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SPRECTRAL ANALYSIS FOR SIMPLY CHARACTERISTIC

OPERATORS BY MOURRE'S METHOD. II -
G. Arsu

1. INTRODUCTION

In [7) the authozs developed an abstract theory of
multiple commutator estimates for a self-adjoint operator
H and a suitable conjugate operator A.

The purpose of this paper is mainly to show how this
abstract theory and its consequences can be used in the
context. of simply characteristic bperators.

The plan of the paper is as follows. In Section 2 we
present a short-range scattering theory for simply characte-
ristie operators; The results of Section 2 are extended in
Section 3 to operétors with long-range potentials. In Section
4 we obtain resolvent estimates in Besov spaces in the con-
text of Mourre's commutator methods. Finally, the paper
has an Appendix which contains results concerning~L2—bound—_
edness of some multi-commutators of;pseudodifferéntial opa~

rators and the guasi-divergence of some functions.

i THE.SHORT~RANGE CASE | g S g R

The ‘results of [7] have as one parﬁicuar‘consequence
an abstract scattering theofy. In this section we shall
apply this theory to the simply characteristic oberators

with short-~range perturbations.



We shall work under the following hypotheseé.

HYPOTHESES

I. The free Hamiltonian Ho is a self-adjoint operator
" on the Hilbert space H= 1.2 (R"), with the domain‘@(Ho) =
:g;goﬁ, where U is the Fourier transform

{uel; poﬁe}ﬂ, H

of u and P is a real valued function which satisfies:
(1) pO:Rn~% R is -acontinuous function.
(11) ‘et Sp be the set [%EeR"™; p, is not e da any

neighborhood of"%}, let Cp be the set {EeRn\Sp; Vpo(g) = O}

and let S = SpUCp. Then pO(S) is a countable subset of R.

(iii) For any compact interval IC€R\p_(S), with p3(1y$;ﬁ
we have

(2.1)  inf{|yp_ (¥)] : Bepg (1)}>0

{229 dist(pO(I),Sp)>O

. (54 ] ; L v e l) &

(iv)  sup {[D¥p, ()| / (1+]p, (B)] +|wp, (81 )7 BeR™s § <

for each multi-index & with [&]>2.

(v) (local compactness). For any compact interval

ICR\gg(S) and for each r»>0, the operator
Fildzler)E A1)
is compact. Here F (M) denotes the indicator function of the
set M and EO(I} denotes the spectral projection for Ho onto
the interval I. - |
in. Let V:® > H be a symmetric operator such that

(vi) The operator H +V with the domain @‘has‘a self-
adjoint extension H on #. :

(vii) For some &>0 thg operator g(ﬁ)Vg(Ho)<X>i+
has a bounded extension to the whole of ® for each g in Ca(R).

We used the notations:gg for the image of.$ (the space

of test functions defined on Rn) by the Fourier transform



and <x> = (1+]x|?) , xeR".

(viii) For any g in C%(R) the operator g(H)-g(H_) .is

compact.

The main result of this section is the following

theoren.

THEOREM 2.1. Assume that the hypotheses (i)-(viii)

are satisfied. Then

JLBE ~iHgE. (s, )

(a) The wave oporators W, = s—lim
+ ac

= tyte
exist;

(b). Range W, = #

=
sc 7t ¢;

(H) , the continuous subspace of Hs

!

e} 0. (H)

(d) Any eigenvalue of H not in pO(S) is of finite

multiplicity. The eigenvalues of ‘H'can accumulate only at

the points of pO(S).

Before proving the theorem we wish to make a few re-

marks about the hypotheses we made.
| REMARE. 2.2 . a) The condition (2.1) can be read as
follows:

(2.1)"% If the free energy lies in a compact'inferval
disjoint from éhresholds, then the.velocity is bounded from
below by a positive constant.

: b). Ef we: replace the condition (2.1) by the stronger
condition A

(21..1);?;&5:%%%11&»5 (B) +1¥p, (B)) = °,

then the local compactness property of HO (i.e; condition

(v)) is fulfilled (see the Appendix).
In the same Way one can prove a similar theorem with

the condition {wii) replaced by the condition



- 4 -

(vii)' For some ¢>0 the operator g(H)V<X>1+E has a

bounded extension to the whole of # for each g in Cz(R).

