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ASYMPTOTIC EXPANSIONS FOR

SIKGULAR VALUES ASSOCIATED TO SINGULARLY

PERTURBED CONTROL SYSTEMS

by Vasile Drigan and Aiistide Halanay

e
%

At ds proved'that for a singuiarly pertufbed éontrol ‘

~ system the singular values are asymptotically close to the
. ones associated to the reduced model and to the ones assoclated
to the "boundary laysr system " (the fast system ). a7 :

» ,1' Introduction

 Conéider a sihgularly perturbed c&htfoi éyétem‘
| xi':All(t)x1+A12(t)x2 +By ()u(t) v
%3 =A21(‘3.)"1 gy (£)%4Bp(E)u(t) e (1) -

Y(£)=Cq ()% (£)4C,(£)%,(t) | »

Assumg that A22(t) is invertidnle for ail t';Thﬂr'it is
well known that to the given system (1) we may associate
the reduced model

xi =Zkt)x1 +§?t)u A § |
y(£)=C(t)xy +D(t)u | i)
CR(6)=Ag; (8)=A o (£IA55(8) A5 (1) oS
B(8)=By (£)-A p()A55(1)35(%)
T(t)=C1 (£)=Co(E)ASH(E) Ay (E)
B(t)=-Co(t)A55(£)B, (%) |
and the"boundary layer" or “fast" system o EE
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xésAQQ(t)x2+B2(t)u :
y5lto=C 000, , o
It is also known that many problems in'oontrsllinv (15‘ srs'

solved by considering the lower order systems (2) and (3) &

In the last, years several, questions related to model reduca";

tion and robustnecs have been considered in connection with

the so called " singular values " bh,bhokonshi, et al. (1983)
<t el

E.VerriestY(1983) . It seems to be a natural question to

ask what is the relation between singular values associated

to (1) and singular values associated to (2) and (3)

The main result of this paper (Theoren 3) shows thot the
set of singular values for (1) splits into ~two parts, one ‘:"
of which is close to the set ofAsingular valuss for (2) and
the other close to the set of singular values for (2). s
We prove our results in the case of variable coeffioiests._
the usua;, stationary case will result as a special one.,
Takinz into account the role singular'values'play in model
reduction and robustness our result may be interpreted’that;
~say, roBustness of stabilization by compensation for {1) is
limited by the worst of the robustness margins for (éj or
(3) .(See Glover -13986 ). | ‘ ,

To obtain our result we had to considér asymptotic exbansiohs

fot the bounded on R solutions for Liapunov equations assbci—l

ated to a system of the form (1) ; these results may bde of intewe -

res® in themselves .

2. lLiapunov equations and singular yelnss o '1 fﬁijs}“‘v

LetA‘;Rm-}lL B: R —s M ce R-—-—-—adu.

nx.n’ nxm? p Xn

( vkk.j x k is as usually the set of matrices with j rows and

S ———




k columns‘). We shall assume.these functions to be'continuous? :

and bounded.

Denote by X, the evolution pperator associated to A"
FE Fallan)= A“‘)XA(t R e e
& XA(S s)=1

The evolution defined by A is exponentially staﬂe lf there
 existe P>0 ,%x>0 such that , e
\XA(t,s)‘ < Yﬁe - A(t=-5) Sty st  <~>¢:  
sl b e L Rt e T e exi;t ; @}ro 7 }x>vo
such that ' , i
\xA(t s)| < 'Be ‘*Qéfé) \ﬁm,<-t g's <.o~ H
Taking into account that XA(t S.)= X A&(S t) it is seen that
A defines an antistable evolution &f and only if -A" defines
‘an exponentially stable evolution. . ;
If A defines an exponeﬂtially stable evolution we define
the matxix_galued functions P Q by
P(t)= & X, (t,8)B(s)B (s) X (t s )ds

~'$0

Qlt)= & (s e (s)C(s)Xa(s t)ds :
t
In the same way if A deffines an antistable evolution

o 22

p(t)= | x,0¢,508(s)8 (s) Ty(t,8) ds
t

Q(t)z X?XA(g,t)c (s)C(s)XA(s t)ds=

It is well known that 1if (A B,C)  is *uniform® that is x s
 (A,3) uwniformly completely controﬂbble ‘and (C A) uniformly .

: 'ﬂompletely observable, then P(t)2k I Q(t)>—k T 0'37

It is also lmown that if A defines an antiotable evolution wf,,%
Pl e e T e stabilizingo |




=4

It is 2l1so known that the eigenvalues of'the'matrix   -

P(t)Q(t) are invarignt with respect to Liapunov transformations

and define the singular values of the system.

