio~
nal Hllbercbsouce (e.8., the description of a. quantum particle
moving on a real line!). The mathcmatica- simplification introdu-
ced by this restricticn is .that it allows analysis of properties

ofgq without having to use any explicit topological notion. In

&

hr

particular, Jordan, von Neumann, and Wigner were able to prove

from their postulates two important results that already indicate
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the power of this line of approach, The first of these results
is that a spectral theory can be completely worked out, and the
seooﬁi is that\a complete classifioation of all the realizations
of their axioms can be given"

Tn the following we shall say only a few words abéut the
other four axioms, because they are not involved in the Joran
algebra structure of~ﬁ o

wcture Axiom 7 (see EMCH [33 a, p,5§]) endowscﬁ with a

v

real Banach space structure relative to a natural norm, and the

\

]

at

&4

ates i)ln S are continuous (positive linear) functionals on 9

with respect to the topology induced by this norm,

Re marhc The Structure Axioms 1 to 7 endow the set J¥of ob~
servables with the structure of a SEGAL algebra [ 102]. There are
some differences between SEGAL's axiomatization and that of ENCH,
namely: ENCH gives more attention to the concept of dispersion-
free state at an earlier “*avo of the Loruulatlon (which leads to
the earlier introduction of the concept of compatibility between
observables), and, secondly, whereas the product A& °B is distri-

butive, SEGAL does not postulate dis tributivity in general,

Structure Axiom 8 (see EWCH [”” a, p.65|) is a sufficient
condition for a subset ofa4 to be compatible,

Remark. The necessity of the cond¢t10ﬂ formulated in Axiom
8 follows from the preceding axioms, whereas the sufficiency
(Axiom 8) is imposed by physical TeasONs,

Structure Axiom 9, 4 cen be jdentified with the set of

all OWLadjoint elements of a real or complex, & associative, and
involutive algebra j? satisfying the following two conditions:
(i) for each R in jgthere exists an element A in A such
hat ‘L\ o= A‘“ H

R™R = 0 implies that R = O,
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Stpucture Axiom 10. To each pair of observables 4 and B

~

in A there corresponds a observable c in.79mmich.provides the
actual lower bound to the simultaneous observability of A and B

in the sense that

(b, =L AP i (B =LY B>)2>><¢; cNe, Y des.

Comments. As was mentioned at the begiming of this chapter,
_the first axiomatization of the measuring process leading to Jor-
dan algebras was done by JURDAN [<4 c] and JORDAN, von NEUﬁ&NH;
and WIGNERZ:Gﬁ], They associated with each observable & another
observable A" which returns the nth power of the value returned
by & on e cach measurcuent. The cxistence of a sum A+D of
observable & and B satisfying
E_-(4 + B) = EX(A) * EX(B)

for all states x, vhere E_(A) is the expectation value of 4 on
stote x, was also assumed, With the assumption that A% is glven

by an algebra structure, i.e., that

e
w
pete

,lin@ar, one is led to a power-associative algebra which is

formally real, Finite-dimensional formally real power assocl dtLVG
algebras were shown to be Jordan algebras. FAULRNER [36 a,b] gave
.an axiomatization in which he reverts to taking‘a function of an

1

observable, However, he assumes neither the existence of & + B,

]

the quadratic. n‘furo of A", nor finite queq lqn?lity, The D‘Pic
new element which Faulkner introduded is a change invthe measu- |
lent process due to a change in the counting obs crvable,
Roughly, he shows the existence of & + B, by changing the count-
ing observable td make A& and B compatiblc.'Also, the quadratic

Wl T .
nature of A is a consequence of hisg axioms.
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As was pointed out by ZAITSEV in the introduétion to the
Russian edition of EMCH's book [33 b], algebraic methods (see
also [16]2[1503} offer necessary tools Tor the development of the
modern quantum field theory and statis tical physics (see the next

section).

2. The exceptional Jordan algebra and a

generalization of quantum mechanics

In 1956, SHERMAN [105] studied the exceptional Jordan al-
gebra Hn(@)“ within the framework of generallzed quantum mecha-
nics of SEGAL [10“], Then, the algebra H3(®)+)appeard in elemen-
tary particle physics through the work of GAMBA [42] on internal
symmetries. GUNAYDIN [)2 a] propos ed that H (@ be used to re-
present the charge space of color.quarks anu Qtrongly interact=~
ing particles. This proposal was later extenaed by GURSEY [5u b]
to include leptons in the color singlet sector of the charge
space and was uged by him to motivate some grand unified theories
bésed‘on exceptional groups (see GURSEY, RAMOND, ! SIKIVIE L’OK)

gUnayDIN [52 ?j gave exceptional roaiizations of Lorentz
group via the algebra H3(6#+1

In this section we outline the “exceptional quantum me-
chanics corresponding to the exceptional Jordan uJ<ebra conside-
' red by GURSEY [ 58 c,d] and more récently by GUNAYDIN, PIRON and
RUFGG | 55 ] - 3 | | |

- The ax ioms of quantum mechanics as formulated by BIRKLOFE
and von .NEUMANN are equivalent to the axioms of projective £e0= "
metry (see, for instamce,.VARADARAJAN'[120, Volail)a Propositio-
nal éalculus can then be interpreted as prpjec%ive geometry with
propositions corresponding to’the points in the projective space.

Thé pro ecctive geometry connected with the exceptional gquantum
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mechanics ig the non-Desarguesian projective plane first Con-

gidered by MOUFANG [ and the lattice of propositions is the

1)

nd

(&3]
t—

orthoccmplemented lattice whose existence .was posed as an open

problem by BIRKHOTF L14, p.l24, Problem 56: "ihich non-Desargue=-

sian plane projective gaométrie& admit orthocomplements 7 f},
Pmor(

Note. The reader is referred to‘| 91 h, Chapter 5] for an
excellent treatment of the foilowing problem: Given an irredu-
cible proposition system, construct a projective gebmetry and
canonically define an embedding of the lattice in the lincar va-
rieties, After answering this problem, Piron obtained the tradi-
tional IJlDerT realisation of quantum mechanics.,

A conventlonal quantum mechanical state is represented

.‘I‘ p [’ l’l 2 e
either by the ket &> €l or by the projection operator
:=I°<><:xl s where <<x{ is the transposed and complex conju-
cate of"ld)>, and n is the dimension of a complex Hilbert sub-
space of a Hilbert physical system,

Definition. The probability for a trar Jtion,0<m%~@> i8

{2l E@I.;: Tr(| o > ”(53<(5]} = Tp (BB )= Ir A, o ’“g:ii“)ﬁ

where B, ° Pﬁ o= %»(Pd Eb P@ Bide ' : .

For normalized states we have: Tr B, =l, Ir i@ o A °@£&ge

1

Remark 1., Using (2.1) and the above relations, we can- write

and thus

r 1-«(12

Ay & " :
5§@§£§mig In a projective geometry in which the normali-
zed idempotent B is represented by a point with n homogeneous
coordinates and n-l1 inhomogeneous coordinates, d“p would be the

o

invariant. distance between the points % and 3,



el

One can see that dup 18 Telated in a simple way to the
transition probability E;QQ When °<z(3 y their relative distance
vanishes, while the transition probability equals one, Some: subw-
group 1 of U(n) (in this case H = U(n-1) X U(1)) leaves the idem-
potent Q¥~invariant, This is called the stability group of the
corresponding projective geometry leaving the point unchanged,
The transformation of.the coset U(n)/y will change the point,
hence the state. The set of all transformed states is the complex

rojective space P_ . (C), The quantum mechanical (state) epace
Tl !

P_,(C) is obtained for n — 2o ,
probability can be determined from the invariant distance bet-
ween two separate points,
- Remark 2, 4s can be easily proved, in this algebraic formu-
R et o ettt & $ A [
lation of quantum mechanics onls Hermitian matrices and their
p .

Jordan product are involved (sece also Theorem Tl §:1).

Important remark, It follows that if one can generalise

Hermitian matrices, projections operstors. and Jordan product- to
FEah b4 £
the case in which complex numbers are replaced by octonions,
then a generalized quantum mechanics becomes possible, This is
exactly what JORDAN, von NEUIANN, and WIGNER did by introducing
.the. (3 X3)~— matrices, Hermitian with respect to octonionic con-
Jugation [65].
ey . B L - -y (+) . :

& one-dimensional projection operator P Qf_H5«@> 18 & ma-

trix of'ﬁg(ﬁﬁ satisfying

p°

=P Rom P, P =3,
It is also referred to as an irreducible idempotent. According to
a theorem of JORDAN [64 d], any irreducible idempotent P can be

brought to the form



| a\ aa ab ac
P=|bj(abc)=|{ba bb bec |,
: & za ¢cb c¢

where a,b,c are octonions, one of them being pure real, and sa-
tisfying
Tr P = ad + bb + ¢c€ = 1,
The crucial properties needed in the sequel are the fol-

lowing:

.

Proposition 2.1. There exists a transformation belonging

-

to the exceptional Lie group ¥, which brings an irreductible idem-

potent given by

a aa ab ac
P= b j{abe)=[ba bbb bC | ;Tep =1,
c ' ca cb cc

3 1
to the form ),

E
o
Remark, The exceptional Lie group F4, which is the automor-

wih

; g0 (-+) . . ; ;
phism group of H, (Q) 7, can also be uniquely characterized ss the
simultaneous invariance yroup of bilinear and trilinear forms of

. o T
HB@D) S -

(le J(fe) .= Tr (Jlo J )

and
(J1, Jg’ JB) = TT (Jlx JQ)Q JB),
where

Tr J, - £ J, Tr J, +

. e L e
.J1X<I = d °J5 - §<J o 1

O

#a300r 4y T0'J,

Iy Irids = Tr Uy ¢ d,00 38

57
Id. being the (3X 7)~-identity matrix,

Proposition 2,2, There mutually orthogonal irreducible’

P, D

~k

N

idempotents P, P, Py (i.e. = Py 0Py = P Py = 0), can

2

1) ‘By By (1=1,2,%), we denote the (3X3%)-matrix with 1 on the

i-th intersection of the row and i-k column, all other cle-
ments being zero,
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be simultaneously brought to the form El’ E?, E5 by a transforma-
tion of F4.

Proposition 2,3, TYor any two irreducible idempotent E(&%d

GO N - 2 o R Y Vit - ] h i 1 e -
?2 there ‘exists a transformation of F, bringing them to real form,

Proposition 2.4, For any two irreducible idempotents Pl and

Py, Tr(Plo P?) = 0 implies that 3:°~p2 = O,

Proposition 2,5, Let P1 and P, be two irreducible idempo=
[ [e8 o
tents. &n irreducible idempotent PB satisfies PlojP3 = P2¢>P3 = 0

if and only if P3 is a multiple of P, XP

L -2°

e ) R % )
Proposition 2,6, &ny element of H3U®) can be brought to

diagonal form by a transformation of F,.
; A

As points of the projective plane we take equivalence clas-

e o (B, .
ses of elements Pe Hy (@) ° which satisfy the condition PXP = 0,
Recall that the condition PX P = O implies that P is a scalarp
multiple of a primitive idempotent, If P and AP are real and non-
zero, then they denote the same point. 4s a representative of an
equivalence class one takes the P with Tr P = 1,

A line f in the projective plane is represented by a two-

dimensional projection, i.e,

12 v=£°g3( amiTer o
A point P is said to be contained.in the line £ if and .only
SARTR e d s P,

Remark, The projective plane thus‘obﬁéined is the loufeng

ptane, which is ngnfbesarguesian. '
If two points Pi end P, of the Houfang plane afe given,

- then the point P corresponding to the superposition of 34 and

P, will all lie on the line passing through P, and P,. The most

‘general superposition P is given by the solution of the equation

PoGﬁXPQ = 0,
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As is Enowny the Eouaﬁnu plane admits an orthocomplementa-
tion (a polarity which maps linear varieties into linear varieties
and which reserves the order of inclusion). There exists a unique
probability function, as was shown by GﬁN&iDiﬁ, PLRON and RUBGG

55

GUNAYDIN‘[SE ] generalized the octonionic quantum mecha-

P}
4

nics of Glinaydin, Piron and Ruogg to the quadratic Jordan formu-

lation, which extchdsmwthout modification,

Remark 1, Ilore general quantum mechanical spaces have been
considered by GURSEY L)B o] E.g., he considered the symmetric
space P /Lo y which corresponds to the Moufang plane, and as-

B 4 00(9) ;
sociates the distance function over the space 54/;Of©) with the

N Lo A4

probability function over the loufang plane, S50, he could imme-
diately give examples of larger spaces mely ./ -

at 1&/ 2 amp 5 of 1l¢ 3P y ly 6Il O( O)X (J(g)
and E ”//L X » whose distance functions satisfy properties

ike that of B /. he space E,. LioN is no
like that of »/(“(9) The space B/ 50(10) X 50(2)» ¥hich is not
a ULOvVCtiVG space (for insta ance, two lines can intersect at more
than one point), is obtained from the Moufang plane by complexi-
fication (the exceptional Jordan algebra is considered over com-

plex octonions), TRUINI, OLIVIERI and BIEDENHARN | 117 b] studied

the coset spaces L7/w & U(l)-and M//no<lo>69 (1) by using the

pi ) A (]
- 6 )
Jordan pairs of the corresponding Iie lﬁebrug. These coset spa-
ces appeared as manifolds in the model of supe whravity due to

0

GUNAYDIN, SIERRA “and TOWNS }E)[ ] (For further developments

see the next section).

Remark 2, Another way to.approach this problem has bec
suggested to GUIAYDIN [): ] by IFaullner, It consists of the use
of an isotope of the Jordan almﬂ>wa in which nl¢potoat elements

of the original Jordan algebra are represented by idempotent
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elements. In this connection, GUNAYDIN {52 d] 1r11c;ted how all
measurable quantities of quantum mechanics (expectation values,
transition probabilities) can be expressed in terms of a quadra-
tic mapping. This holds for special as well as exceptional Jordan
algebras, /

rees of freedom over the che e

Fie

Comments. If space-time deg
space corresponding to the Moufang plane are introduced, then we
must go to a higher-dimensional projective geometry. On the other
hand, it is known tnat Desargues'theorem holds in all projective
spaces of dimension exceeding two, rhorefore, the Moufang plane
cannot be embedded in a higher-dimensional projective space. The
method should be to embed this charge space into a higher-dimen-
nal nonprojective geometry and then try to interpret this geo-
metry in "projective" language. In these higher-cimensional £e0 -~
metries there will be new relationships between points, which

may be connected withimsual properties of quarks. For the study

of these higher» imensional geometries, associated with the com-

plex (quaternionic or octonionic) octonion plane, BIEDENIARN and
HORWITZ L13] uggested the use of the structure group and Jordan

Finally, let us refer to other three papers of interést, as

DOEOKOS and >OVESIm CQLKO&[?QJJ outlined a quﬂxtum tncory
of quarks and_giasngwbaoau on fields with values in a noncommu-
tative Jordan algebra, | :

In[\SQ %}, OKUBO starts from the remark thst the so-called
- Dirac problem (which is concerned with quantization of classical’
mechanical system) for mechanics on the real lins has no solution
if we insist on a>COTPOSpOﬂ@OLéO prinéinle for all observables

and on an associative aliebra of quar Ttum mec hanical operations,
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It has been shown, however, that the algebraic difficulties can .