This condition is always true when V is a symmetric
Howcompact operator and there is an g>0 such that the opera-
tor

(Ho+i)_1v<x>1+€

has a bounded extention.

The idea of the proof of the theorem is to construct
for any dinterval ICCR\E;7§3 an operator A = A, conjugate to
Ho on the interval I, such that HO is o-smooth with respect
to A in the sense of the Definition 2.1 given in BJ.

Since we shall use the same technique in Section 3,
we shall recall this definition.

Let H be a self-adjoint operator in a separable
Hilbert space ¥ with domain &(H). Let E, denote the spectral
measure for H. Denote byi%s the completition of the vectors y
satisfying

s/2

eliz= faea® ™ dleg Qo ellf<e

Then§y+2‘is the domain H(H) with the graph norm, and %L? is

the dual of:w+2 obtained via the inner product on 4.

DEFINITION 2.3. Let IR be an interval and let mz21
be an integer. A self-adjoint operator A on ¥ is said to be
conjugate to H on the interval I, and H is said to be
m-smooth with respect to A, if the following cond;tiops are
satisfied:

a). D@ BHE) is 4 core for H.

b) 2% paps H(H) into &(H), and for each e H(H)
: )
sup lEeIA%Y|| <

o} £1



'cm) The form i[ﬁ,A] defined on HH)NHA), is i
bounded from below and closable. The self-adjoint operator |
associlated with its closure is denoted iB1. Assume &(HM:&XB1).

Tf msl, assumesfor 4 = 2,...,M that the form i[iBj_1,A],
defined on H(H)NH(A), is bounded from below and closable. The

associated self-adjoint operator is denoted iBj, and Lk is

assumed that &XH)CﬁNBj).

d.) The form [B ,A], defined on &(H)NH(A), extends
to a bounded operator from§ﬁ+2 tozw_zn

e) There exist a>0 and a compact operator K on pid
such that
(L}+B

E (I)iB1EH(I) 2-al (I).

q (I)KE

H H H
If H is m-smooth with respect to A for every integer

m>1, H is said to be «—-smooth with respect to A.

We pass now to define the operators which we mentioned.
Let IC=&\5;T§5 be an interval. If p:(I) = @rwe take
Bz Bew 0.
£ p;(I) # @ we proceed as follows. The condition
(iii) (2.2) implies tﬁe existence of a function X in CmﬂRn)

b

with the following properties

X(6) = 1 if £ep (T),

supp><c:Rn\Sp' ;

Here Cg(ﬂn) denotes the spaée of all smooth functions bounded
with all their derivatives. -
Next we -define the smooth vector field v in phase

space by

(203 wmtElis ) o (BN (Telp (R) ) [ e E) | 2



Let us note that the condition (iv) and the properties of
the function X imply that the components of the vector field

v belong-to -the spagce CE(Rn)u

Since the vector field v is bounded it follows

that the Cauchy problem

{ (d/da) T (a,g) = v(I(a,E))
T(0,E) = &

defines a group of smooth diffeomorphisms of Rn, tido., )}aeR'

To this group of diffeomorphisms {T (o, )}acR

associate a group of unitary operators {V(a)!} on Lz(Rn,dg)

aelR
by

(2.4)  (V{a) ) (E) = |detsT(o,£) /€| 29(T (a,E)),
peL? (R",dE) .
If we denote by ¥ the Fourier transform on LZ(Rn),

then we obtain another group of unitary operators on

12 (R",dx) defined by

(2.5) Ula) = T2V(a)F on 12 (R",dx).
‘ Let now A = AI be the self-adjoint operator on
L2(Rn,dx) such that 7
el B e R,

~ ' ~

e
LEMMA 2.4. a) "9 is a core of A, A maps D into &

and
S D
2 A = (X.%. D D) X. 2 Ol =) .
L LRI R
b) For any meN, £ is a core of A

. c) The statements a) and b) are true with
replaced with P(R").

