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X A =W

We introduce and study dualities A : R™ —» I—Q_W (i.e., mappings f € ﬁx —> f~ €R

such that (inf f.)A = sup fiA for all {fi}iel gﬁx and all index sets I), which satisfy the
iel iel
additional condition (f \/d)A = fA A-d(fe ﬁx, deR), and their duals, which are

¥* ¥*
Y 3 RX forwhicht L) =2 T _dGe

characterized as those dualities A* : R
€ 'I'ix, de R), where L and T are two new binary operations on R, which we introduce
here. Furthermore, we give a characterization of those A which are also canjugations.
Some applications are also mentioned.
§0. Introduction

We recall that if E = (E,<) and F = (F,<) are two complete lattices, a mapping
A E—>F is called (see e.g. [6], [24], [11]) a duality (or, a "polarity" [1], [15], [16]), if
for each index set I {including the empty set I = @ with the conventions inf @ =+w, sup Bz-o0,

where 400 and ~o dencte the largest and smalleet e._\emmf_ﬁ,respf:‘cﬁvely)’We have

A(}nf Xi) = sup A(xi) ({xi}iel c E). (0.1

iel i€l ,
We have studied dualities between (general and various concrete) lattices E and F, in
[11] (see also [24]; for other recent results on dualities, see e.g. [3]-[5], and the

references therein). An important particular class of dualities is that of conjugations,

which has applications to duality in optimization. Let us recall that, if X and W are two
=X ) — Wl.fh"f.’v(’
sets and E = (R”,<) (the complete lattice of all functions f: X —>R=[-,+e) Yusual

pointwise partial ordér), Fi= (I—Q—W,S), a mapping c: E — F (or, we shall write, simply,

k Y

™ 4 ™~ Y/ . . . . . . 4
c: R~ R\') is called [21] a conjugation, if it is a duality, i.e., if for every index set !

(including I = @) we have (denoting c(f) by %)
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(inf £.)° = sup f , ({f} c (0.2)
iel
i€l i€l
and if it satisfies the additional condition
¢3S =15+ d (teR", deR), 0.3)

where we identify each d € R with the constant function h € RX defined by h(x) = d

(x € X), the operations +, + on I_l-x are defined pointwise (on Xj, and the operations +, +
on R are the "upper addition" and "lower addition™ defined ([13], [14]) by

atb=as+b=a+b if RN{ab} P or a=b=z+a, (0.4)

atb=+w,a+b=-w, if a=-b=+oo. ' (0.5)

For example, if X and W are two sets and @: XXW ~»R is any function (called,

following [13], [1#4], a coupling function), then the mapping c(¢) RX —» RV defined by

fC(‘P )(W) = sup{ ¢(x,w) + ~£(x)} (fe ﬁx, we W), (0.6)
xeX
is a conjugation, called the (Fenchel-Moreau) conjugation associated to ¢. . Moreover,

the converse is also true. Indeed, by [21], theorem 3.1, for any conjugation c s RS Y

we have (at each we W)

w sup {()q }) - f(x)} (fe EX) 0.7)

and hence there ex1sts a uniquely determined coupling function ¢, : XXW—R __ such

that c = c( ¢, ), i.e., such that

£S(w) = sup{ @ (x,w) 4 -l o) feRX, we W); (0.8)
XEX .
namely, we have
. (x,w) = (g, )W) (xe X, we W), 0.9)

where )qx} denotes the indicator function of the singleton [x}. We recall that, for any

subset M of a set X, the indicator function XM . X — R (of M)is defined by

. Dif xe M
Xy &) = (0.10)
+oo 1f x€ X\M.

Thus, by the above, there is a one-to-one correspondece between conjugations

— =N/ - = . Ny
c: RX — R“ and coupling functions ¢ : X XW — R; the function ¢, of (0.8), -(0.9)




‘““\ 3 ‘/"“*

called [21] the coupling function associated to the conjugation c.

X W

In the present paper we shall introduce and study dualities & : R” —»R ", i.e., map-

pings A satisfying, for every index set I,

(inf o supf.A de}. g’ﬁx), (0.11)
; : i iiel
iel i€l

which have another "second property", different from (0.3). First, we shall introduce and
o .\ (4

study " V -dualities" A : RX—>R“, defined by a "second condition" on (f V d)A (instead

of (f + d)A), namely, condition (2.1) below, where V and A stand for (pointwise) sup

X W W X
of

and inf, in R” and R" respectively. In order to determine the duals A :R"—R
Y -dualities, we shall introduce two new binary operations on R, denoted T and L,
respectively, which may have interest for other applications as well (e.g., to the
inversion of Boolean inequalities, as we shall show). Then, extending these operations

X 58V, defined by

(pointwise) to ﬁx, we shall introduce and study "1 -dualities"§ : R
a "second condition" on (f L d)G, namely, condition (3.1) below. It will turn out that
V—dualitieéf and L -dualities are dual to each other and that (Fenchel-Moreau)
conjugations can be expressed with the aid of V-dualities or J.-dualities. Examples of

dualities which are simultaneously conjugations, V-dualities and _L-dualities, are the

dualities of type (2.3) below (containing, as a particular case, e.g. the

Greenberg-Pierskalla [8] quasi-conjugations), and we shall show that they are the only
dualities having simultaneously any two (and hence all three) of the above properties.
Finally, we shall also give some examples of 1 -dualities related to lower
sﬁbdi.fferentiability. (in the sense of [17)) and mention some applications. For
som%turther a‘pplications, to duality in optimization, see remark 4.2 b) and [12]:

Let us also note that, while the indicator function,; of a set M (defined by (0.10))
has turned out to be useful for the study of conjugations, in the sequel we shall find it
convenient to use, for the study of V -dualities and L-dualities, the following function
Py ¢ X — R, introduced by Flachs and Pollatschek [7], which we shall call the

representation function of M:




~-00 if xe M
pM(x) = (0.12)
+o0 if xe X\ M.

For any function f : X~ R and number r € R, we shall use the strict lower r-level
set Ar(f) of f, defined by
A (D) ={xe X|f(x) <1} . . (0.13)
We shall denote by min (respectively, max) an inf (respectively, sup) which is attained.

X

In the paper [11], instead of dualities A : R -—}ﬁw, we have also studied, more

% -—>BW, where (A,<) and (B,S). are subsets of (R,<), which are

generally, dualities A : A
complete lattices, giving applications to various concrete sets A and B. Although the
results of the present paper can be extended to that more general case, here we shall

X W

consider, for simplicity, only dualities A : R"~ R

§ 1. The binary operations T and 1 . .

We shall now introduce two new binary operations on R (and extend ‘them,
pointwise, to TQ—X), denoted T and ., respectively, which we shall need in order to
determine the dual of a V-duality (see § 4).

