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c
I. INTRODUCTION

In this paper we are concerned with a few problems on the structure of

invert ible matrices. First, we describe an algorithm for constructing invert ible matrices

start ing with a family of complex numbers. This algorithm resembles one of continued

fraction type used by I. Schur in [20] in the analysis of the bounded analyt ic functions on

the unit disc and the complex numbers we use for constructing an invert ible matrix

appear as a general ization of the so-called Schur parameters.

This Schur type algorithm is described in Section 2 and as a f irst consequence

we obtain a formula for the determinant of the given matrix in terms of i ts Schur

Parameters. In Section 3 we show the connection of the Schur parameters with the

extensions of band matrices treated in I l l ]  and [3]. Moreover, connection with some

other known results are presented.

In Section 4, these results are extended to part ial matrices subjacent to chordal
\

graphs. Heie, the analysis is based on some graph theoretic results obtained in

connection with the perfect Caussian el imination. (see t l5]). As the main result i t  is

obtained that the graphs with property that for any subjacent part ial matrix there

exists a unique invert ible completion whose inverse has elements zero on the

unspecif ied posit ions of the given part ial matrix are exactly the chordal graphs. The

completion obtained in this way appears as a general ization of the band completion in

i t  t l .

In the next section, the induced subgraphs which inherite this completion are

characterized. Thus, i t  is obtained another general result in connection with previous

inheritance propert ies in [12], [13], [6], l l7),15),12).

In the last section we return to determinantal formulae. We obtain extensions

of some formulae derived in [2], computing the determinants of the completions of a

part ial matrix subjacent to a chordal graph.

This paper has been circulated as INCREST Preprint No. 55l1989.
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2. A SCHUR TYPE ALGORITHM

In this section we establish a certain structure of an arbitrary matrix (under

suitable invert ibi l i ty condit ions) emphasizing the role played by some parameters

uniquely determining the given matrix.

This procedure has its roots in a classical paper of i. Schu r Lzlland since then

several variants and generalizations appeared - see, for instance, [l], l7l, ll4], [ls].

Here we fol low a l ine developed in [8] and [9] for posit ive matrices and, respectively,

invert ible hermit ian matrices.

We begin with some simple remarks concerning the so-called Frobenius-Schur

factorization. Let X be an invert ible matrix, L(X) = (xx*)* ano R(X) = (x*x)f.
, I

Defining s(x) = X(x*x;-2, a form of the polar decoposition of x is

x = L(X)s(x)R(x), s(X) being a unitary matrix, i.e. s(X)*s(x) = s(x)s(X)* = I (for a matrix

X, X* denotes its adjoint and I is the unit matrix). Consider W another invertible matrix

and the block matrix

t_

where Y and Z are matrices of appropriate dimensions.

The fol lowing result is a variant of the well-known

f actorization.

I ; ; ]

t; ;J- [':'',lu,jr;"',l,,xi.';{ ",;J

Frobenius-Schur

2.1. LEMMA. Define -theJratrices. c eng H b:_:bs__rgletig.rs y = L(x)cR(ru),

Z = L(!il)HR(X) qnd D ='s(W) - Hs(X)*c.Lb.e.D

[ * ( x l  c ] [ R ( x )  o  I' l  l l  l . w
I  o  R(D)  JL o  R( i { ) 'J

2.2. REMARKS. In view of the above factorization we can suppose that the

elements on the main diagonal of the (block) matrices we wil l  consider are unitary.
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Note that a dual factorization also holds. Define F = s(X) - Gs(W)*H, then

l x  v  I  l r ( F )  c l l  s ( r  )  o l  l R ( F )  o l
I  l = l  l l  J l  I
lz lv j  [o *. | [  o t i ]L H \ ' / .J

(we supposed that X and W are unitary matrices). The matrices D = s(W) - Hs(X)*G and

F = s(X) - Gs(w)*H are the so-called Schur complements - see [19]. n

With the notation in Lemma 2.1. and Remark 2.2., we derive the fol lowing

result.  
.  *

2,3.LEMMA. Suppoj.g O ald F invertible...lhen.lhele_.e>rist u.li_quely detgrrJrin_e-{

matrice.s A and B such..lhat

I c r(]')l f 'rlt o lt H r(Dt fx o I
I  l l  l l  l = l  , * l
[ n (D )  n  j I  o  s (F ) j l  n (n )  3  J  [ o  s (n f J

a'd 
i  H r tn) l [x*  l f  c  r (Ft  l *  o 1' \  I  . .  l l  l l  l = l  * 1 .
[R(F)  p  J i  o  s ( r )J [  n (D)  A  J  [o  s (n IJ

