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1. Introduction.
Let g: (C”,o) v-?(E,O) and h: ((:m,o) —(C,0) be isolated singularities. We

MM 0) s (€,0) by

define the direct sum (resp. direct product) g@h (resp. g&h) : (C
g®h(x,y) = g(x) + H(y) (resp. g@h(x,y) = g(x)+h(y)). Then the Milnor fiber of g@h is
the join space of the Milnor fibers of g and h. In particular, p(g@h) = p(g)- pth).
Moreover, M. Sebastiani and R. Thorn [14] proved that the monodromy operator of
the singularity @ g is equal to the tensor product of the monodromy operators of
the singularities h and g. A.M. Gabrielov [3] obtained a description of the
intersection matrix of the singularity {@g in terms of the intersection matrices of
g and h (with respect to distinguished bases). P, Deligne proved (see [1]) the tensor -
product formula for the variation operator Varg@h = (—l)nmv_arg@\{arh’ cbtelly
equivalent to the tensor product formula of the ASeifert forms proved. by
K. Sakamoto [13], who extended the Sebastiani-Thom result to nonisolated
singularities and considered also the direct proauct case [12].
In thfs paper we consider the following general situation: let
gt (a‘:“,o) —»(C,0) and h: «€™,0) —(c,0) Be arbitrary germs of analytic function§
" and let p: @2’0) -—‘»(C,O)- be an analytic germ in two variables. Then we determine

N+ 0) —=(C,0) in terms of

the topological type of the Milnor fiber of f = p(h,g) {C
the Mil_nor fiher of g,h and p. (Theorem L1) and the zeta function of f in terms of
\ the algebraic monodromies of g and h and the Alexander polynomial of the’

(algebraic) link determined by p (Theorem L2). |



It is surprising that if we consider arbitrary global polynomials g s %:n-——:v@’.:,

. . . e ;
he Cm~--;a- € and P : &= C (with some minor restrictions), we reobtain the same
statements about the topological type of the generic fiber of {= plh,g) (in terms of

the generic fiber of g, h resp. p) and the zeta function of the global monodromy

operator (around all bifurcation points) of f (in terms of the global monodromies of

g and h and the Alexander polynomial of the fiberable link at infinity of p).

In the global case M. Oka [11] étudied the direct sum and direct produc-t of
weighted homogeneous polynomials. In his particular case the only bifurcation point
of a polynomial map is {O} In the‘general case it is very hard to determine the
bifurcation set of a polynomial P (i.e., the minimal set AP such that P is locally
trivial over € —AP) and.ﬂlwe generic fiber of P. This happens because AP contains

beside the critical values also some other "atypical values", and the behaviour of

the fibersnear the atypical fibers depends not only on the local data on these fibers

but on the behaviour of P at infinity as well.
Therefore it is impertant to emphasize the fact that the generic fiber and

the zeta function of f = p(g,h) can be computed without studying the behaviour of

~gresp. haround each bifurcation point separately.

This paper can be consideréd as a continuation of [9] in which the author
consider the global direct sum case proving that the generic fiber of f = g@h is the
join of the generic fibers of g and h and the global algebraic monodromy (over Z) is
induced by the join of the global geometric monodromies of. g and h. -

The technique of the proofs is more or less similar to the proof of
Theorems A,B and C in [8], wi.‘}ere we considered the case of singularities of type

“f=plg,h) where (g,h):(&'ﬁnvkl,{)) w‘s-(i'[‘.z,O) is an isolated complete intersection

singularity. Instead of repeating parts of these pro‘ofé, we shall refer the reader to

that paper at some steps in our proofs.

2. The main results. Local case,

n

2.1. Let g: (@n,o) P (C,0) resp. h: (@_’ ,0) = (C,0) be anafytic_germs

e ons
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with Milnor fiber G resp. H. Let p: (@250)—#(*’-&";,0) be an analytic germ i'n‘ two

variables (denoted by ¢ and d) with Milnor fiber P. In this note we suppose that P is
m m

connected, i.e., if P=p L P, ' is the prime decomposition of p, then g.c.d.
(ml, £ i ;mr} = L. In this case P has the homotopy type of a bouquet of Hp | —fx;p
Cir‘cles.