" Definition 1.1. For any a,be R, let

a if a>b

aTb: ) (1.1)
=e0 - if ~a<b, '
a if a<b

a_Lb = (1.2)

+o0 if a)b.
The binary operations T and .L are non-commutative and non-associative; for
example, we hav.e
(0TO)TO=-%TO0 = -co, (1:3)
0T(0T0) =0T-00=0. (1.4)
Nevertheless, these operations have some interesting properties. Indeed, first of all,
they give an answer to the following questions on the "inversion" of Roolean

inequalities: If a<b Vcora > bAc, how to move b or ¢ to the left ha
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Proposition 1.1. For any a,b,c € R, we have
a<bVceraTb<ceaTe<h, (La3)
a>bAcepalb>cepaledhb. (1.6)
Proof. If a > b, then for any c & R we have the equivalences
a< ch¢:>a§c<:>aTb§ &
while if a < b, then for any c € R we have a £ bVcandaThb = -00 £c. ._..The _ _.second
equivalence in (1.5) follows from the first one, since bVc = cVb. The proof of (1.6) is

similar,

Remark 1.1. By proposition 1.1, the operation T (respectively,l) is, in a certain
sense, the "inverse" of Y (respectively,A). We think that this property alone could be
already a sufficient algebraic motivation for introducing T and L, and that these
operations may be useful for other applications as well.

b) Proposition 1.1 is similar to [1#4], formula (3.3), according to which

xty>z x>z+-y (x,y,z € R). (1.7)

Corollary 1.1. For any b,c € R, we have
bVc=max a=max a, (1.8)

aeR a€eR
aTedh - alThee

bAc=min a=min a, (1.9)
aeR aeR
alcdb albdc
blc=max a, (1.10)
aeR
alAc<b
bTc=min a. (1.14)
aeR
aVc>b ‘
Proof. We have bVc = max{ae R|a <bVc}, whence, by (1.5), we obtain (1.8). The
proofs of (1.9)-(1.11) are similar.
A connection between T and L is given by
Proposition 1.2. For any a,b € R we have

aTb=-(-al-b),alb=-(-aT-b).

Proof. This follows from (l.1) and (1.2), using that a > b if and onlv if -a < -b,
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Remark 1.2. a) By proposition 1.2, each result on T is equivalent to a corresponding
result on L (for example, (1.5) and (1.6) are equivalent).,
b) Proposition 1.2 is similar to [14], formula (2.2), according to which

xt+y=-(xt-y)xiy=-(x+-y)  (,y,zeR). (1.13)
Proposition 1.3. We have

aT +o0 =-00=(-00)Ta (a e R), (1.14)
aT-c0 za=zal+eo (aeR), (1.15)
al-c0 =+00 =+00la (a € R), (1.16)
+o0 T a=+00  @eRUlw),  (1.17)
(-o0o)la=-00 - @eRU{+00}),  (1.18)
(aTb)Tc=aThVc)=(TcdThb (a;b,c € R). - (1.19)

Proof. (1.14) - (1.18) are particular cases of (1.1) and (1.2), which we shall need in
the sequel. Finally, by (1.1) and (1.5) we have, for any a,b,c e R,
' aTh if aTb>c aTb=a if a>bVc
(@aTb)Tec= = =
-0 if aTh<c ~o0o ifa<bVc
=aT®bVc) =aT(cVb)=@Tc)Th.

Proposition 1.4. For any set I, we have

(§uI;) a)Th= sup (a,Tb) ({ai}i < SE B, (1.20)
1€ 1€
(inf a.)Lb = inf (a..Lb) (a.}. . ¢R, beR). (1.21)
iel | el | It

Proof. If sup a, > b, then {iel]ai > b} £ @, and, by (1.1),

i€l
(sup a,)Thb = sup a; = sup a, = sup (@, Th) =sup (ain).
i€l i€l ieI,ai>b ieI,ai>b i€l
If sup a; < b, then (sup ai)Tb = -¢o and, on the other hand, a; < b (i e I), whence ain =
i€l i€l
= -o0 (i €1), so sup (ain) = -o0. The proof of (1.21) is similar (alternatively, (1.21)
< i€l

follows from (1.20) and (1.12)).

We shall use the above propositions in the sequel. Let us also mention, without

proof, some further properties of the operations ] and.l. We bhave, for anv a,b =
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aTbe {a,-oo }; albefto}, (1.22)
al{b&yaTc<b (ceR)era<blc (ceR), (1.23)
a<b&aTb=~n &bla=+e, (1.24)
aTa=-0 ,ala=+0, (1.25)

-0 ifa<b and b>-00 .
(2 Tb)l.b-= (1.26)
+00 if eithera>b or b= -0 ,

(aVb)Tb=aTh, ) (1.27)

aTb<alb; ' (1.28)
moreover,

aTb<alb (aeR,beR). (1.29)

Remark 1.3. Property (1.28) is similar to the obvious inequality (observed in [14],

p.120) o
x+y<xity (x,y € R); (1.30)

however, (1.29) contrasts with the obvious equality
X+y=x+y | (x €R, y € R). (1.31)
One can also give further results on T and_L, corresponding to those of [14] on +
and +, which we omit.

The binary operations T and _L can be extended to T‘CX, where X is any set, as

follows.
Definition li2:Bor sty B e RE, det
ETh)x) = f(x)T h(x) (x € X), (1.32)
(f Lh)(x) = f(x)_Lh(x) (x € X). \ (1.33)

In the sequel we shall use (1.32) and (1.33) only in the particular case when either f or

h is a constant function.
One can also define such binary operations T and _L for any partially ordered set
having a greatest element +co and a least element -co (e.g., replacing a > b by aﬁb in

(1.1) and a <b by a b in (1.2)), but we shall not need this in the sequel.
§2. V-dualities

Definition 2.1. Let X and ¥ be two sets. A duality A : B =2

V—duality (or, a max-duality), if
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T ¢ eR%, d eR). 2.1)

Remark 2.1. a) It is enough to assume (2.1) for all d ¢ R, since for d = +es it reduces
to (+ m)A = -00, Wwhich holds for any duality, while for d= -0 it reduces to
14 =2 1 e

b) In analogy with the above, conjugations might be called "+-dualities".
Example 2.1. For any coupling function Y : XXW — R, the mapping A({) :ﬁx ﬂ@.ﬁw

e defined by

fA(\w(W) =sup {U(x,w) A - £(x)} (f e ﬁx, w e W), (2.2)
xeX

isa V- duality, which we shall call the V-duality assoc1ated to J. Indeed, by (2.2),

(inf f. ) (11)) (W) = sup {W(x,w)A -inf f. (X)} =

i€l xeX i€l
= sup W) Asup (£,000 = sup {itxw) A = 1,60} = sup 2 P ) (g eR, wew),
xeX iel xeX,iel iel
(f Vd)A(lp)(W) = sup {Wlx,w) A\ = (£ Vd)x)} =
xeX
= sup {U(x,w) A - £(x) A\ - d} = fA(w)(w)/\ ~d (f e f’CX, deR, we W)
xeX
Example 2.2. For any set € XXW, the mapping A = Ag: BT tiina by
fA(W) =-inf f(x) (fe —R—X, w e W), : (2.3)
XEX
(x,w)ef

is a V—duality, since it is a particular case of example 2.1, namely, with ¢ : XXW —> R

defined by
b=-pg; (2.4)

indeed, for { of (2.4) we have, by (2.2), (0.12) and (2.3),

A(xb)(w) =sup{ - P, x,wW)A =)} = sup (- f(x)) =

XeX xeX
(x,w)ef
: A ' =X :
= =inf - f{x) = £ (w) (feR”, we W) (2.5}
xeX
(x,w)ef

Let us also recall (see e.g. [23], [10]) that A of (2.3) is a conjugation, namely, A = c(¢),

where
({': )/O § (2.6)
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Remark 2.2. a) If X is a locally convex space and W = X*XR, where X* is the

conjugate space of X, then for

Q= {60, e XXW|0x) >}, (2.7)
the V-duality A = C("XQ) = A(~p9) of (2.3) becomes
500, 000 = sink 269 (fER", b e X, xeB), (2.8)
xeX
o (x)>A

which is (modulo the inessential additive term +)) the quasi-conjugation in the sense of