PROOF. We have onlv the choose:

(2.1) 4 = -R(D)W*HR(r ' ) - ls(F)*

and

(2 .2)  B = -s(F)*L(F)-  lcW*L(D).  @

After the prel iminaries we can introduce the objects we" wil l  be interested in

throughout this section. Consider a family (Gi;)t<i,1a* of matrices and define

S r ,  =  s ( G 1 1 )  =  G . .  f o r  i , -  I , . . . , N  a n d  f o r  I  (  i  (  j (  N ,

(2 .3 ' )  D i j  =  S i , j - t  -  Gi ls ; , i * tc l i

(2 .4)  Dl i  =  s ; , i * t  -  c l is i , ;_ tc i ;

where Sr, = s(D11) for al l  t  < i , j  (  N. This family wil l  satisfy the fol lowing property:

Q.5)  D, ,  &Dd D. ,  are inver t ib le  matr ices.
r ,  -  

J i  
-

We define, according to Lemma 2.3, the matrices: for I ( i  (  Nr Rii  = I and for
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l . s i < j ! N ,

[ * * u  r ( D r * l J  I s T i r 1  o l( 2 . 6 )  R i i = l * , ' ]  
\  a - r l l  

d ' r ' r r '  I
L .  j i )  o r j  

J l  
o  t r j j

, 
,*n"r" Aij is defined by formula (Z.L)); for I ( i S N, Lii = I und

(2.7) o,r=f uI;.' 
-:,1 f-:l:,, 

'l;'1

(where ui, t '  defined by formul a (2.2)). The next step is to consider for I <. i  S N,
V(Ri i )  =  v(L i i )  =  l  and for  I  (  i  (  j  (  N,

(2 's)  v(nt , )  =  (Ri , i * lo l j - ix lCI  Ri , in2@t j - , -  
r ) .  .  .  ( tk@ Ri , i *ko, j - , -u) .  .  .  ( r j - ig  Ri j )

and

(2 '9)  v(L, i i )  =  ( I@1, , ) ' "  ( Iko L i *k , io  I1- i * * ) ' ' ' ( I@ L i*z , io t j - , - rx l i * t , io  I1-1) .
\

The fol lowing matrices wil l  play the main roie in the sequell :  for I  ( i  (  N,
U(Ri1)  = U(L1,)  = I  and for  I  (  i . (  j  (  N,

(2.10) u(Ri j)  = v(Ri jxu(Ri*r, ;)Ol)

'  and

(2 ,1 t )  U(L . , )  =  (U(L .  ,  ) r r r l )v
, i)  

= (u{t., .*,)ert)v(L,,).

Based on the matrices U(Rrr) and U(Ly1) we can construct tr iangular matrices

which wil l  produce a lower-upper tr iangular factorization.of a given invert ible matrix.
That  is ,  we def ine for  I  l i  (  j  (  N,

Fi, j-  t  u(Ri, ,-  r)c11

o  n (P j i , o ,o j , , * l ) . . .  * (o j , j - r )

1J

(2 .12)  F . .  =r)

where F. .  =  G. .  and
l l  l I

(2 '13)  t t j  =  ( " j - t , j ,  c j -z , jR(o j , j - l ) , .  .  . ,  Gi jR(Dj , i * r ) .  .  .  n{n, , ,_r ) ) t
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(iltil denotes the matrix transpose). We also define for ( i ( j ( N ,

nj-  t , t
(2,14) H . .  =

, r

I

c; iu(L;- 1, i)  t(oj , j -  l )  .  .  .  L(Dj i)

where I{r. = Gr. and

(2 '15)  Ci i  =  (Gj , j -  
t ,  L(Dj , j -  r )Gj , j -  2 ,  '  '  ' ,L (o j , i -  l ) .  .  .  t (o j , , * r )c ;1)  .

V/e conclude this l ist of notation by defining for I I  i  S j  I  N,

(2 . t6 )  E , ,  =  s l@s i *1 , iO . . .@s ;1 .