We define n.= 0 if c is a factor of p and n.= the intersegtion multiplicity .
mo(p,c) otherwlsg. Simmetrically we define nge-In fact, .. is the number of points

of the intersection Pﬁ{c = O}.

Our first result is the following

Theorem‘L_i

The Milnor fiber F of the anaiytic germ £ = plh,g): (€"xC™,0)-(C,0)
defined by f(x,y) = p{g(x), h(y)) }has the homotopy type of a space obtained from the
total space of a fiber bundle with base space P and fiber\ G x H by gluing with the
natural applications to a fiber G xH n. copies_ of ConGxH and ny copies of
G xConH (here Con X denotes the cone over X).

The proof is given in ,g,i#.

2.2. Remark

The assumption about the connectedness of P is not essential because if P
has k connected components then Bz (p‘)k, hence we can use our theorem for
f' = p'(h,g), and the Milnor fiber of f is composed of k disjoint copies of the Milnor -

fiber of f'. (Moreover, for the zeta functions we have 7Sf(}‘\) = i‘f,(}\k)). :

2.3. Corollary. The Euler characteristic of the fiber F can be computed

by JXAE) = URY- 7LG) XAH - n 0D = JOAG) - JCAHI + (0G0 - ¢ (@) 01 =
/C(P tcd = OI)? (G) /ﬁ H) +n . _?C(H) ol g2 H(G).

2.4. Examples
a). If we take p=c+d, then we obtain the direct sum case

FaConG x H é\_{}@ x ConH~~G'x H (the join space of G and H).
1 X
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b 1 p=c~d ‘then N.=Ng= 0, hence F is a fiber bundle- over
P SJ waSl with fiber G x H. The characteristic map of the fiber bundle can be
identified with mg ® m{}l (mg and m,, are the geometric monodromies of g reép. h}

(see [12], or our proof in §!;).

2.5. Remark

We denote by G« H(nc,nd) the space obtained from GxH by giuing_
naturally n _ copies of ConG x H and n copfes of G xConH (e.g. G« H(l,1) = G« H).
In our construction given in Theorem L] we identify the fiber G xH with the fiber

over the base point & of P. Since (P,%)N(\/Sl,-}‘:), the total space of the fiber
bundle over P can be identified with the total space of a fiber bundle (with
projection map u) over \/ Sl.

e

Suppose that n. >1 and Ny > 1. Then G » H(nc,nd) is connected; let »' be a

base point in it. Since the natural inclusion G x Hes G « H(nc,nd) is homotopical to

the trivial map G xH— %, the spaces uhl(Sl) over each circle can be identified

-

with the nonreduced suspension of G x H with both vertices in «'. Therefore

Fpo [VSl]v VSGxH)]VIG« H(nc,nd)] (S = reduced suspension).

Fp "p

In particular, the homotopy type of F does not depend on the characteristic maps

of the fiber bimdie Us
We note that in this case (i.e., if NNy # 0) F is connected even if G or H
is not. If G and H are connected spaces, then 351(13)?5:7{1(\131). 24 the free group
1

with o generators. (In fact we have an isomorphism at level TLJE induced by

u= (g h) & Feas L)

26 In .whai: follo”v,:s \\Q \i}ah“t 1o deter:ﬁhin"e the zeta function of the gehn '
f. For this, we introduce some notations.
Let (mg)* : H(G,©)D  resp. (M), ¢ H*(H,C)2 be the algebraic

monodromies (induced by the geometric monodromies mg resp. mh) of g resp. h,
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and §g resp. S b the corresponding zeta functions defined by
> i (- l)q+§ "
§.(A) =l idet(l - AM, ) where | = g or h,
I q l,q

Define Eqi@Auth(GxH,Q) (i=1,2) by E

, - (mg X idh)*,q =D M) ®(Ih)j

i+j=q gl

dE = (id . m o
an q,2 (1' o X mh)%,q = ig)ljiq(lg)i ®(Mh)j (I = identity).