Greenberg and Pierskalla [8]. Similarly, the semi-conjugation
X

D0 e it 460 e
xeX
d(x)>a-1

introduced in [19] (modulo the additive term +A — 1), is obtained by taking W = X* XR

i eXt, Ler, (2.9)

and A
Q={x,(0,0)) e XXW]|ox)>A=1}; (2.10)

note that the pseudo-conjugation, and the more general surrogate conjugations of [18],

[20] can be a;lso obtained in the above way, and hence they are V-dualities.
b) If X = W is an arbitrary set, then, for the diagonal set
0 = {(x,x) e XXX |x e X}, (2D
the V-duality A = C("XQ) = A(-pQ) of (2.3) becomes
fA(w) = -f(w) (fe EX, w e X), N 8
which has been considered in [21], example 2.4. Note that, in this case, ¥ of (2.4) beco-

mes :
q)(x,w):»»pg(x,w) = —p{x}(w) (x,we X), (2.13)

and a corresponding remark holds also for ¢ of (2.6).

X

Example 2.3. Fenchel-Moreau conjugations c(¢): R wﬁw can be expressed with

XXR

e =\ = .
the aid of V-dualities A(y) : R — R“, as follows: if ¢: XXW —>R is any coupling

function, then

£(?) _ g o) (f e R, (2.14)
where

W(x,r),w) = 2¢(x,w) - r (xeX,reR,weW), , (2.15)

F(x,r) = 2f(x) - r (xeX,reR) (2.16)

Indeed, by the identity
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7 Lo
sup (a-r)/\(r~b)—-(a+»b) (abeﬁ) (2.7
" reR
due, essentially, to Flachs and Pollatschek ([7] lemma 1) (see also a5 p. 126,
lemma), we obtain .
FAW) . sup W,r),w)A-F((x o)} =sup Sup [2¢0w) - AL - 2£(x)]} =
(x, r) eXXR xeX r
=sup 5 [2 ®(x,w) + - 2f(x)] = £ (CP)(W) (wew)
eX
Taking in (2. 2) various coupling functions U, one obtains various V-dualities (see
show,
examples 2.2 and 2.3). Now we shallthat all V-

dualities can pe obtained in this way. To
this end, we shall use '

Lemma 2ol

For any set X, we have

f=int for Vito) (t e BX), | (2.18)
Xex - * ‘ ‘
Proof. By [21], lemma 3.1, we have
f=inf firg 4 100) (f e RX), (2.19)
X
xeX :
S0 it is sufficient to observe that
Xy +a= pMVa Mg X, aeR). (2.20)
- Theorem 2.1, For any \/~dua1itx b:RX RV we have
el flogp® A - 10} (f e B, (2.21)
xeX 2y
and hence there exists a uniquely determined coupling function LDA :XXW—R e BHIEH
that A = A(le), i.e., such that
i =—» >.Ch that

£ A(W) = sup {gbA(x,w)/\ ~1(x)} (f e ﬁx, wew), (2.22)
xeX
hamely, we have :

bpl,w) = (D{x}) A(W) xeX,wew),

" (2.23)
Proof. By (2.18), (0.11) (with I =

= X) and (2.1) (with d = i(x) €eR), we obtain,
—x

for any
feR

Y i a function Yy i XXW—R satisfy
(2.22), Then; by (2.29) f6¢ f=

= D{X} and (0,12), we obtain
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-
(p{x})' (w) = ;;P;(N)A(}’,W) A- p{x}(y)} =1, (W) (xe X, we W),
so (2.23) holds.
Remark 2.3. a) The above proof is similar to that of [21], theorem 3.1. One can also

deduce theorem 2.1 from the results of [11], as follows. By [11], part of theorem 3.2, for

any duality A : “R_X-> fiw we have
fA(w) = sup GA(x,w,f(x)) (fe ﬁx, we W), (2.24)
xeX

where G, : XXWXR — R is the function defined by
GA(x,w,a) = (X{x} 4 a)A(w) (e X, weW,ae R). (2.25)
Now, if A isa V-duality, then, by (2.25), (2.20) and (2.1),

A A A
GA(x,w,a) = (p{x}Va) (w) = [(p{x}) A - allw) = (p{x}) (wIA=a
keX, weW,aeR), . (2.26)

whence, by (2.24), we obtain (2.21) (which, as above, implies (2.22) and the uniqueness of
Q)A). Note also that, by (2.23) and (2.26), we have _
q;A(x_,w) =G A(x,w, -00) | (xeX, weW). (2.27)

b) By example 2.1 and theorem 2.1, we have a one-to-one correspondence between

G e W/ -
V-dualities 2 : RX--# R\x and coupling functions { : XX W ~» R; we shall call \‘DA of the-

orem 2.1 the coupling function associated to the V-duality A. On the other Kand (see

§0), we have a one-to-one correspondence between conjugations c : ﬁxw: F\W

and

coupling functions (p:XXW—w%ﬁ. Hence, we obtain a one-to-one correspondence

X

between V-dualities A : RN —>R "™ and conjugations ¢ : T §W, namely, A --?C(\})A)

(with inverse ¢ =3 A( ¢ ), satistying
(o™ = b~V (x € X). (2.28)
Similarly to [24], one can show that thege one-to-one correspondences are complete

lattice isomorphisms.

c) One can replace (2.18) of lemma 2.1 by

fisih figyy + o) = it foyVl (f e BX), | (2.29)
(x;d)eEpif (x,d)eEpif
where Epi f = {(x,d) e XXR |1(x) < d}, the epigraph of f. Then, by the above argument,
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using (2.29) and (0.11) with I=Epif (or, using directly (2.21)), we obtain, for any

V—duality A :-ﬁ-Xm},EW’
fA(w) = sup {(p:rx}) A(w)/\ ~d} = sup {\pA(x,w) A-d} Ge ﬁx, weW). (2.30)
(x,d)eEpif * (x,d)eEpi

I s \U-
Corollary 2.1. For an operator A : Rxm? R“ and a set @ € XX W, the following sta-

tements are equivalent:

1°. We have (2,3).