We use famil ies of matricet (Gii)t<i,1a* and their associated objects as above in

order to describe a certain structure of the invert ible matrices having al l  principal

submatrices also invert ible (and, according to a previous convention, al l  the elements on

the main diagonal are unitary matrices). Denote such a matrix by T = (Ti,)t<i,y<N und

the set  o f  a l l  these matr ices uv S*.  Def ine p,  = (1,01 . . . ,0)  where the number of

matrices 0 is required by the place where P, appears. 
'

Now, we can state and prove the main result of this section.

2.4. THE}RE&N. Aly-nelr1x T = (Ti,)t 
<i,.,<ru b-elonRins to { lg--gnfgggry

deterrir. ine-d bv a f?mllv oJ nat-r i-cs! (Ci,)t<i,1<* ,ut iJuing (2.5).

correspond,gnce is realised by means of the form ulae: f o r  l < i < N ,

Tii = Gii Ard for I < i < j ( N,

aRd

ti i  = oru(Ri, j - i )ci j

t j t  =  t j tu(L; -1 , i )Pr '

M o.reo ye r, th sjqol I g yi n g f a.cto ri zat i9 n h.glsl! :

T  =  H* tENtF t ru '

PROOF. The proof can be performed by induction on the size N of T. The

following assertions are verified in this vein: for I < i < j < N

-U
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(2 '17') i i  ( t r j ,  t , *  I , j ,  .  ,  , ,T j - l , j ) t  = 
" j -  r , ,u j -  t , iu(Ri , ; -  t )c i ;

(2 '18) i j  (T ; i ,  T ; , i *1 "  "  '  t j , j - r )  =  c , rU(L- - t , i )E j - l , iF i , ; - l

(2 .19)= ,  (T  ) .  ,  . .  =  H. .E . .Ft t  mP l (m,p<)  t r  t r  i j

(2 .20) . '  T , ,  =  P ,L I (R.  .  . )C . .r r u l t r ) _ L . u

(2.2t) i i  T j i  = CjrU(L;-r , i )Pi .

As al l  these assert ions fol low by repeating (and stightly adapting) the

computations made in the proof of Theorem 1.3 in [g] we i l lustrate here onlv the

r e l e v a n t c a s e N = 3 .

W e  t a k e  G i i = T i i ,  i  =  l ,  2 , 3  a n d  G I z = T l Z ,  G z 3 = T 2 3 ,  C z l  =  T 2 l ,  G 3 Z = T 3 2

which sat is fy  the requi red proper ty  (2. i l  by Lemma 2.1 and hypothesis .  Fur ther ,on,  we

def ine Gt l  and Gl t  by the formulae T 13= 
p lU(R 

n)C t  and,  respect ive ly ,

T3l= C3IU(LZI)PT because we see that ,  once the other  e lements are f ixed,  the

correspondence between Tp and G, andr respectivety Tl, and G' in these formulae

is one-to-one. By direct computation using Lemma 2.3 and the definit ions,

HztEZtU(Rl2)c 
t3= 

(T 
n, T Z3)t.

Simi lar lv

(T 
3y 

-r 
32) = c3t u(LzlF'zr F rz.

In  order  to  ver i fy  that  T = H3lF3lF l3,  we note that

HztEztF tz H ztE ztu(R r tc l 3
T =

c3ru(L2r)EerFr z T z l

Remark that  by Lemma 2.3,

u(L zr)EzLu(R l t = siz@ s r z
and then
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c a I 
(s;2 @ s I 2)c B * L(D zz)L(D 3 I )S3 I R (D 

3 I )R (D 
3Z) = T 33

which f inishes the proof in the considered case. W

As a f irst consequence of Theorem 2.4 we obtain a formula for the determinant

of T.

2.5. COROLLARY. det T = # A** S, , TT det L(D,,)R(D*). $1
j = l  r  l < i  <  j S N  ) L  ) r

2.6. RE&IARK. Without the assumption that Ti i  are unitary matrices, the

fo l lowing modi f icat ions are necessarytDi i  =  Ci i  =  T i i ,  Sr ,  =  s(Gr1) ,  i  =  1, . . . ,N.  In  these

condit ions, the formula in Corollary 2.. j  becomes

N
detr- 

I]o"t 
t,t 

,I,sr 
det L(D;1)R(Dii)' w

3. COMPLETIOT{S OF BANd MATRICES

In this section we obtain some other applications of Theorem 2.4 to the

completion of band matrices treated in I l l ]  and [3].