Consider the irreducible decomposition of p in the form

m m2

m m ;
1333...prl‘ where p; =¢, py=d; m; >0, my >0, m > 1 ifi>3 (i.e.;

my = 0 ‘W’ c is not a facter of p). In a sufficiently small sphere we can consider

the associated multilink L(m) = (SB,m K Um2]<2u — UmrKr). Let A(A e ,?\r)

i
3

be the Alexander polynomial of the link L = (§7,K, UK U ... UKI_) (i.e., {._JKi is
i

1772
composed of the link of p completed by the link componenets determined by

{cd = OE. if those are not components of p).

Theorem Lf?d

The zeta function of f is determined by

: : 9
n n 9 m m, - m
3N = BN D T OO Tdet ANIE gy A 2Eg 5 A 2, 3 )

n n
s dy = ¢y =
4 resp.n_ =0 then gg(r}\ ) = 1 resp. Sh(?\ )= 1)
We note that A is well defined only up to multiplication loy rnonomials
L i ‘ 3 - :
ij‘\ll .. ')‘rr’ therefore the above equivality is modulo _:t?\l,

The proof will be given in §4.

2.7. Examples
. . .
a.) If p=c+d,then [_\(f\.l, f\z, ,'\3) = ,\17\2)\3 - 4, hence

X 5 O [ N ; (—l)q_
5N = 30 5,4_/\)-"1cfft_(?\(mi,xing* V7

{
q R ¢
B SORIE N SR SN C I JN0N
g h** " Jgxh Sg*h '
b lfp=ced, then A =1, Ng=n. =0 Therefore if = 1.

M M. T m,
c.)Letustakep=c Id 21 (d* - aict) 1 (.a1 £ a'j)
: i= .
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(m'IZO, _mzz{}, miZI if i>3). Then the Eisenbud-Neumann diagram of the

multilink L(m) is of Seifert type:

The . Alexander polynomial ' is given by
: 5 | l
= 152 r_ W2 : 2 _ e oy -
A(?\l""’)\r)"(mihz"'_)r 1) where 1, =s, L=t ly= .. =l =st
K g, P m, q
[2,p.96]). Therefore [1=1Tdet Al 1Eq 1,'} q 1o ,7\ r I (-17%
q. ]

(-1)%c-2) _

y

oo st
:Y;]\det(}\ k(mgxmh)* q_ l)
y 4], =
=11 det(?\ka!k(Ms). by, - pth -2
5] gl h'j

To each monic polynomial P(A) = (A -& l) aise: LBl r) ~ with
Kpp oo s K E C* we assign the divisor D(P) = <« 1>_+ sive 5ot > in the integral
group'ring ZC*. Define D(P/Q) = D(P) - D(Q) and D-l = D(_S‘ i) for 1 = g,h and f. The

application o = «>(s& N*) induces a Z-linear map (=)°: ZC*—>ZC™ defined by

(th<o(}? Zr\(@r k> We define also the Z-linear map (- )1/5’

. 1/5 S‘d‘-\)l' R - 1'”&5
(seN™) by (Zn <X 2) —2_/ nk@(k} \;f\rm(e:‘\/'\‘\fl_h these notations we

/f-' mk!k

‘have D(T1) = (r - 2)+ (D3 13})

vc-qm

Since ‘(kalk r-2) —-%(P {_cd O iz X we obatin the formula

rZCY > ZCH
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1/n /n

SR N ()| 45 4 _ 1
Df:&nzx%;mh) / 44Dg d-4 (D) €

Hm, =m

| =0, then n = t;_?fmk and n_ = s2m

2 3
3. The main results. Global case.
3.1 Let g:Cn-—'&C and h: C"—C be polynomial maps. Then
s s ini s | (e i | 1
there exists a finite set .[\g = {cl, i 55 ,ctg(resg). _[\_h = {dl’ R ’dsi) such that
g o g—l(Ag)—'}C —.._/\g (resp. h: €™ - }fl(f\.\h)-—}é'_'.’ ~.[\.h) is a c¥ locally
trivial fibratién. let pit Ez»a» C be a polynomial map in two variables (denoted by

' ¢ and d) such that p depends effectively on both variables.

