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DERIVATIONS OF NEST*SUBALGEBRAS OF-TYPR II1 FACTORS

Every ultraweakly continuous derivation
of a nest-subalgebra of the hyperfinite
type II1 factor associated to a nest which

generates a Cartan subalgebra is inner.

INTRODUCTION:

Let. B&B(H) be an arbitrary subalgebra of the algebra‘
of all bounded linear operators on a Hilbert space H.
A derivation of B 1is a linear mapping '5 :B»B satisfying
g(xy) = X éYy) + 5%x)y for every x,y in B. & is inner
if there ié an operator Dbé& B such that

cr(x) :[b,x:f = bx-xb (YY) X EB

It is importanﬁ to know about a given subalgebra B e B(H)
wether all its derivations are inner. In other words( this
lneans that its first Hochschild cohomology group is trivial,
that is H1(B,B) = 0 . This is known to be true for all
von Neumann algebras ({5},[11}) and for all nest algebras ([1]).

In ([8]) we started to investigate this problem for
nest—subalgebras of von Neumann algebras. We proved‘there,
among other results, that derivations of nest-subalgebras
of type II1 factors which come from atomic nests are inner.
The aim of this paper is—to get more insight in the case
when the nest generates a diffuse abelian subalgebra.
We prove that if this abelian subalgebra is a Cartan subalgebra
of the hyperfinite type II1 factor, then every ultraw?akly
continuous derivation of the corresponding nest-subalgebra

is inner.




The main ingredient is a nonselfadjoint version of the
celebrated Connes~Feldman-Welss theoref (corollary 1.2)
The result contained in - 1.2(iil) 41s not new. Given in an
even more general setting, it is due to P.Muhly and é.Solel
([7]) and it is a direct consequence of the results in ([6])°
The proofs in ([6]) and ([7]) heavily used ergédic theory,
as well as the original proof of the Connes-Feldman-Weiss
theorem ([2]) relied on the Feldman-Moore ergodic model ([4]),

In (ﬂTO]) Sorin Popa gave a purely operator theoretical
proof of the Connes-Feldman-Weiss theorem. In turn, we present
an operator theoretical proof of the nonselfadjoint case.

The main result about derivations is obtained, as in'([1])
and ([8]} by showing that nest-subalgebras o0f the hyperfinite

type 1I. factor associated to nests which generate Cartan

1
subalgebras have E.Christensen’s “automorphism implementation
property’ . fhis means that automorphisms close to the identity
are implemented by invertible operators close to the identity
( Theorem 2.3 ).

Let us first fix the terminology. Throughout this paper

R will be the hyperfinite type II, factor with faithful finite

1
normal trace ¢ , ©(I) =1 . A nest L is a totally ordered
strongly closed family ofi( selfadjoint ) projections in B(H)
containing 0 and I . If LCR , then the algebra
M={xeR; (I-p)xp= 0 (V)PQLZ
is the nest-subalgebra of R associated to the nest L .
Recall that for an arbitrary subalgebra BT B(H) , B® denotes

the commutant of B. A nest I is continuous if L”7 is a diffuse

abelian subalgebra. Finally, if b€ B then the inner derivation

of B implemented by b ,that is § (x)=bx~-xb is denoted by - adlh).



1. CONTINUOUS NESTS AND CARTAN SUBALGEBRAS :

Recall that R is the hyperfinite type II, factor with

1
trace 6-; ¢ (I)=1. and Hxl%z = E(x*x)1/2 for every x€R.
If BCR is a von Neumann subalgebra then EB denotes the
unique trace preserving normal conditional expectation of R
on B. Let ACR be a maximal abelian *-subalgebra.

Then NR(A) denotes the normalizer of A in R , that is

Nain)-= { ueR unitary ; u*Au = A } and
GN_ () denotes the normalizing grupoid of A in R
GN_ (A) = { vER partial isometry ; v*v,vv* ¢ A VAV =Aviy }

Note .that ve,GNR(A) if and only if there is ueENR(A)

and a projection e€ A such that v=ue (see for example ([10])).