Consider a part ial block-matrix T = (Ti j l l  (  i , j  (  N) wher" tr j  are specif ied

mat r i ces  fo r  l i  -  j t  S  m and  T . .  a re  unspec i f i ed  ma t r i ces  fo r l i  -  j l >  m ,  where  m )  l .

A complet ion of  T wi l l  be a speci f icat ion of  the matr ices T '  for l i  - ; l )  m.  Our

assumption here wil l  be that al l  principal submatrices of T formed by specif ied matrices

are inver t ib le  and we wr i te  in  th is  case Te%.

By a result in [t l ]  and l3l,  T a G,n admits completions in the . lur, fr 
",

defined in Section 2 (this is, of course, a consequence of Theorem 2.4 also). More than

that ,  by Theorem 2.4 '  T is  un iquely  determined by a fami ly  of  matr ices (G, , / l i  -  ; \ (  m)

satisfying (2.5) and any completion ? of r in class d i ,  uniquely determined by a family

(Gij/  
l i  

-  i l  > m) of matrices satisf ying (2.5) (with respect to the given f amily

( c i j / l i - j l < ' ) .

By Corollary 2.5, a formula for the determinant of ? is obtained in terms of the

parameters (G,,/\ i - j lS m) and (C,,/[ i - j l> m), but, of course, it is quite desirable tou  '  ' r -  u
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avoid the use ot (ct,/l i - i lS tl bv the'use of the known matrices (r,,/l i - i l5 r). Here,
t t

the main role is played by a Fischer-Hadamard type formula. For a,set of indices

n C {f , 2, . , ., N} we denote by T(A) the matrix (Tij l i , j  € A). Let us first explain the

simplest (but generic) case N - 3, m = l. By Remark 2.6, for any completion?ggi of
T (and such a completion is determined by the parameterc Gl3 and C31, while T is
determined by the parameteors (C,,/ l i  _ j l5 l, | < i, i  < 3),

^ ' 3
det T = 1-[ det Si r TT det L(D,,)R(D,,)

i= l  "  l< i<1<3 ,r  t t '

de tT(1 ,2)  =T1 d . rS , ,  TT de tL(D. . )R(D. . )
i= l  "  L< i< i<Z J t  J t .

detT(2,3)=* o*,  s, , ,  TT det L(D,,)R(D..) .
i=2 "2<i<i<3 Jt  t r '

Consequently,

(3.1) oeti = (det T(l,z)aet T(2,3)ldetT(2)Xaet srr/det srr)det L(D3I)R(D3l).

Using the same Remark 2.6, we can obtain the following extension of formula
(3' l) as a Fischer-Hadamard type formula. Define the index sets
v u  =  { t < , t <  +  1 , . . . , k  *  m } ,  k  =  1 , 2 , . . . , N  -  m .

3.1. PRopoSrTronI. lgt T€.Gm elg ?S' be a_conpletig!_gI T, dS1egUlgg!
ths parsmete_t! (cij/li - jl>r). Ibel

N_p .1  N_m_ I  -det ? = (TJ"det r(yk)/ 
' 
iT 

-det 
T(yu O y**l))K(i),

k= I  ^  
k= l

ylsrs

r<d) = t--[a"t sji/jnd""i,,*,)fl o"t L(Dii)R(Dii). @

It is important to know when the residual factor rc(T) Oisappears. An obvious

sufficient condition is that

O.2)  G, ,S ,  ,  ,G, ,  =  o  fo r  i - i  )  m, l l , r _ I  U  ' - -

but this is not necessary.
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However, the condition Gij = for I i - j l> r plays a role in connection with the

so-called band completion in Il l ] (and also in [3]). we have the following result.

3.2. pRoposrrroN. Lel T€ 6,n, Ihs! 6-t,,, = o tor li - jl> m r!_eld_glry.j!
Gi j  =  0 ler I i  -  j l>  * .

PROOF. Once, again i t  is suff icient to i l lustrate the case * = 3, rr = l .

Moreover, without loss of general i ty, Tr. are supposed unitary matrices.

