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1. Introduction
et Lo e

It was a conjecture of Lang 'la}] (which due to results of Raynaud
[R ]and Faltings LF] is now a theorem) that if A is ar abelian d}variety,
X=A is a smooth curve of genus 22 and ("¢ A is a subgroup of finite rank
then the set XA[" is finite,

The aim of this paper is to prove an énalogue of Lang’s conjecture *
in the theory of algebraic differential eguations of Ritt [ﬁi] and Kolchin
[k1) KZI. Our result eaéi]y implies Lang’s conjecture for anv X which does.
not descend to &55 it'also easily implies the ‘"geometric analoques ' of
Lang and Mordel] conjectures. On the other hand our oroo%s are essentially
elementary. The only prerequisites necessary are the languane and general
results of the Ritt-Kolchin theory plus some facts from [811; the reader
not familiar with th}s'toDic will find in section 2 a se]f—coétained account .
of the necessary backgorund,

% Our main result is: : ) A

(1.1) THEOREM, Let :?/be'an ordinary consfrainedlv closed ﬁl*field
of characteristic zero with fleld of constants %pand assume ;f b 7, -alge-
; 4 A
braic over . Let G be an irreducible algebraic Fgroup, =62 smonth
curve of genus 2 which does not descend blrationally to {f and Zk.G a

. N -closed subgrouo of A-tvoe zero. Then the set XA S is finite.
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In £he statement above X is assumed of course to be Zariski closed
in G; by "X does not descend birationally to %f“ we mean that X is not bi-
rationalfy equivalent to a curve which descends to q?,

We ‘shall derive f}om (1.1) the following "non-differential'' corolla-

ries:

(1.2) COROLLARY. Let G be an irreducible commutative algebraic
C-group, Xe 6 a smooth curve of aenus > 2 which does ﬁot'descend biratio-
nally to 65 and "< G a subgroup of finite rank. Then the set Xnl’ s
finite.

Note that (1.2) renroves in particular the conjectures of Lang and
Mordel) for ¢urves X over ([ which do not descend to &5 (Mordell says in
this case that for any such X of genus » 2 and any field of definition Ke

of X which is finitely generated over d; the set X, is finite).

(1.3) COROLLARY. Let ke=K be an extension of algebraically closed
fields of characteristic zero with tr.den.K/k< o2, let G be an irreduci-
ble commutative algebraic K-group, He G be an glgebraic subgroup which
descends to k, X a smooth curv:'%? genus 2 2 which does not descend bira-
tionally to k and M« Gy subgroun contéining H, such that rj/Hk is of
_finite rank. Then the set Xnl' is finite.

The above corollary reproves in particular the “qeometria analogue"
of Lang's conjecture (proved by Raynaud H@llt also reproves the ''geometric
analogue' of Mordel]’s‘conjeCture'(proved by Manin and .Grauert) saying that
if L TEa function field over on algebraically closed field k of gharagterisr
tic zero and C is a smooth projective curve of genus > 2 over L which does
not descend to k (over the a]gebfaiﬁ closure K of L) then CL is finite, /In-
deed let J be the Jacobian of C put X=(® K, G=Jg K and let H be the L/k-
trace of J; then by Morﬁe%]*Wei1 [Lazl p'7])JL/Hk is finitely gen?rated and
we may apply (1.3) to r;; J - | |

| f case G=G

= —

(1.1) implies more than (1.3) namely:
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(1.4) COROLLARY, Let keK be as in (1.3) and let ¥ be a smooth curve
of genus 22 over K which does not descend birationally to k and {s embedded
into the N-affine space KN. Let V be finite dimensional k-1linear subspace of
K'. Then the set XAV is Finite.

The Tink between our Theorem (1.1) and Corollaries (1.2) and (1.3) is
made by the Fgllowing easy consequence of results from [?] and [B]](in which
a subgroup of an algebraic §}¥group is called of Z&—typé zero if its A-clo-

sure has Zkﬁtype zero) :

(1.5) PROPOSITION. Let & be an irreducible commutative algebraic
gy-group and D" & g subgroups such that /[7f has finite rank. Assume
! has A-type zero; then the same holds for [T, In particular any subgroup
of finite rank in G has A-type zero.