A is a Cartan subalgebra if N_(A) generates R as a

R
von Neumann algebra.

and A

The Connes~Feldman-Weiss theorem says that if A1 5

are Cartan subalgebras of R then there exists an

automorphism . P € Aut R such LP(A1) = A

1+1 PROPQSITION:
Let ACR be a Cartan subalgebra. If LP is a trace
preserving automorphism of A then there is an automorphism

(g) € Aut R such that ({)(a) = CE)(a) (¥ ae & .

Proof: According to ([10)) , consider an increasing

sequence of matrix subalgebras (type I factors) Mnc;R,

o T - . n k
each of them with a set of matrix units (eij)1g:igj$ 51

n n _
such that eiiezx, %:eii =I ,

n o i P . ,
eij Q‘GNR(A) (¥) i,5,n , every e ,Pgn , is the sum



of some ei? and such that Iﬁfﬁ; L
— ' };II "’
For every n consider a 2 "~ partition of the unity in A
k '
1 5 & r n ; kn
(pn,,..,.,pn ) where p, = er 1£rg2 .
. 1 zkn kn
Then (<f(pn)r,,.,(?(pn 3 ) is another 2 -partition

of the unity in A and consequently there is a unitary operator

, ~ i
u, € N (a) such that P (p,) = u¥ pru | (V) ny1

k i

and 141i¢2 " ( see for example (fo)s.4) g

L . _ 2 - g

Let N_ = u* M u and N° = u M _u* !

n n nn n nnon |

Moreover, the unitaries un can be chosen such that

for every n>1 and mn

u* M u = u* M u and u. M ou* = gy M u* :
m nom n nn m nm nnn |

. 1 i
If we define Q%(Mn) = Nn then, by the above remarks,

i? is correctly defined and qjuniquely extends to a

*-isomorphism between R and a subfactor R, C R ([3] IIT.7.2}

0
More precisely, for a given countable subset (Vi)i>1C:GNR(A)
dense in GNR(A) in the norm HGHZ , M can be chosen
such that [l B, (v,) - v [, < 2™, 1cien ([10]).
n
For every v, and €2 0 , there is ng 21 and an operator
w in Mnﬁ such that [!vi - w{lz £ /2 .
Since for n,m2 ng¢ umugwunug = W then
liumug viunu$ - Vi“2 £ € ,hence l[ugviunm u%viumlg < £

It follows that (u*v.u )

Vi) pyq 1S Cauchy in the norm H'HZ



and since it is alse bounded in the uniform norm, there

i v, €R = such that lim [V, - u*v.u

!i = 0
1 [
i - i nodntg

It follows that for eve'ry V@GNR (@) there is wER

syech that 1lim u G uflvun U i, 2 0 ; hence
: = )
({7 (v) = lim u;vun strongly for every VE:GNR(A) s
n
' . 2
- A e * * = * N —
On the other side, umunMnunum uml\num Mn TEORE my n

, k
hence Hor ewery’ B> | and . 141,543 -

(A) and C{> (u e.r.lu*) = e 1

uer.lu*é,iGN 3 i
noilgh Sy

nedsnen R
Consequently ReDM (Y) n>1 and this implies

R. = R b 0.BD.

1+ 2.COROLLARY:

C.R be two continuous nests such that L°°

{i)-: Let LT’LZ . 1

and L," are Cartan subalgebras in R. Then there is an

2
i [¢ = ) i =
automorphism £ € Buk B such that ¢ (L1) L,
(ii) If LCR 4is a continuous nest such that I°° is a

Cartan subalgebra, then there is an increasing sequence of

n

matrix subalgebras M ©R with matrix units (e,l) , ei?@.GNR(A)

i
UJ —M;w =P , satisfying in addition
n
- n %n
o 84y €L for every gl and  Tgwie?
i=1

(11i) If LCR is a continuous nest such that IL°° is a Cartan
subalgebra and if Mc R denotes the corresponding nest-
éubalgebra, then there is an increasing sequence of matrix

nest algebras Tn with matrix units (ei?) such that

'S



I : ‘;.1-::, n k
e T L Bornpl lered
33 3 il ™ s
i=1
n 5 e W
(o \ A & - =
eij e GNR(A) and U 9 M
. n
(in) - onf LT,LZCLR are continuous nests such that L%’ and
L;‘ are Cartan subalgebras and if MT and M, are their
corresponding nest-subalgebras ,then there is ¢ € Aut R
chat P (1 =
such that ?(A1) M,