PROOE. a)ilet {v(a)}ueR be the group of unitary



operators defined by (2.4). Concerning this group we make
two qusievident remarks:
1) TFor any «eR, V(o) maps ® into 8;

2) For any ¢€dwe have

i 4 : Sl
% lim(V (o) y=y) /ioa = 2 {D o () . 8B )RV,
50 % éj: J J Ej-
i p i

The last assertion can be proved by using a Taylcr
expansion of order two. Now this part of the lemma follows
from the definitions and the Theorem VIII.11 of [12].

b) Let B be the self-adjoint operator on such
that V(o) = eiBu. Then the second part of this lemma follows
if we show that for every mel is a core for B,

Liet &2 = {geP(R); geCZ(R)}‘ To pro&e that & is a
core for Bm it suffice to show that for ge %9 we have g(B)iﬂZ&l

Indeed, from this assertion it follows that the space Mo =

= V’g(B)&C:@C&Xﬁn) and it is obvious to see that M is a
34 :
core for B

Let IcR be a symmetric compact interval and let
keR” be a compact set. Let ge%§ with supp g1 and Ps @K"

Then using the representation

g(B) = ) i 2 fg(t)V(t)dt

n

we obtain that g(BhbeCm(R ) and supp g(B)¢ C:KI, where

Ry = ).

c) Since the vector field has its components in
CE(Rn) it follows that A is a bounded operator on ?(Rn)
and this concludes the proof of the lemma.

Q.E.D.



LEMMA 2.5. Let qecl(Rn\Sp)ﬂC(Rn) such that ygev
is a bbunded function. Then

a) For any aeR, D(U(a)g(D)U(-a) = D(q(D)) and

U(a)q(D)U(~a)-q(D) = bla,D), where

oo
bla,g) = [vg(rlreg))ev(T(r,g))dT..
0

b) For any aeR, Ulq) maps H(g(D)) into B(g(D))

and for each ¢e®(g(D))

(29 sup|la (D) U(a)e|| <[la(D)gl|+ sup [vav ||jo]]
10ls4

- N\
c) The form i[g(D),A] defined on £ has a bounded

extension and
(2.10)  i[q(D),A] = (vgv) (D) .

PROOF. &)  For a borelian function q:Rn+C, we denote
by Mg the operator ¢ + g¢ on 12 (RV).
-4
Since U D)U(-0) = ¥ M F e R
hie (0)g(D)U(-0a) gol las ) or any o€R,

A
it follows that & is a common core for U(u)q(D)U(—@) and

g(D).

On the other hand .we have
A
U(a)q(D)U(-a)-q (D) = bla,D) on &,

with b 'given in (2.8).
Now a) follows from previous relation by observing
“that bila,D) is a bounded operatol.

b) is an easy consequence of a)

C)_follows from (2.8) by derivation.




REMARK 2.6. a) Let m, = sup{|t}; t€I} and let
s inf{leO(g)l; gép;%I)}. Then the part c) of Lemma 2.5

implies that

E (I)i[H_,AJE_(I) 2 2 (1+mi+c}) Eg(I)

b) If we denote as usual

adA(HO) = [HO,A]

KT (1 ) = ad, (ad®

ad, o ala%s

(HO), keN, kzi,

with the commutators understood as in Definition 2.3, then
we obtain from Lemma 2.5 that for every meN, mz2]
m -
€ Yo,
ady (H_) B @)
¢) Lemma 2.5 b) together with the previous remarks

imply that A is a conjugate operator for HO on the interval I,

and HO is «-smooth with respect to A.
kemark 2.6. b) has the following consequence.

LEMMA2.7. Let meN and let gECZ(R). Then

m _ .
a) adA(g(Ho)) is bounded.

b) The following formula holds

=0

’ m
g(m,) (ari) ™ = (aed) THI(R) (=) )
0]

ad (g (H_)) (A+i)~
Here ad (g(H )) = g(HO).
PROOF. a) Using the formula

Hot

adA(e_lHofc) _ GiHoty p i 5
£ iu,s iH, (t-s)

= je 02 ad. (H: Yye 2 "= "dsg
. A O

it can be shown by induction that for every keN, kz1

4
3
%
i
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a.d};;(elH°t) e Redy,

SR o R _3
ol iHes, ks +1 k, , iH, (t=8)
»jadA (e7°%)ad™ (H )ad ™ (e ° Jds,
0
ki iH.t k
lad™ (em )] R () sclt|™ .

Now the part a) of the lemma follows fxom. the
representation

elHost

g ) = 2m”/*fa(s)
where § denotes the Fourier transform of g.
b) The prcof of the second part of the  lemma is
elementary and is made by inductin.
0. B
CORILLARY 2.8. Let meN and let gczC(:(R).. Then

g(H,) maps o™ into DA .