It worths noting that the groups [’ appearina in Lang’s conjecture are
at most countable while the groups ¥ in (1.1) are generallv uncountable if %?
Is 80, [see (3. 4]). 56 the FinTtensss of XnZ in (1.1) is much stronger than
finiteness of XAl7 in Lang’s conjecture., Note also that unlike in Lang’s con-
jecture we allow in (?.]) G to be non-commutative and that there are many in-
teresting examples of /A-closed subgrouns of A-type zero of non—commufative
algebraic F-groups [83]. Note finally that we expect (l.]) to hold without
the assumption that F is A-algebraic over ‘€ and in the‘partiaF differen-
tial rather than ordinary case.

Our paper is organized as follows. In ;ection 2 we review the basic.con;
ceptsof Ritt-Kolchin theory involved in (i.]).énd we recall some facts from.
[ﬁi]; the basic refeﬁ%ces for section Z-are‘]ﬁ1]and [kzj.-lg section 3 we p;o-
ve Proposition (1.5).. in section 4 we prove Theorem (1.1). In section S‘Qe pro-
ve Corollaries (1.2), (1.3), (1.4). In Section-6 we describe the e%fect of
Theorem (1.1) on the program (initiated in Ié]) BZ]) of study of Z}—oo]ynomia?
functions on projectivé varieties; the present paner is impTicite]v part of
this program.

It .is a p]easufé to aknowledge our debt to E.Kolchin and P.Cassidy for

o

their kind encouragement,
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2, ngiew of A-oo]ynomia) functions

For details on facts presented in this section we send to'[ki) Ko ) B1J.

(2.1) Start with a field F of characteristic zero on which we have
fixed a derivation g; such an F is called an (ordinary) AA-field. The Ritt-
Kolchin theory is an analogue of algebraic geometry in which polynomial
equation are replaced by algebraic differential equations "over #''. The
standard hypothesis in algebraic geometry about the ground field is that
it is algebraically closed. In the Ritt-Kolchin theory the most natural
hypothesis seems to be that Z is “constrainedly closed" (cf.[kzl p.79);
it is irrelevant to explain here the definition of this concept for which
we send to loc.cit. In any case constrainedly closed A -fields are in par-
ticular algebraically closed. For any smootﬁ jymvariety X (in the usual
sense of algebraic geometry) we often identify X with its set XS? of
F=points, A function %:X~»j} will be called A-polynomial if, Jocally in
the Zariski topology of X, f is defined by a polvnomial in the coordinates
and their derivatives (e.q. if X:£A2=;?2 then fly . y,)=( gzy1j3-y?( SByZ)Q'
is A-polynomial). A subset 7 of X is called /A-closed if, 1o¢ally in the
Zariski topology on X, 2 is the set of common zerves of Finitelg many
A-polynomial functions; by a basic result of Ritt l[k-closed subsets are
thg closed sets of a Noetherian topology on:X. Let 2 be a /\-closed subset
of X, U-an affine Zariski open subset of X meetindéénd cbnsiaevthe rina
gf%?ifxuﬁ obtained by dividing the ring of all Zl—po]yﬁomia? functioﬁs on U
by the ideal of tho;e vanisﬁihg on T AU; Zi'is_§a11ed‘of Zl~type ere 4
for any U as.above the residue fields of QY%IE(\U'ﬁ at the minimal primes
have finite transcendence degree over F (Intuitively > has A -tvoe zero if
the ''general solution' of the system of algebraic differentia? equations de-
fining it around each point depends on finitely many ''integration constantg”

rather than ¢n "arbitrary functions'),
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(2.2) Now ane should notre that in [B” B, 1we worked with the above
concepts over a universal A -field 2{,([K ];3.]33)rather than over a constrained-
ly closed A-field ¥ ; but everything which was said in [B ) 2J holds wi th
_j— instead of Z{' The reason for which we shift here from ‘Z{to F is that we
sometimes need our F be [_\—a?gebraic over its field of constants @Z(whfch
means that for any x¢& ¥ the family x, ch, cczx,... is algebraically dependent

over (g) while U is never A-algebraic over fiks constant. field K., It is the-
refore of interest to give examples of constrainedly closed A-fields F which
are A—algebrarc over ((EZ ; One such example is the field Jr= 2{ of elements in
a universal Q f:e]d (,L which are /- -algebraic over] in this case we have

“( :({, Another example is the following ¢ start with any /A ~field ,_7L which is

A= ~algebraic over its field of constants Qf and let ;F be a constrained clo-

sure of d’ cf}__\zj ps79. Then % is the algebraic closure of CC (U{J p.143),

(2.3) Let us explain one of our main results in [:81]. For any irreducible
algebraic ?‘-group G we constructed a A-closed subset of some affine space
(call it here EC?N) which has a structure of group whose multiplication

|

o e et : e e N N N N __N
GX6G— G and inverse G— G extend to A~"ec;?ﬂlmmdf- mafx.\f A F - ?N i &

3 -

(this is what Cassidy calls in [C] and affine differential algebraic group with
: : .