2°. A is a V-duality, satisfyin
g8

(p{x})A(w) = ~pg W) x e X, w eW). (2.31)
Proof. 1°=52° 1f 1° holds, by example 2.2 and theorem 2.1, A is a V-duality, with
(pr W) = ¥, (5,w) = - (x,w) (x & X, w e W),
(2.:_3? 1°. 1 2° holds, then, by (2.21), we obtain
fA(w) = sup {(p{x}) A(w)/\- f(x)} = sup { - pQ(x,w)/\- f(x)} =-inf  fx) (fe ﬁk, w e W).

xeX xeX xeX
(x,w)ef

Remark 2.4. Corollary 2.1 remains valid, with a similar proof, if we replace 2 by

2'. A is a conjugation, satisfying

(X + ) 200 = -xplxw) £ - (xeX,weW,deR)." (2.32)
Corollary 2.2. For A : 'R_X-—-Bv f(ﬂw and qJA as in theorem 2.1, we have
£8(w) = min d - FeRX, weWw. (2.33)
deR :

'dT 'd)A(.’W)Sf
Proof. By (2.22), (1.6) and (1.12), for any f € B and w € W we have

fA(w) = min d = min d = min d. \ (2.34)
deR deR deR
fAw)Id ¥, CwA-d - dT- e, wct

One can express fA with the aid of the level sets of f, as follows.
Corollary 2.3. We have

£2(w) = min d e R%, wew, (2.35)
deR
sup 11,)A(x,\x/)_<_d
xeA_d(f)



{
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P
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S
-

Proof. Since \bA (x, W) A - 1£(x) < ~£(x) <d(xe X\A~d(f)) and -f(x) >d (x € A~cj(f))’ we
have
{de E'\PA(X,W)/\ ~f(x)<d(xe X} ={de ﬁ'\')A(X,\V) <d(xe A_d(f))}',
whence, by (2.34), we obtain (2.35). ‘

Remark 2.5. Formula (2.35) is equivalent to

o (w) = min {d& R inf > =df (fe fix', we W), (2.36)
xe X .
\l)A (x,w)>d

Finally, let u$ also mention another expression for fA (d)).

Proposition 2.1. We have
! ! i
W s min d (fe RS
xeX deR
d.LPlx,w)>-1(x)

, we W). : (2.37)

Proof. This follows from (2.2) and (1.9).

For the V~duality A = AQ of example 2.2, there holds

s

Proposition 2.2. If & € XX W, then, for the V-duality A = Aoyt PR defined by
(2.3) we have

fA (W) = min d (fe EX, we W) (2.38)
deR
(x, W) (xeA“d(f"))

Proof. For any f € B aidpieWege have

fA (W) = ~inf  f(x)=sup -f(x)= min iz
xeX xeX deR
(x,w)ef (x,w)eR d>-£(x) (xe X, (x,w)R)
= min : d = min d.
deR deR

(x,w}Q (xeX,d<-1(x)) (x, w9 (xe/—\_d(f))
Remark 2.6. For a locally convex space X, W = X*XR and @ of (2.7), i.e., for the
Greenberg-Pierskalla quasi-conjugation (2.8), from (2.38) we obtain
(@ ,A)) = min d (te R, 0 e X*, A e R), (2.39)
deR
o (x)<A (xeA_d(f))

; A e A
which is, essentially (namely, modulo the additive term +X in the definition of £ ),

theorem 2, formula (8), of [22]. Similarly, for A of (2.2), with W = X* %R and  of
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(2.10), from (2.35) we obtain theorem 2, formula (10), of [22].

We recall that if X and W are two sets, the dual of an operator @ : 2 L the

operator @ : R defined (see [21], defintion #.1) by
pr . : sl
g = mf__x h (ge R"). - (2.40)
heR
h%<g
: e L P
Example 2. 1f A = Ag : R"—>R" is the V-duality (2.3), for some set @ € XX W,
then
A* : =W
g (x)=-inf glw) (e R", xe X\ (2.41)
we W v
(x,w)eQ

Indeed, this is well-known, by A = c(-xQ) (see example 2.2) and eg [21], corollary
4.5 (seemflo], the formula after (5.1)).
The dual of a duality is again a duality (see e.g. [16]) and the dual of a conjugation is
a conjugation ([21], theorem 4.1), but the dual of a V~dua1ity need not be a VY -duality,
nor a "/\»dua!ity". In §4 we shall determine what kind of duality is the dual of a
V -duality, i.e., we shall characterize it by a "second condition" (besides (0.11)). To this
end, in § 3 we shall introduce and study _L~dﬁalities.
§ 3..L -dualities

(G —\Y/
Definition 3.1. Let X and W be two sets. A duality & Rxwv R“ will be called a

A -duality, if

$ X

#Ld)S = 84 fe R, de R). (3.1)

Remark 3.1. It is enough to assume (3.1) for all d e R, since for d = -0o it reduces (by
(1.16) and (1.14)) to (+ oo )(S = -00 , while for d = + 0 it reduces (by (1.15)) to f(S = ’f6
(f e %)
Example 3.1. For any coupling function o : XX W — R, the mapping (o) : X ad
defined by |

fé(g)(w) = sup 1-£() T - olx,w)} =
xeX
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2isiipe ~1(x) = ~inf f(x) (fe R—X, we W), (3.2)
xeX. xeX
£(x)<o(x,w) 1(x)<o(x,w)

is a -duality, which we shall call the L -duality associated to ¢ (the second equality in

(3.2) holds by (1.1)). Indeed, by (3.2), (1.20), (1.12) and (1.19),

(inf fi)a(c)(w) = sup {[-inf fi(x)]T-c(x,w)} = sup{[sup(—fi(x)')] T~ olx,w)} =

iel xeX el xeX iel
= sup {~fi(x)T—c(x,w)} = sup £ 8 (U)(w) dt.}. I gﬁx, we W),
xeX,iel el e
(£l d)G(U)(W) = sup {-(ELAX) T - olx,w)} =
xeX 56) - _x o
= sup {(-16IT - d) T -o(x,w)} = £° % (w) T ~d (fe R", de R, we W).
xeX

Example 3.2. For any set Q < XXW, the mapping § = GQ = T’CX——? EW defined by
(2.3} is.a A1 -duality, since it is a particular case of example 3.1, namely, with

0: XXW — R defined by

G004 | (3.3)
indeed, for o of (3.3) we have, by (3.2), (0.12) and (2:.3),
e T o e el e, (3.4)
xe X xe X

f(x)<~pﬂ(x,w) (x,w)eQ
Remark 3.2. From example 3.2 and remark 2.2 it follows that the mappings § = A of
(2.8), (2.9) and (2.12), as well as.the pseudé»conjugations and surrogate conjugations of
[18] and [20], are | -dualities.
Example 3.3. Fenchel-Moreau conjugations c(¢) : SR e be also expressed
with the aid of {-dualities § @) : RCXR —» ﬁ“/, as follows: if ¢@:XXW~-—->R is any

coupling function, then

() _ g8 0) (fe RY), (3.5)
where

a((x,r),w) = ¢ (x,w) - 2r (xe X,re R, we W), (3.6)

F(x,r) = %f(x) -r (xe X, we W). (3:7)

Indeed, we have
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F G(O)(w) = sup -F(x,r) = sup {—%f(x) +r}=
(x,r)eXXR: (x,r)eX XR
F(x,r)<d(x,r),w) (1/2)f(x)-r< 9 (x,w)-2r
= sup {-% f(x) + sup r}= sup{—%f(x) + [ (x,w) + —% f(x)]} =
x€eX reR xeX
(1/2)£(x)< @ (x,w)-r
= sup { ¢(x,w) = £(x)} = fC('f )(w) (w e W),
xeX '

Taking in (3.2) various coupling functions 0 yone obtains various ] -dualities. Now we

shall show that all 1 -dualities can be obtained in this way.