Consider f€.q' a comptetion of T. By (Z,lg),

^t

T  = H 3 I E 3 : F t 3

and then

f - l  -  r - l  - lI  = ' n B z f  t i '

In v iew of  the.  t r iangular i ty of  Ft l  and H3l,  {T- l ) r ,  = o i f  and only i f

F;1)13 = 0 and t i - l l ,  = 0 i f  and only i f  (H; i , r ,  = 0.  But,  in v iew of  the def in i t ion of
\

F  
l 3 '

(F; l )13 = -pr r , fu tn  
n)c t rR- l (Drz)n- l (Dl r )  and by d i rect  computat ions,

using Lemma 2.3,  we get

(Fl  
l )1,  = -R- l {n 

r  z)c r  3L(D3/R- 
l {nr ;n-  l tnr , )

so that,  F; i)13 = 0 i f  and only i f  Gl3 = 0. simita.rv, (rr i i ) l t  = 0 i f  and onty i f  Gr, = 0.

The general case is essential ly reduced to this one. El

3-3-REMARK. The problem of f inding necessary and suff icient condit ions on T

for  the ex is tence of  a  complet ionT wi th  (T- l ) , .  =  0 for \ '  -  j \ ,  m ( th is  T,  denoted f romtJ

now on by To is cal led the band completion of r) is solved in [ i l ] .  our condit ions are

sl ightly restr ict ive than those in I l i ] ,  but i t  is quite simple to see that we can develop a

formalism similar to that in Theorem 2.3 ( i .e. a Schur analysis) also in condit ions of [ l  l ]

(and which wil l  be lesser explicit  than Theorem 2.3). So that, we preffer to remain in

class'J .
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In Proposit ion 3'2 we have explained at the level of schur analysis .the band
completion phenomenon. Moreover, in this wdy, proposition 3.1 appears as a
generalization of a determinantal formula in [3] (which is obtained exacfly for the band
completion case' when K(T") = I by Proposit io n 3,2),on the other hand, i t  is easily seen
that the condit ion rd) = l  does not impry ? is tr,e band compretion of r (as is the case
for posit ive matrices), @

Now, we can state an inheritance principle for the band completion proved for
posit ive matrices in [12] and for hermit ian invert ibre matrices in [13].

3'4' PRoPosITIoN' tet T' @ T. Th-qt T'(y) is th"e bpnel
go r_np t_e l i on  o {  T (y )  f o t  anv  y  = l  k , . . . , r } ,  t  S  kS  m (  N .

PROOF. It is only a consequence of propositio n 3.2, ES

4. SCHUR ANALYSIS AND GATJSSI,AhI ELIMINATION

An expression of the connection between the schur analysis and Gaussian
elimination already appeared in Proposi t lon 3.2. our goal in this section is to obtain a
general result in this direction, extending also the band completion principle in I l l ]  and

t3l.

consider  a par t ia l  matr ix  t  =  ( t t j ) ra i , j (N,  t i lec,  in  the sense that  some of
elements t i . ;  ut" specif ied and some of them are not specif ied. The assumptions are that
the main diagonal is specif ied (and its elements are of modulus l) and al l  the principal ,

submatrices formed by specif ied elements are invert ible. we say in this case that T
belongs to @F. Moreover, we say that T has property (p) i f  i t  aclmits a unique

completion To€T such that (T'); l= 0 for the unspecif ied posit ions ( i , j) .

with a part ial matrix t = (t i j ) ,  an undirected graph G = (V,E) is associated in the
fo l lo 'wing way:  V = {1,2, . . . ,N}  and ap edge between i  and j  ex is ts  ( i  I  l i f  both r i ;  und

tli are specified. elements. we call c the ?sgo-ciated 6laph of T and we say that T is
subiace-|t tg G. A graph G has property (e) if any subjacent matrix of G in 6}5. has the
property (P).
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Some more terminology on graphs is needed (we follow here [lr]. ncV is a

clique if (x,y)eE for all distinct x,y€A. The subgraph of G induge{ by A is

GA = (A,E^),  where En ={(x,y)  e E/x,y€A}

G is Shofdql if every cycle of length strictly greater then 3 has a chord, i.e. an

edge joining two nonconsecutive vertices of the cycle.

We can obtain now the main result of this section.

4.t. TFIEOREM. G has propeltv (Q) iJ gnd only if.lt js*a qhor_dal*gr?ph.

