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1. INTRODUCTION

In this paper we are concerned with a few problems on the structure of
invertible matrices. First, we describe an algorithfn for constructing ir;vertible matrices
starting with a family of complex numbers. This algorithm resembles one of continued
fraction type used by I. Schur in [20] in the analysis of the bounded analytic functions on
the unit disc and the complex numbers we use for constructing an invertible matrix
appear as a generalization of the so-called Schur parameters.

" This Schur type algorithm is described in Section 2 and as a first consequence
we obtain a formula for the determinant of the given matrix in terms of its Schur
parameters. In Section 3 we show the connection of the Schur parameterg with the
extensions of band matrices treated in [11] and [3). Moreover, connection with some
other known results are presented. |

In Section #, these results are extended to partial matrices subjacent to chordal
graphs. Hé"re, the analysis is based on some graph theoretic results obtained in
connection with the perfect Gaussian elimination. (see [15]). As the main result it is
obtained that the graphs with property that for any subjacent partial matrix there
exists a unique invertible completion whose inverse has elements zero on the
unspecified positions of the given partial matrix are exactly the chordal graphs. The
completion obtained in this way appears as a generalization of the band completion in
[11].

In the next section, the induced subgraphs which inherite this completion are
characterized. Thus, it is obtained another general result in connection with previous
inheritance properties in [12], [13], [6], [17], [5], [2].

In the last section we return to determinantal formulae. We obtain extensions
of some formulae derived in [2], computing the determinants of the completions of a
partial matrix subjacent to a chordal graph.

This paper has been circulated as INCREST Preprint No. 55/1989.



2. A SCHUR TYPE ALGORITHM

In this section we establish a certain structure of an arbitrary matrix (under
suitable invertibility conditions) emphasizing the role played by some parameters
uniquely determining the given matrix.

This procedure has its roots in a classical paper of I. Schur [20] and since then
‘several variants and generalizations appeared - see, for instance, [1], [7], [14]: [18]
Here we follow a line developed in [8] and [9] for positive matrices and, respectively,
invertible hermitian matrices.

We begin with some simple remarks concerning the so-called Frobenius-Schur
factorization. Let X be an invertible matrix, L(X) = (XX*)"} and R(X) = (X*X)%.

Defining s(X) = X(X*X)"%, a form of the polar decoposition of X is
X = L(X)s(X)R(X), s(X) being a unitary matrix, i.e. s(X)*s(X) = s(X)s(X)* = I (for a matrix
X% den9tes its adjoint and I is the unit matrix). Consider W another invertible matri)f

and the block matrix

e

where Y and Z are matrices of appropriate dimensions.

The following result is a variant of the well-known Frobenius-Schur

factorization.

2.1. LEMMA. Define the matrices G and H by the relations Y = L(X)GR(W),

Z = LOW)HR(X) and D ='s(W) - Hs(X)* G.Then

E ISR 0 Me(x) o Yelx) 0
Z W 0 L(wi) } H L(D)!
s(X) G ||R(X) o0
. .
0 R(D) 0 R(W)
2.2. REMARKS. In view of the above factorization we can suppose that the

elements on the main diagonal of the (block) matrices we will consider are unitary.



e

Note that a dual factorization also holds. Define F = s(X) - Gs(W)*H, then

s(F) O
o

(we supposed that X and W are unitary matrices). The matrices D = s(W) - Hs(X)*G and

T LR 8

-

lz W

R{F) ©
H W

0] W

F = s(X) - Gs(W)*H are the so-called Schur complements - see [19]. m

With the notation in Lemma 2.1. and Remark 2..3., we derive the following

result.