3 °

be overcome if the associativity condition is relaxed, and that

this leads to a flexible, Liew dmissible, noncommutative Jordan
algebra 4 of operatorg The algebraic structure of 4 is COmpé -

ible with the Heis enberg equ ations of motion,

CJ.
}_-.

rg
Recently, fiiﬁﬂﬁh.{llﬁ g} defined electromagnetic curva-
ture structures (c.s,) as being bilinear in the two electromnag-
netic field matrices and electrovac c.s, by having the electro-
magnetic energy-momentum as Rinstein tensor., It is shown that
electromagnetic implies sravitational ra adiation, and convers ely,
that electro: magnetic gravitational radiation is induced by ele

Lro&agmvtic radiation. 4 structure theory of c.s, is then descri-

is laid on strueturcs which are defined by

o
<1
~
®
&
e
o
S
¥
—
o
4]

semisimple Lie and Jordan algebras with res pﬂct to their standardg

Comments. 4s was noticed by TILGHER [11) o] it seems that
the question of what a "physical“ energy-momentum is, can be for-

o

mulated in terms of the w-domain or domain positivity of the Jor-

£

@

an algebra of Lorentz -selfadjoint (4X 4 1) ~natrices

&

3 5. Jordan pairs in quantum mechanices

In this section, weé shall deal with the construction, due

to TRUINI and BIEDENIARN [116 b], of a quantum mechanics for the

RN s E .

complexified octonionic ‘plane, This plane, as they showed (see

), has automotphism group large nough to QCCOmo;'j
date - as finite-dimensional quﬁnLum»mechﬂnlcal charge spaces -

a color=flavor structure which is not ruled out by current expe-
rimental evidence., The Truini-Biedewharn construction mekes co~

sential use of Jordan pairs, The construction of a quantun-mecha-

nics ove ér a complex octonion plane was begun by bU’&Li [Fb e, ] &
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o

without, however, using the concepts of linear ideals or Jordan

pairs,
Let V := (J,J) be the Jordan pair obtained by doubling
the Jordan algebra J of (3 ) - Hermitian matrices over complex

octonions. Hermiticity is considered only with res pect to the
octonionic conjugation, and the Jordan product is the symmetri-
zed product

et L 54 l’ AT AR {- ~g -

Xy 1= 5 (xey +yex), n,yed,
where the dot denotes the ordinary matrix product, Truini' and
Biedenharn considered these structures from the guadratic point
of view, so that the quadratic and trilinearp operators defining

the palr structure are

U gf'-' = Ir(x ,y~ )x Xy

X

v z7 1= (U ~U Uy
x%,y 7 A AN ’

where @ =+ , and

e > ~ - 2 2
X #:3 % Tr(x) - % L (Tr (%) - (Trx) ©)
XXy = (¥ +y) - x#%m yﬁ#,

Id5 being the identity in J.

-Note. In vhat io]?owu, V = (J,J) will be denoted as

V-2 lFe Ve

Definition, An idempotent .(x' ;¥ ) of Vie called a primi-

. s ‘2 e NP
tive normalized idempotent if Ir(x ,x ) = Pr(x yX ) = 1, where

% =
x" denotes the complex congu rate of x,

Convention. Putting in the Peirce d@COLpOolilon of V (see

JSA.1.,5 4) (VZ y Vi) i= Vi, 1=0,1/2,1, we can formally write

=V, BV BV .

R SNt NS SH TP G
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Propogition 3,1, Let V = v, @}V& @V, o be the Peirce -de-

“

composition of V with respect to a primitive normalized idempo-
o

- o
tent. Then V1 and VO are principal inner ideals,

. . +
Consider now a primitive normalized idempotent x =(x s

b

in V, One can associate to it: (i) a point xg:= V. (%), and (ii)
I )?’é7 1 3

a line xﬁyaﬁ V (x).

) _ o, )
ont. & Truini-Biedenharn plane /(d) congists of

.1

oints x<and lines x under the following relations
* <3

a) }y X ol incident to y y if V ( JeV (Y) :

*

b) x*gy*, X+sconnected to y*, if Vl(:{)CVO(x) DV /5(y);

c) X e E s Xyi,c_r_v_g_ggg__‘ted to Ty 41E vy u)cv LK) €D Vl/’> vy

&
St

s e eSO

;7§¥ ﬁ( ;$VCHMQ‘Ct“Q to yif if Vl(x)czvl(y) GSVi/z(y), ?

. . - 5 - s » o — ’
Proposition 3.2, Let z = (z 2 ) and x = (x ,x7) be two

o

primitive normalized idempotents., Then Z+65V;(X) if and only if ;

Remark. By virtue of Proposition 5.2, one can choose as
representative of points and lines just theé eléments of J vmlcp
generate V; and Vf& |

TRUINI and BLEDENHARN [11 ﬁj considered the subgroup G
of the sﬁructufe group of J (which is isomorphic to the auto-
morphism group of V) which maps primiﬁive normalized idempotents
into themselves, y

Note. In this section we shall use TR bINI and BIEDENHARN'g
[116 Bj notafionv(see"alsd fﬁﬁhﬂuﬂfhub>[40]).be the real forms
of a Lie al”ﬂbra H of type 02, F4, L,, L7. Vhen no further znde“,

other than the one specifying the rank of the group is written

w

=1y

b

or H, it is meant that H is complex, The compact real form of H

2o
0]

, . i T ; The o 8
noted by 3 5 (i, E , F4 O,,Q.)Q The group H r,0 has

2
signature (the Cartan ind ) equal to mvnuo the number of genera-
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tors of H. The lie group associated with a certain Lie algebra
will be denoted by the same, but script, lettex.

The structure group of J has 79 generators, coming from
the three-grading of the (complex) Lie algebra of f}, Among
these 79 gene rators, 78 form the complex Lic algebra EB and the
79;Q is just a change of scale When we consider the subgroup G
of the structure group of J we get from this last generator the
(compact real form) U(1), and from E; a subgroup H such that,
for any x in g,

(31 (8,07 = g (x™)

for every g, , g_€ H, where (g, 8_)edut (V), o

Proposition 3.3. Equation (3.1} holds for every primitive

normalized idempotent (x,x*) if and only if
. Xy _ #*
(Bal) i Trix,x") = Tr(g,(x), g,(x}7),
Remark, From (3%,2) it follows that H must be compact,
If we denote by G, and G_ the generators of gy 8nd g,
respectively, we get

TP(G+CX)y ) = - Tr(x,(G+(X}}*)y

.

which implies that the Lie algebra of H is real,

Therefore H = Z; (see FREUDENTHAL [4Q]) the compaet sub=-

9

of B
0.0 Y6

group of 5% generated by the compact real form E
| Remarlk (see [llo by’ P 1)3@}) The co&pact real form }U

?
must not be tﬂlen fOL Lhe Llf algebra Qf the structure group of
the real excaptlonql Jordan algebra Hy @\ , which is also the col-
lineation gruup of the Moufang plane (. ee FREUDEHTHAL [40})$

The latter is the noncompact form E6,o*_0f signature - 26, g;,o*

has only real representations,

Proposition 3.4, If géﬁf} & U(1) then xe V;(e) implies

that g(x)éiv (~(c}), s e i O ior X,e primitive normaleo l ideme~
potents,
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Definition. Define the naturs 3L action of é? Q@ U(A) on

()}%e

Remark. From Proposition %.% and the previous considersa-

the points of»’(d) by glxg) = (

N

6o

tions it follows thaﬁZf% OQ? U(L1) preserves the relstions in the

= 7
geonmetyy Qxf)(J),

Definition. Two points X4 and Y &re called orthopgonal

7

Proposition 3,5, EfG o aCts transitively on points and on
¥
triples of mutually'orthogonal peints. The maximal subgroup of

/\/
5} o t€aving a point invariant is SO(10) @ U(l); therefore, the

Dy

plane (J) is the homogeneous space E% /50(10) € U(1) (the tilde

’O
ever U(1l) was usednto distinguish it as a subgroup of éﬁ from
the "overall® phase group U{l), which is o obviously outﬁiue é;)o).
naiy
Lote. The definitions of collineations, corrclations,

dualities, and polarities are the same as those given in

Definition, 4 polarity with respeat to which no point is

isotropic is called an orthocomplementation.

Luportant remark. It can be lumediately seen that the

.

standard polarity Iyt XS x
J

his

is an orthocomplementation. T
is a fundamental result, used by ' [RUINT end BIEDENHARY {116 b
) Y

<

in building g quantum theory on the geometry of ?%J). The ortho-
complementation-is indeed needed in defining both the propositional
system and the states of the quantun logic,

&8s was proved by FREUDENTHAL [40], an orthocomplement&tion
is an "elliptic" polarity de efining an "elliptic ¢ geometry"

SPRINGER and VELDKALP [109] investigated planes, called

Hjelmslev-Lioufang plenes, defined over an etceptional central

.. 8imple Jordan algebra on ‘a split Caylef alrobra, and thOPOfO“O



including the complex algebra J considered by TRUINI and BIE;
DENHARY [116 1] .

Remark 1. The Hjelmslev-Moufang pl ne, obtained by com-
plexifying the real Jordan algebra ur(@\ y althdugh similar to
?%J}, is defined over a hyperbolic polarity (i.eo a polarity ad-

1itting isotropic points). Therefore, it is difficult to give

»

it a quantum mechanical interpretation,

; oyl . 7
Remark 2, The Truini-Biedenharn plane S(J) has a NONPro-

Jective geometry (tqo lines may intersect in more than one point)

and, consequently, the propositions system is not a lattice,

Lomments. There is a very close relationship between.?%J)
and the Hjelmslev-iioufang plane. The objects, points, and lines
are essentially the same, However, a difference shows up when
we cons'der.transformations on points and lines. We have much
more stfucture to preserve, namely; the pairing of a rank one
element with its complex conjugate, This is reflected in the

t
preservation of the standard polarity W; :.ngmm€>xj§ and which
is preserved by the group mapping points into points, In other
words we can say LUdtSDbJ) is a Hjelmslev-iioufang plane carrying
a further structure to be preserved; the standard (elliptic) po=
larity .7:70 ;

As is well known, the language of quantum mechanics has
| always been 1dentlbed with the language of projective geometry,
the points of the geometry beinz identiried with the density ma-
trices of the (pure) stateé, and the lines and hyp@rplaneswith
the propositions which are not atoau. The automorphism group of
the geometry (that is, its collineation group) is, however, lar-
ger than the automorphism group -of thelquénﬁum structure, because
collineations need not preserve the traces (which are the cano-

nical measurcs uof‘imn“ the quantum states) nor orthogonality,
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which has nq DPOJ ective meaning, In mathematical language we can
say that the quantum logic requires an automorphism group which
preserves an elliptic polarity. Tor inst ance, the automorphism

8] vy e b o £OOITIAV T Sln g e DIV i
group of the quantum system of GUNAY DIN, PIRON and RUEGG [)5]

s

(see also § 2) for the Houfang plane is 32 o+ Whereas the colli-
- F

neation group of the plane itself is v s WHLCH contains 7, :
'\Jy iy

.....

as maximal compact subgroup. For the same reason, TRUINI and

L

BIEDENHARN [il@ _] do not investigate the collir leation group of
U%J); they have determine the group which is needed in describing
automorphisms of the quentum system. This is the compact group
) -4 T1/1 . g m .
<26 OQ@ U(1),which preserves the trace Tr (x; <*} and the ortho-
N .
omplementation (i.e., the elliptic p o7a11Ty W’}
TRUINI and BIEDEIGIARY [Jlu o] defined the propositional

&fw]

system as follows: the Propog jitions are identified with the 200

metrical objects (points and lines correspond to the principal

inner ideals ov V), They form a partially ordered set, with order-

ing given by the set inclu ion of the inner ideals. The plane
iteelf (i.e,, the principal inner ideal generated by an invertible
element) is the trivial proposition. We have an orthocomplementa-

tion g Ma—al » which is the standard polarity a§?~GWa Thus we
can define orthogonality: alb if a<ib » Which is synm@trtc

. Comments (see [.«6 b, p.1338{). The only concnpt oi the
SLQunWQ theory which are we akened are’ the Cencepﬁs of gr@atesﬁ
lower bound (”n:ct ') and ?QL*L upper. bound ("join"). Thgyvarewnoﬁ
define here for every palr of proposifions, Thercfore‘we do not
have a 1éttice 8iﬂwtureﬁ But the subsets consisting of nonconnec-
ted points and lines are sublattices of the partially ordered sei,‘

Remark, 4s is well known, the lattice axiom is the axiom

m'ut Justified experimer ntally since it is nonconstructive, It is

the merit of the Truini- Biedenharn construction that 1t provides



L

a model in which this axiom is denied in a naturai WaY o

Because of the lack of a lattice stfucture, the defini-
tion of "state" given by TRUINI and BIEDENHARN [116 bt}was SUi~
table a "measure® with unusual properties thereby being defined.
However, this measure coincides with the unique probability func-
tion (defined by GUNAYDIN, PIRON and RUESG [55] on the lMoufang
plane) when restricted to the real octonion case, Moreover, when -
restricted to the purely complex caée, the measure coincides with

the usual modulus (squared) of complex three-dimensional Hilbert

5}

space quantum mechanics,

&

(&

TRUINI and BIEDENH&PY‘[116 5] associated observables to
the generators of the automorphism group E%ﬁaéglﬂlj in exactly
the same way as in the usual quantum theory, namely, by @ultiplym
ing the skew-Hermitian generators by the imaginary unit to obtain
Hermitian operators. Let us note, however, that the spectral theo-
Ty of the observables thus defined is completely different from
the ordinary one, The Hamiltonian of the system will be one of

the Hermitian generators of g; Oé@ U(1l) . For details see [ilé a,é]a

b
Open problem (see [116 by, p.1329|)., To obtain some kind of

physical understanding of the role of the connected points which
are responsible for all unusual features of Truini~3iedenharn
quantum mechanics,

Finally, let us mention the opinion of TRUINT and BIEDEN-
HARN [116 - 9,1328] that "It is our belief (noting"%he close re~- .
lationship between geometriecs and quantum mechanics) that the
concepts of quadratic Jordan algebras and iﬁner ideals will be
useful in physics",

§ 4. Jordan algebras in classical mechanics
A.systomatic study of the claésical mechanics 6f systems

described by usual c-number variables and by Grassmann variables
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was vcn by CASALBUONI [”0 & QJ Such a mechamics is the clag-
gicel limit (in the sense 4 —>0) of a general quantum theory
with Bose and Fermi operators.