PROOF. Consider T €67f sujacent to the chordal graph G = (V,E). First, we

obtain a parametrizai ion of al l  completions inf of T. For this purpose, f ix a sequence

of  chordal  graphs G = GorG1, . . . ,G,  = KN ( tcn is  the complete graph based on the

vert ices of G, N being the. cardinali ty \V\ of V) such that each G, = (V,E,) is obtained

from G._,  by adding exact ly  one newledge (u, ,vr ) .  The ex is tence of  such a sequence

fol lows from the fact that G is chordal (see for instance [16]). By [16], there exists a

unique maximal  c l ique V,  in  G,  which is  not  a  c l ique in  G,- , .  In  th is  way,  a f ter  a

reordering of V, i f  necessary,

A B tu. .u.
r l

C D E

t F C

nd

nc''  ' t )

is
j

u : r '

slnS

I

u.
l

8(u,)

a

si

ru,

s(

l n  B l
where |  |

I C  D J

unspecif ied. U

g(u, ,v ' )  and t* ,
t  )  ' i '

s(ji _

I n  E ]
L F  C J

Theore

uniquel

u,r e!)s

uj 'u j

ass vJ

T(Vj) =

ar

)

d

{ z t

m

y r

(v.' )

e i n c l .  Moreover ,  a t  least  one of  tu . .u .  und tu . . r .  i t
r ]  r J

2.4,  ,u . "u.  is  un iquely  determined by a complex number
) ' )

determined by a complex nrjmber S(v'u,) such that

u,) I o, tef )t = I e!)1 = r.

I f  ,rrru, is unspecif ied, g(u,,vr) is choosen as parameter. Similarly fot ,u,,u,. Thit

process can be used for  j  =  1721. . . , t  and f ina l ly  get  a  one- to-one corr 'espondence

between the completions of T in.turr$and the famil ies of complex numbers
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{ g(u,,v,), 8(v,,u,)/ i =

such that

11 ' " 1t1 turrvt '  tu'u, unsPecif ied

(4.  l ) tlt) - s(u1v1)t!)s(u,,u,) I o

where lef ' t= le!)1= t .

More than that ,  To is  obta ined exact ly  for  g(u 'vr )  = 0 = g(v 'ur ) ,  for  i  =  1, . . . , t

"nd 
tr 'ur, tu'u, unspecif ied, when the condit ion (4.1) holds.

Indeed, by Proposit ion 3.2, the choice g(ur,vr) = 0 (or g(vr,ur) = 0) rnakes

(ro(v.))- I
,  u i ,u i

W e

completions

have only to

in [5].

= 0 (or respectively, (To(Vi));. t  
r.  

= 0) (or both of them, i f  i t  is the case).
l '  I

have to show that in the above mentioned process of parametrizing the

of T these zero entries are not changed (there is no f i l l - in). For this, we

use Lemm a 6,2 in [5] ana Theorem 2.3 in [6] as in the proof of Theorem 6.1

In conclusion, we obtained that i f  G is a chordal graph, then T, a part ial matrix

in?6'subjacent to G, has a unique completion ro€T such that {ro); l= 0 for the

unspecif ied posit ions ( i . j)  of T, and it  is given by the parameters zero with respect to

the above parametrization of al l  completions of T in class 9.

Conversely, suppose C is not chordal. I t  contains a cycle of length str ict ly

greater than 3. First, consider the case of G = CO, the cycle of length 4.

D e f i n e  t h e  h e r m i t i a n  p a r t i a l  m a t r i x  T = ( t i , ) t a i , , a +  w i t h  t i i = 1 ,  l < i < 4 ,

t12=t l4  = t34= 2 and t23= 0.  Then T has two (a lso hermi t ian)  complet ion,  in f ,  T( l ) ,

T(2) giu"n uy trf) =ryj.= &p, k = I,z, where u, = jt-t *ff) and a, = jr-r-.f i7l, with

the property that their inverses have 0 on the unspecif ied posit ions of T.