A-polynomial law) and we constructed a surjective A-polynomial homomorphism

G—G (i.e. a homomorphism whose components are A-polynomial) whose kerne)

6% has D-type zero (see l_—B]] (5.1)). It follows that a A-closed subgroup

of G has A-type zero iff jts image in G has A-type, zero,

(@oh) e wil ) b arss TEeti to recall from ‘[B]])section 3,a dfc'tioﬂarry
relating A-closed sets to "'D~schemes'!, Let. D= }’[oo] be' the ring of differen-
‘tial operators generated by and S Then by a D- ‘;cheme we understand an
J- scheme V such that we are given an extension of g from \j— to a derivation
(still denoted byg of L)V; D-schemes form a category in the obvious way,
Group objects in this categ.o-ry are called D-group schemes. The forgetful func-

tor” from QD—schemes} to {}“-s‘chemes—ﬁ has a Erght adjclat NERTs e ] & e
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functor takes closed immersions into closed immersions and group obiects into
group objects,

4Fina}]y, given a - A-closed subset 2 of an F -variety X one can cohs-
" truct [BTJ (3.9) a reduced closed D-subscheme % of X%  such that 2. iden-
tifies with HomD“SCh{SpecJ@,.Zm). If 2 is a /A -closed subgroup (of A ~ty-

pe zero) of an algebraic 37~group § then £ {5 5 D-subgroup scheme of 6§

oo
(respectively an "algebraic D-group" i.e. a D-group scheme whose under]ying
F - group scheme is an a]gebraic.gy—q}oup) [Bi] (342,

(2.5) The facts reviewed in (2,1)-(2.4) are sufficient to understand

the proofs of (1.1)-(1,5); they are not sufficient however to understand our

final section 6 for which a deeper familiarity with [ﬁ}) 82] is required.

3. Finite rank groups and aroups of A -tvype zero

/

| e
(3:1) Let G§= ?A be an algebraic vector group. Then by Lp] p.911 it

follows that the A-closed subgroups of G: of /A -type zero are precisely

the finite dimensional qg—]inear subspaces of QYN. This implies (1.5) in

(A

N
case G—ﬁg.

(3.2) Let Gﬁ=(5¥ﬂ)w. Then by [C] p.937 the /\-closed subgroups of

: ; .3
Gﬁ of A-type zero containing (C*N are precisely those of the form (fﬂf) (\)

where (f,ip:(fﬁ"j{)m‘“> 2N 4 L e locarithmic derivative (x1,,=..,xN) | >

kb(x;1éjx1,..-,x&]J;N) and V is a finite dimensional q? -linear subspace of
SYN, This implies that (1.5) holds for any irreducible ﬁqmmutative linear .

\

(3.3) Lét’s'prové (1.5) for arbitrary irreducible commutative G. fonsi-
der the Kﬁ—po1ynomia1 homomorphism f:G—> G from (2.3). Sinﬁe Giv has
fl—type zero we may assume [*! is A-closed and contains Gj#. By [ﬁj p. 91k
(and with terminology from loc.cit.) the;e exists a A\ -rational injective ho-

momo rphism UG — gL (n). The Zariski closure H of the image of u is then a

commutative linear alaebraic % -aroup. We conclude by applving (1.5) to H
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(cF.(3.2) and (2,3)).

(3.4) Assume Lg is uncountable and S#0 is g A-closed sdbgroup of
Zl-type zero of an irreduc?b]e commutative algebraic j “groun L. If (3 s

e

linear then 7 must be uncountable by (3 2). We conJecture that Z is un-
countab?e for G non necessarily linear., This is c]car]y so if 2{<% 6" (which
in its turn holds for 2 the A-closure of a “suffrC|enr]y general" subgroun
I of G of finiis rank!), : -
4, Proof.of Theorem (lelz |
Clearly we may assume for the proof of (1,1) thaq(€:=ﬂj + We need some
analytic ingredients: :
(#.1) Fikét we will use a classical theorem of Picard [Picj GK] which we
recall for convenience:if C,X are two ;mooth algebraic curves overCwith C affine
and X complete of genus y 2 then - -any holomorphic map from C to X ts rationel.