In this case the degree of the projective closure p—l(e) of p—l(e), the

- B SS—— e

multiplicity numbers m{0~1-0]P—1(e)’ m[l_o_o]p-l(e) and the tangent cones of p-l(e)

in [0:1:0] resp. [1:0:0] are independent of the choice of e € C. Denote:

: N e AP e e
T, = {,Co : the line {c = cO‘, is in the tangent cone of p “(e) in [0.1.0]},

N i ' S P
Ty= {do : the line {d 5 dol) is in the tangent cone of p~ "(e) in [1:0:0]}.

We work with the following

3.2. Assumptions Aot Ton /\g =,

Ay TN =¢.

Note that if [G:I:O]C{;pFl(e) (resp. [1:0:0] ‘fi" p_l(e)) then the tangent cone in

this point is considered to be the void set. Hence in this case the assumption AC
(resp. A ) is automatically fulfilled.

Define the following numbers:

e —
n. = degp “(e) - m[O:l:O]p (e),

ng = degp (e) - Mr1.0:07 (e).
g

Then a generic fiber p~ “(e) has exactly n. intersection points with a line {c = cik.
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3.3. Let G(resp. H) denote the generic fiber of g (resp. h), and P the
genéric {ibex of p. Suppose that P is connected, i.e., p cannot be factored as qo p'
some polynomials p' : (:2—2;. € and g: C—- C, with q of degree k > 2.

With the above notations and assumptions we have the following

Theorem Gl.

The generic fiber F of the polynomial map f = p(g,h):éf‘ln x@:m_-pc
defined by f(x,y) = p{g(x), h(y)) has the same construction as the local fiber
described by Theorem L], i.e., F has the homotpy type of a space obtained from
the total space of a fiber bundle with base space P -and fiber G x H by gluing
naturally to a fiber G x H the space G » H (nc,nd).

The proof is given in SS D

3.%4. Examples.

a.) If p=c+d then our assumptions are fulfilled, n.=ny= 1, hence h
F~ G« H. This result was, in fact, our starting point in the study o'f global
Sebastiani-Thom type theorems [9]. |

b Leét cocf;' /\g‘ and doff./\h. Then p=(c- co}(d “ do) verifies our

assumptions. In this case also e =i, = I. Therefore, by Remark 2.4,

d

BB VSIE s NG < 1,

3.5. Remark
A careful inspection of the proof of Theorem Gl shows that‘.we have a-
nice description of the generic fiber F also in some casés when the Ass{imptions are
not fulfilled. -

Suppose that the -a;su_mp_’;%_qn_ﬁxc i_s not fulfilied,rbyt d/\g :,‘{Ciﬁ cohta%ps‘

only one point. In this case Theorem Gl is also true.if we. replace L by

deg p_l(e)— m[O:l:O](C" <P p_l(e)) (the5 second term denotes the intersection _

multiplicity of the projective curves at [0:1:0]) where e is a generic value in C.

In particular, if /\g = {clg and /\h = -Sld ?] and we take p = (c - Cl)(d -d.),

1 1



thenn,=n =0 and we reobtain the global analoque of (2.3.b).'

3.6. Consider a large circle Sg = {/_ i]zl= Rgﬁ such  that
A gC % 2.4 [zk Rg)i . Then g is a lically trivial fibration over Sg with characteristic
map-mg. This global geometric monodromy induces the global algebraic monodromy
operator (Mg)'”-' - H*(g“1 Rg),ﬁl’)@ with zeta function Kg(}\). In the same way we
define (Mh)% and ‘g he With the same formulae as in the local case we define
E, € AutHIET ® ) x b7 R)), ©), (= 1,2)

3.7. The main cobstructions in the computation of the zeta function of
f = p(h,g) in the global case (if wcla-want to follow the iocal model) are:

i) the Milnor fibration of p at infinity in general does not exist (e.g., fo'r
any ag C; the link at infinity. determined by p = cz(c - 1)2d -c=$ is not
fiberable),

ii) even if the link determined by p"l(g) is fiberable, its fiber (minimal
Seifert surface of the link) is topologically different from the generic fiber of p
(e.g. if p = cled - 1), then only the link of p—!(O) is fiberable, and the fiber of this
bundle is the three_fold punctured 2-sphere; blut the generic fiber is the twice
puknc'tured 2-sphere.)