Proof: (i) Suppose first that L;’zL;‘z A R A Cartan

subalgebra. Then for every vp€5L1 there is' a unigue qégLZ

such that B (p) = B(l(gq) . Define iy :ij% L2 by
%J(p) =4 <~ 'Then ¥ uniquely extends to a ¢ —~presorving

automorphism of A , hence there is 4 & Aut R Sdtisrying
1) = L2 - The general case reduces to the above one

by the Connes-Feldman-Weiss theorem.

(ii) Let (Nn)n>1 be an increasing sequence of matrix algebras
o ; 2

with matrix units (e.n) z e, & A and’ kj N Y = R
159 ii n
n
i
. ; |xh n
Then the nest LO generated by the projections 23 ey
Ji=4]
kn
e e R 2Li2 is continuous and Lb’= A
T £ L? € Aut R 13 sveh that &?(LO) 6Ty then
Mn = (P (Nn) .satisfies the required conditions.

(1ii) Let Mo be the matrix algebras from (ii) and let Tn

be the upper triangular part of Mn.

If a€é€M then EM (a) ¢ Tn . Indeed, for every projection
‘ N ;

r
-y

fo= }u ei§ qge Ln e we have
b=

(I=g) B fa) ei=F ldT=aiag) =0 5 s

M
n



Since so~1lim 'EWI (a) = a , our assertion is proved.
n “n
i 1 ey \ P .
(iv) Let Mn and ﬂn be two increasing sequences of
matrix algebras with matrix units (ei?) and (fi?)
satisfying
‘ r o B
e n N It n
214 eii = IW . L fii [ L2 and
i=1 i=1
1 2 T : 4
U Moo= U My =R . Let <0 e Aut R be such that
n n .
p (M1) = M2 hence 6{ (TT) = 2 so that ({)(M ) = M
e e n i e N

2. AUTOMORPHISMS AND DERIVATIONS

2.7. PROPOSITION: Let N be a type II factor and LeN

1
be a continuous nest which generates a maximal abelian
*-subalgebra ACN. If M denotes the nest-subalgebra of N

Corresponding to L, then for every operator X -dm N

inf { ﬂx~3\1ﬁ y ;\éc} 5{% 7/2 S.up{ f;\xa-—ax s agM, ;jaggg}

Proof: Let #- denote an invariant mean on the (abelian)

unitary group U{A) . TIf . y = S u*xu d}kgu)
U (A)

then ve 28 =2 . For every unitary operator ug U(A)
and for every a€M , uau*eM and

Il [u*xu , a]i{ = li[x , uau*]%} ;

Since y belongs:to the ultraweakly closed convex hull

of the set { urxy . ; ué&U(A)} it follows that
iiad(y)lmfiéllad(x)IM H - We prove now that for every vygaA
inf%l!y—)IllE < 572 || ad(y){M “ . Denote by ¥ the trace

Of N, TN =1



If we decompose N - after the unique projection pe&lL

with & -(p)=_1/2 then N is isomorphic to the algebra of
24X 2 matrices over a factor NO with a maﬁ:imal abelian
*~subalgebra AO and A is isomorphic to AO @ AO .

Moreover, the image of M contains
N @)(O 7 Clearly yv=y. ®@y vy.€ A ‘
0 o e 1 g .ot e g

By hypothesis, if s= ﬁ ad(y)-!_,4 Il then

§{y1 X foi 6 I/o.u‘&f’y1 i
;& 0 yz) GG \ 0 o, 0

for every unitary operator ué NO o« It followsithat

T e uyzgfé s , hence §§y1~y2§gé s and || oy uy‘zu*ﬁ{; s
hence there is ?‘1 € C such that I Yy~ ;\11 E} L

Similarly |E P g B 5 for some A, € C .
Consequently | \ =k léﬁ :"111-«'3;1 I+ yi=v, || + I ¥~ A 21‘{§ {3s
and || v, @y, - Q+rd /2@ (A+A,0/21ll ¢ 5/2 s
which proves our claim. It follows that

inf{ﬂy—%l’i{ ,?\ec} & 5/2 || aad x)! H

éM

Since ”x = yﬁ 4 u [ H ( IM! we conclude that

inf {[gx«}\zﬁ A€ c} £ 2 ad(x){M i Q.E.D.