X W

Theorem 3.1. For any _L—duality § :R“—R" there exists a uniquely determined

coupling function Og* XXW —»R such that ¢ = 6(06)’ i.e., such that

%0 —onp Lt 50w} ¢ eRS wew; (3.8)
; xeX
namely, we have
oﬁ(x,w) = sup a = min a (x €X, w e W). (3.9)
aer aeR

(X{X}ia) G(W) s (X{x}ia) G(W) = -00

Proof. Sirﬁilarly to remark 2.3 a), let

G 5(x,w,a) = (x{;(} & a)a(w) ‘ (xeX,weW, aeR). (3.10)
Then, since for any a' > a we have X{x} +a-= (X{x} fa)la' (by (0.10) and (1.2)), from
(3.10), (3.1) and (1.1) we obtain, for any a' > a,

G g(x,w,a) = (X * @) L2150 = [y § 206 T - 2tw) -

= -p0 if G(S (x,w,a) < -a', (31

- Hence, either G G(X,W,a) = 00 08 G 6(x,w,a) roghoder ball caiaias e dthat o s,

G5 (x,w,a) > -a. Furtﬁermore, since (X{x} +a)la=+e (by (0.10) and (1.2)), from (3.1);
(1.1) and (3.10) we obtain

~e0.= (100)% = [y # 2)Lal*tw) = [y + 8 T adw) =

= G(S(x,w,a) if G 6(x,w,a) > -a, (3.12)
whence Gs(x,w,a) < -a. Hence, if Gs(x,w,a) > -0, then, by the above, it follows that
G é(x,w,a) = -a. Thus,

G s(x,w,a) € {-a, -0 } (a e R). ' (3.13)
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Hence, since Gé(x,w, «): a-——)GG(x,W,a) is non-increasing and lower semi-continuous
(by [11], theorem 3.2), there exists oa(x,w) € R such that

-a if a <06(x,w)
Gé(x,w,a) = :-aT'——o.G(x,w). (3.14)
-c0o if a ZOG(X’W)

Consequently, by [11], theorem 3.2, we obtain
£ (w) = sup G (x,w,£(x)) = sup {~f(x) A - CS(X’W)} (fe fix, w e W). (3.15)

xeX xeX _

Furthermore, according to [11], theorem 3.2, GG ¢ XXWXR — R is uniquely deter-
mined by §. Hence, since (by (3.14))

OS(X’W) = sup a = min a, ' (3.16)
aeR aeR
G G(X,w,a):-a G s(x,w,a):—oo
Os is also uniquely determined by §. Finally, by (3.16) and (3.10), we have (3.9).

Remark 3.3. a) For theorem 3.1 we do not have a proof similar to the above proof of
theorem 2.1, since the only result (corresponding to lemma 2.1 and to [21], lemma 3.1)
expressing f € ﬁx with the aid of the operation .., is the formula

f = inf {i60L-pp ) (f e RY), (3.17)
xeX i
to.which we cannot apply (3.1). In order to show (3.17), it is enough to observe that for

any x,y e X we have, by (1.2) and (0.12),
fle) i £x) ¢ = p{x}(y) J’ f(x) if x=y

)L - p{x}(y) = =
+oo if f(x)> - p{x}(y) \ +oo if x#y;

indeed, if x £y, then f(x) > 00 = - p{x}(y), while if x = y, then f(x) > - p{x}(y) = +o0 ___Is
possible if and only if f(x) = +00.

b) By example 3.1 and theorem 3.1, we have a one-to-one correspondence between
- dualities § s B R Y and coupling functions 0 : X XW = R; we shall <.:a11 og of

theorem 3.1 the coupling function associated to the L -duality §. One can compose this

one-to-one correspondence with those of remark 2.3 b).

s e\
Corollary 3.1. For § : RX~—> R\' and Ty 25 in theorem 3.1, we have




£9(w) = min d e R, we w).
deR :
(-dAo (¢, w)t
Proof. By (3.8) and (1.12) we have, for any f e e W,

fa(w) = min d = min d = min d,
deR deR deR

whence, by (1.6), we obtain (3.183).

One can express fG with the aid of the level sets of £, as follows.

Corollary 3.2. We have
£8(w) = min d (te R, we w).
deR

0. (,w) <f
sy sl

Proof. This follows from (3.18), since

('d)AGG("W) Steoglxw) < f(x) xeA_,£).
Remark 3.4. Formula (3.20) is equivalent to
w) = minfde Rlint 1) >-d} PR ARG
xeX
f(x)(cé(x,w)

* Finally, let us also mention another expression for f(g(g).

Proposition 3.1. We have

f(S(G)(w) = sup min d (fe ﬁx, we W)
xeX deR

(-d) Aolx, w)<£(x)

Proof. By (3.2) and (1.11), we have, for any f e B i W,

fG(G)(W) =sup min d =sup min d.
xeX deR xeX deR
dV -0, w)> - £ (-d)A olx, w)<E(x)

§ 4. The duals of {/-dualities
e : . i
Theorem &4.1.If A : R™— R " isa V-duality, then its dual A* : R >R

L -duality, and
OA*(W’X) = LI)A (x,w) (we W, xeX)

Preof. By theorem 3.1, we have to prove that, for any V-duality A : T

Vo~

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

8. &




there holds

T —\W
g~ = suplgw)T-9,6,w) (geR"). (4.2)
weW - ' :
Now, by (2.40), (2.22), (1.6) and (1.12), we have
g : : T =\
g =inf o heinf heednt hiess it h (geR™) (4.3)
heRX heRX heRX heﬁx

hA_<__g ‘PA(',-)A—hS_g -hsgl.lpA(-’o) hZ-gT—l[)A(',-)

(where \l)A(',')/\~h < g means that q)A(x,w)/\ »h(x)-s g(w) for all x € X, w e W), whence

Al : =W ;
g~ 2sup f-gw)T-y,6w) @eR") (4. )
weW
On the other hand, the function h0 defined by .
ho(x) =sup {-gw)T -~ L!JA(X,W)} (xie %), (4.5)
weW s ) A*
belongs to the set {h € R [hi>-g T = \IJA(-,-)}, whence, by (4.3), we obtain g~ < h s

which, together with (4.4), yields (4.2).

Remark &.1. a) Theorem 4.1 can be also deduced from the results of [11], as follows.