Let us recall that in the stan dard exposition of the quan-—

faL!“r procedure of eclassical systems, the guantisation rules

while the quantic SLLOh rules for constrained system are %
k& ; x
il ’
, F—-11,7
3 :
%9 - A= -

* B
where { ,} 18 the minus Poisson bracket, {,} 18 the minus Dirac
bracket, T ,] and [ ,]m being comnutators. They are valid only

in the case of Jncﬁ~fr spin (Eose)svstems.

DROZMVW CLNT [)O] showed that for uncongtrained classical

Systems there exists another symaetric structure characterized

rd

x

by a new brac ket, called plus Poisson bracket : and denoted t ay{ ?3 .
~ +
FRANKE and KALNAY ['”] showed that for constr ained clasgi-

cal systems there cxists g dval symmetric partner of ; inus Dirac

’5/:

bracket, called plus DLPIL bracket and denoted by ,} « RUGGERI

+

%

P

[97} and AAJ“AY and RUGGERI [ ] suggested that, in the case o

o

pin (Fermi) systems, the quantisation rules for

pa—

nalf~interer

6}

unconstrained system are

} ~ % [ ] ’o. .

I }ﬁé[ 1

1 g 3(. B
where 3 is a pasrameter in the theory, L )] and [, 1 being anti-
o + :
cc:mumtm, ors ;
DhOa~JI&uqu1_’OJ ci that for systenms described by

plus Poisson brackets, the algebraic structure must be a Jordasn



'algebya@ However, it was not clear what the conditions are under

which the classical dynamical variables constitute a Jordan al-

THTTYT r

3 el e PR sy g Lo g
to the plus Poisson or Dirac bracket., PEDRO

i

;—n
L4
ot
[

bra with respec

and VIANNA have solved thi ﬁQ]. Their results are re-

@
&)
53
o
&
-
o)
=

=
O

called in the sequel, _
Notation., As was done in [85] and YQQ}, we introduce in

the 2il-dimensional phase space of a classical mechanical systen

o o . 1 il . ;
with canonical variables ¢ ,...,q ), PyseeesDys the variables
2N p
Wy ey, as follows:
1 L N _. N N+ e
w Z’.Qk 3“'"7('0 '"Qy()\) = pl’hoagw "‘:PI\I’

H

‘“ﬂ'(wl,ar,,,.,wz“) £Gs-D)s

With respect to the indices for coordinates in phase space, we

shall use for g 3nd p the indices r,8,t and for w , we shall use

the indices/ﬂ,f,,..,ﬁ'. For the functions (¢ and € we shall use

C.T'.
2
D

o

indices 1,7,8,4 .40 a0d a,b,c, respectively, Local coording=—

tes will be denoted by = I I= 1,2,¢.q§2Ng As usually,CQE 5= 9/9x1
. 5 9 Py T r
BIJ L= Ba/axl xj, and aiJ”‘:" 3§/é EPFPS .

Let £,8,+0050 be Teal functions on a Lumdlmen ional mani-
fold V., According to LBQ]? & plus Poisson bracket is defined by

% ﬂ - vi :
{iim,g}+-;n {¢,g}+ = V?& ule) VV “'<7“ rVyg 8

Pa—

7vnere§73m,tho covariant dcrlv tive 1n the connection | and M is
a second-rank symmetric tensor of COHLP“V&TI&DC type with Vdﬁi i~
ing covariant-derivatives The functions £ and g satisfy the con-
ditions | '
(4.1) Ve Vi Vi £ =0, NN Vs

The existence of the tensor M for the phase space is assu-
red by virtue of the cons iderations given in [50}

how““ke The canonical rules for the minus Poisson bracket

et
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' P ' . s |
are also valid for the plus Poisson bracket, that is {q ,q‘}+,m

- 3 B - o
i ‘{F)la?r)‘ca/}»{. e O? {q ?E‘)S}rf. wgse

only the case [ = O. However, their results can be extended to
the general case vhen | #
les Let F = {f,g,oﬁ.yh} be the set of all dynamical varig-

bles of en unconstrained clas ssical system described by the symme

tric formulation of classical mechanics. By (4,1), £98y 004, must

£20, 9y 8=0,..., o1

P
1JL
Xﬂml TE T 00400,

For T,g€F define

(4.%) | fo := {Jx1%£=}k s %f,o . S 9 ﬁ QL:E

As was shown by PEDROZA and VIANNA EQQjé the set of func-
tions f,g,...,h which gatisfy conditions (4.2), endowed with the
product (4,3) defined by the plus Poigson br&cket, is a real
Jordan algebra,

2. low we shall consider systcmé involving constraints,
For such kind of systems the Hamiltonian equations of motion can
be expressed in terms of the Dirac bracket in the same way iﬁ
which equations of motion'pf unconstrained systems can be expres-~
sed in terms of thﬂ Wd Lsson bracket, Before the introduction of

the Dirac urezﬁgt the constraints have to be separated in two

classes: COFStfdl”t of the first.and second classes,

ation. Following LQO], we denote by Eq(q,p) any one of
A
thewwkconsm aints of a classical system, Il

{?mzb}_i‘ =0 for all b, 1<4a,b< M ,

then ?a is ca lled a symmetric first-class constraint, while, if




S g

thcro exists a b such that

{g&, gb}_% #0, 1€a,b 47'?/(

hen Ea is called a symmetric second-class constraint. Let L=
¢

,%i-(hﬁ:}be the set of symmetric
second-class constraint of a classical system. Let %>b@ a set with
QI}M,Q;@md pendent lU“‘C.E.L Y}uc?o ( )5oee,(@ﬂ( ) ‘-ff‘( )759»;‘70,i. &"(w:);
<

and such Ln“t\%) q? "wxiéllﬁCul coordinate system for the
phase~-space manifold. FRANKE and KALNAY Lj?] showed that

L-P (W) 1= E’f‘ ?w’”‘)w iy ”£+ )/,:: Ho(‘ SN "I"8 NV”

e L S R S L S et

is a second-rank symmetric tensor of covariant type, where

Wﬂ, 0%.,5,%’,Yé,,,?,%éw denote elements afﬁ?a Also, they{j??}
{w i <Ay .
. . . A y i1 s R . -
showed that L%n has an inverse tensor I, " with covariant deriva-
58 .
tives restricted to the submanifold whose local coordinate system
e ’P)_“‘ <
R PN also possible to define tu@‘)nrxo ‘bracket by

(4.4) g ’“;3% 3=(_(7) : s D'P d 5

ML (B,Y) v i
Remark 1, In tnis approach, Franke and Kdlnay have used

Hi

’ Dwm aTn $

: CEls i ;
the fact that any function of the variables W can be written

m

as a function of the v&ri&bl@s-@ and‘q Partial dlffcron iation

: : m . . : e
with respect to a ¢ 1s carried out keeping the €%'s and the
m, i,
other ¢ s constant,

Remark 2, Compare (4.4) with (4.3).

S ——

—

: Let f‘z‘(f(a ?3 Q@9?)?..G,AQ@9Y{} be the set 01 dynami -

cal variables of a constrained cquuicai system descrlbeq-oy the
symmetriec formulation of classical mechanics, so that

(4.5) 0 = 0, J

- 2 i
fmu dmn & ° Oseees Amn h = 0,

with 1<£ ﬂ,m,n_{ZN-«N , where Bﬂwn = BD/E)CF{]’)((’M()(F“

For:fg;é(fdefine
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As was noticed by PED ”QZ& and VIANNA [90], the set of
Tunctions £(6,¥), ¢ 508,4), ¢..,0(0,9) which satisfy conditions
(4,5), endowsd with the product (4.6) defined by the plus Dirac
bracket, is a real Jordan algebra if the following conditions

are satisfied:

e sl s o fg dky mns L2 O T
(46/) dit '1“'3 91 oy :“ lu+ akpi‘F nj;;+ o lu_‘} }’(‘*d J Ef biod

rd Ky dint g oo L Aeedmy ik y L0 i
(4.8) - 2udky nJ%uOL + Zmiqm+ Pd+l < flm Mnkg MfJ +
N

, jk. Cl n o 0 kny L 5m
b o 21& )L J;Lx‘:u’ — ~,.1_}" ;.,4+ 91\"_ “&+ bocod O
(4.9) (35380, 0 + 2, 4iia,009, + 2, 1iMge, 9

,

Epig] » 010 7 . ;‘.;ml’l ¢
PO, (@,nf)a Diid+ “’%‘”Dkg + 20 e,9) 9

i :n,, W}D )9 f;% g =0,

"

h(x ,an e re
Koa e e
s

tion (4,8) is satisfied if ML 0,9 is in-

lat
‘ m
dependent of ¢ (m=1 2,,0,,gum_e)q

lence, for unconstrained classical Systems described by
the symmetric formulation of ciaﬂﬁlcal ﬂ@cn<nig*, the set of
all dynq“ Lcal variables is a real Jordan algebra with respect to

ordinary addition and plus Poisson bracket vhile for constrained
systems, the set of dynamical variables is a real Jordan algebra

us Dirac ‘bracket (4.4) if con-

fomnd

under ordinary addition and the p

-

litions (4.7), (4.8) and (4.9) are satisfied,
In this respect, let us mention PEDROZA and VIANNA"'s com-~
ments from {90] ¢ "We note an important diffe crence between the

Lie and Jordan alcebraic Sirucburo for .classical systems. The. Lie

o]

al 3G,Lulc structure appcars in classical mechaniecs in a natural
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way, but for Jordan algebra it is different. In fact, Droz-Vin-

cent's symmetric brackets are only defined for dynamical va-

1 B

\ °
riables £ such that ( [ = 0)¢,. ., £ = 0 for unconstrained systens
(1 s 3 K&an a‘ha! 2 Fc0 for Cws‘i‘r@;y‘;ﬁf‘;yﬂem;

Lrnw
(L ¢fm,n £ 28 @e), Consequently, in this symmetiric formulation

of classical mechanics, if £ and g are dynamic uT variables, the

quantity fg = gf is not necessarily a dynamical varisble, This

o

result restricts the set of admissible dynamical variables in the

present theory. However, our result is not worse than the usual
theory with minus Poisson brackets. Indeed, as STRE {L 0]

has shown, the Dirac quantisation procedure for minus Poisson

brackets is also only possible for a restricted set of

oy

1yTIa ni -

(\

dl variables", (See [90, pQB%@]}‘
Comments. The results recalled in this section can be ex~
).

.

of simplcctic manifolds the variables

&A

&

tended to symplectic manifolds (generalized phasc space:

cal coordinates,

Open problem. (suggested by GHEORGHE {44]),(?0 classify

&

.,ﬁ_ .
and construct smooth manifolds on which %,}+ is globally defined

Solving the above mentioned open problem is im-

portant for the construction of supergroups and supermanifolds

-y . .

leseribing constrained quantum systemswith spin,

|

YT A

inally, let us mention a recent paperl’QB] by ROCHA PILHO

and VIANNA, where 1t is sHown that the set of observable functio~

nals associated with a constrained field theory satisfying two

5 Y
¢

given ass mptiouu s a Jordan algebra under the symmetric Dirac

bracket compo osition law,

§ 5. JB-algebras in quantum mechanics -
. In order to improve actually,QXL sting a xLon systems for non
relativistic guantum mechanics, GUZ [60 c} developeﬁ the general

axiomatic scheme given by Axioms A4,3,C,D (see below) in two di-



rections: one. (see Axioms I1-I6 below) which is very close to:
the well known quantum logic approach (originated 1LL[TCJ and
developed and improved by many othérs} and another which is the
outcome of Guz's general axiomatics (see aXLoms II1-T17 bel@w§$
and is based on introducing the structure of a partially ordered
real vector space in the setg& of bounded observables and then

blishing the Jordan-Banach structure 1n\ﬁ the latter being

este

i

deduced from & set of physically plausible postula tes, In this
way Guz d(vgioned of hie general axiomatics based on Axioms 4,B,
C,D along the lines of the algebraic axiomatic scheme initisted
as far back as JORDAN [ 64 a,b,c), JURDAN,von NEUMANN snd WIGNER
[65], VoI fL}M&“&'[ 7 bj and latter modified by SEGAL [102},

3 TRUE)
WPV

see also § 2).

For aniw*nwemeﬁf in the finite~dimcnsional case of fhe
charactérisation of state spaces of JB-algebras to a form with
more physical appeal see ARAKT [5],

Here we recall the basic facts from the above-mentioned
developmenté given by GUZ (see 60 qj) and ﬁhcn briefly refer
on KUiliER's receﬁt gvyouanlrflj

Notation. 4s in § 1 let~£ and S be the set of all obcer-
yahles and all states, re spectively,of a given physical sttpm.
Denote by R, the non-negative part of [R, and by B(R) the T-gl-
gebra of all Borel subsets of [R.

Follqwing\mACKLl [7u} (see also [60 é, P.66]) we assume:

Axiom A, Tnewe exists o Iunﬂiwon D f}% X,uhw ~¢4Rk

which,Tor fixed sedt and{)E Sy, 18 a probability measure on B(R) .

p(4,, 43, E) for all® €S and

)
i

Axiom B, If p(4,,d, B)
€B(R), then Ay = 4.,

Ax ;'n (e il pLA,¢JJ E) = p(A,‘bg, £) Lor all Aé.ﬂ and

b€ B(R), then ﬁf)j_ _-;q52,



Az

Axiom D. For each sequence Jpl, C{JQ,... of states ahd each.
oo

sequence tl,tz,... of positive real numbers with 2 ti 21y
1=l

there exists a state 4>e S such that p(4 47 E) = Z ts p(4, <P : ;4)
all Aed and E€BW).