*

2.3. LEMMA. Suppose D and F invertible. Then, there exist uniquely determined

matrices A and B such that

¢ vmlw® ol » 1 [x o

i

RD) Ao s®||RM B] |0 s(D)

; and W% 1T 4 -
H L(D)|| X G L(M |w o
[B(F) B0 s(D)| R(D) &l |0 .sf

PROOF. We have only the choose:

(2.1) A = -R(DW*HR(F)™ 's(F)*
and
(2.2) B = -s(F)*L(F) 'GW*L(D). ®

After the preliminaries we can introduce the objects we will be interested in

throughout this section. Consider a family (G..), .. . ., of matrices and define
)7 1<i,)<N

Siizs(Gii):Giifori,: yswisNand for'l € L€ <N,

(2.3) Dji = Si-1 = SiSy,i01%i

(2.4) Dii 255500 ~ %5851 %

where Sij = S(Dij) for all 1 <i,j < N. This family will satisfy the following property:

(2.3) Dij and Dji are invertible matrices.

We define, according to Lemma 2.3, the matrices: for 1 <i <N, R.. =T and for



1<i<j<N,
K
(2.6) B - fg M0 Ry ;
: e >
. R(Dji) A ; 0 513

(where Aij is defined by formula (2.1)); for 1 LigN, L.;=Tand

o F

173,141 0 } Gji L(Dji>

(2.7) 8 ’ | :
I+ 0 8i4||R(Ds5) By

(where Bj is defined by formula (2.2)). The next step is to consider for 1<i<N,

V(R )_V(L )—Iandfor1<1<j<N

'(2.8) V(R )—(R 1GL)I )(I®Ri,i+2®lj-' I (iv)Rl 1+k®I] i k) (j—iGBRij)
and :

(2.9) V(Lji)z(IQ)Lji) (I ®L. @IJ g k L IDL, @I, )L, 11@1. i

i+k,i i+2,i ¥ j-i-1 j-1

¥
N

The following matrices will play the main role in the sequell: for 1 <i<N,

U(R )— UI(L. )—Iandforl<1<J<N

(2.10)  U(R, P = VR DUR, JQDD
and
(2.11) U(Lji) = (U(Lj,i+l)®l)v(l“ji)'
Based on the matrices U(Rij) and U(Lji) we can construct triangular matrices

which will produce a lower-upper triangular factorization of a given invertible matrix.

That is, we define for 1 SECJEN,

e R385
(2.12) e
0 RQ%QRH%J+R RO, .
where Fii = Gii and
213) C;=(6; ;G , RO, ) RO} i) RO )

2



("t" denotes the matrix transpose). We also define for 1 Lidj<N,

(
Ho ) 0

(2.14) H.. =

@ ) PRSI IS 0/
B ( J—l,l) ( J,J-l) ( 11)4

where H.. = G.. and
ii ii

(2.15) - Coo= (G s LD

2 )G
] Jsj-1 Ja]"l)

ez ,L(Dj’j_ i L(Dj,i+l)Gji) :

We conclude this list of notation by defining for | il

*
(2.16) Ej; = SH®S,, ) | © - (@S,

i+1,i

We use families of matrices (Gij)l<i J<N and their associated objects as above in
— ’ —
order to describe a certain structure of the invertible matrices having all principal

submatrices also invertible (and, according to a previous convention, all the elements on

the main diagonal are unitary matrices). Denote such a matrix by T = (T..) and

T

ij1<i,j<N
the set of all these matrices by . Define Pl = (,0,...,0) where the number of

\

matrices 0 is required by the place where P appears.

1

Now, we can state and prove the main result of this section.

2.4. THEOREM. Any matrix T-= (Tij)l<i i<N belonging to Cf is__uniquely
— ’ e

determined by a family of matrices (G..), . . ., satisfying (2.5).
1j71<1,j<N e

This correspondence is realised by means of the formulae: for L<idN,

Tiiang_ﬂg.iQ_Elf_l<]SN7

Ty ey )Gy
Ty = G, | JP,.