By part of [11], theorem 3.5, for any duality A : ITX-—% f{_W we have
¥*
gA (x) =sup G, (w,x,g(w)) (g eRw, e Xk (4.6)
- wew B

where

G, (w,x,b) = min a (we W, xe X, be R), (4.7)

A aeR ’
GA(x,w,a)gb

with G, of (2.25). Now, by (2.26) and (2.23), there holds
GA(x,w,a) = wA(x,w)/\ -a (xe X,we W, aeR), (4.8)
whence, by (4.7) and (1.11),
G ,(w,x,b) = min a=(-b)T -y, xw) (we W, xe X, be R), (4.9)
g R A
aeR
¥, w)A-ab
which, together with (4.6), yields (4.2).

b) Let us also mention the following direct proof of the first part of theorem Yol

A :'EX@ ghisa V-duality; then A* 'is a duality and, by (2.40), (1.6), (2.1) and (1.5),
we have
A *
(g..L d) :infwx h:iﬂf_‘x h:infwx h =
heR heR heR

A
hegrd  nlhacg (V-d7<g



=ity heinf s i geRY, deR),
R A A
hV-d>g h>g™ T-d
so A% is a L-duality.

c) By theorems 4.1, 3.1 and 2.1, for any V—duality A ﬁx —> ~§W we have

sup b = min b= (p{x})A(w) (x € X, wew), (4.10)
beR A¥ bGR A¥ 5
(X{x}+b) )=-b g, }+b) (x)=-60

d) It will be useful to also express theorem 4.1, in the following equivalent form (by

theorems 2.1 and 3.1): If AQY): B RV is a V~duality (2.2), then its dual

AW* : RV—s RX is the 1 -duality S(o ‘~P) (in the sense (3.2)), where

O\P(W’X) = P(x,w) (we W, x e X). ‘ (4.11)
Let us consider now, for a V-duality A : RX—> ’Efw, the "second dual" (called also
* A A* o - ¥*
the A* A -hull) fA d =) e RX of a function f € RX. Some results on )fA 4 —can
* /
be obtained from those on gA (ge f{—“) applied to g = fA For example, for A = AQ of
(2.3), applying (2.41) to g = fA, we obtain (see [10], formula (5.2))
AT . =X
f (x) = sup inf (y) (f€R”, xeX), (4.12)
wewW yeX

(x,w)eQ (y,w)ef
. =X =W
Theorem 4.2, For any V—duahty A): R*—>R", we have

A (w)A(U)* { f w)T-U(x,w)} = -inf fAN))(W) (feR
WEW weW

A(w)(w)ﬂb(x w)
Proof. The first equality follows from (4.2) applied to A = A(Y) and g = fA(I‘U) R

X xeX).(t13)

The second equality holds by (1.1) (similarly to (3.2)).

Remark 4.2. a) Theorem 4.2 can be also deduced from the results of [11]. Indeed, by

(4.6) and (4.9) applied to A = A (V) and g fA(‘p)

AWAW*

, we have

£ sup GA ()* (W,x,fA (\U)(W)) -
we W (IL‘) _x

= supd=f U T - i w)) (Ee ™, sex)
we W

b) If F and X are two sets, X e X, p: FYX~ R, f(x) = inf gy} (v X, and
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V: XXW ~—» R, then, for the "primal" infimization problem

(P) o =inf ply,x )= f(x ), : (4.14)
o 0
yeF
formula (4.13) suggests to construct a "Lagrangian duality theory, using V-dualities",

by introducing the "dual" problem

) ? *

@ B = sup -6 Ww) Tyt w - (ADBW7 (4.15)
wew

A similar remark can be also made for A ~dualities, using, e.g., formula (5.9) below. We

shall not consider these duality theories in the present paper.

Corollary 4.1. For any V~duality A): Blis R_W, we have

fA(w)A(q))*(x) =sup min d (fe R‘X, x € X), (4.16)
weW deR |

Ylx, wIA-d<t & W)

Proof. By (4.13) and (1.11), we have

) * ——
LR d (teR%, xeX),
weW deR
-1 W),V
whence (4.16).
- Theorem &.3. For any V-duality A(Y) : B s ﬁw, we have
*
FRNE e i) (£ e R). (4.17)
weW, beR
bT-q)(",W)Sf
Proof. By [11], theorem 3.6, for any duality A () we have
1 * sy
fA(W)A(‘P) = GA(\D)*(W’.’b) (fe RX, w e W), (4.18)

weW,beR
G gy OonsDIS

with G (wy* of (4.7), where G A (p) 18 that of (2.25). Hence, if A(Y) is a V-duality, then,
by (4.9), we obtain (4.17).
Remark 4.3, Theorem 4.3 shows that, for any V-duality A () : RSy f{_w, the
A )Y AW)-hull of f coincides with the "V-convex hull" of f, in the sense of [2], where
V=bT-U,w|weWw, berg} | (4.19)

or, in other words, that, for any V-duality A(@): Ry ﬁW, the "elementary functions",
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in a sense similar to that of [14], are the functions fip e °R"X defined by
b

Tw,b = bT -9C,w) = “Xlyex | b>-(x,w)} ¥ b= "XAb(«\b(-,W)) +b (weW,beR). (4.20)

Corollary &.2. For any V-duality A () : ﬁ_xmwlf\v, we have
-X.
fAWAG" _ sps bT -y, w) (fe ﬁx, we W) (4.21)
weW,beR
sup  Ulx,w)<-b
xeA, (f)

Proof. This follows from (4.17) and the equivalences
BT -0(,w) <feb <1V =, w)es b, w)A -f < -b e VW) < -b - (x e X, -f(x) >-b).
Example 2.3. above, which expresses fC((‘a) as FAN)) (with F: XXR—>R of (2.16)
and ¥ : (X XR)XW —»R of (2.15)) cannot be used to express fc(qﬁ el )* with the aid of
FA(KP)A(\I))%. Nevertheless, this aim can be also achieved,with a different method, as
shown by

Example &.1. If ¢: XXW->R js any coupling function and f € EX, ge ﬁw, - define

Vs (XXR)X(WXR) =R, F: (XXR)—R and G : (WXR)—> R by

Y((x,r), (wys)) = 2¢p(x,w) = ¢ - 25 (xe X, we W, r,se R), (4.22)
F(x,r) = 2f(x) ~ r (xe X, reR), - (4.23)
G(w,s) = g(w) - s (we W, seR). (4.24)

Then, by (2.2), (2.17) and (3.2),

Fé (‘i))(W;S) = sup {0, (wys) A = Flsr)) = sup {2 ex,w) - r - 290A(r - 26(x))} =
xeX,reR xeX,reR

= sup {%[(2 ¢ (x,w) - 25) + - 2((x)]} = fC(tP)(W) -5 (we W, se R), (4.25)
‘xeX
GA(Q’)*(X,r) = ~inf G(w,s) = -inf {g(W) = S} =
weW,seR weW,seR ’
G(w,s)<((x,r),(w,s)) g(w)-s<2¢(x,w)-r-2s
= — inf {gw) - s} = -inf {g(w) 1 (g(w) ¥ - 2¢(x,w) + )} =
we W, seR weW