T ’}O —

2.2.PROPOSTTION: Let R,L,A and M denote the hyperfinite
type ]CI,1 factor, a continuous nest in R , a Cartan subalgebra
in R and the nest-subalgebra of R

§ ; i
M o= % XER '; (I-pixp = 0 AN) pe’gL} respectively.

Suppose moreover thakt . I "= KA. If Qg € Aut M is a
ultraweakly continuous automorphism of M such that Hid_ ';g“é; <1
and D (%) = x (V) xean then there is an invertible

e 1

operator a€A satisfying QI-C? () = xa (YY) xeM

and || 1-ali¢]l ia- il

Proof: Let O=p0}g,p1é <pn=I be projections in L

~—

such -that T (piﬁ‘“Pj) = 1/n (N D ig n-1

and decompose R after this partition of the unity in A.
Then “R-is isomorphic to R& B(Cn) (the nxn matrices over R)

and A is isomorphic to A®AD...2A (n times).

Consider now the finite dimensional nest algebra Tn with

. : n; n i
matrix units (eij) where e . = 0 for - 4>9 and
o |
n n . : . n : .
e = TQ uij i 147 where uij are the matrix units
1]

in B(Cn). We prove that there is an invertible operater

a€ A such that é? {x) = a—1xa (%) el

Por arbitrary 1< iLjgn ol
If we identify Aqi and qu with A then for every a,bel.

one has Q?(a):a 4 Q{)(b)zb and ({)(ei?) =y qquj

Moreover, for every XxX¢€ qquj oM one has C.{) (ax)=a ({Nx)

and (—f’ (xb)zﬂiﬁ’(x)b hence a (e,

Ple,s) =¢p 9y e AR R

1]

. . . - r} n - o n
and this implies Qf (eij) 2o € A .



4 o n . n
i : L (e T A P P -4 = o
Define Ef(om) Ly i E (e1n) an_1
Clearly {|I-a ll¢]lia-¢pli< 1 hence the operator
a=186 a; ®...9 a _q1 €& A is invertible and a routine
computation shows that P (x)= a lzxa (¥ ) e

(see for example ({81} II 5 corollary)

We have therefore obtained a sequence (a )

n) s of invertible

operators in A satisfying {il~anﬁééiid~q4€( 1

and (P(x) e (V) x€T , and, as one can easily see

W (x) = a_ 'xa (V) x¢T ~ and m2n

Let now (nk)k>1 be an increasing sequence such that
@ :

Lo =l € A2 4aaay e o limea e s
k B o
o R

%

ultraweakly. Then WI-all¢{lia-¢ll < 1 so that

a is invertible and for every X & T % and 12k
k
2
a n, (g(x) = X a n s a&?(x) = Xa (Ml 2z ® n,
2 2 2
But (P is ultraweakly continuous, hence a C?(x} = xa
s 7
(V) xem , P(x) =a 'xa (V) xen O E D

2.3, THEOREM: With the notation in Proposition 2.2 , for
every ultraweakly continuous automorphism QP & Aut M
such that  {{id-¢li¢ 1/21 , there exists an invertible
operator x&M such that YI-x]l < 15[fid—%>u

and (?(z) = xzx"1 (YY) z& M.