Moreover, the following factorization holds:

T=Hy EniFine

PROOF. The proof can be performed by induction on the size N of T. The

following assertions are verified in this vein: for 1 <i<j <N



@175 (T T e, T = Hi i UR e
(2.18);, (T Tiip yTis )= CuL, ) JE 1,
@.19), T eoicm,pgs = i

@20 T =PUR, e

2 *
(2215 Tj=Cuu OPY.

As all these assertions follow by repeating (and slightly adapting) the
computations made in the proof of Theorem 1.3 in [8] we illustrate here only the
relevant case N = 3,

We take Gii:Tii’ L =sls 2.3 and G12 :le, G23:T23, (321 :TZI’ G32=T32

which satisfy the required property (2.5) by Lemma 2.1 and hypothesis. Further on, we
define G13 ‘and G31 by the formulae T13 = PIU(RIZ)CIB and, respectively,
T31 :CBIU(LZl)P’le because we see that, once the other elements are fixed, the
correspondence between Tl3 and G13 and, respectively '1"31 and C31 in these formulae

is one-to-one. By direct computation using Lemma 2.3 and the definitions,

et

> (le’ 23

H..E U(RIZ)C

21 9] 13

Similarly

In order to verify that T = H31F31F13, we note that

-

BB F 12 Ho B UR LT 4

e e Taa

Remark that by Lemma 2.3,

*
U(LZI)EZIU(RIZ) = 522®512 :

and then



*
C31(55,@5)C 3+ LID3))LD;)S 5 R(D; DRD,) = T,

which finishes the proof in the considered case. ®

As a first consequence of Theorem 2.4 we obtain a formula for the determinant

of T.
N
2.5. COROLLARY. detT=TTdets., TT detL(D ROD,) B
5 For ji ji
‘ j=1 1€ < <N

2.6. REMARK. Without the assumption that Tii are unitary matrices, the

following modifications are necessary’ Dii &= Gii = Tii’ Sii = S(Gii)’ i=1l,¢..,N. In these

conditions, the formula in Corollary 2.5 becomes

N
detT= [T1dets., TT1 detL(D.i)R(D.i). B
L e R

3. COMPLETIONS OF BAND MATRICES

In this section we obtain some other applications of Theorem 2.4 to the
completion of band matrices treated in [11] and [3].

Consider a partial block-matrix T = (Tij/l <i,j <N) where Tij are spec‘ified :
matrices for i~ j| <m and Tij are unspecified matrices for|i - j| > m, where m > 1. .

A completion of T will be a specificatipn of the matrices Tij for | = jl> m. Our
assumption here will be that all principal submatrices of T formed by specified matrices
are invertible and we write in this case TECJ?)m.

By a result in [11] and [Bj, Té%m admits completions in the class CJ\: as
defined in Section 2 (this is, of course, a consequence of Theorem 2.4 also). More than
that, by Theorem 2.4, T is uniquely determined by a family of matrices (Gij/\i « 3 m)
satisfying (2.5) and any completion ? of T in class CTI is uniquely determined by a family
(Gij/\i - j|>m) of matrices satisfying (2.5) (with respect to the given family
(Gij/\i - jl<m)

By Corollary 2.5, a formula for the determinant of ”’IJ' is obtained in terms of the

parameters (Gij/\i - j| < m) and (Gij/[i - j|> m), but, of course, it is quite desirable to
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avoid the use of (Gij/{i - j\g m) by the use of the known matrices (Tij/\i - jl< m). Here,
the main role is played by a Fischer-Hadamard type formula. For a set of indices
AC {l, A N} we denote by T(A) the matrix (Tij{i,j € A). Let us first explain the
simplest (but generic) case N = 3, m = 1. By Remark 2.6, for any completion?ec’r of -
T (and such a completion is determined by the parameters G13 and GBI’ while T is
determined by the parameters (Gij/h - jlg lod €45 K 3)
N 3
detT =TTdets, TT det LID;R(D,)
j=] 1<i<j<3
2

det T(1,2) =TT detS,

i TT detL(D. )R(D )
1—1 ji

1<i<j<2

det T(2,3) = TTdetSz TT detL(D. )P(D o)
i=2 2<i<j<3 "

Consequently,

(3.1)  detT = (det T(1,2)det T(2,3)/det T(2))(det S3y/det S )det LD, JR(D ).