Remark, For the physn.cal interpretation of Axioms A—.) see
GUZ [60 Gy DD 66-—67} ;

Convention and notation. An ordef.edi)air (A,E) € ﬂXB(m

is identified with the expcrlmentally verifiable proposﬂ:mn
stating that "a measurement of an observable A yleldo to a value
in a Borel set E", and the number p(4, 47 , E) is then interpreted
as the probability that Ithe‘ proposition (4,E) is true for the
system in the state Cb ‘(EvIACKEYf‘?G], MACZYNSKI [77] GUZ. [60 c])
In the set JZ}X B(R) one can deflne two operators, called implica-

tion and nezation, reopcctlvely,

 (&4,E) == (B,F) if and only if p(4,9,E)¢ p(8,8,5) for all

¢ €s;

T4,E) := (4, RNE).

Two propositions (4,E) and (B,F) are called equivalent vritten

as (4,E) ~(B,F); if" (4,E) => (B,F) and (B; I‘) —> (A,E), i.e, if k
pla ,0,E) = p(B, 4’,1{) for everyd €S, The set L := (f)(B(lP))/fv ‘,

which is called the logic of a physical system (or the logic of

- propositions, see MACI\_EY l_'hJ, LA 7’35;’4‘8KYI77]) has been shown

to be a partldlly ordered set w:Lth involutioh, provided we define
' )(A B4 ](B F)] if and only if (4,8) —> (B,F);
a,mt’ = Ta,mil,
where ](A;E)l ‘denotes the equivalence class of the nronoeitioﬁ
(A,E). The equivalence classes [(a,u)l will also be called pro-

positions. Two propositions a = ](é&,i;’z)] and b.= [(B,E‘)\ are cal-

led ortiiogonal, written ag al By dkE b,
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Definitions. Let &4 be i‘romﬁ o The smallest closed set

F<R satisfying p(4, d), F) =1 for all 476 S 18 called the spectrum
of 4; it is denoted by sp A, &n observable Aéﬂz} for which sp A is .

a bounded set is called bounded. In the latter case, the number

sup .{ltl 51;639 Az( is called the spectral norm of 4; it is deno-
ted by Hallsp. The set of all bounded observables will be denoted
oy 7,

Remark, sp A € [-» J}A” 8D, ”4” Sp]q

Definition. Consider Aéﬁ’ and <tDéS., If the integral

/t p(A,4: y dt) exists and is Tinite, then it is called the fehies
-

pectation value (or mean value) of the observable 4 for the system
in the state q5 » 8nd is denoted by < 4,$ >, |

Remark 1,.Compare the above definition with Postulate 2
from § 2,

Remark 2, If [léjl}b, then £ A!¢ > £lall sp, so that cve ery
bounded observable has finite expectation value in all states,

Hotation. Let L-Ip oe the convex set of probability measurcs

on B(R). Identify S with the family of maps - s I > 1 and cone
: E (lb n?

298
sider the space V : = 2 S: P, |s:€R, {D €5, o 1,2,.”}9
s -j: 1 »d)i 3 ,

We can associate_ with each Aéjqb a linear functional on V as fol-
e oo

lows: Ly (x) := j*t(x(’A))d‘c., xeV, It is obvious that I‘A(pcb) &

.—-k 5
=805 e watation {4,xY will be extended to all xeV, i.e.
<A,x> 2= L, (),
An important assumption of the quantum logic approach to
the foundations of quantum mechanics is the so-called ¢ orthogona—
lity postulate® (sge, for instonce, LACKEY [7 ]) which assevts

dxciom T 1 1F o, = {(s‘ai,ié?,‘i)], 121,2,  esy 48 8 sequence of

&



we ABT L

pairwise orthogonal propositions from L, then there exists a pro-

> N
position a = (A,E)( such that p(A,¢,E) = E‘“ p(Ai’¢’ E;) for all
1%] 38 '

des,
From Axioms 4,B,C and I 1, it follows that the propositio=
nal Fegic (kL ") becomes an orthomodular ¢-orthocomplete or-
thocomplemented partially ordered set with O and 1 (the least
upper bound for an orthogonal sequence %a

€l is gi-

e

iki:lsg, -eo,FOO
ven by the proposition a€l defined above in Axiom I 55 .

&

Convention. Any state @€S can be identified (see MACZINSKT

Efﬂ) with the probability m@asure/ﬁ%>on L defined by
/u¢([(A,E)L) := p(4,$,E), and overy observable 4€# ~ with the
L-valued measure x, (that-is, X, is a G-homomorphism from B(R) to
5 rS
L) defined by x, (E) := |(4,B)],
1 Tyenx A ) - £p ™ P )
We have p(4,p, E) j/M¢QxA(L)), and the famlkyg/“4)§4>éxa}
of all the probability measures associated with states of a phy -
sical system is easily seen to be ordep determining,
& >

Note. The proportional logic L appears now as a primary

object. of the theory, while the sets of states and observables
become secondary, as they arise here as some constructions on L
(the probability measures on I and the L-valued mcasures, respec-
tively).,

Convention, After the identification of the states with

the corresponding probability measures on L,#)(a) will be written
‘instead of/ﬂ$(a),‘aeéL; | »
mmmmlww(m%ZEObw J g

ggggng;g, There exists a sﬁb$et P< 5 whose members, called
bure states, are assumed to satisfy the following requirements:

| (1) for every non-zero proportion a€ L there exists a pure

state pe P such that'p(a) = 1;



(1) if for every pure state pe P satxﬁymjn a) = 1 .we
al olmvo.pUﬂ = 1, where Q,bélﬁ then a < b;

(iii) for each pure state peP, there exists a proposi-
timazxei)such that p(a) = 1 and q(a)< 1 for all pure state g
distinet from p,

GUZ [60 c] showed that, assuming Axioms 4,B,C and I
Axiom I 2 above is equivalent to the following statement: The

.

propositional logic I is atomistic (i.e., I is atomic and each

&)

ael is the least upper bound of the atoms contained in it), ang
there exists a bijection g : P —» A(L) of the set P of all pure
states onto the set A(L) of all atoms in L uUCh that, for every
peEr,

(1) plletp) )= 1y

(2) pla) =1, vhere a€ L, implies that a»s(p).

Definition, Two states ¢l and#)? from S are called ortho-

gonal, written as ¢1_14@ if for sone proposition ae L we have
¢ﬁ(a) and(bz(a) = 0,

Notation and definition ns. For any subset MEP we denote

.,,_L,. - 1 1 £
by 7 the set of all pure states pe P such that pl g for all
ik e -

qQ€ll, and write II” instead of %, 1s i =k, then the set If is
called closed. The family C(p, L) of all closed subsets of P ig

-called the phase geometry associated with a physical system.

GUZ proved [60 b the following theorem.

Th@orem Bl for every asz, ‘the set al:{ylpélP nla ):1}"
is an element of C(p, l“) and the correSpon@ence a ~%»al defines’
an orthoinjection of the propositional logie L into the phase
;edmetry C(P,J;),.the latter being an QLOﬂL tic complete ortho-
complemented lattive,

iiotation, If<P1 and ¢q are two arbitrary states of g phy-
Sieti Lon o . :
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-

' . ! :
sical system, then the number 1ri“§¢1(a)l€ielq éz(a) = i} is

called the degree of dependence of <Pi Qg;¢2, and is denoted by
(¢l ;-¢2) (see GUZ [50 c]) Lo |

Suppose that the initial state of a physical system is
described by the density opérator ¢ , and, that after a measure-
ment performed on the y"tem, the proposition described by the
projection operatorcj 1s verified to be true, then the subsequent

state of the system is described by the density operator

P ré /Tf (P4) -

Ignoring normalization of the state we obtain a linear map

P P . e
¢>—4>,/<ﬁ59, called the conditional probability map from the

Banach space of selfadjoint overator of trace class (acting on

-y

the Hilbert space corresponding to the quantum-mechanical system

under study) into itself,

Definition, Any collection gﬁa} of trahsformations of the
set P of pure states into itsclf, indexed by nonzero propositions
from I and satisfying: |
| (1) the domain D(Ba) of I_ consists of those¢>ejP for

(&1

vhich @ (a) >0, and for every ® € D(Z_) we have (B, @)(a) =1 ;

(2) if pa) =1, then E_} =¢
is called tl fanily of (pure) filiers (or pure conditi 111 DO~

1 B
L

bability maps) associated to the propositional logic-L.

Convention,.In order to study the

E., the transition probability function (:) is extended onto the
<l
gel P& P‘J;O}, where O denotes the improper "pure" state,cal-

led the zero state, adjoined to P and defined as the zero funce

'
tion on Ls Peor.all pe}?o, (Osp) . = £p2Q) 22 O (SQQL 60 cy'pa?j]},

s < pFEN ey -“4:- .o BPREIGY. . KR BT QT A s
1) The number (q : i’,ﬁ) was introduced in 1969 inde vendently by

sryerepr

MIBLETI [ ] the name transition HPOD&DlAltY between




Definition, & map E_ (E_ : p ~%>pa) of the set P_ into

v

itself is called a (pure) filter associated with the proposition

—~

.
,LONS ¢

ot

caél;if¢§atisfies the following condi
(i). (p:pa) = p(a) for all PEP;
(di) E is an idempotent map}
(iidi) (p:pa) = 0 implies that Dy = O;
Remark, &ny filter Ea possesses the property
(5.1) (p- 12 Pg)

fo all p,qé}?o.

N4

(p : qa)

Definition, A& filter Ea is called proper if the inequality
5.1) becomes strict whenever By # 0 and Py # Qe
mark, Lach proper filter E_ can be identified with the

m

corresponding Sasaki projection 8y + A(L)V %O% =% A(LJV {O} de-

fined by s,(e) 1= a've-a® = (a've)aa, werec ael, eé&A(L)£’{O},
and A stands for the greatest lower bound in L,
Axiom I 3., VWith every nonzero proposition ael a proper
pure filter ES.: Pa.~e>}£ is associated, i
otetions. GUZ [60 ¢] considered , after GUNSON [ 57], the
vector space (L) defined as the linear span of the image of fhe

propositional logic L under the canonical embedding L —> V!

defined by \(A,E) ~€>q<p E) where V denotes the complete base-
norm space spanned by states of h ical system and

'q(ﬁ;ﬂﬁ : V—R is given by q(A,Ej(X>':: (x{&))(E), xe V¥ (geq
[60 5 2 71])0 Similarly, (Lf} denotes the linear span of the

set Le€ L of all finite elements (i.e. which are the join of a
finite number of atoms)of L. Since everj finite proposition ae?ﬁf‘
can be written as a- (finite) join of pairwise o?thogonal atoms,

we have (Lf) = (&(L)) = the lincar spon of. the set of all atous

in L
-Define, after GUNSO [:”j the following ps eudo product
for atomic propositions:



...;)9..

':. ! + Id)[& (LO)

eof :mﬁ~(Q

where Qa’ ael, is given by

; Qe =D Fals, (s), c €4(L),

€ defined as pe (= a"l(e) and Id is the identity map.

with p
Axionm I 4. Tach Q, a €l, can be extended to an affine map

A
Q () o il

} > Y@L 8 - coney . 3 F 3 L
g * )y L‘, where (Lf)+ is the generating cong in A f)

defined by (Lf)+ 1= EN“ tiei> ti2'0, eiGEA(L), nsl,z,‘.e}‘.

i=1
A . ,
Remark, Q, can be extended to a linear. map Ta: (Lf) w%»(Lf)
/N A '
by setting Tau = Q Uy - Qa , whenever u = u; -~ U, with

Uy 5Uy €L, ), o The maps T  ere called dual filters associated
with propogitions from L,
Axiom I 5, For any pair p,q.of pure states we have ip;q)
Caepis

Theorem 5.2, The pseudoproduct ¢ can be extended to a com-

mutative product on U (= the norm closure of (Lf)GElR 1 in the
order unit space (V',1)) such that (U,° , 1) Becomes a distribu-
tive Segal algebré with 1 acting on it as uﬁit element.

Axiom I.6, If a4Db and p(b)>» 0, a,beL and peP, then
Pb(a) e p(a)/p(b),

Theoren 5,3, If we assume the validity of 4xiom 1 6, then
" the spaée U endowed with fhe product ° becomes a real Jordaz‘aiw
gebra, ; ‘

Ao a consequcnce of - Theorcns ),2 &ﬂd 0 e have

Theopem 5.4. The space U endowed with the product © and

with the order unit norm inherited from V', where V is the base
norm space spanned by states of a physical system, becoues a
JB-algebra,

Comments, The quantum logic approach, as modified above
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(see Axioms I 1 - I 6), is intimately comnected with the Jordan~
Banach algebraic scheme, and at this point GUZ LOO 03 followed
the pioneering worL [57] of’ GUNSON,

The first three axioms (see below) of the second develop-
ment of the general axiomatic scheme (4zioms -A-D above) givem‘by
GUZ |60 é] are connected with the introduction of a linear struc-
ture on Jb (see also bacibY'[7uj and EMCH [53 é]), :

xiom IT 1. If 4,B€f, and {a, 5 ={B, P> for all states
b€eS, then 4 = B,

i

Axiom IT 2, 1} For each pair A,Eiéf%)there exists' an ob-
servable 4 + é/} such that
{a+ B, Pr= La, P>+ 1, d>
for all 436 B
ii) for every bcunded obéofvable étfﬁb and every teR
there exists én observable t »163% tisfying
o , P> = t<z&,¢>>
for allfbés,
iii) there exist observables ( Oy Iéi#b such that
0,95=0, {1, P>-=

or 31149& B

Hy

Remark, By Axiom 1T 1, every Aéi%b can be‘identified with
.the corresponding mean value Tunctional Ly Axiom II 2 introduces
in the set jn. a real vector space stfucture.AHoreovef, after
identifying each AE;ﬂb w1ta7Lé one Outv¢ﬂS lrjq the structure'
of a partialky ordered vector space LHACPLtOd from V' (= the
Banach dual of the sp bace V), and JZ}‘ becomes in fact an order

unit space.

Note, From this point o on, [od é] closely follows the
path of the first development (Axior s L.1 ~I6) by introducing

the concept of the conditional probability map, and then by esta-
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blishing, step by step, the Jordan-Banach algebra structure injqb,

so that finally he is in a position to appeal to GNS representa-

tion theorem proved for JB-algebras by ALFSEN, SHULTZ and
Following POOI;[92], UZ LuO é]a&cn

Axiom II 3, With evepy nonzero proposition a €L is asso-

N 2 &

ciated & map E, of thc set S into itself whose domain 1s D(Ea)
:-%b S )a(¢)> O‘} such that |

(1) a(®,§) =1 for all ¢ €D(E,);

(2 Ea¢)=t¢, whenever a( @) = 1.