Proof: Define y = g Pluju* 4 gv&.(u.)
5 §
U (A}
Then [ T-yli¢ll de"?? hence y is invertible and the
automorphism WV e Aut M Wix) = y»1 {“'R'G (x)y satisfies
Y (x) = x (¥ xeA .  Moreover, if [lid- il =t
then [I-vilg t i “1% 2 ('I""'t‘)—‘1 Hyll &
] -yl & i | Wy M - ' Iyl & Tt
ol i . = ‘«
| I~y e f"y (I‘—-y)f," & Sull=t) : a}ud for every aé&M
s =1 e i =1
HTe@-allglly (P@-ayll + | v ay-ayl| + || ay-all €
i 2 a v t &
& B3ere ) (T=t) ! ihall and since e &1/ 2] we obtain
fig-@ll ' 16/5 || ia- ¢ {0 Binee () leaves A elementwise
fixed, there is an invertible operator ué€ A Sl =1
such that Y (x) = s (V) xeM .
Now, for ae€eM , |lua-aull ¢ i%ul’g-iia«uam—1 i hence
I ad(u)g w g lia-Pll < 16/5 | 1a-ll

Choose, by Prop.\z.? A €C such that

fu=Xzll € 5/2 | ad(U)iMﬁ < 8 |l ldwﬂif%g It follews that

Lk so-ge s 132207 and X ezl X b X £l € 13t ¢
If we define x = ?quu then x&M and

Dr-cl g lv- XTwll +llv-1ll € +6)13t + £ =(13t+14) £ ¢ 15¢
and P (z) = xzx" | (V) zemM Q.E.D.

REMARK : Following the terminology of ([1]) , M has the

(1/21, 15)- Automorphism Implementation Property.

2.4.COROLLARY: With the notation in Proposition 2.2,
for every ultraweakly continuous derivation é\ :M=p M there

is an operator - aeM . such that Sx)= ax-xa (Y) xeM .

In cohomological terms, ijv (M,M) = 0

Proof: It follows from Theorem 2.3 and from Theorem 3.2 in ([1])
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DISTANCE ESTIMATES FOR TENSOR PRODUCTS OF NEST ALGEBRAS

Let H be a lilbert space with orthonormal

basis (e )

; and let r denote the
nng i L te the

orthogonal projection on the Hilbert subspace
generated by { ei;o,.,en}. .. Then
L : PR
A.x & € BIH); (I-p Jxp =0 ., (¥ )nx1 j ESothe
L n'
nest algebra associated to the family (pn)n\1
We prove that the algebra A@A ¢ B(H@H) is

hyperreflexive and its distance constant satisfies

Kl BB )Li3

INTRODUCTION

The purpose of this ?aper is to proviﬂe é solution to a problem
of W.B.Arvcson’concerning hyperreflcxivity of tensor products
of nest algebras (f3]). Let us first recall some basic facts.:

A nest is a totally Qrdered strongly closed family L of
selfadjoint projections ©on- a Hilbert space- H, containing' O and T«
The nest algebra associated to L is

Alg L = {VXEEB(H) ; (I-p)xp =0 (YY) p¢€ L}
In [2:} W.B.Arveéon proved the remarkable result that for every

operator a¢& B(H) the distance to Alg L is given by the formula
dist ( a, Alg L )} = sup ”(I*p)dpu
\ P&l

( See also [ 15] and [21]  for différent.prgofs )



i
&2
i

The operator algebra - Ac B(H) 1is said to be hyperreflexive
if there is a positive number K3 1 such that

dlet l a, A& K sup I (z-p)apll; pe Lat A,}

where Lat A = { p=p

[
o
[y

E
G
—
e
-
—
—
H
§
20
e

&)
et

C

i

(G

—
el
—
~—
s3]
0
)

yThe smallest constant K satisfying the above condition, denoted
by K(A)\,is called the distance constant of A. Hyperreflexivity is
a powerful tool of investigation for perturbation problems,
automorphisms, similaritiég and derivations. (See f?],£4EFESJF[7},
C10], {13, (14, [16), {171, (19] . [20],[22],[23]) for more details

about these topics .)