32)

Using the same Remark 2.6, we can obtain the following extension of formula
(3.1) as a Fischer-Hadamard type formula. Define the index sets

Yo =il b s ml s 57,00 N -

o~
3.1. PROPOSITION. Let TQQPDm and TES be a completion of T, determined by

the parameters (Gij/\i - j|>m). Then

~ N-m N-m-1 -
detT = (T1 det T(Yk)/ [T det T(YknYk+ PK(T),
k=1 k=1

where

KAt T dets il gt )TT det L(D;)R(D). &
j=i>m 1j—i>m ol j=i>m

It is important to know when the residual factor K(QFJ) disappears. An obvious

sufficient condition is that

(3:2) Gjisi,j—lGij =0 for j-i >m

but this is not necessary.
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However, the condition Gij = 0.for ‘i - j\) m plays a role in connection with the

so-called band completion in [11] (and also in [3]). We have the following result.

3.2. PROPOSITION. Let T € %m, then (T"‘l)ij =0 for |i-j|>m if and only if

Gij :Oj_qg[i - jl> m.

PROOF. Once again it is sufficient to illustrate the case N = 3 M=l
Moreover, without loss of generality, Tii are supposed unitary matrices.

~
Consider TES a completion of T. By (2.19),

o~
F=ta E

Seis
and then
el el o o]
P
In view of the triangularity of F13 and H31’ (”'Ii—l)IB:O if and only if

(Fié)13 =0 and ("F“l)31 - 0 if and only if (H;})31 = 0. But, in view of the definition of
Fla
= ) -1 sl : :
(F13)13 = —PlFle(Rlz)CIBR (D32)R (D31) and by direct computations,

using Lemma 2.3, we get

! :

13) = "R

-1
13, (DIZ)G”L(D32)R (D

=1
32)R (DBI)

-1 : ; e -1 : .
so that, (F13)13 = 0 if and only if G, 3 = 0. Similarly, (HBI)BI = 0 if and only if G =0

3

The general case is essentially reduced to this one.

3.3.REMARK. The problem of finding necessary and sufficient conditions on T

for the existence of a completionf”\f with ("f"l

)U =0 for\i - j\ > m (this "F, denoted from
now on by T® is called the band completion of T) is solved in [11]. Qur conditions are
slightly restrictive than those in [11], but it is quite simple to see that we can develop a

formalism similar to that in Theorem 2.3 (i.e. a Schur analysis) also in conditions of [11]

(and which will be lesser explicit than Theorem 2.3). So that, we preffer to remain in

classcf'.
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In Proposition 3.2 we have expfained at the level of Schur analysis ‘the band
completion phenomenon. Moreover, in this way, Proposition 3.1 appears as a
generalization of a determinantal formula in [3] (which is obtained exactly for the band
completion case, when K(T®) = | by Proposition 3.2). On the other hand, it is easily seen
that the condition K("F) = 1 does not imply TFoisithe band complétion of T (as is the case
for positive matrices). @

Now, we can state an inheritance principle for the band completion proved for

positive matrices in [12] and for hermitian invertible matrices in [13],

3.4. PROPOSITION. Let T° be the band completion of T. Then T°(Y) is the band

completion of T(Y) for any Y :{k, i ,m}, L <k<mA N

PROOF. It is only a consequence of Proposition 3.2. 8

4. SCHUR ANALYSIS AND GAUSSIAN ELIMINATION

An expression of the connection between the Schur analysis and Gaussian
elimination already appeared in Proposition 3.2. Our goal in this section is to obtain a
general result in this direction, extending also the band completion principle in [11] and

[3].