The physical interpretation of b is as follows: if, after

o
E’S
0
mn
’—‘

ment performed on a physical system being inmitially 10
the staLe 4> the proposition a€l is verified to be true, then

1 o b 5

the subsequent state of the system 18 quF . Hence in other words,
[

Ea describes the state of the system conditioned by the fact

L 5

. i ¥ e { f r_ .

of occurence of an "event" ael (see GUZ | 6O ¢, pp.98-991) .
According to the ﬁbovc interpretation, GUZ 100 é] calls

Eq the conditional probability map associated with the (nonzero)

e

‘proposition a€L.
Now it is convenient to pas s'( imilarly ad above, see Con-
vention on page 37) from Ea to the trans ;ormdtnon P VT
o ol . . :
vhere V, (=R, 5, S :ﬂ% E# )éei;}, is defined by

.+.
a(x) 8, (x/. _.) when a(x)> 0,
e «

\ {1 %
Px =
.8 0 when a(x)

where x ¢V, and | x| := inf ét)O']xet [-»l,l]}. (Clearly, if a =0
then P_ = 0), | |
0

1) Here, following GUZ [60 é}, we prefer the notation a(9) in
place of the more conventidnal<#(a)‘ This is in accordance

with the fact that L is considered here as a subset of the
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Convention, Identifying the set S with its canonical image

A
S, we shall write P&CF instead of P‘a“f) " whereéﬁ ES.'Pa is called

the filter associated with the proposition a €L,

Axiom IL 4, Tor each ael and each &éjﬁ)there exists a

bounded observable Béf}b such that

Bs¢> ::<A1 Pa¢>
for all(t?é Se

Remark 1, B is ne essari[y unigue, by Axiom I 1, I% will
be denoted by Qa A,

Remark 2. P, can be uniquely extended to a linear map act-
ing on the whole space V and the extension will be denoted by the
seme letter P . lioreover, it can be shown that all maps Pa:‘f sty V)
vhere a €L are continuous with respcct to the weak ’éopology
o’(V,;A’b) in ¥, given the duality {(, > . Hence G P*. where R’

a? B
denotes the linear operator in j}b weakly dual to P o ‘

Definition. Two filters P, P, are called compatible,

written as BoERP, i for each state o €3 we have

P (P, * pﬂ)ﬁau {1’ (cee [GO Oy p“io?])o

s

Passing to duasl filters Q, = Py GuZ [60 By p.loz] defines

[$

Qe <>Q

p AT and only if ?a-““a’?b .

Joreover, Guz defines compatibility- of Q. with a bounded observa-

«

65

ble A é})b in two steps, as follows: 1) if A? 0, then Q &> 4 if

and only if Q,}Aé & and 2) if A is 1b't mg, thm Q -<->—5Mam(omy»?

a

there exists a demomposition &4 = & 1’-«%, vhere al,‘xzﬁ.ﬁt such

Vg

that Qu<%a-A;, i b

Axiom IT 5, If Q, is compatible with Ae?}}b , then f
Q{ <> () l( “s » all Borel. Suo::cts B <R,

!"(1'\N

: 1L 6. The space 74;)' of bounded observables is point-

wise monotone T-complete, that is, for every increasing sequence



%AiB 5145 bounded above there exists an Aé.ﬁb such thét <:A,¢>>fz

= sup <Ai,¢> for all éléS. ' '
" The next axiom, introduced for the first time by AL FSBN

and SHULTZ [2] OPﬂul&tCu the key physical property needed Lor

obtaining a Jordun algebra structure ouig

Axion IT 7. Let Pl’PZ be weakly contlnuous positive pro=-
jections on either 4 or V with at most 1 and admitting a comple-
ment with norm at most 1. Then, for each stateé#é?ﬁ, the probabi-
1ity of the exclusive disjunction of Py and P, defined by ‘

Prob ((Py & 1-')2) or (Py & 132))4’ ”E,\llﬁf)” el BB |,
is independent of the order of P, and Py, that is,
Prob ((Pl & Pé) or (Pi & P2)L# = Prob ((Pé‘& Pl) or (Pé % PI)LP'

Remark, ALFSEN and SHULL'Z [2] showed that the property
expressed by Axiom II 7 is gulficierit and necessary for the space
"Ab’ which is a pointwise monotone T-complete order unit space in
spectral duality with the base-norm space V, to be a JB-algebra

B)2 _ A2 ﬁ2)

with a Jordan produvct defined by AB := % ((a+ - B%). So,
one can apply the GNS reprec emiatlon theorem for JB-algebras (see
[3 ) to obtain the liilbert space repre >sentation 1or‘ﬂ1.

Comments. LOUPTAS Y75] proved that a system of observables
of a quantum system, closed under linear combinations a conve-
nient squaring operation, ‘and complete with respect to an appro-
piate norm topology, possesses a Jordan-Banach structure.

Recéntly‘ﬁUM@ER_[7ll formulated an axiomatic theory which
describes a class of "yes-no" experiments, involving a fixed ba-
sic source, a fixed basic detector, and various filters. Lt is
fssumed that all filtefs cénsidered can be constructed from a set

of primitive filters by coumposition and stochastic selectiomn,

Two physically plausible ax1oms are formulated which allow Kummer



ot o

to define the concept of a system in the present context, To each
} ~ N
system he can attach an order unit module (°V, °v_, | 1> s L L)

}Jv

X
wherebhy L °V+; 11> ) is 2 complete, separable order unit

s ]

Nace.,

Two additional axioms are proposed which have the effect that the
AN /~
space ( °V, °V,_, { 1>) becomes isomorphic to the order unit space
’ AN
underlying a JB-algebra, at least in the case where °V is finite -
dimensional,

Open problem, (see PTﬂEuA\[ﬁl, p.5é]). Search if KUMMER's

\

additional axioms (8082_7 L, P.43 and p°4é]) have the same effect
in the infinite-dimensional case,

KUMLIER's work [71} has been inspired, as himself aﬂse'tt, g

181

by a deep and be autJLul theorem of KOECHLR 70] which characteri-
zcs finite-dimensional JB-algebras within-the category of all par-
tially ordered finite-dimensional vector spaces™ (see [71, p.i]).

With the help of this theorem, Hummer deduced the JB-algebra struc-

.

ture of quantum mechanics from four physically transparent axioms,
at least in the finite-dimensional case, This work bears some re-

emblance to the -paper | 5| by ARAKI who, likewise confining him-

self to finite-dimensional case, is able to reocover the J3-algebra

o) el

structure of quentum mechanics from a few axioms. lowever, the

o A o

physical content of Asaki‘*s axioms. remains rather obscure since

he uses, as is castomary in this ficld of inquiry, primitive

concepts of a highly idealized “atdre such as pure states, ideali-

2 ' R4

zed filters, and the like,

By contrast, the work of KUKQEL 711 takes a constructive
approach to the same field of investigation Luat is, Kummer's wmam

primitive concept, the concept of a filter term, is quite & di-

rect concept, The morec idealized concepts, -such as pure states,

iwﬂwvod concents,

et e, appeared later within the theory as




- 45 -

FKummer's approach owes much to the work of GILES [@5 a,é],

who a long time ago proposed that an ideally Fformulated physi-

A ~71 ¢

cal theory should have the form of an axiomatic th eOry, sup

mented by a set of rules of interpretation of the logically pri-

<

mitive concepte.

/

§ 6. Jordan (quantum) logics

In 1975 LIOROZOVA and CHENTSOV LS; aj considered logics
and quasilogics of subspaces of a finite-dimensional unlt““y space
?&with vector addition, ort donal subtraction, isolation of con-

tracts (noncommutative generalized meet) ot two subspaces, and

<

coherent -combination of isocline subspaces as logical operations

1

(see the definitions below). Such lattices of events appear in-

gebras and rings in describing the logic of

stead of Boolean alge

quantum phenomena. [8) o} gives a classification of [R-quasi-logics,
similar to that of tinite-dimensional special Jordan algebras and

establishes a onemtowone correspondence between Jordan algebras
of selfadjoint operators on #and R~quasi-logics,

In what follows, we shall briefly recall MOROZOVA and
CHENISOV'$ results [83 a,ﬁ], and comment on the results due to

Y
ABBATI and MANIA [1 a,b] and BUNCE and WRIGHT &19]
7
Let ¥ be a finite~dimensional unitary vector space over

endowed with a scalar product { x|y > = {y|xY which is linear in

the second argument and antilinear in the first argument,

- . T :
Convention, Linear : subspaces of ﬁ5w111 be -denoted by ita-

lics, while orthoprojections on them are denoted by the corres-
ponding printed letters.
/“ -y - 9 °
For any subspaces J ana 9 af?chﬁdﬂe the following opera-

tions

mL*'L%

L6, 3] jf—--«>f, where 7[ = .x!xé?, 4;}’[X>-~‘= Oy V&’é;})'



=

{652) (;,9) haiea , vhere 7 +9 r«{ z|z = x+y, x€f, ye gzj;'
{6.3) (iﬁ} —>F6 9 , where 7—[99 :z%xlxé;v, Lylzxd>= O,r\lyéﬁ}'

The cosine ?( 4 ?9 ) of the minimal angle between ¥ and 9
is defined by :
x| Glx> ~ Lyl vl y>

sup = - = R(F,9) = sup
xe# x|l x> yeo <Lyly>

and we have
i Lx)y> Lylx>
S (VL,g Y = sup
xef ,yeg <x[x> LylyD>

where 1t is supposed that x and y are nonzero.
Note that ¢ (JL,S) = 0 if and only if & and 9 are orthogenal,

Definition. Sulkspaces which are not orthogonal to one ano-

ther are called subspaces in contact.

We now define the following operation
(6.4) (F,5) =~ F109,

- p Gly> <yle> 5 o
where 30§ : -{A[z ef, sup = gg(f,§) {xlz> }
Ofyes  Lyly” -

in the case waen ¥ and 9 are in contact, and AING =0 in the
e “
case when 7 and 9 are orthogonal,

Propogition 6.1, « IT J and 9 arc subspaces in contact, then
N

™ : ~l . " . N 7 T i §
the operations ¢ "I and “G give an isometry I: 7N 1N

ag follows

¢ N gml(} X =Y > g"lf’&‘ ¥ = X .
WA W :

Definition, Two subspaces o and "% whieéh gre in contact

Lylply>s ¢, N dyly>, ¥yeT.

Proposition 6.2. If # and e are-two isocline su‘bsz‘zees?
. o s . .
then 4 =71(/ 9 and 9 = 6 [a -5 , and conversely,

For two isocline subspaces # and 9_<Ief'ine the operation

: _ -
are called isocline if x|Glx =¢ F,9) {x|x>, ¥ xed ana
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(6.5) (JL 5y -->7< (JL 9) where K v {w & dX*‘bA?Iks xE :’j]

aib
I being the cancnical isometry given by & sition 6,1, and
a,b R,

Definition. & system L of subspaces of?@ which is stable

with respect to the operations ( 6,1), (6.2), (6.4), and (6.5) is
called an R-lozic.

| Note. If L is stable with respect to a proper operation
(643) (i.e. defined only for pairs 725 ) and to the 5pe“atioms

(6.2),(6.4),and (6.5), then it is called an R-guasilogic.

Definition., A& system of subspaces of a unitary vector

space is called a €-logic (resp.,, a C-quasilogic) if it is stable

with respect to the operations (6.1) (resp., a proper operation
(6.5)), (6.2), (6.4),8nd (6.5), a,beC,

Remark. 5~1ogics were later used by.MOROZOV& and CHENT-
S0V |83 él in the study of the structure of the family of sta-
tionary stated of a gquantum ilarkov chain,

Theorem 6.,3. Let J be the Jordan algebra of selfadjoint

operators acting onjé . Suppose that J is closed under the opera--
tor topology. Then the idempotents of J are esentially orthopro-
Jections on the elementsof an R-quasilogic Ly consisting of sub- -
spaces of jﬁ.

Remark, Lj; from Theorem 6.% is an(leogié if and only if
it contains the identity operator, ’

[LOROZOVA: and “HLJMSOV"[EU ] gave a nonclavs;cal @qual&uy
connecting the values'of an operator~valued measure on a pen¢i1
of isocline subspace. They have also shown that if a linear space
S of such measures contains the positive and negative parts of
cach £ 3, then the carriers of S-measure also form an JR-quasilo-
gic, The difference between (- lo rics and R-logics (i,e, quantum

logics of von Neumann and Jordan, respectively) are also discussed
T ol : ‘ %
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MOROZOVA and CHENTSOV [ 83 b | provead:

Theoren 6,4, For overyi{mquaaaloglc L of subspaces of a

tfinite-dimensional unitary vector Space(lé, there exists a cor-
responding Jordan algebra Jp of selfadjoint operators onﬁzé Con-
versely, for every Jordan algebra J of selfadjoint operators,there
exists a corresponding R-quasilogic of subspaces LJ, and we have
Tp =i Tp. = L
3 Ly R

™ A

ABBATI and MANTA [l bj developed a spectral theory for a
particular class o?/M~complet@ order unit spaces in terms of de-
cision effects. These Order unit spaces are associated to sum
logics admitting a f-complete set of expectation value functions,

Remark. The concrete representation of sum logics is an
open problem, ‘

If some conditlons on the “"spectral® order unit spaces aris
ing from sum logics are added, one bbtains JB-algebras and
Alfsen 's representation theory can be used,

hus, a spectral theory for order unit spaces may be of
interest also in the representation theory for ahd logics. Ilow-
gver, the/uwcomploteness cequirement on sum logics is, in. general,
not satisfied, and the duality for quentum logics does not com=-

pletely correspond to duality for order unit-smaces, Consequently,

»] developed a spectral theory for not ne-

cessary unit spaces,., In this th@ory they do not

assume any duality, as.is done in spectral theories, in terums of
decision effect or project Lvé units. |

BUNCE and WRIGHD oxtended in [ 19 a [ the Gleason-Christen-
sen-Yeadon theorem (see [94, 1 ) from von Neumann algebras to

JBW-algebras, while in [LO b] they e}owed that a very large class

of quantum logics (i.e, complete oruuodoiwlsp lattices) may be
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identified with lattices of "projectlons" arising as natural £60-
metric objects in certain convex sets. 4s an application, they
- gave a geometric characterisation of those logics wihilch are 180
morphic to the lattice of all projections in a von Néumanm algebra
on a Jﬁw—algebraG

§ 7. Jordan structures and string tbéories

_prese wt
we shall/in the first part of this Section recent results

that leads us to belive that octgmions or exceptional Jordan al-
gebra should play an important role in recent fundamental physical
theories; nemely, in the theory of superstrings. In the second
part we shall point out how Jordan structurcs could be related to

string theories via the infinite-dimensional Grassmann manifold

'

3

method of SATO[ 99].