{4.2) Another analytic :ngredlent will be-an elementary. yet remarkable result of

Hamm LHaTJ
\KGHWCh We now recall and put it in a form suitable for our purnose. Let ZIS—» B

-

be a local submersion of analytic manifolds where B is a disk in € and let
8,8 be non-vanishing vector 'fields on B and zﬁ respectively with ﬁiiifting 8.

Assume we are given analytic maps F:‘EBXB ZB ""ZB, ?B‘"—?’ ?B’ B - ZB over B

®

satisfying the "usual' axioms of multiplication, inverse and un{t (analogue éo
the axioms of a group scheme) and assume moreover that these maps “are eoulvarlant
(W|Lh respect to the-vector fields @, 8 and ( 8, ) o By 2: and Z 8%g Zi rESpec—
tively)., Then there exists an analytic B«lsomorphlsm b 2_ e JXB where z

is a Lie-group sﬁch that @ transports the map F into the -map Fo xT (where

Fo Zox Z -ﬁ;f is the multiplication on ZB) and such that ¢~ ‘transpérts 8 in-

. to ;B (where b is a coordinate on B). See also LBBJ [1.1) for an exposition of

Hamm’s result.,

It is also convenient to formulate the following

(4.3) LEMMA, Let FiXy—Y be a smooth projective morphism of smooth
C -varieties whose flbres are connected curves of qenus 2 2. Let moreover 8 be

an algebraic vector field on Y without zeroes' such that the field of constants
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(I:(Y)a of the A-field (C(Y),8) equals € . Assume moreover that for any ana-
that
lytic disk B embedded into Y which is an intearal subvariety for & we have all

xYSpecéf(?)/¢(Y)

fibres of f above points in B are isomorphic. Then the curve XY

descends to G’,

Proof. Let m:Y-—w‘z((/”ﬁg)(E be the morphism to the moduli space of smooth
projective curves of genus g over (' induced by f and assume the closure Z of
its image has dimensionz 1. We claim that the image of C(Z) in C(Y) via m” is

contained in @:(Y)e and this will be a contradiction., Indeed let Ye¢ C (Z) and

at ~

y&Y be any point\’which the rational function ¥ :Y —1

> 7 ——&{-> C is defined.

Take a disk B which is an integral subvariety of Y for 8 through y. By hypothe-
sis B is contained in the fibre of ¥ through y. Consequently the latter fibre

AN
is tangent to 8, hence Y & (Y)B and we are done,

(4.4) Finally we recall for convenience another classical result due to
Severi which will be needed: if C is én algebraic curve over € then the set of
isomorphism classes of smooth projective curves X over ([ of agenus 272 domina-
ted (as algebraic varieties) by C is finite. What will be used in fact is a
weak form of this saying that C cannot dominate a ”lnon-isotrivia1 family'"

of X’s of genus 2 2 (this is an ''easy exercise" with the Hilbert scheme of

divisors on XxX!).’

(4.5) The rest of this section is de'v-oted to the proof of 137,
Let X —>G be our closed immersion and let X° —> G be the induced clo-
sed immersion of D=schemes (2.4). Moreover let % be the D-subgroup scheme

of Gw corresponding to 2 ; it is an algebraic D-group '(2.4).Usfnq (2.4) once -

again we see that XnZ identifies with Hom (Spec 334, U N | 5O what

D-sch

we must prove is that X ¥~ 2% is either empty or zero dimensional. Assume
. . o .

it has dimension > 0 and look for a contradiction. If ¥:G —= ¢ is the mor-

phism of schemes arrising from adjunction then T (XA =7 ) X. We claim

that any positive dimensional component W of X }.".N dominates X. Indeed



i wW)= %x} we could find two morphisms o(.i,of? = HOmD_SCh(SpEC F,oW,
ot # %, (this is possible since by {:}(2:[ p._B%e HomD_Sch(Spec?, W) is Zariski

dense in Hom ,, (Spec ¥, W)) hence by composing them with the inclusion

4

-sch
-‘ i < N { i o 90 O
We G we wou_]d get two morphisms 051_,4:(2 eHomD“SCh(SpecJ, %), oﬁﬁcxz such