For this reason we consider only "good" polynomials p [6][7].

3.8. Definition. [6][7]. The polynomial map p: €% C is called good if,
for-any $€&C, for some disk D35 and some compact subset K of Cz H‘p— 1_(D) - K
is a triavial fibration. | .

If p is good, then all the fibers P—l(g) define the same link at inﬂnify (up

to isotopy), denoted by L (p,00). Moreover, there is a Milnor fibration at infinity
) ; TR i a3 -1 B ey N e
(defined by @ =p/[p[:Sp - p (‘50) 5%, R» 0, § &C). The fiber of this
fibration can be identified with the generic fiber of p (modulo a collar) [7].
If we fix a compact set CCC < - TC, then it is easy to verify that for R
216

o ; -1 ; { 3 g
sufficiently large, the fibers q‘)P (e ) meet the circles yc = Co% NSy (for



_./{O_,

all coeCC) transverselly in 5’;‘1}\ particular, we : can consider ~ the circles
:{c = COKQS§(CO¢TC) and K = {d = doﬁnsg (dog}l: T\d), R » 0, hence the
isotopy type of the link KCU Kd\-fgf(p,oo) is well defined and the fibers of (;bp meet
transverselly the (virtual) components K and Kd Therefore, if we replace tﬁe link -
(SR,;E(p,:JO)) by the multilink L(m) = (SR’ m K Umd du;f(p,m)) where we take
m.=my = 0 and m = ] for the multilicities of the components of J (p, e9) (we have
non singular components!), then the fibers of thé (fiberable) multilink L_(ga_) can be

- Fon . —1 2"1’19
identified w1th{¢;p d }6

Let A(A ,)\,...,)\) be the Alexander polynomial of the link
| 7 r

3 \
(SR,KCUKdUK(p,DO))é&p,w) has r-2 components, 7\1 resp. A 5 corresponding to K _

resp. Kd).

d

p is good. Then the zeta function of the global monodromy operator of f is

Theorem G2. Let g,ﬁ and p be as above such that Ac, A | are fulfilled and

determined by the same formula as in the local case:

M= T o\ 9T detAEy B ML x0" '

3.9. Remark. We note that (Sé& (p,00)) (and also (L(m)) has an RPI-splice

- diagram [7], hence A can be computed by [2]. Moreover, e (resp. n ) can also be

d
determined by the splice diagram of &&(p,00), where Kc(resp.Kd)'appears as virtual

link component, as Ne :\m(Kc)

(resp. ng :’\ m(Kd)\).

3.10. Example. If p(0) = 0, p is convenient and has a nondegenerafe

Newton principal part at infinity, then it is good, and the data N n

4 and A depend

only on the Newton principal part at infinity [10].

I }
For example, if p = c R _>r a,.c d then gdepends only on the
) S‘L+tj<st

principal part <t Therefore

&

DR =0 - DEH P ng) Mt pig) .

.
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§4 . Proof of the results
Proof of Theorem L1
We choose El >0 and O<r]l K 51 suificiently small such that
Br%,l :{zéi’:n 1zl € 6}} (resp Bﬂgl) is a Milnor-ball for g (resp. h) and
g:Bg r\ghl(D,,] —%Ok)—%Dq -«iO% (D,,) :{wée’c:\wlg "’]l) (resp.
1 1 1 ‘
b Bg; nh“l(D‘,, -{oh) - D,, io} is a ¢ -fiber bundle.