Consider a partial matrix T = (t.j) €C, in the sense that some of

ij71<i,j<N? -
elements tij are specified and some of them are not specified. The assumptions are that
the main diagonal is specified (and its elements are of modulus 1) and all the principal
submatrices formed by specified elements are invertible. We say in this case that T
belongs to Y'Y . Moreover, we say that T has property (P) if it admits a unique
completion T°€%” such that (To)i_jl: 0 for the unspecified positions (i,j).

With a partial matrix T = (tij)’ an undirected graph G = (V,E) is associated in the

following way: V = {1,2, ...,N} and ap edge between i and j exists (i £ j) if both tij and

tji are specified elements. We call G the associated graph of T and we say that T is

subjacent to G. A graph G has property (Q) if any subjacent matrix of G in ¥S” has the

property (P).
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Some more terminology on graphs is needed (we follow here [15]). ACV is a
clique if (x,y)€E for all distinct x,y€A. The subgraph of G induced by A is
Gp = (AE,), where E, =§ (x,y) € E/x,y€A}. |

G is chordal if every cycle of length strictly greater then 3 has a chord, i.e. an
edge joining two nonconsecutive vertices of the cycle.

We can obtain now the main result of this section.

4.1. THEOREM. G has property (Q) if and only if it is a chordal graph.

PROOF. Consider T€¥®% sujacent to the chordal graph G = (V,E). First, we

obtain a parametrizaﬁon of all completions in%" of T. For this purpose, fix a sequence

of chordal graphs G = GO,G .,Gt = KN (KN is the complete graph based on the

P
vertices of G, N being the cardinality\V\ of V) such that each Gj = (V,Ej) is obtained

from G.
j-1

follows from the fact that G is chordal (see for instance [16]). By [16], there exists a

by adding exactly one newledge (Uj’vj)' The existence of such a sequence

unique maximal clique Vj in Gj which is not a clique in Gj~1' In this way, after a

reordering of Vj if necessary,

T(Vj) e D E

A B DB - G g
where and are in class 5 . Moreover, at least one of t and t is
(G ) G } Uj’vj vj,uj
unspecified. Using Theorem 2.4, I is uniquely determined by a complex number
- el
g(uj,vj) andt s uniquely determined by a complex number g(vj,uj) such that
j’ J' 5
() () (j) ()
&7 - 8,V Ty Blvypu) £0, Vel
Ift is unspecified, g(u.,v.) is choosen as parameter. Similarly for t . This
UV 55 V.,u.

J ; 12
process can be used for j=1,2,...,t and finally get a one-to-one correspondence

between the completions of T in class(’jJ and the families of complex numbers
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{g(ui,vi), g(vi,ui)/ iz b vt tui,vi, tvi’ui unspecified }
such that

(4.1) 8(1) g(ul,v )S(I)g(vi,ui) £0
where \8(11)\:\ E,/(zi)\: L

More than that, T° is obtained exactly for g(ui,vi) =0= g(vi,ui), for i=1....id

and t ol unspecified, when the condition (4.1) holds.
TR AR , ;
Indeed, by Proposition 3.2, the choice g(ui,vi) =0 (or g(vi,ui) = 0) rmakes
(1°(V., ))u = 0 (or respectively, (TO(Vi)):/1 = 0) (or both of them, if it is the case).
’ 12

i i
We have to show that in the above mentioned process of parametrizing the

completions of T these zero entries are not changed (there is no fill-in). For this, we
have only to use Lemma 6.2 in [5] and Theorem 2.3 in [6] as in the proof of Theorem 6.1
in [5].

In conclusion, we obtained that if G is a ch(ordal graph, then T, a partial matrix
in@cf\) subjacent to G, has a unique completion T°€¢G such that (To)i_jl: 0 for the
unspecified positions (i.j) of T, and it is given by the parameters zero with respect to
the above parametrization of all completions of T in class oF.