Now we need to make some notations. We denote

by X+ (resp. X-) the indicator function of (0, +m)

(resp. {-«,0)). For & self-adjoit operator A, PZ (resp. P;)

denotes the speétral projection corresponding to (0, +)
(xesp. (<«,0)) and A denotes the operator (1+A% 1/2.

Lemma 2.4 has the following consequence.

IEMMA 2.9.  Let 520, Then

<A>S<X>”S = JS

is a boundedioperator on .

PROOF. We need only to prove the case s=keN

and then use the complex interpolation. Thus we must show

I
|
1
i
|
:
i
!
i
{
!



that the operators

Bl e

are bounded. But this follows from Lénima 204 and the
estimate
o0, 83011 scllo lolh o, ye B
Q.EsD.
Remark 2.6.c), Corollary 2.8 and Theorem 4.2 of
[f] have the following consequence which can be interpreted

as a propagation property.

THEOREM 2.10. Let 0ss'ss and let gecz(l). Then
there is 'a constant c=clg,s,s") such that

s ~iH.t s s'
e

(21 |l G J<Ba]| & ottt TbeR;

SI’

=1 He 't -
o g(ao)PAx!§C<t> , BER.

2.12) ||%° (&) <a>"%e

From now on the proof of Theorem 2.1 follows
the same way as the proof of Theorem 4.3 of [7] or the

proof of Theorem 1.1 of [2].

i
i
i
i



3. THE LONG—-RANGE CASE

Some of the results of Section 2 concerning to the
unperturbed Hamiltonian HO, such as «-gsmootheness, can be

where V. is

extended to a perturbed Hamiltonian H It L

1, = HO+V
a long-range potential. '

The purpose of this section is to prove that under
certain conditions, the perturbed Hamiltonian HL = HO+VL
is w-gsmooth with respect to certai conjugate operators on
any finite interval ICR\§;7§T.

We recall now some definitions and notations which we
shalil wuse:

Let F(M) denotes the indicator function of £he set
M and assume that Rn is divided into unit "cubes" Ck’ keN

so that

R® ={JE and cCNC. =@, k # -
k k 73
kel

We say that fecO(Lp), pz1, if

HfHO,p = i\;g“?(ck) pr< IS and

lim|F(C,)£|| . = O.
Y00 k P
Also we say that a function f is quasi-divergent if

lim|C, OB | =0
S m
koo

for all meN, where B = {xeR"; | £(x)| £m} and |M| denotes the

Lebesgue measure of the measurable set‘M._
Finally we denote by CZ(Rn) the spacé of all smooth
functions ¢ such that

i =0

X*-)‘OO

‘We shall work under the following hypotheses.



HYPOTHESES

I. The free Hamiltonian H is a self-adjoint operator
on the Hilbert space H = Lz(Rn), with the domain @(HO) =
i o 1 ‘"4 PN A .
{ued; poueh}, B 2 p 0 where I is the Fourier transform

of u and P is a real valued function which satisfies:

(i) pO:Rn¢R is a continuous function.
(1i) Let Sp be the set {geRn; Po is not C in any

neighborhood of &}, let»Cp be the set {QERD\SP; Ve (E) = 0}

O

- lets © 8= SSJCP. Then 55757 is a countable subset of R.

{(iii) Fer any compact interval ICR\pO(S), with

p;1(I) # ¢, we have

dist(pOT(I),Sp)>O.

(iv) F(SP)GCO(L1).

G lim (lp_(£)+|vp_ (£)]) = O.
ErenibgS ©

(vi) sup{|D%_(E)]/ (1+]D (E) |#]V p (E): EeR™\S } <o

for each multi-index  with |a]22.

Th, 2bmade ) -V is COO real valued function which satisfies

L

~e=| ol xeR™,

D%V, (x) ] sC <x>
for some e>0 and all aeN™.

From the hypotheses (iv) and (v) it follows that
Py s & gusi—diverdgent function (see. the Appendix). Now
" from Theorem 9 of [5] We-obtgin that ¥ ois 3 symmetric .
Ho~compact‘operator. We denote by HL the operator ﬁO+VL

with the domain O(H;) = DH).

N 3
ITI. Let V:® > ¥ be a symmetric operator such that
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brdd 42) The operator HO+VL+V with fhe domain<@ haé,a‘
self;édjoint extension H.