{

that o« {= Jto 0(2

which contradicts the adjunction property!
So pick a positive dimensicnal component W of X AT ® . and let X be &
smooth projective model of X. We may find a /\-subfield 7' of Fcontaining

‘€= € and [ -finitely generated over (@ such that the diagram below is defi-

ned over 31“:

() X4 Xe~W > =%
and moreover the structure of algebraic D-group of > % descends to F'. So

we dispose of a diagram of Fl-varieties:

from which (%) is ded_uced by Base change and we .dESpose of a structure of alge-
braic D*-group on = ' (where D'=$‘[8]) inducing that of 2% éuch that W' is
a D'-subscheme of 3 !. Since F/E is A-algebraic, Flie is finitely genera-
ted as a non-differential field extension [K]] p.112, So we may find an affine .

smooth ([-variety Y with C(y)=%! and a diagram of integral Y-schemes:

Gy T Ay Wy Y

from which (%)! is deduced by base change such that XY“‘? ‘}:(-\, is an open immer-
sion, wY -——7'2\1, is a closed immeréion, the fibres of NY--—‘zY dominate the fibres

of XY-—7 Y, Xy—=Y is smooth, ZY —» Y is a smooth group scheme and the deriva-

Y

tion 5’ induces a non-’vanishing vector field 8 on Y and a vector field 8 on

v Then WY must be an integral Subvariefy of 2, for 8. Let B be an analy-

tic disk embedded into Y which is an integral subvariety for 8 and let

Z
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be deduced from (%{)Y via base change B—>Y. Ther Wy is an intearal subvariety
of ZB for 8. By Hamm’s result we dispose of an analytic isomorﬁhish

& E‘B -~ ZOxB as in (4.2). Let’s make the obvious remark that any closed ana-
2 (notations as i
5 (notations as in

(4.2)) is necessarily of the form Z1XB where 23 is a closed analytic subset

lytic subset of ZOXB which is an integral subvariety for

of 25. Hence g (W,)= E}XB with Z] as above. For any b& B Jet "g,xb,wb,‘z be

B b
the fibres of the spaces in (%)B at b, Not fix a point b &B; since ¥~ domina-
0
tes Xb one can find a smooth Zariski locally closed curve CO in Nb dominating
0 o
Xb . Now consider the analytic map of analytic surfaces:
o
: v i
u.Cova > NB_*9 XB

where v(c,b)=a” ' (p, (e(c)),b), c&C_, bEB, p,: Iyx8 - =,

defined by c{'au(c.bof is non-constant the-

being, the first pro-

jection., Since the n 5C s R
jectio aap_qbo CO >Ybo

re exists an open subset B of B such that for any beB the analytic map

ub:CO——>§b defined by ctulc,b} is non-constant. By Picard’s theorem (4.1) up
is rational .. By Severi's theorem (4.4) all Xés are isomorphic for be¢ Q)hence

for be B; By Lemma (4.3) ¥ descends to d. , contradiction. Our Theorem is pro-

ved.

5. Deducing ''non-differential'' statements from ”differehtia]”‘gneg

“(5.1) LEMMA, Let K< € be a subfield finitely generated over ¢ and
n ’ s ' . . ) "
let 8\6 Der K. Then ¢ extends to a derivation of { (still denoted by §) such

that 97ﬁ=(d:,g) is constrainedly closed and /\ -algebraic over constants.,

Proof. By Seldenberg®s !'Lefschetz principle’ [B] we may embed the
A -field K into the field M of meromorphic functions is some region of QT.
Consider the A-subfield L of M generated by the functions'ix(z):

Xy AT e B s R e R e g A e Tl e e e e

A

A T
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constant field and has the cardinality equal to that of (. -Then the constraj-
“ned closure ¥ of KL will have the same cardinalitv hence is abstractly isomor-

phic to  over K and we are done by (2.2),

(5.2) Proof of (1.2), Let x be the € -point corresponding to the smooth
be
complete model of X on the moduli space of curves ((/fq)C and’ Jet K=@(x)“the
field generated by the coordinates of X+ We can choose a derivation cce’Der Ky
S#O and extend it to a derivation 5] of C as in (5l ) Roet sdaes not descend
birationa]ly to the constant field ({/of ?:(E,f) because K is not contained

i
i %, Seby t01ar (18} Xl . 1s Binies.

(5.3} LEMMA, Let ke K be as in (18 Then there gxists cpé DerkK such

that the constant field of (K,(Y) equals k.