1. Let us briefly recall that the exceptional Jordan al-
gebra ma e a dramatic appearence within the framework of super- .
gravity theories through the work of GUNAYDIN, SIERRA and TOWNSEN
[56 a,b,c,d}, Tn their work on the construction and claﬁsifioaiion
of W= 2 Maxwell-Einstein supergravity theories, they showed that
there exist four remarkable theories of this type that are uni-
quely determined by simple Jordan algebras of degree three. These
are the Jordan algebr&s of (3¥ 3)~-lermitian matrices over R, €, I
and 0, Their symmetry grddps iﬁ five, four and three space-time
dimensions give the famous magic square. From this largest one,
namely the eﬁdeptionél"ﬁ‘:]Z Maiwcll~ﬁinsieinAsupergravity defi-
ned by HSKUﬁ?JGmefge all the remarkable features of the maximal

N = 8 supergravity theory in the respective space-time dimensions.,

In refS.L?Z d; 56 a,b,i,e:ﬂ ;

e

t was speculated that a larger theor
fhat includes the exceptional N = 2 theory and the N = 8 theory
may provide us with a unique framework for a realistic unificatior

of all known interactions. Such a theory, if it exists, may well
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turn out to be a string theory (see GUNAYDINandHYUN L)4; D.4987),.

y Glnaydin, Slerra and Townsend was re-

o
”‘_.
=

Remark. The work

viewed by TRUINI in indicating the useful-

3
ford
t...J
\_f—
e A
i =
=
e
5
fte
o
oy
5
oy
iid
E
QO
o
o
ot

ness and paturalness of implementing the Jordan palr language

in such a theory,.

A crucial question in superstring theory is the following:
What mathematical structures have a large degree of unigueness
and can also be associated with strinvs? FOOT and JOSII uu"g“<ted
ijl[@{aj that the exceptional Jordan algebra may be such a struc-
ture. This algebra is indeed unique as it is the only formally
real Jordan algebra whose Q]oments cannot be expressed in terms
of real matrices. &lthough quantum mechanically superstring

theories appear to be consistent only in ten space-~time dimen-
sions, classically superstring theorie are consistent in space-
tine dimensions of 3%,4,6 and 10. These dimensions are suggestive

1.

of the sequence of division algebras R, €, [l and 0 whose respecc-
4 sra o HTI Ay Ty O -~ -~ 111 Iy e b ‘ 2 Y -
tive dimensions correspond to the number of transverse degree of
freedom in d = 3,4,6 and ‘10, These remarks prompted FOOT and
JOSHI | 41 a| to Jook Tor mathematical structureswhich automati-
cally single out 4 = 3, 4, 6 and EO with d = 10 perhaps appear-
ing special, They investigated the sequence of Jordan algebras
% 9

(). consisting of (% X3%)-lermitian matrices over K = R, €,

lI, 6 and showed that variables of the superstring can be inter-

N

- o 1 2 7 (yi }
preted as eleients of the exceptional Jordan algebra ng(ﬁ) .
M b "

The other algebras in this sequence correspond to classical su-

perstring theories, One of the motivations for introducing the se-
] 1 g L+) ’ 2 1
quence of algebras HBOA ig that it is naturally uUDOTuJHu“trl

for HI.(R) ,the spinor corrcs onds to a Majorana spinor of S0(2,1)
) j i b b

= i F ¢ r . - :
for H,(C) the spinor corresponds. to a Weyl spinor of o R
A 3 & et 9

on

- (+ : e : b
for mg(#4) , the spinor corr:svo ds to a Weyl spinor of 80{(5,1)
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and for HB(UfH, the spinor corresponds to a llajorana-Weyl spinor
of S0(9,1). In each case the number of spinor degrees of freedom
agrees with the number of vector degrees of freedom. Thus the
sequence éutomatically incorporates equal Bose and iermi degrees
of freedom,

In FOOT and JOSHI's approach [41 a],"transvefse Lorentz
rotations are contained in the automorphism group of the algebra
. ()™, :

In conclusion, the classical superstring theories can be
expressed in a unified way using sequence HBGKfH. Furthernore
the d = 10 case is.especilally interesting as it corresponds to
the exceptional Jordan algebra H5NDfH.

4s FOOT and JOSHI pointed out [41 a\, the GREEN-SCHWARZ
[50 a,b} superstring is not the.only mathematically consistent
candidate for a unified theory of all interactions. Nevertheless,
Foot and Joshi analysed the superstring because of its central
- role in the otﬁer string theories, OFf particular interest is the
heterotic string (see GROSS, HARVEY, NARTINEC and ROHE’[51 a,é}),
which can incorporate the exceptional gauge group B, @ ES” The
appearence of the exceptional group @BQQI%gis interesting be-
cause k,, like F4 can be related to octonions,

In 1986 WITTEN’[124 a] made some interesfing remarks cone
cérning a new approach to string field theory. Witten attempted
to-interpret the interactions of the open bqsd&hrstring in termé
of noncommutative differential geomefryw Furthermoreé he suggested
that closed bosonic strings may be connected with some kind of
commutative but nonassociative algebra,

,Motivated.by Witten's ideas, FOOT and JOSHI investigated
in,[41 b] the incorporation of Jordan algebras, to obtain a .mani-

festly commutative but nonassociative string theory. Namely, they




showed that the free bosonic string theory can be reformulated

T

gzebra. Then they proceded to incorpo-

g 15

using the special Jordan al
rate the exceptional Jordan algebra into the bosonic strings This

leads to an exceptional group, structure at the level of first

gquantization, which they interprcted as the appearence of the
gauge group,
However, as Foot and Joshi pointed out, they are unable to

construct the general N-point scattering probability, and thus a

U

conclusive proof of the consistency of their model, at the inter-
acting level is lacking. So, further work is required and it
emerges the following

™
i

Open problem. kstablish whether in fact Foot~Joshi string

is consistent. In, partictlar the construction of the N-point

scattering probability warrants attention.

Comments, The above-mentioned ~open problem appears to be

a difficult one, possibly requiring a new type of field theory

0

based on the nonassociative Jordan formulation of quantum mechanice

The appearence of the L“hH“’OPMMthu group S0(8)

DYy Ay O A r /'] b anoosaata that o a3t g + +h
approaci L PR SUgaests TAgT 8 - JaTrlix. of - the

dan algebra with fixed eigenvalues may be reldted

thus be possible to incorporate this work into

1e heterotic string, which consists of closed bosonic strings in

o

26, and d = 10 fermionic strings |51 a,bl.
§ O ¢

Let us mention now the work of Ll PﬁSCHAﬁLAI, and SAVOY

o

[74] by which & ““M”I“ILZ41¢OH of po~00qlc superg: dVLty models is

ri

presented, where scale transformations and axion~like classical

O]
%)
0

symmetries of the superstrings in four-dimensions are QXpLLCIﬁ]y

ot
]

e
et

realized as dilatations and translations of the scalar fields in

the KéhleY manifold. A sufficient condition is that the (dimen-

sion one) dilaton field matrices can be arranged in matrices of
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a Jordan algebra., This determines four possible classes of irre-

o

ducible manifolds which are symmetric spaces, An arbitrary number

o

of matter (dimension one half) fields can be included in the
K&hler potential in such a way to preserve the algebra of isome-

tries. This inclusion defines a generalization of flat pétential
models with zero co“nological conatant and scalar-fermion dege-
neracy except for massive fermions along the flat directions of
scalar potential, For two classes of manifolds and trilinear su-
perpotential, a SU (1,1)X U (1) subgroup can be promoted to an
exact symmetry of the effective Lagrangean.,

GODDARD, NAMM, OLIVE, RUEGG and SCHWIMMER [47] analysed
the algebraic structure of dependent fermions, namely ones inter-
related by the vertex -operator construction. They are assoclated
with special sorts of lattice oyutcns which are introduced and
discussed. The explicit evaluation of the relevant cocycles leads
to the results that the operator product expansion of the fer-

-

mions is related in a precise way to one or other of the division

0

algebras given by €, H or ¢. In ref. [ -] RULGG showed that from
the fermionic operator product expansilon one can define a product
with the same algebraic properties as the Jordan produet,

‘he CGo du1?&~Kﬂhﬁm0LiVunuUGugwoLﬂm]JAGF octonion result ha
-an impdrtant physical application in the formulation of the super-
string theory of particle iytersctions. The fermionic‘vertex bpew
rators related to octonions are associated wach ghort roots of

Fy ahd fall 1zto three orbits uﬁdgr the action of the ”eylbgfoup

Ds» the subalgebra of F, defined by its long roots D,= s0(8)
is the residue of the Lorentz invariance group of the superstring
in the light cone 9awge , In superstring theorx J the fersionic ver-

tex operators are faziliar and important constructions; For points

)

of the orbit constituting vector welghts OJf"D4 they are Ramond/
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Neveu-Schwarz fields. For one of the other two orbits, comprising
spinor or conjugate épinor welghts, they are the fermion emission~
absorbtion vertices (sece [ 49]). Thus the algebra of these quanti-
ties which is essential to the evaluation of superstring scatter-
ing amplitudes appears to be related to the alg
or to the exceptional Jordan algebra ﬁj(im .

Let us mention also the works of FAIRLIE and MANONGE IB;
TERRA [307 bj CHAPLINE gnd GUNAYDINIja ] and GURSEY [58 gigwho'
spectulated on the possible role that the exceptional Jordan al-
gebra may play in the framework of string theories,
ERRETRA | GOLEZ agnd ZIVERLAN [9 é] discussed the contruc-
tion of Lie algebra in terms

S

of Jordan algebra generatora. & ge-

‘ =)

Ul

neralisation to Kac-lloody algebras in terms of vertex operators
is proposed and may provide a clue for a construction of new re-

re

presentations of Hac-.oody algebras in terms of Jordan {ields

(For Jordan fields as a generalizatioh of Fermi ¢1c¢ds see L ])
GUNAYDIN and Hfbh )41 gave a stringly construction of the
. : (U - 5, ond : .
exceptional Jordan algebra L,U@) Specifically, they constructed
o oI v " . L Pl .
H, (@)’ using TFubini-Vene iano vertex ODOTJtO“” This 18 & very
special application of a géneral vertex operator construction of
nonassociative glgobras and their affine extension dCJ““OD@d
vreccrtly by GUN&IDEN£‘5L é] This construction gives not only

Ml,MD) ’ but also its LrtvraT affire extension in terms of the ver-

TaX operators. '
GURSEY (Ju h] cdn; ed the discrete Jordan algebras of

(LXL) o= ( A2 )wan&\) XJ)=tiernitian matrices over integer
of the four division algebras &, €, U and 0, They are transformed

Y

under discrete subgroups of groups associated with the magic
square., Points corresponding to a discrete Jordan matrix belong

to a lattice generated by Weyl reflections that are expressed by
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meens of Jacobson's triple product. Special cases include the
0 (32), Eg x Eg end B, lattices that occur in superstring theories.

2, 4s we presented in Section 8 of JSA.V., S4TO end S&TO

flOO] have an outstanding contribution to the study of the so-cal-

led goliton equations,

In is well kﬁown that a gsoliton is a nonlinear wave whose
properties are characterized as follows: |

A, & localized wave pfopagates without chenging its proper-
ties (shape, velocity, etc.); }

B. localized waves are stable againgt mutual collisions
and each wave conserves ité individuality.

The first property has been known in hydrodynamics since
the midle of the last century as a solitary wave condition. The.
second means that the localized wave behaves like a particle. In
modern physics, a suffix™on" implies the particle property, for
instance, phonon and photon. In 1965, emphasiting the particle-
like behaviour of the solitary wave, Zabusky and Kruskal .called
waveg with the properties & and B "soliton®. (For more hyStorigal
details, see, for instance, WADATI and AKUTSU [ 121]).

For an elementary introduction to SATO theory we refer
the reader to the paper [ 88 by onra, SATSULA, TAKAHASHI and
TOKIHIRO, Starting with an ordinarg.differantial:equ&tion, intro=-
duciﬁg an infinite number of time variables, and impésing a cers-
tain time dependence on the solutions, they oBtaiﬁed the.Sato
equation which.governS‘the time development df thé variable ccefjv
ficients., It is shown that the generalized Lax equations the
Zakharov~Shabat~equation‘and the inverse scattering transform
scheme are generalized from the Sato equation. It is also revealed
that the Z-function becomes the Key function to express the s0lu-

tion of the Sato equation., By using the results of the répresemtam
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tion theory of groups, they showed that the Z~function is gover-
ﬁed by the partial differential equations in the bilinear forms
which are closely related to the Pliicker relations.

- TAKASAKI, inspired by Sato's theory for soliton equations,
gave in§j112 a,b,é] a new approach to the self-dual Yang-Mills
equations, which is an alternative method also based on the view-
point of a complet integrability¢ It is remarkable, that the
self-dual Yang-Mills equations admit such an approach parallel to
Sato's approach to soliton equations.

: Remark, & close relationship with MULASE’é method}jSéj can
be pointed out, ”

An application of the above-mentioned Takasaki's approach
would be expected to higher dimensional generalizations of gauge
field equations., . |

Another application in eight-dimensions was solved @y

SUZUKT [111 a,ﬁ] using Grassmann manifold method. Witten's gauge
fields are interpreted by SUZUKI [ill C:Sas.motions on an infi-
nite-dimensional Grassmann manifold. Unlike the case of self-dugl '
Yeng-llills equations in TAKASAKL's work [112 a,b],the initial
data must satisfy a system of differential equations since Witten'
eQuations comprise a pair of spectral parameters. Solutiens Cop-
- responding to (anti-) self-dual Yang-Mills fields are characteri-
zed in the space of iniﬁiél data and in application, some'YEnéu
Mills fields which aﬁeAnot:seldeual, &ntimselfmdual mor ghelian -
can be constructed, . | |

Let.us also mention the JIMBOandMIWA's approach to the
theory of soliton equations [63}. They considered an infinite-~
dimensional Lie ‘algebra and its represehtation on a function
space. The group orbit of the highest weight vector is an infini-

te-dimensional Grassmann manifold. Its defining' equations on the
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function space, expressed in the form of differential equations,
are then exactly the soliton equationg. To put it the other Way
" there is a transitive action of an infinite~dimensional group on
the manifold of solutions.