Conversely, suppose G is not chordal. It contains a cycle of length strictly

greater than 3. First, consider the case of G = Cq, the cycle of length 4.

Define the hermitian partial matrix T'(t11)1<1,]<4 with ti, = I, -Leicl,

CV()

tay, =2 and tyy = 0. Then T has two (also hermitian) completions in )

given by tlgk) (Zkl;) = a, k = 1,2, where a —( 1 +Y17) and a, ——( 1-N17), with

tostin=
TQ)

the property that their inverses have 0 on the unspecified positions of T.
Further on, consider a cycle CN of length N > 4 and the (hermitian) partial

matrix  subjacent  to CN’ T=(t..) giyen. -~ By - sl | LN

i) 1<i,j<N i
to=tNy= tN—I,N = 2 ‘and t i =0 for 1 <i<N-1. We consider the following two
(hermitian)  completions of T e T (k) 1()l<))l<i,j_§N’ k=1,2, where
(k) (k) =b (k) {l 0 elsewhere (of course, where the positions

LN N T S e

are unspecified in T), and bI:-7, cl=134/3, b,, = -4, c2:56/3. The inverses
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of T(l) and T(Z) have also the property that they have 0 on the unspecified positions of
Te
Now, these constructions can be used in an obvious way for concluding that if G

is not chordal, then it has not the proper‘tg(Q).

5. INHERITANCE PRINCIPLES

Chordal graphs in the Gaussian elimination appeared in connection with an
inheritance principle, i.e. no fill-in to appear when performing the elimination. So that,
it is quite natural to expect some other inheritance properties Qhen matrices subjacent
to chordal graphs are considered-see for instance [12], [13], [6], Flz L[5 2] |

From now on, only symmetric partial matrices are taken into account (once tij
is specified so is tji also). »

Consider G = (V,E) a chordal graph, |V|= N and Wc V. We say that GW the graph
induced by W, has property (A) if for any partial matrix T €¥% subjacent to G, we

have, with the notation in Section 4, that

(5.1) B2 = 120,

Define
Adj(W) = {L v E Vl(v,w)EEW for a certain w GW}—W
and

K(GW) = (V,F), where F = E U{(u,v)ju,ve W)I .

We obtain the following result which extends Proposition 4.4 in [10].

5.1. THEOREM. GW has property (A) if and only if K(GW) is a chordal graph and

for each vEAdj(W), Adj(v)N\W is a clique.

PROOF. Suppose there exists a sequence G = GO, G it ,Gt = K,  of chordal

1 N
graphs such that each Gj = (V,Ej) is obtained from Gj—l by adding exactly one new edge

and such that there exists r < t with Vjc: Wofor:j = 1,:v.,r and (Gr)W is the complete

graph with vertex set W (recall that Vj is the unique maximal clique in Gl wat
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a clique in Gj—l)'
In view of the parame/trization of the completions inqSJ of a partial matrix in
G0 subjacent to G given in the proof of Theorem 4.1 it follows that (5.1) holds.
Following the proof of Proposition 4.3 in [10] we show that, conversely, if (5.1)
holds, then a sequence of chordal graphs as above exists indeed.

For this purpose, remark that there exist complex numbers a such that

RRRELN

the hermitian partial matrix T = (tij) Ly b de e oG 3t

1<i,j<N it p et by e
ti;i+1 = a, i=2,N-1 has at least two completions inq‘ for which their inverses have
O on the unspecified positions of T. Indeed, an obvious permutation in the partial
matrices constructed in the proof of Theorem 4.1 yields the required T.

So that, if Case 1 in the proof of Proposition #.3 in [10] holds, G does not satisfy
(5.1)

For the Case 2 in the proof of Proposition 4.3 in [10], we have to remark that
based on 'fheorem 2.4, the same arguments works as well as there.