(ix) For some e>0 the operator ¢(H)Vq‘>(HL)<x>1+€
has a bounded extension to the whole of H for each ¢ in C?(R)»

(x)  For any ¢ in‘C:(R) the operator ¢ (H)-¢(H ) is
compact.

The main results of this section are the following
theorems.

TﬁEOREM 3.1. For any interval IccR Egng there is a

self-adjoint operator AI such that AI is conjugate to HL on

" the interval I and HI is «—-smooth with respect to AI.

As a consequence we have that the eigenValues of HL

which are not is pO(S) are of finite multiplicity and they

can accumulate only at the points of pO(S).
THEOREM 3.2. Assume that the hypotheses (1)=(x) are

satisfied. Then

JHe ~AHat, g

ac L)

(a) The wave operatos W, = s-lim
. - t = teo

exist;

tb). Range W "= H%(H), the continuous subspace of H;

cS

te) o (HY #.9%

Y dsiof

(d) Any eigenvalue of H not in po(§TU0p(HL

finite multiplicity. The eigenvalues. of H can accumulate

only at ‘the poinks of pO(S)uo

p(HL)'

 REMARK 3.3.‘a) In-the proof of Theorem ER) e B

need the following local compactness property: for any p

compact interval ICR\pO(S) and for each r>0, the operator

F(|x|<r)Ep (I)

is compact. Heré“EL(I) denotes the spectral projection for




HL onto.the inferval 7

This property is a consequence of the quasi-divergence
qf B

b) The qusi-divergence of Po implies that the condition
(x) is eguivalent to the followimg one:

()" Por any-¢ in C?(R) the operator ¢(H)~¢(HL) is
compact.
| c) In the same way one can prove Theoreﬁ 3+ with the
condition (ix) replaced by the condition:

+e
has a

(ix)' For some e£>0 the operator @(H)V<x>1
pounded extension to the whole of ¥ for each ¢ in CZ(R).

This condition is always true when V is a symmetric
Ho—compact operator and there is an ¢>0 such that the
operatqr

(43T ez FE

has a bounded extension.

d) The condition (v) implies that for any compact

interval ICR\pO(gT, with pg1(I) 4 ¢, we have .

inf{leo(E)l; &ep;T(I)} = Gy > 0.

This remark implies that all the constructions in Section 2

can be made in the context of the hypotheses of this section.

- Let ICCR\§;T§T be an interval and let JCCR\§;7§T be
aﬁother interval such that Tcad. Let A = AI be the
‘self-adjoint operator associated ﬁo,the interval J defined
in Section 2. |

Then the Remark 2.6.a) and thé gquasi-divergence of

the function P have the following consequence.

There is a compact operator K on # such that

toan EL(I)i[HO,A]gL(I) 2o/ (A4mEe LI AT) +

+E. (T)KE. (T)
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wheré‘mJ = sup{|t|s ted )

Since the components of the vector field v, which

[ee]

defines the operator A, belong to the space Cw(Rn), we can
prove the following lemmas.

LEMMA 3.4. The operator adA(V ) defined on ¥(R") has

L
a bounded extension to a compact operator on .
m

LEMMA 3.5. Let meN. Then the operator adp

(Vv defined

)
on ¥(R™) has a bounded extension to the whole of H.
For the proofs of these lemmas we refer to the Appendix.
Thesé lemmas end the proof of Theorem 3.1.
We nbte, also, that Lemma 3.5 gives, as in Section 2
(cf. the proof of Lemma 2.7), the following corollary.
COROLLARY 3.6. Let meN and let gecz(R). Then
N .

a) adA(g(HL)) is bounded.

b) The following formula holds

<

¥.

() ()™ = (i) T (M) (=11 %ad% (g (1)) (At
T ‘ e SEx VRV

Fa

.0 . E ’
Here adA(g(HL)) g(IIL

c) g(H ) maps (a") into (a™.

L

Now theorem 3.1, Corollary 3.6 and Theorem 4.2 of [7]

lead to the following theorem.