Algebras of type Alg L for some commutative strongly closed
lattice of projections L containing 0 and I are called
CslL~algebrag. Tt is worth mentionning that Lat Alg L = L i#

L is commutative ([3],(6]). Every nest algébra is a CSL-algebra
but the latter class is considerably larger. It also contains
nonhyperreflexive algebras ([9j)“ |

A natural example of CSL—algebra is the tensor product of

two nest algebras. Are thesc algebras hyperreflexive ? This

question is originally duceto Arveson ([3}) and it is also
presented in K.Davidson”s book K[B] ,chapter 25, prcblem 4 ). .

o -

Tn what follows we give a positive answer in the simplest

case of the pfoblem. Namely, if H is a Hilbert space with

)n}1 and if Pn denotes the projection

on the subépace generated by { e1,...,en} then, for L:(pn)n;TU{

orthonormal basis (en

0,1}

consider the nest algebra A = Alg L .



N

Define AGA C,B(HQDH} te be the ultraweak closure of the

algebra generated by the operators a@b , a¢h, be A

If LI denotes the (commutative) strongly closed lattice
generated by the projections pm@;pn {m,nzx0 , pOxO-), then

AGA = Alg L @Alg L = Alg(l, ©® L) as one can easily verify.
Our main result is that X( A®A ) £ 3  (Th.2.1)

The proof relies on the idea of relative hyperreflexivity.

The algebra A@A is found»to be hyperreflexive with respect

to the algebra of upper triangular operators on H® H , and since

this one has the distance constant egual to 1 , AG&Ab will be

itself hyperreflexive. A standard argument reduces the problem

i
$od
i

matrix algebra case '(Lemme

£0

r-'
8}

1.4), where things are more
tractable.

In particular, Proposition 1.2 implies ihatvevery nest~subal-
gebra of a hyperreflexive von Neumann algebra is hyperreflexive.

see [113 and [12] for more information on these algebras).
This extends a result of F.Gilfeather and D‘R~Larson“(€121)

It is therefore our feeling that relative hyperx eflexivity

which we introduce below might become a successful instrument

for further investigation.

1. RELATIVE HYPERREFLEXIVITY

1.1 DEFINITION: Let ACBCB(H) be two.operator algebras.

Then A is said to be hyperreflexive with respect to B if | -

there is K321 such that

~

dist( b, A) & K sup {IKI—p)pr " pezLat<A}
for every operator ]Jéli |

The smallest K satisfying the above inequality, denoted by

'S

KB(A), iS‘called‘tho relative distance constant of A with

respectite, By




=
wt

1.2 PROPOSTITION: Let. ACRCB((I} be two operator algebras. . i
If B is hyperreflexive and if A is hyperreflexive with E

respect to B , then A is hyperreflexive and

K(A) € R(B}) + K_(A) + K{B}KR(A)

B

Proof: TFor given x in B(H) and & 3» 0 choose b, in B

such that §§X~b0ﬂ & dist(x,B) +§ .Then for every ac¢Ah
4

My o =1 I i ol Ry

fx - all £ {Ix lDO‘i + |l b, a hence

B

S

IHI*p)xpﬁ pé&LatB}5+ KP(A) sup-{}“l»p)bopﬁ; p & Lat A} 5

»

i~
o
@
0
5
ey

Since . Lat B . Lat A it follows that s

.,

dist (x,A) £ K(B) Sup{{ﬁzap)xpli; D @Iﬁﬁj&} +

%'KB(A)\sug {fﬂiép)xpﬁ; p & Lat A} + £ < 5
& ( K(B) + K (R) ) sup { fx-pyspfl ; p@Lat‘A} + Ky (B) Il by—x i+ & &

( K(B) *+ Ky(a) ) sup éL Ni-p)xpll ; p€ 1ot A} + K (A)dist (x,B) +

+E (1 4 KB'(A)) { ( }((2) + Ky (A)) sup {)i(pp)xpﬂ : pGVLat A} + .

+ K‘Ié(]?)K(B) sup {U(I—-p)xp“ z p‘GLat 'B} + & (1 + JK\E;(A)) &

v

n(A)) sup {N(:r.—'»p)xp}j ; p€lLat A}

& UR(B) + Ky(B) + K(B)X
(A)) . . Since £ 0 was arbitrary, it follows that:

& KAB) +'KB(A) % I’\(B)I;(B(A)‘

N

K (A)

which concludes the proof.
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1.3 COROLLARY: Let MF B(il} Dbe a hyperrellexive von Neumann
algebra and let ACM be a nest-subalgebra{ i.e. A=MAOAlg L

for some nest LCM). Thén A is hyperreflexive and
K(A) & 2K(M) + 1
Proof: It follows from fl“n that XK, (A) = 1 hence

K(A) & 2K (M) +1

hFWth, This result was obtained by F.Gilfeather and D.R.Larson

3

'

for M injective ([127).

o

We conclude this paragraph with a technical lemma.