Let 0 < £ & {; be so small that g(B Me D

¢ 471 '71

and finally we

choose 0 < ’f} < '771 small enough so that :

px 2T -1 m -1 g ] |

i) BeNg (D,.Y] —S\O})‘-}D,}" -ﬁo} resp. BE nh (D,‘,] -{0})—7 Dq] -§0}are
Cw~fiber bundles, s

i) D"'IXD’) is equivalent with a Milnor-ball for p, i.e., for \5\ small

S)ODT} “) is homeomorphical -with the standard pair (Mllnor-—

>
(D

”]X D,,] ;
ball, p”($))

iii) there exists a (deformation) retract

I

(B - intB, )ng ( g -“%)Bgng_ )

‘g "

o (BT - BManio BT k1D
(resp. r, 5 £, " BN, 3BT Dy )

such that
r =id, ger_=g
gliaB” "I g
& ng q)) |
(resp. rh\ =id, hor,_=h).
-1 h
aBa BH ,7))

The existence of such a (deformation) retract can be proven in the usual

~way (see for example [8]) by integration of a vector field v(z) with the following

properties: Re<v(z),z> <0 and v(z) is tangent to gfl(g(z)). The existence of such a
vector field is locally ensured by the Curve Selection Lemma [5], then by a

partition of unity we glue to a global fieidj.

P P e U O WAoo DI UL o0 I PP L e e VR Vo oA U 115754




= ik

XS y)ARM x BM. Obviously u(F. . ) D,. xD» where
Denote FE,S = e X Hp Y e$ ah 0

u=gx h. We take > 0 sufficiently small so that:

a.)p~ 1(8 ) is a Milnor fiber in both squares Dﬂl X D,/} and D?1 X Dﬂ),
1 1

b p~ 1§ In{cd = 0e D,Wx Do

Firstly we prove that T (D, xD szg is a deformation retract in
! N .

)
o
Indeed, the restricted product map
n _.m S e -1(5 o
u:By xBg (e i TS esp s
lA
it o e
6 &) = (8)NDy xD,, -intD_xD
G i ) i M "I

is a locally trivial fibration. Therefore the natural deformation retract

D, :p 1§ = p 1), telo,1], with D, =id, imDLGp—I(S)ng(D_ x D, ) has a

t 'y\ ry]
lifting
o n m sl b g o nom —i‘—l L)
D‘C:_F.‘Jé;_leel N u (p (S))aBélxﬁalﬂu (p-(3))
. | oL
Definer_ : BY (D.)—B (D) b
g Be NE (D, gng (D) by
S TS PN
(ry R2E
F = ;
&

ids ) g £

T~
Similarly we define e

~
p

Then the composed map (x,y) (rg X h) 0 Dt(x,y) defines a deformation

=m §

retract of u~ (D % D)., )(\F €S in Ft
. If'we take 0 < lvl' <’*\ e LE (ﬂrl',a')' with the same properties as

(":],E) then using the above argument again we obtain that, for S sufficiently
j, s T | _ L -

small, ‘the inclusion u (D,)); % Dﬁl);) NnF 'Q (D ) /Y(' )nI“ g adrr.uts a

deformation retract, hence the inclusion Fi"i ey B £ ¢ is a homotopy

equivalence. A
Therefore {BQ X B'Z}& is a system of Milnor neighbourhoods for f [4]. In

particular, F&'g has the homotopy type of the "standard" Milnor fiber of f [op.
' 1 B .
cits):




iy L

Consider the map u : u"l(D — qu xD. .0 p—l(cg )

Y & "
The restricted map is locally trivial over p—l(é )-{cd=0% with fiber

X D“] n F&

G x H. Over the points phi(rs )n{c = 0% the special fiber of u is the product space

(central fiber of g) X (Milnor fiber of h). Let P'«< p"l(S InD . x DArl be such that

"
tﬁe inclusion is a homotopy equivalence (P' can be chosen to be a bouquet of circles
with ‘base point %) and P' ﬁ{cd = Oj' = 4) Then by a standard argument [8, 3.2.6] F
has the hdmoi‘opy type of a space obtained from uHI(P') by gluing to the fiber
u” ) 'ﬁp_l(é‘a)ﬂ{c = OE copies ConG x H and -#})_1(5){‘)-@ = O} copies of

G x ConH.

Proof of Theorem L2

We denote D = {cd = O}C D,,\x D,\rl . Then for 0} > 0 sufficiently small and

0¢< $<<q),

) -1 1 -1, 4,1 , ]
p.(D,r)xD,y].ﬂp (?)BS ) P (aB‘g)nD)—-—)EB.,

2 -1, 4,1, -1 1 . |
p:(Bf,]ﬂp ('BBS)"P (BBS)HD)W?BBS,

2

"

are (fiber-isomorphic) locally trivial fibrations of pairs of spaces. (The proof is

1

o = PIIP| ("}B%- o1, 282 ap - p lo) > s

similar to fhe one in [8, 2.2.11.)