Further on, consider a cycle C* of length N > 4 and the (hermit ian) part ial

m a t r i x  s u b j a c e n t  t o  C N ,  T = ( , i 1 ) t c i , 1 < t r t  g i v e n  b y  t i i = 1 ,  1 < i < N ,

t l .= t lN = tN_l ,N = 2 and t i , i * l  =  0 for  I  <  i  <  N-1.  We consider  the fo l lowing two

(hermit ian) completions of T in ry . t(k) = tr,(,k)lr( i , i (N, k= t,Z, where

t(.kl. . = ,91. = u. 
(k) 

r tlT)= 0 elsewhere (of .ou.o, where the positionst  l rN- l  
=  t2rN = Dur  t ) ,N-r  = cu ohc 

u 
)  (or  courset  wnet

a re  unspec i f i ed  i n  T ) ,  and  b l= -7 ,  c r=13413 ,  b2=-4 ,  c r=5613 .  The  i nve rses
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t(l) 
"na 

r(2) h"u" also the property that they have 0 on the unspecified positions of

Now, these constructions can be used in an obvious way for concluding that if G

is not chordal, then it has not the propertX(a). E[
a

5. INHERITANCE PRINCIPLES

Chordal '  graphs in the Gaussian el imination appeared in connection with an

inheritance principle, i .e. no f i l l - in to appear when performing the el imination. So that,

i t  is quite natural to expect some other inheritance propert ies when matrices subjacent

to chordal graphs are considered-see for instance [12], l l3l,  [6], U7l, l5lrLZl.

From now onr only symmetric part ial matrices are taken into account (once t..
U

is  speci f  ied so is  t ; i  a lso) .

consider  G = (v ,E)  a chordal  graph,  lv [= N and wcv.  we say that  G* the graph

induced by w, has property (A) i f  for any part ial matrix T €eS subjacent to G, we

have, with the notation in Section 4. that

(5 .  l )

Def ine

T(w)o = To(w).

and

Adj (w)  = [v  €v / (v , * )€E*  fo r  a  cer ta in  we w] -w

K(cw) = (V,F),  where F = E U[(u,v) fu,v€ w] .

we obtain the following result which extends proposition 4.4 in [10].

5.1. THEORE&I" G* has propeft l  (A) i f_aLa_Qnly! K(G*r) is a.chord?.t graph an{

for S:ach v€Adj(w), Adj(v)f ')w is a cl ique.

PROOF. Suppose there ex is ts  a sequence G = Go,  Gl , . . . ,Gt  = K* of  chordal

graphs such that each G. = (VrEj) is obtained from 
"j_, 

Ot adding exactly one new edge

and such that  there ex is ts  r  (  t  w i th  VjC'W for  j  =  1, . .  . , r  and (Gr)W is  the complete

cj notgraph with vertex set W (recall  that V, is the unique maximal cl ique in
t
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a clique in G;_ 1).

f of a partial matrix in

9d subjacent toG given in the,proof of Theorem 4.1 i t  fol lows that (5.1) holds.

Following the proof of Proposit ion 4.3 in [10] we show that, conversely, i f  (5.1)

holds, then a sequence of chordal graphs as above exists indeed.

For this purpose, remark that there exist complex numbers d2r . .  .  ,aN such that

the  he rm i t i an  pa r t i a l  ma t r i x  t  =  ( t , j ) r a i , jSN ,  t i i  =  l ,  i  =  1 r . . . ,N ,  
, t IZ=  

0 ,  , lN  =  uN,

t i , i* l  = air i  = 2, N - I  has at least two completions in? fo. which their inverses have

O on t lre unspecif ied posit ions of T. Indeed, an obvious permutation in the part ial

matrices constructed in the proof of Theorem 4.1 yields the required T.

So that, i f  Case I in the proof of Proposit ion 4.3 in [10] holds, G does not satisfy

(5. r).

For the Case 2 in the proof of Proposit ion 4.3 in [10], we have to remark that

based on Theorem 2.4, the same arguments works as well as there.

Finallyr the equivalence between the property of GW that there exists a

sequence G = Cor  Gl , . . . ,Gt  = K* of  chordal  graphs as at  beginning of  the proof  and

the propert ies that K(Gw) is ch'ordal graph ancl for each veAdj(V/), Adj(v)Ow is a cl ique

is exactly the proof of Proposit ion 4.4 in [10]. g

5.2. REMARKS" (a) When a posit ive part ial matrix x is taken into account ( i .e.

al l  principal submatrices formed with specif ied elements are posit iv"), To is a posit ive

complet ion and by Theorem 2 in  [16] ,  i t  is  the maximum determinant  complet ion over

al l  the posit ive completions of the given part ial matrix.