Preof, Leat x],...,xn be a transcendence basis for K/k. Then the deriva-

1
checks that if 81se..a €k are linearly independent over @ then the derivation

tions SR 3;; of k(xl,...,xn} ifFe %6 8 Fobanbe of DerkK, One easily

x .
S:_Zlaixl.% has the property that the field of constants of (k(xi,...,xn),c?)
i= 1

equals k. Since the field of constants of (K,S) is algebraic over that of

(k(x];...,xn),é\) we are done,

(5.4) Proof of -(1.3) and (1.4}, By (5.3) there _exists cs-léDerkK such that
the field of constants of (K, (5‘)- equals k., Let T be a constrained closure of
(K, g). By (.2.2) F is L\-a]gebraic over its. constant field (gzk. By hypothe- -
sis Xj-" does not descend birationally to . In the situation of (1.4) V is a |
A c]oéed subgroup of ;?~"N of A-type zero (3.1) he_nce by, (1;1) XL,F'/—\\J a fini- .
te hence so s 'XK.f‘\\! (which is contained in X?,ﬁ V). In order to prove (]5)
note that szH(@? is a MN-closed éubgroup af Gg& of A ~type zero, &—0-
“—> By (1.5)_1_" is a subgroup of A ~type zero in G‘j'""’ and we conclude by

(1.1) once again,
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6. A -character map

In what follows the reader is assumed to be familiar with [BJ and
[821 Theorem (1.1) has a nice interpretation in terms of A-polvnomial func~
tfons on curves in the spirit of [BZ]. We would Jike to.give this interpreta-
" tion here; we shall be Jead then to a conjecture on the restriction map
WA A\
U7 — O7(X) where X is g curve and J is its Jacobian.

Assume I is constrainedly closed and Li-algebraic over @ and let X
be a smooth projective curve over ¥ of genus g2 2 which does not descend

to @ Then we dispose of two sequences of /y-polynomial maps

Nd :
Pq:x=F %, dui
M
ok
‘{’r X.=F . r3l
e 15 : ol of
whose definition will be given below; the Yfs are the analoques¥Y pluricano~

nical maps ("f’d was called in [82] the A—Dluricanon‘ica.}. map of degree d)

while the ¥*s will be the analogues  of the :\lbanese map (*{Jr will be called
the A-character map c.nc order r ). Recall from [821 that the components of
kfd are a hasis of the 's_oace of all A- polynomial functions on X of orderd 1’
and degree £d; by [B)] ¥, is a A-closed embedding for d 30 (and. in fact for

d33 if X is non-hyperelliptic with rankA(X)rg ; in this case N,=8g-8),

3
Now to define the Y''s consider for each ry1-the F-space of all A-poly-
nomfal c:,l_‘nar-acters of order £ roon the Jacobian J of X. This space is finite
dimensional, say of dimension Hr; pick a basis oF. this space and consider the
A -polynomial homomorphism J—» ;‘; defined by this basis, I:'inally embed X into
J via the Albanese map (this d.epends of course upori fixing a point in ){); Then
"‘/'_ is by definition the composition X~ J =3 . The main consequence of Theo-
rem (1,1). in our situation here is that ‘#’r has finite fibres for r> 0 . Indeed

L Mois g -
by LBT](&?). Ker (J - F r):J'_ﬁ: for r>>0 and we apply (2.3) and Theorem (1.1) to

the various translates of » A 5 [
Note also that by 2{51] (6.1) if X is non—hypere”iptic wi th rankA(X}:g

then Ker\f}_-;J% and M. =a_
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So for X'"A-generic'" in the modul i space U%Q the Zl~poWynomial‘maps

already give a A-closed embedding respectively a finite-to-one map.
I't is tempting to make- the following:
ngjecture 1) If X does not descend to %f the restriction map
040 — 0200 is finite,
\ H . . § ré .r-A .
2) For X " A-generic! nnuHé the restriction map (97(J) —> (5 (X) is

surject{ve.
M 4
Statement 1) would imply that Y;(X) is dﬂ*c?osed in§ " for r s 0,

On the other hand 2) would imply that for ¥ "A-generic" in()ﬁg the map
+} is a A-closed embedding for r3 2. The latter conjecture is somewhat
supported by the fact that the "sufficiently general" complex curves con-

tain no non-zero torsion point of their Jacobians [Sz].
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