A -1 ;
Let P, = (1) and let » be a point on P, - D. Then we have the
£ TP ’ ’ ¢

following exact sequence-of groups:

T by o~ 2 = dJ % .
4 "?/I,I(P,; - Dyx) —=2 /(9B -p (OUDy) —>Z 0. .

7 V7 m

Since u: BY x B'N u_l(Bz]- D)~ 5,2] _ D is a locally trivial fibration, we
have - a monodromy representation

j)q :Ti(B?)\— D) :‘ﬁl('a[’% -D)= 22«—;} Aut(HYG x H)',C). The generators -of 22

are chosen so that (1,0) (resp.(0,1)) is a small meridian of the link component

{c = O} (resp. {d = 0})
By the inclusion :aB_f]- p loUD & Bi]—— D, A9 = HIUG x H,C) becomes a



Sl

2

G:'D“C(BB,,) 1

- p N D,«) module, hence also a H =TT, (P; - D,*) module.
1 P 1V

Let g&G be such that ([”'*(g) = 1. Then the -maps fq(g) : A9 A% and

Cq(g) :H->H, hi> g lhg induce an automorphism of the exact sequence:

0 = HH, AV) —> AY —5Dec (1, A1) — Wl AY) —> ©

lﬁ | \5(%) X%M | L‘Jf

A4

¢ 14} 9 -
0O — H (H,Pﬁ) e B PR ey D-ev("ﬁ)/ﬁ) —H (WA ) —> O

; (--I)CHI ¥ *
Let us define [( KP:D)Q(A)J = det(l - )\go)/det(l -}\gl) 2

= det(l - ,\j@ (g))/det.(l - A Ener

Then repeating the arguments of the proof of Theorem B [8] we obatin

that
CAN = N TN T
S f §g h ( Ep,D)q
9
But similarly to the proof of Theorem C [op. cit.] we have

q
(gp,D)g” = det A( ‘)\mlﬁq’q,p\mZEQ » ‘,\m3 L..., P\mr 1.

585, Proof of the global results
Proof of Theorem Glr
We start with some notations:
[\p = the _bif.ircation set of p, i.e., AP is the minimal set such tha.‘;
p: CZ -p 1(AP) F}Cz -'AP is a locally trivial fibrartion.

U,

. J.\‘Ci ;.{p(ci,d)\(%p/l‘) d)(Ci,d) = OBl, =11 .
de :{p{fz,dj)\("?'yp/DIC)(c,.dj)': 0}', }':T,—S-,

Af :APULi)AC;)LEJAdeki,JJ {p(ci’di)}’ |
_ .[\.‘L: C XAhU.Ag x C.

Obviously, u=g xh: c"xc—>CxCisa locally trivial fibration over

ey




S 1!5" ey

CELn.

Let ect%[\f and consider the restricted projections
f]‘(’g - pri\p" l(e) : p—i(e)m} C with bifurcation set Sgc: C,
Ty prz}p_l(e) ’ p"l(e)-—é C with bifurcation set S, C.

From the definition of the set _Af and our assumptions AC and A | we get

d
il i i el < "'.l. - _1 _' %
that sgnAg = ¢ and shnAh = ¢ . Therefore /Lg tp (o) - Jc*g (;g) > C - sg is
an (unramified) covering space of degree n. such that A gc C - Sg'
co
Let Dl’ s 5 ’D‘c be small closed C -embedded disks in C—S with centers

at the points {c k and with radius so small that they are mu‘cually disjoint. For

l t
all i=1,t let 1i-be a ¢~ —embedded interval in ) = C - (sg:uLJint D) from a base
i
; O : ! 1 i ——— y
point co(;g) (with property : prz’/“(g (co) (’)Ah ~(P ) to a p01~nt c; on BDi such that
I e Lfli can be contracted within itself to Cos Bg =luy D, is a deformation retract
1 1 .
of €. Then for each P.g 7‘(_1(c )= {(co,d'i)@ p_l(e), i= T,—ﬁ(j we have a section
-1 . . N
Sg,i : Bg-»-ép : (e), Sg i ) P T' ° Sg,i = 1ng. From the definition of the set .A_f
and from the choice of the value ¢, We can construct the set'Bg'such that

pro o Sg,i(Bgm/\h :(’b for each i = Ln .