-s>g(w)i-2¢(x,w)+r
c(¢ )* (x) -

i

2sup {¢(x,w) + — g(w)} - r = 2g ij(x € X, re R). (4.26)
2 \

we W o(¢)
In particular, if g = f , then, by (4.24) and (4.25),
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Glwys) = 15 D) - s o PR 0D ) (we W, se R), (4.27)

whence, by (4.26) (with g = 1(*)), we obtain

pAIBHDT G L et ) e ve B (4.28)

Finally, taking f = gC(“’)*, from (4.26) and (#.23) we obtain

cﬁﬁwﬂ&nzzgi@ﬁu)-r:ﬁ@)-r:ﬂxn (xe X, re R), (¢.29)
whence, by (4.25) with £ = g(®)"

B SG, o spt W el Piete) s (we W,seR).  (4.30)
' § 5. The duals of L -dualities

X

= =W . : ; * . 5W =X :
Theorem 5.1.If § : R" —R is a 1-duality, thenitsdual §* : R"—R P

Y-duality, and
\pa « (W,%) =0, (x,w) (we W, xe X). (5.1)
Proof. By theorem 2.1, we have to prove that for any l-duality § : -R—WT"“) EX, there

holds

&* I A =W
8 =supiog (,w)/\ - glw) (ge R"). (5.2)
we W
Now, by (2.40), (3.8) and (1.5), we have
g6 . =inf_, h= inf_, hz inf_, h=inf_y h (ge f{"\v), (5;3)
hsR heR heR heR” :
hS < —hT—O(S (==)e ~h§gV—0(S ¢,°) hZGG ¢, A-g
whence  ~ =
¢S > sup {05 WA - gw) ] (e R"). (5.4)
weW :
On the other hand, the function ho defined by
h, (&) = sup{% x,w) A - glw) } (x e X), (5.5)

we W o : §*
belongs to the set {he R™| h >0 ,)A - g},whence, by (5.3), we obtain E b

which, together with (5.4), yields (5.2).
Remark 5.1. a) Theorem 5.1 can be also deduced from (4.6), (4.7) and (3.14) (with A

replaced by §), as follows. By (4.7), (3.14) and (1.5), we have

G, (w,x,b) = min. a = min as=
8 agR agR
-al-o,(x,w)<b bV 0 (x,w)>-a
=min a=0g (x,w)A-b (we W, xe X, be R), (5.6)
aeR

05 (X, w)A-b<a
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whence, by (4.6) (with A replaced by §), we obtain (5.2);

b) Let us also mention the following direct proof of the first part of theorem 5.1. If

X

§:R” — R_W is a L -duality, then, by (2.40), (1.5), (3.1) and (1.6), we have

& . .
(gVd® =inf h = inf h = inf e
el T oot X ;
: : S 2y 2
= inf h = inf hedoc AN (ge R",deR)
heR X heRX < : !

6 * 3 6 *
hl-d>g g> A-d<h
s08* isa \/-duality.
c) By theorems 5.1, 2.1 and 3.1, for any | -duality § : s R—W, we have
*
(p{w})6 (x) = sup a = min & xe X, we V). (5.7)

a€R § aeR
(X{X}J'ra) (w)=-a (x{x}la) (W)=-00

d) Theorem 5.1 can be also expressed in the following equivalent form: If

§6): RS —+I—Q__w is a 1 -duality, then § &) is the V-duality a (q)o), where
¢O(W7X) =0(x,w) : xe X, we W). (5.8)

Corollary 5.1. a) Every V—duality is the dual of a 1 -duality.

b) Every 1 -duality is the dual of a V-duality.

Proof. It is well known that for any duality A we have A ** = (A*) = A. Hence, if A
is a V—duality (L-duality), then it is the dual of A%, which, by theorem 4.1 (theorem

5.1), is a L-duality (respectively, a V-duality).

Corollary 5.2. a) An operator A f{_X = iw is a V-duality if and only if A *\,. is__ a
1 -duality.
b) A is a L-duality if and only if A* is a V-duality.

X

Let us consider now, for a d-duality § : R -——>R_W, the second dual (the §* § -hull)

: ;
{68 € B ot a function f ¢ RX.

Theorem 5.2. For any | -duality § &) : o, EW, we have

PO g il 7 (te RX, xe X). (5.9)
we W
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Proof. Apply (5.2) to § = () and g = fG(O)e —R—W.

Remark 5.2. Alternatively, (5.9) also follows from (4.6) (with A replaced by §) and

(5.6).
Corollary 5.3. For any 1 -duality §(): ﬁx —-aoﬁw, we have
- —_— :
e min d (feRX, xe X). (5.10)
~dT-0(x,w)<f ™ /(w)
Proof. By (5.9) and (1.9), we have
%
£ @5l (x)=sup min d (fe §X’ x € X),
weW deR '
-1 8 O)(w)<dLo(x, w)
whence, using (1.12), we obtain (5.10).
Theorem 5.3. For any { -duality 8(0) : R ﬁw, we have
*
fé(c)é(o) = sup g s {U(-,w)/\ b} (f e R—X). (5.11)
weW,beR
o+, w)Ab<{

Proof. This .follows from (4.18) (with A(c) replaced by S(O)) and (5.6),
Remark 5.3. Theorem 5.3 shows that, for any L-duality §(0): RX—RY, the
8(0)* 6(0) - hull of f coincides with the Viconvex hull of {, in the sense of [2], where
V'={ol,w)Ab|we W, be &), | (5.12)
and that the "elementary functions" for the L-duality §() (in a sense corresponding to
that of [14], § 4, for conjugations c(¢)) are the functions
J\'v,b = o-,w)Ab (we W, beR). (5.13)
X

=W
—»R ", we have

{ot-,w)Ab} e RY). (5.14)

Corollary 5.4. For any .L-duality (V) : R
*
;80680)" _ sup
weW,beR
ot A0S | L)

Proof. This follows from (5.11) and the equivalence

o(-,w)A b <1 & olx,w) < £(x) (x € X, f(x) < b, we W)

c(¥)

Example 3.3 above, which expresses f as Fs(o) (with F:XXR —R of (3.7) and



w0

o: (XXR)XW =R of (3.6)) cannot be used to express fC(CP)C(‘?) with the aid of

’ :
FMG)G(O) . Nevertheless, this aim can be also achieved, with a different method, as

shown by

Example 5.1. If ¢: XXW—>TR is any coupling function and f e ﬁx, ge 'ﬁw, define

X XR)X(WXR) =R, F: XXR —>R and G : WXR =R by

ol(x,r)y (W,s)) = 2 (x,w) = 2r =5~ xeX,we W,'r, s@f{), (5.15)
F(x,r) = f(x) - r (x e X, reR), (5.16)
G(w,s) = 2g(w) - s (weW,seR). (5.17)
Then, similarly to example 4.1, we obtain
F(S(O)(W,S) = ZfCH’)(w) S (weW,seR), ' ('5.18)
GG(O)*(x,r) = gc("o)*(x) -r (x € X, r eR), (5.19)
pilgltal . 5 cleletalie . (x eX, reR), (5.21)
TR S P R (5.21)
Finally, let us give some characterizations of the operators A : Y—{')(_—*) ﬁ—.w of the

form (2.3).