1.4 LEMMA: Let R B(H) be a CSL-algebra and let (p )n>1

=4

be an increasing sequence of projections in Lat A converging

strongly to the identity. If A _=p Ap -~ . B{p H and if
g5ly to ) tity. I An pnA;n Q,J(pnj) and if
K(A_ ) £ K then K(A) £ K =

n

REMARK: For, every CSL-algebra A , Lat Ae¢ A. Indeed, for any

pP,q9 € Lat A (I~g)pg =0 . It follows that p ¢ Alg Lat A =A
Proof of 1.4 : For given x&DB(l) and &£ > 0 choose an & An
s -hat | - I /A e > - . l]" i I =T 4
oU?h hat ]éxn dnﬁ & dist( X An) + £ ; wﬁelo X TP XPL -
Since a is bounded let (n,) be an increasin
(Cn)n;1 - " ( k' k21 = >1ng
scquence such that the ultra aweak limit lim a, =a exists.
k i

Clearly aé&A éince pne A and lim X, = X ultraweakly.
: n

Since the norm is ultraweakly lower semicontinuous, there is kO

such that = - all £ {Xn'“_én H_ +E & dist( X A ) o+ 28
k | : Kk k
for k 2 koo Cbnsequently dist(x,A) & 2€& +

4+ KB ) Sup{’H(I“p)xﬁ

pll; pELat A } e
nk W nk ]

k



o4

o pll 7 pe& Lat A } £

¢ 26 + Ksupd (I-p)p, xp
’ k k k

L 28 % R sup { H(z-p)zpll + peLat A}

Since £ » 0 was arbitrary, the lemma is proved.

2.THE MAIN RESULT

2.1 THEOREM: Let H be a Hilbert space with orthonormal

basis (e )

n’ ny1 and let p, denote the projection on the

Hilbert subspace generated by { e1,...,en} . If L= (p n)n>1h150 I}

and A = Alg L then A®A = Alg (L@L) is ﬁyperreflexive
and K(AG@R) £ 3 - '

pProofi. et A be the algebra of all upper triangular

n¥x n matrices, that is; An is the nest algebra in B(C )

associated to the nest Ln={'0=pog p1§ * s QF&fI }

where pj 'is the projection on the sﬁbspace generated by the
first i vectors of the canonical basis in c”
By taking into .account Lemma ‘1.4 , it 1is enough to prove

that K(]\nEDAn) £3 (M) n3 2 : Since K(An) =1 (YY) nx2

this will be a consequence of Proposition 1.2 provided

E - - S
that KA Z(AnGDAn)_ 1 for every nj 2.
n

We prove a stronger result, namely that K (A @A )=1
A n, n, :

n1n2

(YY) n1,n2;.2 . We proceed by 1nductlon. The case n=d kB

_ trivially satisfied, as one can 1ly check.
Suppose that K A (An @)An ) =1 for every n1,n2g n
. n.n 1 2
e
.We prove that KA (An & B, ) = 1 for every Ni.h, & ntl

n1n2 1 2



We illustrate the ideas only for

having identical proofs.’

1

n,=n,=nt]l

, the other cases

so, we are concerned with the infimum of the norm of the

opera?or matrix [jBijz 161, g¢n+

_ i
Biy= (X330 g 14ken+1
1543
21" %2
i i3
a X
N 21 %32
ij
i3
| %n+1,1
bz

The problem clearly

where
1)
i 49
- T2,
Aij =
a L)
n#l 5
13

Denote by T

and 0 instead of x

have the form

briefly denoted by p=(pk 1Py e Py
1 2 “n

k.2k, 2.