PHEOREM 3.7. Let 0gs'sSs and lét gECZ(I\Gp(HL)). Then

there is a constant ¢ = c(g,s,s') such that

4 .___A B 3 . i ey . R LI R D A I o -
(3.2) ||<a>"Se lH-tg(HL)<A> e g -
- v i 5y |
(3.3) [Ix5ter<ns™ & Bgm ) pi]| 8 o<e>™, tek

From now on the proof of Theorem 3.2 follows the same
way as the proof of Theorem-4.3 of [7] or the proof of Theorem

tal of 2]



- 4, BESOV SPACE ESTINATES

In [8],-the authors show haw Mourre's commutator
methods can be used to prove resolvent estimates in Besov i
spaces.

In this section we shéll Qse.this approach to
prove this type of estimates for a regular perturbation
of & simply characteristic opexatoxr.

DEFINITION 4.1.]8]. Let A be a self-adjoint operator

on a separable Hilbert space £ with norm |

a) We define the Banach space

[ee]

B, = {ue; z R1/2H F(aen,)ull < = 1,

where F(AGQj)‘is the spectral projection for A onto the

set 0 = {teR; 23751kl 27y, 321, o = (£eR; |t|s1}, and

R. = 27. We write | for the obvious norm on B

] p A

AQ

b) The dual space BZ of BA with respect to the

inner product on is the Banach space obtained by
completing in the norm

lallgy = sup Rj1/21]F aesy )l

]

c) The case A = |x|, &= 12 (R") gives the usual

n

spaces B(R™) and B*(R).

DEFINITION 4.2.‘Let'H be the self-adjoint
reallsatlon in Lz(R ).of the operator of convolution with
a real continuous function p deflned in RV whlch sati %?lés
hypotheses_(i)w(iv) given in Section 2.

We say that H = HO+V is a regular perturbation of

Ho-if V satisfies the following conditiéns:

a) V is a symmetric Ho—cgmpact operator.

[oe] 5 o
(Rn), SUPDVLER N8 5%l peii B He define

Let v.eC
= D ; ] P



the self-adjoint operator with as a core

b) The form B = i[V,A ] defined on #, _NH(A) extends
to a bounded operator from MLZ to & which is an Howcompact
operator.

c¢) The form i[B,A] extends from§%+51@(A) to. a

= o I LW
bounded map from ¥ , to €.

THEOREM 4.3. Let H = HO+V be a regular pérturbation

of HO. Let R(z) = (H—z)"1 for Imz # 0. Then

a) Any eigenvalue of H not in EO(ST is of finite
multiplicity. The eigenvalues of. H can accumulate only
at the points of ESTETQ

b} For AERV(pO(éTucp(H)), the estimate

sup ||R(A+16) £]] n S c | £] |
§#0 B* (R) B(R") '

Let ICCR\E;TgT be an interval and let JccR\ESTgT
be another interval such thaﬁ IccJ. Let A = AJ be the
’self~adjoint operator associated to the interval J defined
in Section 2. )

Then Remark 2.6.a) and Definition 4.2 impiy that A

is conjugate to H on the interval I, and H is T-smooth

. with. respect to A.

s

So the first part of Theorem 4.3 follows from the
abstract results of Eric Mourre.
Concerning the second part of the theorem we

shall, use Proposition 2.1 of [8] to obtain that



sup ||R(A+i8)£]] <c ] E

bl
) %
§#0 BA BA

holds with Cq(k} uniformly bounded in A, when A runs in

a compact subset of R\(EO{SYuUp(H)).

Next, we show that the abstract spaces BA and BZ

loak like BER)-and B* (R™) .

LEMMA 4.4. Tet H = HO+V be a regular perturbation of
of H . Then for any @eCZ(R), the operator ¢ (H) 1is bounded

mapping from B(R™) to B and from Bg to B*(Rn).

PROOF. We show ¢ (H):B(R") » B, since the other
assertion. follows by duality. TO do this, we use a variant

of the interpolation Lemma 2.5 in [1]: let T:12 (RV) ~+ 12 (R

pe a linear operator with T:L%(Rn) - @(]A\N) for some
N>1/2. Theén T:B(RY) - Bye Here L%(Rn) denotes the space

n

{uel? (R ; exsNyer? (R™M) 1.

loc
A proof of this interpolation resﬁlt is obtained by
mimicking the proof of Lemma 2.5 in [1].
‘ 8ince ¢(H):L2(Rn) + 12 (R"), we need only to show
that ([A{H)qb(H)<X>—1 is a bounded operator. But, by [a]

Lemma 4.12 and Lemma 2.9 of Section 2 we obtain that

A¢(H)<X>'1 = [A,@(H)']<x>"1 +¢(H)A<X>_j
is a bounded operator.