Theorem 5.4. For any operator A : R

equivalent:

1°. There exists a (unique) set € X XW such that we have (2:3).

=W : .
X~s~ R\ » the following statements are

2°. A is both a conjugation’and a V—duality.

3°. A is both a conjugation and a . -duality.

- Ais both a V-duality and a _L-duality.

. Both A and AL are V-dualities.

6 . Both A and A™ are L-dualities.

Moreover, in these cases, we have

Tp6wW) = @, % (w,x) = =X, w) (xeX,weWw), (5.22)

o4 ./\' x\'\-:‘l’ 3 ') =1 > et = - ,0 .
MG ¢ A(Y,\\) J)A*(Wy‘() UA*(WaX) DQ(X,W) (x € X, weW) (5.23)

Proof. The implications 1° =»2°, 3° 4° and the equalities




B

Bk Vy =0, =-p, (5.24)
follow from examples 2.2 and 3.2 and the uniqueness of P ll)A and T Furthermore,
the equivalences 4°&5°¢>6° and the other equalities of (5.22), (5.23) follow from
corollary 5.2 and 2.5).0(5:1) and (4.1) respectively.

2°=51°. Assume 2° and let (x,w) e XX W be such that ?A(x,‘w) >-c0 . Then, for any
d € R satisfying % (x,w) > d, we have, by (0.9), (0.3), (2.20) and (2.1),
0< ¢ (x,w)-d= (X{x})A(w) -d= (X{x} # d)A(w) = (X{X}Vd)A(w) =
= (X{,X})A(W)A ~d= ¢, xw) A=d.
Ehus; 0:< ‘?A (x,w) and d < 0 for any d € R with 7\ (x,w) > d, whence tpA(x,w) Ld- o for
all d > 0; therefore, % (x,w)=0. This proves that @p (x,w) € {0,-00} for all (x,w) e XXW,

whence @, = -Xq (so A = c(—xg) of (2.3)), with

2= {x,w) e XXW | ¢, 0,w) = 0} 5 (5.25)
moreover, since Pp is uniquely determined by the conjugation A, so is Q .
32 g g2 holds, then, by [21] and theorem 5.1, A¥ : ﬁ\v‘—? ﬁx < s wiboth.. &

conjugation and a V—duality. Hence, by the implication 2°=91° (proved above), there
exists a (unique) set Q' € WX X such that ®p% = -Xo - Hence, since (by [21]
(PA(X,W) = C{»’A*(w,x) xeX,weW), (5.26)

we obtain

4 (x,w) = —XQ|(W,X) = “XQ(X:W) ((x,w) € XX W), (5.27)
where § is the (uniquely determined) set
Q = {(x,w) e XxXW|(w,x) e Q1 ; (5.28)
therefore, A = cl-Xq) of (2.3).
4° =>1°, Assume 4° and let (x,w) € XX W be such that I})A(X,W) Sa gt Then, for any
d € R we have p{x}: p{x}.Ld (by (0.12), (1.16) and (1.18)), whence, by (2.23) and (3.1)
(With § = A),
~00 <, (W) = (or, D2 (W) = (o 1 L) B tw) = (0 P2 T=d =0, (W) T d
a&ow) = (o7 (w) = (o = (o =0, (% : e
and hence, by (1.1), 1{)A(x,w) > -d (d € R), i.e., 1{JA(x,w) = +co . This proves that U‘A(X,W) €

€f{+o0, = } for all (x,w) € XXW, whence Yy = Pg (so A = A(—pp) of (2.3)), with the



(unique) set
Q= {(x,w) e XXW [\DA(x,w) = 400} . (5.29)
§6. Appendix : Some | -dualities related to lower subdifferentiability
We shall give now some examples of | -dualities and mention, briefly, some of their
applications.
Example 6.1. Let X be a locally convex space and W = X* ¥R, and define a coupling
functiono: XXW — R by
o(x,(®,1)) = (x) + X (x e X, ® € X*, xeR) (6.1)
Then, by theorem 5.3, for the l-duality 6(0) : B il we have
e R {(® + WA} = sup e + VAL (e B 6.2)
dex™,\eR,beR deX™,\,beR
(@ +X)Ab<E (®+QAbLE
Indeed, to see the last equality in (6.2), it is enough to observe that the inequality <

holds true, but this follows from

sup {6 + VA (-00)} = -0,

deX ,2eR

(<I>+)\)/\(—oo)_§f :
sup {6 + VA (+e0)} = sup {6 + 2},
deX™,\eR dex™,AeR
(@ + M)A (+00)<f N 2ONS

which are < than the last term of (6.2) (since for any ® € X*, A e R with ¢ + A <f -and
any X, € X, the number b = ®(x ) + X € R satisfies (> + )Ab_< & + X < f and o(x )+
+ A= (@(xo) + A)/\bq).

Following [9], §5, let us consider the conjugation c(4) : Y’:X — ffW, e where

% : XXW —R (with the same W = X* XR) is the coupling function defined by

L(x,(®,A) = B(x)A A v ey Be X, ke B) (6.3)
Then since,

26,(0,0)) +b=(@AN) +b=(d + B)A(X + b) (& € X*, ,beR), (6.4)

from (6.2) and [14], §4, it follows that

S8 _ @) _— o

e, combining the theory developed in the preceding Sections with the results of



[9]on c(2), one obtains new formulas for

N i . St

various functional hulls, characterizations of lower subdifferentiability,
lower subgradients, etc. (For example, from (6.5) and [9], corollary 5.3, it follows that
(860" _ min{f_a, )\f}, where fa denotes the lower semi-continuous quasi-convex hull
of f and )\f denotes the supremum of those A e R for which there exists a non-constant
continuous affine function minorizing f on A)\(f))v We omit the details.

Finally, let us consider the case when X is a normed linear space, with norm H H,

say. We recall that f : X —> R is said to be Lipschitz with constant N, or N-Ligschi_t_z, if

lf(xl) s f(xz), < NHXl & % (xl,x e X). (6.6)

i 2
Example “6.2. Let X be a normed linear space and WNzB*(O,N)XR, where

B*(0,N) = {¢ e X* [l @[] <N}, the ball in X* with center at the origin and radius N

(with [|- || being, as usual, the norm [| o] =sup |o(x)] on X*), and define a
xeX
. : . = [ x| <1
coupling function oy XXWN -»R by -
ON0o(®, ) = 0x) + A  (xeX, beB*(O,N), X e R). (6.7)
Then, similarly to example 6.1, we obatin 7
SOp)Sop)* clan)e(tp)* _
frre R N (f e RY), (6.8)

where, following [9], § 5, SLN : XX\Y/N —» R is the coupling function defined by
P, 0) = 060AN (x€ X, 0 & B*(O,N), A e R). (6.9)
Hence, combining the preceding results with those of [9] on C(Q,N), one obtains new
results on quasi-convex Lipschitz functions with constant N, lower subgfadients of norm
<N, etc. (for example, from (6.8) and [9], theorem 5.12, it follows that fG(O)G(G)* is the

greatest quasi-convex N-Lipschitz minorant of f). We omit the details.
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