MANIN and RADUL [78] gave a supersymmetric extension of
the one-component KP hierarchy as the Lax equations, The finite-
dimensional version of the KP hier&rchy was called by Ueno the

Grassmann hierarchy. In the theory of Grassmann hierarchy the

fundamental role is played by a linear algebraic equation which

is called the Gragsmann egquation. UENO and YAMADA gave in[§l8 aséj

& supersymmetric extension of one-component hierarchies from the
vieWpoint of the Grassmann equation. Their approach is slightly
different from that of MANIN and RADUL[ 78. YAMADA generalized
1n27126j tha results of [i38 a p] to the multicomponent case., In
ref, 118 ¢} , UENO and YAMADA revealed that the super KP hiersr-
chy is equivalently transformed to the super Grassmann equation
that connects a point in the universal super Grassmann manifold
with an initial data of a solution. i ;

As TAKASAKT pointed out [112 d], recently, physicists have
come to recognize the rela%ance of ‘the theory of universal Grag-
smenn manifold (sketched by SATO and SATO}?IOQI) to physical new
topics, such as conformal field theories and stringg (see Iazlm
'BASHI, MATSUO and OOGURT [62], vara {114], ALVAREZmGAUME GOMEZ
and REINA (47, WITTEN [124 bf, Kawan I0T0, NAMIKAWA, TSUCHIYA and
YauADA [68], MICKELSSON [80 a], see also ARBARELLO, DE CONTINI,
KATS and PRQVBSI[T6]7fOT an appllcatlon to the moduli geometry of
algebraic curvés which has a close relation to string) and anoma-
lies (see'MICKELSSON'[éO b é]and,MICKELéSON and RAJEEVICSi])ﬁ
Almost all of them are based on the framework developed by SEGAL
and WILSON'[lo;] and PRESSLEY and SBGAL [93], Their functional-
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anéiyticai formulation heve a number of advantages, and is now
widley recognized as a standard fremework. Admitting this fact,
TAKASAKI have rewritten everything in the spivit of SATO sut SATO
[IOOJa Their highly abstract and algebraic stendpoint is fairly
distinct from common sense of most physicists, who aﬁe much more
familiar with the use of Hilbert spaces rather than abstract veg-
tor spaces. 4s TAKASAKI remarked [112 d,pp@3w§]5"the algebraic
method however has several adventages despite of these unfamiliar
featureé, tﬂe most importent being the fact that one can develope
a theory not only on the basis of real and complex numbers but
also within a more abstract world such as that of p-adic numbers".
A particular choice of affine coordinates on Grassmann ma-

nifolds, for both the finite - and infinite - dimensional case,
made by TAKASAKI [112 d] turns onto to be very useful for the
understanding of geometric structures therein. The so~called
*Kac-Peterson cocycle“, which is physically a kind of “commutatop
enomaly", then arises as a cocycle of g Lie-algebra of infinite~
simal transformations on the universal Grassmann manifold. These
ideas are extended in [112 d] to a nulti-component theory. A& sim=-
ple application to a nonlinear reslization of current snd Virasorp
algebras is aiso presented for illﬁstration in Ell2 @j, e

: SATITO [98 Bj (see also [98.c])shﬁwed that the vertex opefaw
tor of the three~bosonic-string interaction of Della Selva and -
Sa to (see f2i}) is an element of the universal Grassmann mani-
fold. The ¢orfespondéﬁce between string_theorks and soliton theo-
ries is made explicite through the transformation of evolution
paraemeters of solitons ﬁo string coordinates, the same transfor- :
mation which relates Fay's trisecant formula (see E3j}) to
Hirota's bilinear difference equatién (see [Bé])e

GILBERT [45}5 based on the approach to infinite Grassmannfms
as the Space of' solutions of Kp equations (see r10é79fé6 sl
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[31]), described in simple terms the infinite sequence of non~li-
near partial differential equations (the KP equations) and gave
possible applications to a fundemental description of interacting
strings. Gilbert also indiceted in [45] lines of research likely .
to prove useful in formulating a description of nsnmpertﬁrbﬁtive
string configurations.

An interesting connection between Witten's string field
theory and the infinite Gfasamannhn,muithe possible characteriza-
tion of the group orbit on the Grassmannianbythe bilinear identity
are examined by GAO[T43]°

AWADA and CHAUSEDDINE introduced | 8 & the infinite-dimen-
sional gfaded Grassmann manifolds in terms of free field operators
and studied their'properties& They showed the embedding of the
graded Diff Sl/Sl manifbld in the graded Grassmanniens, and com-
mented on the possible supersymmetric KP hierarchy.

Let us recall at this point that there are two attractive
views of string theory, both based on holomorphic geometry. The
first is the formulation of quantum string theory as integrable
analytic geometry on the universal moduli space of Riemann sur-
faces. The second is based on the concept of loop space and for-
mulated as a holomorphic vector bundle over the manifold
Diff Sl/Sle In both cases, there exists an one~to»Qne embedding
of theAbase manifold into the infinite-dimensional Grassmannians.
As AWADA and CHAMSEDDINE pointed out [8 éﬁthére are various ad-
vaniages of wérking with the Gfassmannians, mainly that most com-
putations become algebraic as well as having the prcmiée of pro-
viding a non-perturbative treatment for moduli spaces of all
Riemann surfaces, including the infinite genus one", |

Recently, AWADA and CHAMSEDDINE [8 b] Foumuul dted the elod

! ) on §
sed string theory as Hermitian geometry Grassmannians.
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Open problem (see [8 ﬁ])@ Generalise the Awada-Chemseddine

approach (8 B] to the closed superstring and heterotic string. .
As we already wentioned,SEGAL and WILSON‘[lOi], and
PRESS|EY and SEGAL [93] developed a framework which is a different

approach to infinite Grassmannians. It consists of the space of
choices of fermion boundary conditions for the free fermion field
theory on a disc, In the ref. [123] is described how the modified
KaV equations fit into the Grassmennian framework, topic not
tuched in ref. [101], Recently, WITTEN’[124 b] clarified some
aspects of the relation between quantum field theory and infinite-
dimensional Grassmennisns. More precisely, he described in physi-
cal terminology some éspects of relation, surveyed by SEGAL and
WILSON{?lOi] between Riemann surfaces and infinite~dimensional
Grassmanniens, This relation has been essential in recent studies
of the Schottky problem (see MULASE [86 b|, SHIOTA [106:(}, and
ite relatioﬁ with quantum field theory and string theory have
been subject of recent discussion from a physical polqt of view
(see ISHIBASHI, MATSUO, OOGURI [62] ALVAREA»GAUML, GOMBZ, REINA
[4], vam [119)).

MICKELSSON and RAJEEV | 81] extended the methods of PRES-
SLEY and SEGAL[?93] for constructing cocycle representations of
the restricted general linear group in iﬁfinite‘dimensicns.ta‘tn@
‘case of a larger linear-graup_modéied‘by Schatten classes of
rank 1<{p < o2 (see SIMON‘[}Oé]), An essential ingredient ié the
geﬁeralizationAof the determinant line bundle over an infinite-
dimensional Grassmannian to the case of an afbitrary Schatten
rank p7>» 1. The results are used to obtain hxghest weight repree-
sentations of current algebras in d+1 dlm@n310ns when the space

dimension @ is any odd number.,

Conjecture (see SEMENOFF [105})3 Similar problems to that



of MICKELSSON&nJRAJEEV‘[Si] nust afflict the electric field ope- :
rators constructed by SEMENOFF in [103},

Recently, YAMAGISHI [127] pointed out an interesting rela-
tion between the KP hierarchy and the extended Virasoro algebra,
namely, he showed that the simply extended KP equation hag enough
information to determine the extended VirasoYo algebra, LEVI and
WINTERNITZ, [ 73] showed that a class of integrable nonlinear dif-
ferential equations in 2+1 dimensions, including the physically
important cylindrical KP equation, has a gymmetry algebra with a
gpecific Kac-Moody-Virasovo structure, KODAMA [69] presented &
systematic method to produce a class of exact solutions of the
dispersiénless KP equation, using the conservation equations de-
rived from the semi-classical limit of the XKP theory. These exact
solutions include rarefaction waves (global solutiohs) and shock
waves (breaking solutions in finite time)., ZABRODIN £129j proved
that the scattering matrix for free massless fermions on a Riemann
surface of finite genus generates the quasiperiod@c solutions of
the KP equation. The operator changing the genus of the solution
is constructed and the composition law of such operators is dis-
cussed. Zabrodin's construction extends the well-known operator
approach in the case of solitpn solutions to the general case of
the quasiperiodic Z-functions. DAVID, LEVI énﬁ WINTERNITZ [26]
constructed a general class of fourth order scalar paﬁtial diffew
rential equatioms,xinvariant under the same group of local point
traﬁsform&tionsv a§ the KPiequaﬁién, R 7

Finally, let us refer on other papers-of interesf, as fol-

lows: ) 4
EVANS[?E#] established an explicit correspondence between

simple super Yang-Mills and classical.superstrings in dimensions

544,6,10 and the division algebras R, C, H, 0, & gamma matrix.
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identity necessary and sufficient for their existence is shown to
yield trialities, objects which are equivalent to division alge-

bras, Evans interpreted then the identities necessary for SUper-

syumetry fvomamore mathematical point of view related to the work
[107 ) by STERRA, |

Various aspects of the connection between K3hler menifolds
and string theories are examined by RAJEEV [94 é] (see also BOWICK
and RAJEEV [18]), ZANON)?l3ljg CECUTTI, FERRARA, GIRARDELLO and
PORRATI [ 21],

Comments. s we already mentioned in § 8 of JSA,V,, it
would be very interesting to find an algebraic (may be Jordan)
description for the infinite-dimensional Gréssmann manifold ap-
pearing in Sato's approach, corresponding to the Jordan structure
description of finiteédimensional.Grassmann manifolés presenied
in § 2 of JSA.III. and § 3 of JSA,VI. At any case, it would be
fruitful to meke use of the Jordan algebra description of finite-
dimensional Grassmann menifolds which correspond (see § 8 of

JSA.V) to rational solutions of soliton equations.
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JORDAN STRUGTURES WITH APPLICATI ONG , IX,

JORDAN ALGEBRAS IN MATHEMATICAL BIOLOGY,

Radu IORDANESCU,

C’ 2

(D

This paper describes the applications of Jordan algebras

iy

-

to population genetics and color perception, as well as their

possible use in bioenergetics.

§ 1. Jordan algebras in population genetics

[99]

Note., For a comvrehensive account on algebras in genetic
it —e & [0 3 <2

.

. - s =
up to 1980, .the reader is referred to WORZ-BUSEKROS monograph /32 27
P . s & b b &

ETHERINGTON / 6 a,b 7 showed how a nonassociative algebra
L : Wb N

O

can be made to correspond to a given genetic system. The fact that

-

many of these algebras have common properties has prompted their

study from a purely abstract standpoint. Furthermore, these alge-
braic studies gave new ways of tackling problems in
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In a study of nonassociative algebras arising in genetics,
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the weight w is defined by

Remark. It is easily seen that x° = w(x)x.,
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Proposition 1.1 (Algebraic). Bvery element of unit weight
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3u,§:L idempotent.
(Genetic). In the absence of selection,
gametic proportions remain constant from one generation to anoiher.
The algebraic rest u1t is more comprehensive =7
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(Genetic). In the mating schemes shown in
(1.1), the populations Fl and ¥, have the same genetic proportions

ot

if P is the offspring of mating of R with itself.

The algebra:g,“c responding to proportions of
5 . o L TN I VN 5 SAT
zygotic types, is formed by dapilcat1¢@,.§ (see ETHERINGTON / 6 a,c/x
its besis elements are pairs (x,y) of basls elements of G with

s § oo EAE % \ TS e . A A
the multiplication rule (x,y)(u,v)i=(xy,uv). A canonical basis may

be taken in & by setting: c i=a_, c;i=a —a., (1#£0), for which.the

duplicate Z can be written as
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Obviously, é? is associative .Congider the special Jordan algebra
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Xy =5 (Ko + JeX)o It can ecasily be seen that is disomorphic
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If it were possible to know in advance that the genes of
only one of two given populations mating together are transmitted
to the offspring, these could be writlen first in the product, and
the system would correspond to the multiplication table (1.2).
¥ I f

The fact that § is a special Jordan algebra appeers as a conse-

Definition. A special train alscbra is a commutative alge-

bra over € for which there exists a basis {aO, o..,zal} with a

..
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multiplication table of the following kind: aja.
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and all powers of the.icezal (a]9a9, ey an) are ideals. (The
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povers I¥ of en ideal T are defined by I =T
Remerk. A commutative algebra over T for which only condi-"

tions (1.3), (l.4) and (1.5) are required was ca]Lpd by GONSHOR

genetic algebra (see /8 a_/). Schafer's conoept of genetic

aleebra coincides with that of Gonshor (see GONSHOR 3 a
o = §
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Theoren 2. 1;7 . WORZ-BUSEKROS defined / 32 b_/ three kinds of

ﬁo1cowqy tetlve Gonshor genetic algebras and (b“‘aCtPLJ zed them
berms of matrices.,

Comments, Lét us mention in this respect that in the ma-
-+ Sy o ) o 3 Y £ e £ a Tl YREY 1 1 " ‘ 2 L3
tlematlcal tneory ol algebras in genetics, whose origins are in
several papers by Btherington, fundeamental contributions have been
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rada e I B evn e e R (A 3 / o ’ " .
made by Schafer, Gonshor, Holgate, Relersgl, Heuch and Abrahanm (for

a deteiled account see / %2 a /).