TE.D.

<

From now the proof of Theorem 4.3 follows the same

way as the proof of Theorem 1.1 of 18]«

)
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REMARK 4.5. a) Assume that Po satisfies the
hypotheses (i)-(vi) of Section 3 and that V = VL satis-—
fies the hypothese (vii) of the the same section. Then i

H = HO+V is a regular perturbation of HO.

Moreover, if Py and VL satisfy the above cbnditions
with the conditions (vi) and (vii) replaced with the
conditions

(vi)' supl|D%_ (E) |/ (1+]p (£) |+]Vp (E)]) sECRNS Tew

for each multi-index. o with 2£|a|sm,” ?

byl ) e de @ c™ real valued function which satis-
fies
o 2 ~e=|a]
D, (x)] sC <x>
for some >0 and all aeN' with |alsm|
where m = 2[n/ﬂ +3, then all the conclusions of the

Thebrem4.3 hold-for H = H0+VL’

b) The Theorem 4.3 establishes the existence
and the unigueness of the weak~* limit in B*(Rn) for
R +is) £ as 640, when £ B(R"), and xeR\(ffgi’sTqu(H)). This
results follows from the B-B* estimates, the deﬁsity of
L;(Rn) in B(Rn) ﬁor s>1/2, and'the existence of the
boundary values R(X#i0) in the L;—Lismtopology for 55142

(Cf. Theorem 2.2 of [7] and Lemma 2.9 of Section 2).



APPENDIX

In this appendix we propose to discuss certain
results concerning the L?-boundedness and compactness of
multi-commutators of pseudodifferential operat@rs and the
quasi-divergence of some funtions.

A. We give here the proofs of Lemma 3.4 and
Lemnma 3.5.

Let ¥ denote the Fourier transform on ?'(Rn). Let

teR and let ac¥' (R"xR"). We define the operator
at(x,D):S%Rn) > $' (R
by
-n/2 -1
<at(X,D)¢,w> = Dgt) <((16% )a)oT, ,v8¢>
¢, ve(R™)

where Tt:RnXRn soplhp? is a linean map defined by

T (x,9) = (tx+(1—t)y,x-y)‘

Then we have

y ila‘/al(a?aga)o(X,D)+

a1(X,D)—aO(X,D) .
0<|al<k G

(A. 1)

o 1

+k % i%/a1 ] (1-0) %7 aeta) (x,p)at
lal=k :

)
with the integral converging weakly.

We shall use the theorem of Calderon-Vaillancourt

in a variant due to Cordes [3] (see also Kato [9]).

THEOREM A.1. Let m = [n/2]+1 and 0stsi.
a) L DiD?aeLw(RHXRn) for |a|, |B|<2m, then

at(X,D) is L2-bounded. Moreover, the one parameter family
of operators at(X,D), 0<t<1, is uniformly bounded and



uniformly continuous in operator norm.
b)) wIRE aecim(RHXRn), +hen the operatoxr at(X,D) is

n

).

compact in the space A 1 6

Let seR. We define the space

Moo= {aeC”(RT); ¥ a, 3¢, >0, laaa(x)1§CG<X>S—\q\, xeR"}.

Then for aeMS and A defined by (2.6) we have
n
i2) - miEal = E{gja(X),vj(D)]+i[a(x),(divxn (D))
1 .

Now Lemma 3.4 is an easy consequence off : (k. 2) and kthe

following result.

LEMMA A.2. Let €>0 and let aeM,_ . . Then

a) If beCE(Rn), then the commutator {g(X),b(D)] is
L? ~bounded.

b) I beCz(Rn), then the commutator [a(X),b(D)] is
a compact operator in the space Lz(Rn).

PROOF. To prove this lemma we observe first that

[a(x>,b(D)] - (a®b), (X,D)~ (adb) _ (X,D)

1

Then, by applying (A.1) with k = 1 we obtain
1

[atx),b(D)] = i; é(aja®8jb)t(X,D)dt
Now this lemma is an easy corollary of the Theorem A.1.
b,
Let aeMS. Then, starting from the equality (A.2)
and using the Jacobi's identity, we can prove by induction
that for any meN, adi(a(x)) is a finite sum of the terms

of the following form
I[--[[a, (%) ,B, 0] /oy @) ], .1:p, (D]

where akEMs+k’ bjecw(R o=t ey Kam
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Now Lemma 3.5 is implied.by the following result.