5.1. Lemma

(u"l(sg .(Bg)),u'l(Pi))w(g"I(Bg) x H,G x HAAC" x H, G x H)~(Con G x H, G x H).

%
Proof of the Lemma
As a first step we prove that (ul(s .(D.')),u"i(s (e M=
&l ) Byl )
5 (g“_l(nj) XH, G xH) G =T;i=1Ln).

Indeed, if Dj is sufficiently small then pry e Sg .(D.) can be considered as a
7 .

subset of a contractible set in C ,[\ Therefore h is trivial over pr g,i(Dj)f
hence there exists a dlffeomorpmsm (h \f | h I(pr2 (D ) == g | (D o |
(H=h" (pr2 & .(c.))) such =~ that th = idy,. Then
(pl’\lllh) ke (sg, 1(D )) - (Dj) x H (?l T bray) = ﬁ)j( ) is the wanted '

diffeomorphism. [Its inverse is (x',y") &> (x',(h, \r ) (g(x N, yNl.



~ il -

Now the first equivalence follows from the fact that sg i(I)ﬂ.{\ :(1{),

H

sg i(l) is contractible and u is locally trivial over gt -/\ . The facts that /A gc Bg
?

and the inlusion Bgc:: C admits a deformation retract imply the second equivalence.

D

" The third one is trivial.

Similarly we can construct the set Bh with base point d0 and sections
' -1 : 5 g e
Shj ¢ B, —> p~ (e) such that Sh,j(do) = QJ.,”TCh  Spi = mBh (= Ling

Let D =Us (B WwUs, (B ). Note .that we can suppose (by the
&l B ] h,] h

i
definition of .[':\,f) that the intersections s (Bg)() s, j(Bh) are void.
o |

gyl

It is easy 'to\see' that there exists a subspace {§= ibouquet of circles with
base space *k in p—l(e) - such that ¢ is a deformation retract in pul(e), Let
Tk(k :m—gﬁd) be ¢ —embedded intervals in p—l(e) from the base point % to the
points Pi (i = }:Tn-c) and Qj (j = 1—,“{:1;) such that 1= \I()Tk can be contracted within
itself to %, € U T can be contracted within itself to ¢ and tﬁe inclusion
Gulud o p"l(le) admits a (strong) deformation retract. Then using the abové
lemma and the fact that u is locally trivial over c?-A we get that

———n

(u” l(i-i Usg,i(Bg))’ | Upl(* N~(ConG x H, G x H), (i = l,nc);
-1~
(u

1 .us

] . |
N+ h,j(Bh))’ u (N~ (G x ConH, GxH) (= l,nd),‘ wheére  Gxl i3

identified with u” (x). Since ¥ is a deformation retract in pul(e) and u is locally

trivial over f , the result of Theorem G| follows.

Proof of Theorem G2
Similarly to the local case [5] it can be proven that if p is good then the
fibration determined by the restriction of p over a large circle (of radius R) is

equivalent to the Milnor fibration at infinity in a sphere whose radius is sufficiently

\\,u‘['_'f‘:'u

large in comparison*R. [6], [7], [10]). Hence we can identify the spaces p_l(e) =B,
- g L =i = Fe - - = - -

-1 ) ) i -1 \

- Up. v, : - =C = LIt b | th
p o (e) iP1 \?QJ and 4)13 (1) {c ‘ c,oljulld 'doy If we q serve that the
menodremy  "around Bg" (i.e., the one induced by  the  path
o % -1
lloc_’;chvll 2
theorem follows from a combination of the proof in the local case _(§Li) with our

o 12 o'BDz ol "o,..) is exactly the global monedromy of g, then the

B P R R i ey e
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global construction,
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(2]

(3]
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