Thus, by Renrark 4.5 in [10] several known inheritance principles appear as

cases of Theorem 5.1.

(b) Proposit ion 3.4 obviously appears as a part icular case of Theorem 5.1. m
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6. SOME DETERa,IINANTAL FORMULAE

Determinantal formulae for matrices with sparse inverses are long known and

recent results connect them with chordal graphs - l3l, l4l, l5).

lnl2), determinantal formulae for al l  posit ive completions of a posit ive part ial

matrix subjacent to a chordal graph were obtained and the perfect Gaussian el imination

process is pointed out by expressing the maximum determinant ( i .e. det To with the

notation on in previous sections) in terms of the determinants of some principal

submatrices with specif ied elements according to a rule determined by a perfect vertex

elimination scheme.

A perfect vertex el iqri lat ion schenre of a chordal graph G = (V,E) (which exists by a

theorem of  Fulkerson and Gross see [15] )  is  an order ing C = [v1, . . . ,uN]  of  the ver t ices

such that  each set  A i  = [v .€Adj (v , ) f  ;  >  i ]  i ,  
"  

c l ique.

The fol lowing construction is quite useful in connection with a f ixed perfect

ver tex e l iminat ion scheme G = [v1r  . .  .  ,uN]  of  G.

Def ine Bf  = [uk, . . . ,u fq]  and R be the least  in teger  for  which B* is  a  c l ique.

Then BO_,  is  a  par t i t ioned as

BR_r = tuR_rJ U An_1U (n*_r  -  ( lun_, ]U no_,)) .

I f  B R _ f  -  ( t u n _ t l U  A n . i )  =  [ w r , . . . , w r l ,  w h e r e  t h e  o r d e r  i s  t h a t  i n  0  ,  w e

def ine  u ,  =  uU[ tu*_1,  ws) ] ,  u r=uru  [ (v*_ l ,ws_t ) ] , , . . . ,Es  =  Es_1U l (v*_ t , * t t .
F u r t h e r  o n ,  f o r  k  =  2 t . . .  t  -  l ,

BR_L = lun_*1U An_rU(Bn_r - ( lun_r.tU n*_/)

and keeping in BR-t the same order as in d, we continue to define a sequence of

chordal graphs by succesively connecting each uR_k with the vert ices in

(Bn-t - ( lun-pJUAR-k)), but taken in the reversed order. As 6 is a perfect vertex

el iminat ion scheme of  G,  a sequence G = Go,Gl , . . . ,Gt  = K* of  chordal  graphs is

obtained, such that G, is obtained from 
"j-,  

Ot adding exactly one new edge.
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,B(v, ,u,) / i  
-  1, . . . , t !  are the parameters of  

'T,  
a complet ion of  T' ) t

above sequence of chordal graphs as in the proof of Theorem 4.1.

As an extension of a result in [2], we obtain

to G and fs(u,,v;),

in!f, associated to the

6.1. THEORET\A. Wilh the above notationg,

t
det T = KTJ ( t(i) - g(u,,v,) t!)e(u,,u.))det to

i ; = l  
I  " f  J - t " f  t

n
.a-nsldet To = J"T (aet?( {u*} U A*)/det T(Am))

m _ l

.  / i \  / : \  t  , '
where ltt) l  =\t l) l= r and oI t1" = t.

j =  I  
L

PROOF. We fol low the some l ine as in the proof of Proposit ion 4.1 in [2], but

using formula in Corollary 2.5 when necessary. For identitying

^,  t  r , t  / i \
det T/KTT( e\" -  g(u,,v,) t l 'g(v,,u,))

j = l  t  -  
)  i  z -  )  '

with det To, *e have to use the result obtained in Theorem 4.1 that To is given by the

parameters go(u'vr) = go(v,,u,,) = 0. E$

6.2. REMARK. (a) A formula for det To was previously obtained in t4l

expressing this determinant in terms of a spanning tree of G - see also [5].

One more formula can be obta ined as in  Proposi t ion 4.1 in  [10] .

(b) l t  is easy to see that the formula for detT in Theorem 6.1 holds with respect

to any other sequence of chordal graphs G = GorG 
l, 

.  .  .  ,Ct = K* where each G, is

obtained jrom G,_, by adding exactly one new sdge.

For this, we can fol low the l ineof the proof of Theorem a.6inl2), @

Let T be a partial matrix in 9S subjacent
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