LEMMA A.3. Let >0 and let keN, kz1. If aeMk_S,
bjaCE(Rn), J2l joee ok, then the multi-conmutator

[[--- [E® by @] ,b, ) ],...]/by (D)] (

defined on T(Rn), has a bounded extension to the whole space

L2 e ’ ;

Proof. The proof of this lemma is made by inducﬁion. ‘
The case k = 1 was proved in Lemma A.2 a). Assume that the
statement is true for k. Let aeMk+1_E.'Then using (A.1) we

obtain as in the proof of Lemma A.2 that

[a(X),b1(D)] = iia[/a!(Bub1)(D)(aaa)(x)+B

0<\a%<k+1

with B a bounded operator and aaaeMk+1_C~|q|ch_r Eor 15| e

Now the lemma follows from the induction hypothese.

B: We shall prove the following result.

PROPOSITION B.1. a) Assume that pO:Rn > R is a function
which satisfies the conditions (i), (ii) and (2.1)" of the
Section2. Let I R §;T§T be a compact interval and let r>0.
Then

F(Ex}

IA

r)EO(I)

is a compact operator on LZ(RH),

b) Assume that pO:Rn'+ R is a function which satisfies
the conditions (i), (ii), (iv) .and (v):of the Section 3. Then
is a quasi-divergent function.

Po

In order to prove Proposition B.1, it suffice to
show ef.  Corollary 3:of [5] for the part a)) thad the

following lemma is true.
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'LEMMA B.2. a) Assume that Py satisfies the conditions

(), “(11) and. (2.1} of the Section 2. Let ICR\pO(S) be a
compact interval. Then

Lin | c,ngy' @] = 0

b) Assume that Py satisfies the conditions (i), (ii),

{iv) and. . (v) of the Section 3. Let IcR be'a compact interval.

Then

1

lim [c np, (T)] = 0.

k>
Here |A| denotes the Lebesgue measure of the measurable set A.
PROOF. We shall prove only the part b) of this lemma
sinece the: first part can be done in a similar'manner.

b) Since F(Sp)eco(L1)'it suffices to show that

. - i ol
iiii(HJW(PO (I)\sp)l =. 0.

If we denote by

: _ ~ -1 '
L lnf{\Vpo(g)(; zeC N(py (I)\Sp)},

then the compactness of I and the condition (iv) imply that

limb, = o«
k>0

Let kOeN such that bk>0 for any"keéeN, k;ko.

The proof of the lemma is compleated by the following

estimate:
o iy g =1
(B.1) ickn(po (I)\spi < n/n|I|b, , keN, kzk,.
- [r.nD e ) o o ey
Let Bj [EeR \Sp, '&po(”)£ < anajpo(d)|} and . let
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for: el .70 Bhen ®j is a local diffeomorphism at‘every

. : =i
olnt: 1n T) -B..
P po()13 : 1
Since Ck po (1) = &H ngpo (I)ﬂBj, then (B.1) follows

from

7a\

(B.1)" leﬁp;1 (I)mle < /ﬁ|Ilb—1, keN, kzk_,
J2T jiwvieplle

This estimate can be obtained by making a change of

variable. Let us write Cknp;1(I)ﬂBj as a disjoint union

=1
Eg @j (CkINWCHWBjan,

where CkI = ﬂ1(Ck)X...X (Ck)XIXW.

Wj_1 j+1(Ck)x .Xﬂn(Ck) and

Ml' 1 N, are disjoint measurable sets which have neighborhoods

on which ©j is a diffeomorphism.

Then
c.ap L (T)nB, = U o7 (A, )
Ko g g Bl
where Akjl’ 1eN, are disjoint measurable subsets of CkI such
=1 ] . .
i = ¢ N f b
that Qj (Akjl) Qj (CkI)ﬂCkﬁBjﬂJl, éj is a diffeomorphism
G : ~]
in a neighborhood of Qj (Akjl) and
!det(@ﬂ)'(n)\ < /ﬁb; ;
j 4 ne kjl'
Hence
L 1 | >
lempO1 (I)nBj} 5 ol o dag. = ) flaet(d. )" (n)ldn
0y ABpaq! Pyl
s E L an e
k ¢ k

kI

W
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