12 2 K¥n412

o e a

ij
ik
S

and

i3
X1,n

e o o

iJ
X2,n

ij
n+1,n

where

i3
X1 '1‘1“1
i3

X2,n+1

. i3
nt+1,n+1

/

= Orafer 457

13 ’

for 24 9

reduces to the operator matrix [Aij]

7

5
e i % J
2,n
ij
oo e ML
n+l,n

the operator in B(C

®p
1 ko

— i 1 = < i
A 20 fox AP ] Aii" (hlk)zglskgn

2

(n+1)

All projections in

®» .. ©p
kn+

with

+1

and

for 137
e ij
entries alk

Ln+16)Ln+1

A pki 6 Ln_{’] 14

where

and ki: dim pki ( Og;kié n+1)

In order to prove that the infimum of the norm of [-Aij} '

that is Aist(T, A @A .q4) -«

is less or equal to

F F ] b o I H . -~ % - G L} -~ ,_S". -~
mah.fh(l BT 1 PE Ln+1CHLn+1}’ , we will recursively

l

elliminate one row after the other from every row, blogk-matrix

[ Aij] 1&g ]




No}

Wwe first elliminate the first row from the first

row block-matrix. parrott’s theorem ({18],[21]) implies that

)y - ds wimum

(T

dist( Tr AL @ Bpyg less or equal to the ma

= o lle [ § A = 1 b-,,‘
between Q(l q)TqI! where g (p1, ,,pq) & Ln+1CDLn+1

and the norm of the opordtor obtained after elliminating

R 12"“"A1,n+1]

llMlDatﬁd the first

the first row of the row block-matrix

and so on. Suppose that we have el

n~k-1 ~rows from every row block-matrix and the (n-k)-th

row from the first 1 row block-matrices [pxllr<1<n+! {lgxgl) =

For the ellimination of the (n-k)-th row from the

, Parrott’s theorem

row block—ma?rlx [A1+1,i1 1+1¢ign+1

asserts that the distance from T to An+1@)An+1 is this time

less or equal to the maximum between the norm of the operator

row

obtained after elliminating the above (n-k)-th and the
infimum of the norm of the operator
> “
*. & f a ~
11 12 11 1,1+1 ... A1,n+1
o & n
Rog =reB2,1 :
A B . o~ o~ o~
= 0 A S+ A PR -
0 ¢ o B m,_l,.iilm_wij‘f ‘
’ o N
Al+1,l+| l+1 n+1
0 .
~S
0 & -0 An+1,nf1
- ¥
e~y
where Aij are obtained from Aij in the following way =




v

éij ij

ig A.. without its first n-k rows

For 1¢i¢1 and J3 1+ R By without its first

ij
n-k rows and without its jast Tk columns.

T
For 1+1¢ig j¢ n+l Aij is Aij without its f£irst

n-k-1 rows and without its last' k columns.

gince only the block A is variable, the infimum of the
norm of A is seen to be related to the distance formula for
{~1@}Al g

Ak~1G2Al is, by the induction assumption,

the algebra A]
to the algebra
less or equal to the maximum of the numbers N(x-q)sall
,'qG&Lku1@>Ll progm 4o

A feeerd ) ’ ql’l € Lk_u]

n n n .
2 1 i

1

4

and  k=12n,zn,% ... 2N then the infimum of [ ll

P B ity L7

"is less or equal to the maximun of the numbers \HIMq)TqH,

R

where g ¥ «+rPh-k+1+n

( pn~k+1+n1’ pn~k+1+n2'° 1

Tt follows that the infimumn of the norm of the block-matrix
A B

is less or equal to the maximun of the numbers
0 ¢C ' '

l(1-g)Tqll ,where q =

A%

since the distance from an operator S

(/pn—k+1+n1"7"pn_k+1+nl’pn~k""’pn—k

-4

Nre—

n=1+1

and clearly g helongs to Ln+139L which concludes the

n+1 !

proof. We have therefore shown Dby induction that for every

ny 2 dist ( T, AngyAnYé_.sup{B”(I—p)Tp]} ;o pejLn@3Ln"}
and this implies' that KA , (ADQBAD) = 4 Q.E.D.

n

)
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