Definition. The xojﬁ are called the train roots of the al-
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gebra, (They ere the characteristic roots of the operator whicl

'is multiplication by a_.)
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algebras corresponding to polyploidy c
the appearance of Jordan algebra gecms to be bound up with the
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property of attaining equilibrium after a single generation of
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Suppose that mutation occurs in the chromosomes, i.e. suppose
L 4
that a rate of alleles a. mutate into the alleles a,, i A i I we

e -

ol Yy de - 7, 1 I < 55 B - fa - Y @ ol ' o - 5
QG@ObG:tdlﬁ rate by rij (setting Ty = 0), we can COLHUTUCt a new
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algebra, denoted by J;m’ ‘alled a2 gemetic algebra of mutation

(see gféo, p.180m7), The new multiplio 1tion t‘ﬂle then 1”
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Concerning genetic algebras, the fundamental idea hnv been to

define a basis {G— vooy un§ with a one-to-one corres poridence

-

L)lf]

to the genotypes g¢, ..., g, considered, emd then give a multipli-
0 be

r’\

1
cation table so that the product GiG. of two basis elemente

" . . . = . 4 .
equal to a linear combination > »p.., &, where p.., is the-
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probability of getting genotype &y in a crouo between g. and
X A

g. individuals.
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Proposition 1.5. Let f;m be a gametic algebra of mutation,
with mutation rates r.j. For E;m to be a Jordan algebra, it is ne-

i
cessary and sufficient that the following system of n identities

in x,( k=0,1, ..., n) holds:
Az

n

= {=0
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O’ i:l’b.., fl7
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bt n n

n )
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In. the same paper / 20 7, PTACEITINI CATTANEO used conditions
‘= ! 3 5 L, 1 & Jud A 1% t e " §
(1.6) to determine the restrictions of the r..'s for to be a
Jordan algebra in specific cases.
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Recently, PERESL 4?19 a_/ proved that if A is a nonassociative
’ ~ : .
S R & . .
algebra that verifies A=A and has an idempotent, then A and its
: .
duplicate have isomorphic automorphism groups and isomorphic deriva-
tion algebras., This result is then applied by Peresi to the gametic

algebra for polyploidy with multiple alleles.

Definitions. An algebra A, not necessarily associative, over a
.

commutative field K of characteristic different from two, that

admits a nontrivial homomorphism w : A "—> [K is said to be baric.
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A baric algebra A that satisfies the identity (a”) =w"(a) a” for

all a & A ig called, a algebra,

Remark. SINGH and SINGH / 27/ showed that Lie and Clifford
Biﬂeﬂr as are never baric. On the other hand, starting with a
algebra, it is possible to derive new algebras which are Iie,Jor-
dan, alternative or a&sociative;

Every Bernstein algebra A possesses at least one idempotent e.
I+ can be decomposed into the direct sum of subspaces A= B S RNEY

:}Z:O}c

Ts A has finite dimension, wich is at least 1, dim A=l+n,

TN

3 - o= [T7 TTs = oA
W1 TH Se=ie 5 Ue = { '(‘;3/'

=

then one can associate to A a pair of integers (r+l,s), called

of A, whereby ' :
»g=dim U , 8 =dim Z ,
)
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Recently, ORZ~BUSEXROS / 32 0“7 showed that for each decompo- |

ition n= r + s there exists a Bernstein algebra of type (r + 1,8).

Bernstein algebra of type (r + 1, s)

il

Thereby the
nos been introduced as Bernstein algebra of the corresponding type

: , 2
vhere (Ker w)® = éo} .
]’w'wv-r» )C\ /-'vr) —7 i - N T ST~ SR T o 3 a :
7ORZ~Bi 105 ./ 32 c_/.showed thet the well-konovm decompo-
sition of a Bernstein algebra with respect to an idempotent ig-not-
hing else but the Peirce decomposition krnown for finite-dimensional,

y

power-associative algebras with idempotent, especially for Jordan

algebras with idempotent,

TT oy - B : < 7 < o 1 v @ *
Hote., Bernstein alpgedbrag-are-not 1 O1A?W1 power-associative.,

'i
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Peirce theory, W R4-BUSEKROS / 32 ¢ /shovwed that

in a Bernstein algebra all idempotents ar principal and thus pri-
mitive. Hence, the Peirce decomposition cannot be further decompo-

sed. She deduced a necessary and sufficient condition for a
Bernstein algebra to be Jordan, and obtalned a number of speclal
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ts from it (fbhe principal two being Proposition 1.6 and
Theorem 1,7 below).

Proposition 1.6 (see WORZ-BUSEX
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>
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o A trivial

Bernstein algebra of type (r+1, s) is a aspecial Jordan algsebre

&S v ooy

Remark, Proposition'l.6 is a generslization of HOLGATE 's re-—

sult / 12 a_/ (see Proposition 1.4 above and Remark which follc ows ),
who proved that all gametic algebr for simple Mendelian inheri-
tance are special Jordan algebras. Thereby the gametic algebra for

gimple lendelian inheritance with n+l alleles is a trivial Bernstein

algebra of type (n+l,0), cf,WORZ~BUSEKROS 2324k

A _ - o " » . .
Let A be an algebra over K with weight homo-

morphism w: A —3> K, Then A is called a normal algebra, if the

C e oy X

identity x“y = wix)xy is sati

p.397_7). Every nor-

geve a characterization of Bernstein

algebraes which are Jordan algebras (called by him Jordan Bern

a field of characteristic different from 2 or 3, angd

Theorem 1.8 (see WALCHER /31, p.219_ 7). Let A be a baric

algebra over a field of characteristic different from 2 or 3, and w

7 3 m

homomorphism from the definition of -A, The following

D

statements are equivalent:
(1) A is a-Jordan Bernstein algebra
(i1) A is a power-associative Berunstein algebra
, : . . )
- w(x)x® =0 for all =x < A,
As a ecoreollary of Propos ition 1 from WATCHER /W?4_,, it follows

that every Jordan Bernstein alg is gonuﬁio} Thus, by WORZ-

o

BUSEKROS / 32 a, Theorem 7.l<w7 fO” dim A=m+l, we have a chain of

ideals of A
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such thdt‘dlm H,=m+ 1 ~1 and HiNjC?mk+lg where ki=max gl,J }9
for all i end J.
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Notation.lLet ¢ be an idempotent of A from Theorem 1.8 above,

as usual, the left multiplication by c.

Jimension m + 1. Then there exists 2 basis
{Vi, T 7m§0f N such that ¥y is an eigenvector of L(c) for

141 % m“ﬂi is spamed by Vise.., V (1L £ i€ m),

s 1 T T i A 77 5
‘he VALCHER's results / 31_/ should at least make

ordan Bernsteln aljﬂorq a manageable task:

toke into account the composition rules for the eigenspaces and note

that the only thing to be checked besides thilis 1s the identity -

mm

Recently, HOLGATE / 12 Qm7 examined conditions under which the
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n genetic algebras, and the consegquences

of imposing it when i

n

not.It appears that, as with the Jordan

identity (see HOLGATE /12 &/, and HICALI and QUATTARA / 17_7), the

entropic law only interacts incisively with the properties of gene-
tie for small rank or dimensioen.

2 ogle ity

In order to endow +the set ifof nerceived colors with a geome-
trical structure, various sbandard experimental VO‘Ql;u are taken
as axioms. One can show that there exists a real vector space U/
spanned by the set %f in which szis a cone of perceived colors.

Denote by GL(?Z) the

&

‘oup of orien ﬂt1ON~W“F%OJVAQS linesar trans-—

R /731, p.2217). et & be a Jordan
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formations of v which preserve the cone % GL (f is a subgroup

of C?L(w), and therefore a ILie group.
*
Making use of standard results in the theory of homogeneous

) . i e .
sSpaces, I can be identified with the homogeneous space CL( &) /K,

-where K is isomorphic to the subgroup of u[;(?f) which leaves some

point of ?f fixed, hence to a closed subgroup of the orthogonal

group, and consequently to a compact subgroup of GL(g).

L + LN e Pz i + . 0

eitner to R' X BRY ¥ &% or %0 BT X 8L(2,R)/50(2), R denoting the
positive real numbers,

The GL( T)-invariant metric (sece (2.7) below) yield in the

FY‘(“('

first case STILES' generalization THOLTZ' color me~

; Co o
Finally it follows that Z is a homogeneous space eguivalent

tric / 10 _7, and in the second a2 new color metric with re espect to

which i‘? is not isometric to a buclidcan space. K
ANV OURT T\ TT Vg L} ks - b SPTNS -.
RS IKOFE 21 a showed how the concept of Jordan algebra
o~ ()

provides an unification of both cases,

[

I P ... o e R o mey T : e - (‘
algebra and consider expﬂ §= { =KD & a € f]_l[ (see J8.

A

Namely, le’tggbe a (finite-dimensional) formally ro(LL Jordan

lf\ ’ '§ l)u
Consider on A the form M (see JSA,III, § 1) g'j__ven by

¥ et

M(a) == Ir L(a), aedf.

=i

A i o NG . w § ik a - n (-
1 A=R (=1, @), then J(z)=a,uhile i A= @)

It can easily be geen that for £ > 0- the map a -3 a/c>< ol
SO1O ful’:_r_ sm of R onto & Jordan algebra A () with unit element

l/oL and t.‘ﬂ@."t; : ; . ' .
: «
exp ﬁ(o():: {pr%a\ aéﬂ}: g(ex;p a ) ‘ aé‘;ﬂ?:

:{xc’z_‘xé—; oxp%} Jd*
Writing 7%[0(40(3(5) :?—’.74@(4) 69 7[%(0(2) [°< g 2
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eXy mgﬁd) = 2 = x X is positive definit
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Thus,

exp Jg = Zf
it JZ} = jz} (
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percelved colors

) or A=, @

N

The group GL J% s generated by the map P(a) for o e

(P(a) being the quadratic representation ofJg , see JBA, § 1)
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variant metric on Dxp74 is given by

BEemark., With the unification provided by the.concept of

rAdamm Al e = SrriImenta AT Aa Y Ao e o)
ordan algebra, the arguments concerining oxLﬁ“tnoss can be

e T < - . Re Rl
anceptually reversed (see RESII
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§ 3. Jordan algebras and bioenergetics

7 accepbed nowadays, proteins are the principal

workhorses of the cell. They are the major organizers and mani-

Yhe il - G e LY e PR - i I : 4 ’ » T
ulztors of binloerical enerszv-and enzvmeg that catalyze and main-
N . O v o

\

tain the life pr ocess. The proteins are responsible for the active

homogeneous space of GL{exp J% ), zffa GL(epr?}mir«

transport of ions into and out of the cell,as well as for cellular

gt a7

—

and intracellular movement. That is why the discipline of bloenerge-~

tics, which is the study of how cells generate and transfer their

O

energy Ovu>1v is primarily the investigation of how proteins work.

s

the composition and three-dimensional structure

e
J
i
‘h
fY‘
s
(&g
-

of about “wo~huu1r >d proteins- are known. However, there is no



yroteins operate dynemically.

generally aooepted_moéel of how ¢
The idea that the energy released in the hydrolysis of ade-
nosine triphosphate (ATP) molecules transforms into that of s soliton
eioitation and is transferred with Oreat efficiency along protein
‘molecules was used by DAVYDOV as early as 197% (see /WE am7) +to
explain the contraction mechanism of tramsvefsoly striated muscles
of aﬁimals at the molecular level. Davydov et al.considered, in ad-

dition, the idea that o{-helical proteins may fecilitate electron

transport through a soliton mechenism. In this case, an extra electror

causes a lattice distortion in the protein that stabilizes the

Thus it may be reasonable to consider charge transfer across
membranes, energy coupling across nembranes, and energy transport

along filementous cytoskeletal proteins in terms of a soliton mecha~—

nism, since proteins that carry out these functions contain struc-

fural units with significant «~helical character (see DAVYDOV/ 5 b_/)

The Davydov model leads to a nonlinear Schrodinger equation which
has soliton solutions (see ZW14 D.1l) /)

e R i L AT ATIT TR T o T AT o
HNote. AS wéas observe d by LOIDAHL LAYYE and BIGIO / 1-4 ol {ﬂh@
J ¥ $ e ~
b |
dy

soliton model is one cmong several concepts for protein
which should attract the careful attention of biologists.Clearly,it

cannot explain every aspect of protein dynamics, but it 1s mo tiva-—
ting exelting questions and new expe riments.
LAYNE / 157 pres sented a uAm071fjpd theoretical model for

£

anesthesia activity, taking advantage of the fact that the o helix

is an important structure in membrane and cytoskeletal proteins.
—formu.l&teds
More precisely, LATNE. /713, p.24_//the following question:
How does the binding of an anesthetic molecule to a protein modify

normal protein behavior? He answered this question using the soli-

ton model as a paradigm for normal protein functioning . The .soliton



model proposes that K -helical proteins effect the transpord

of ATP hydrolysis energy through a coupling of vibrational exCl-—
tations to displacements along the spines of the helix. This
coupling leads to 2 self-focusing of vibrational energy that has

remarkably stable qualities. LAYHE émlﬁ, p,24;7 suggests that the

(@1}

ing of an anesthetic molecule to a protein interferes with

bin

1.1 2l ¥ e

soliton propagation. He suggests further that this.type 0

By

ference is most important in two sep parate regions of a cell where
By L)
soliton propagation is an attractive candidate: first, in the

inner mitochondrial membrane, which

@

o«-helical proteins of the
inate in ATP gynthesis and electron transport
and secondly, in the menbrane proteins of neurons, which are

resnonsible for chemical reception and signal transduction.

-

Remark / 13, p.26 7. If the Davydov soliton finds exneri-

o A . 4- 3 -1 s . ~) . ¥ A 3 - - - <y n =
mental support in biology, then such a model may help to explain
some of the molecular mechanisms behind general anesthesia.

Det us mention tﬁat TAXIGHO Zw,O &;7 tudied vibron (i.e.
vibrational exciton) solitons in O”i*("”“”{@ﬁﬁl molecular crys—
tals by enmnl ﬂy“LJ'a coupled oscillator-lattice nodel,Takeno showed
that although vibron solitons in his theory and those in the

Davydov theory are bo

155 s 1 ey “ 1V S = ey am ] 15
eguation, thelr nature is fairly dil

nonlinear hrodlnger equation arises in the Takeno theory fron

modulations of \/;Loranu by JQQIltelf coupling with acoustic pho-

J

nons propagatiﬂg alon: helics of the «-proteins, , while that in

4.

the Davydowv theory follows impediately from the quantal

Sehrodinger equation for the exciton probe bility.Recently,
TAENO 30 C;7presenteﬁ an exactly twqﬂ*"ojh model of an ogscilla
¥x

tor-lattice system which 1s capable of incorporating both of the

nictures of FROHLICH (see /7.7, 3 7) and that of Davydov in a



unified way
by giving a

£ 30

2_/ .

i P R TR

end to make a more detalled study of wvibron solitons
significant improvement of the theory developed in

Comments. As was already pointed out (see JSA.V, § 8),
an open problem is to find an algebraic description of the GM (as
o u
well as of G and UGM) appearing in SATO's approach 4”22 a,b_7 o wial

soliton
finite-dime

and recalled in JSA,III, § 2 Taking in

gid Lons;
getics.
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DAVYDOV,A.S., a

equations,resembling the Jordan algebra description of
nsional Grassmann manifolds given by HEIVIG in/ 11 _/ 1

BILZ, H.,

L7 L 5

1to account the previous con-

solving this open problem could be useful in biocener—
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