Finally, the equivalence between the property of GW that there exists a
Sequence G = Go’ GI’ e ’Gt £ KN of chordal graphs as at beginning of the proof and
the properties that K(GW) is chordal graph and for each vE€Adj(W), Adj(v)(WW is a clique

is exactly the proof of Proposition 4.4 in [10]. €3

5.2. REMARKS. (a) When a positive partial matrix x is taken into account (i.e.
all principal submatrices formed with specified elements are positive), T® is a positive
completion and by Theorem 2 in [16], it is the maximum determinant completion over
all the positive completions of the given partial matrix.

Thus, by Remark 4.5 in [10] several known inheritance principles appear as
cases of Theorem 5.1.

(b) Proposition 3.4 obviously appears as a particular case of Theorem 5.1. §@
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6. SOME ‘DETERMINANTAL FORMULAE

'Determinantal formulae for matrices with sparse inverses are long known and
recent results connect them with chordal graphs - [3], [4], [5].

In [2], determinantal formulae for all positive completions of a positive partial
matrix subjacent to a chordal graph were obtained and the perfect Gaussian elimination
process is pointed out by expressing the maximum determinant (i.e. detT® with the
notation on in previous sections) in terms of the determinants of some principal
submatrices with specified elements according to a rule determined by a perfect vertex

elimination scheme.

A perfect vertex elimination scheme of a chordal graph G = (V,E) (which exists by a

theorem of Fulkerson and Gross see [15]) is an ordering G = [Vl’ s ,VN] of the vertices
such that each set A= {vjéAdj(vi) lj > i.g is a clique.

The following construction is quite useful in c‘onnection with a fixed perfect
vertex elimination scheme G = [vl, e ,vN] of G.

Define Bk = {vk, siaie ,VN} and R be the least integer for which BR is a ;lique.

Then BR-I is a partitioned as

Bro1= DRoh Y AR U By - Qvg 3V Ag

If By |- ({VR_IEU AR-—l) 2 [Wl" o ,WS], where the order is that in G, we
define E1 =EU g_(vR_l, WS)E, E2 = El @] {(VR_I,WS_I)} Syt ’ES = ES—IU &(VR_I,WI)g.

Fuetherion, fordks =2, ..., =,

Brok = LVRoadY AR W By - (g i YU AR )
and keeping in BR-k the same order as in O, we continue to define a sequence of
chordal graphs by succesively connecting each Vao g with the vertices in
(BR-k - ({_vR_k}UAR_k)), but taken in the reversed order. As O is a perfect vertex

elimination scheme of G, a sequence G :GO’GI""’Gt:KN of chordal graphs is

obtained, such that Gj is obtained from Gj-—l by adding exactly one new edge.
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Let T be  a partial - matrix in Pl subjacent to G and {g(uj,vj),
. ~
,g(vj,uj)/j = Lo ,tg are the parameters of T, a completion of T inq, associated to the
above sequence of chordal graphs as in the proof of Theorem #4.1.

As an extension of a result in [2], we obtain

6.1. THEOREM. With the above notations,

e ) :
det T = K1 (8(11) - glu.,v.) E(J)g(v.,u.))det L
= ey

PROOF. We follow the some line as in the proof of Proposition 4.1 in [2], but
using formula in Corollary 2.5 when necessary. For identifying
o ) ()
det T/KTT(EY - glu,v.) €57°g(v.,u.))
s e
with det TO, we have to use the result obtained in Theorem 4.1 that T° is given by the

parameters go(uj,vj) = go(vj,uj) =0. @

6.2. REMARK. (a) A formula for detT® was previously obtained in [4]
expressing this determinant in terms of a spanning tree of G - see also [5].

One more formula can be obtained as in Proposition 4.1 in [10]. |

(b) It is easy to see that the formula for det T in Theorem 6.1 holds with respect

to any other sequence of chordal graphs G = Go’G "Gt = K. shere ‘each Gj is

e N

obtained from Gj—l by adding exactly one new sdge.

For this, we can follow the line of the proof of Theorem 4.6 in [2].
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