The.métrices P, Q defined above are solutions to Liapunov equ-":

ations g e : F ‘:l i ':‘:f;“ -
P/=ACtIP+PAR(E)4B(E)BH(E) i (4)','

, Qf ~AT(£)Q-QA()-C(£)C(t) T (5)

in the stable case and to _"' e
PY=A(H)PPAN(E)-B(0)BN(t) e
S ISR T e T

in the antistable case.

P, Q defibhed above aré the unique 'sbiutiohs ofléhé'éérfésﬁdn;

ding equations bounded on all of IR and éf_A,B,C are constant

they are solutions to the correpponding algeﬁ%Kc Liapunov sgua-
tions, ' 2 : |

Our result will be based on asymptotic expansions fof Sblutions

of Liapunov equations associated to (1) .

3. Asymptotiec expansions for solutions of Liapuanov

eqmeations associated to singularly perturbed systems

Since we want to consider mainly the antistable case we need a ye:

result of Grad¥tein-zlimu¥ev-Xrasovskil type for antistable

singularly perturbed systems.

¢

Lemma'l;‘Consider the system (1)”and éSsume AiiszQQQLQQ;gn
are bounded and uniformly continuous on R o e

- Assume that Z in (2) defines an antistabie'eyolution and.
assume alsé that there exists o > b such that for aii'féim

. the real parts of all eigenvalues of Ayn(t) exceed Dot

S BT

e TR




e ‘

Then there exists €>0 such that for all Qeilmh
the evolution associated to (1) 1is antistable,

':Moreover if X(e,, €) is the evolution matrix‘assbciated'to'

(L) and Xij a corresponding partition then

' - (3~ £') & Seiind o
\Xi,i“'s’f)lic U
- Lt B
: ‘Xl’g(tssy €.>‘$SC e (0 ? T
| ot o—el( A=)/ L h-t) J
_\Xz,zft's’ e)|Se [e v hEe s
for —ww<¢t €5 < 2 and X, € are constants not depending
wpon s,t, 5. |
“rA o .
it A:(L 1l ; 12> we have
oy < A9
; o Loy BT e
A e G _ i and the system defined by -A
=z T2, - R

is
/. ~ 2
w ==y (t)wy - T A% (twy
/ + ya
W2 =-App(tiwy - LA (t)w,

If we set 215Wy)  y25= 4€ W, we obtain

2 —Afi(t)zl - Agl(t)z2

~Ayp ()29 =855 (1)z,

System (8) will satisfy conditions for a theorsm of Grad§tein-

08)
£2

it

’
1
/
2

Klim&gev-Krasovski(fype ; for eigenvalues of -ASZ(t)' the .
real parts will be 1less than -Z'd < -0 For all teﬂR and ﬂhe

& corresponding reduced model 1s ok (t)z and defines an

Zl =
axponentially stable evolution . :
~ We deduce the exponentially stable evolution for (8) (bee for

example theorem 1.2 inV.Drigan ,A Halanay 1983 P




G
Moreover if

.(ﬂll(t’s, €») rlz(t’stf:),
.,\/I(t)sv % )=

rgl(tysr‘é) : rgé(t:ss £o) .

is the evolution operator associated to (8) we have.the estina-

tes (see V.Drigan,A.Halanay 1983 ) | ¥ “. i;ﬂ 
i1 ' —ol (£-4) eoR e
\Vil(t,S,E,)\sc e e : :
_ A l-3) i
l(&z(t S i)l<<g c e : e  (9)
Dl ool (1) -
l Pzz(t,s,a)[sc(e + e =)
s¢°<5§t<w. _/\ : ; ~
A 2 Z ' >
(s, € ) (tys,8)
If P(t,8,£)= /‘:‘11 LA ‘,‘12 9 e
o r‘gl(t’svﬁ) ' _ ng(t S;i)
is the evolution matrix associated to -A we shall have
\ 5
Pu: r'11 ’ P12 E,Fl2 ) | i \ 23 ’Y\zz rzz
= : —- X (-4
\Y’l,i (t,s,i)lgc e )
_oel(6-4)

,\ .
\rél(t,s,i)\ﬁzse

N
| Poolt,s,8)) <c(e |
The estimates in the statement follow now from
A
K
Xll(tvssa =P11<5;t’5)
N

Zyo(tys,5)= p;l(s Yok )

X21(t S,5)= {112(5 Ban )

Xyn(t,s a)-féz(s t,2) i
Consider now equation (6) correoponding to system (1) 3
s et L P i e
. ' ) 2e ’22 . o

P12 Pyo e

T~

~A D g
ol /¢ +£eou{4))

equations . , :
b 4 " ; #® ~ e prtaine iy

A , % ok
€ Pyp= € Ay (£)Py+A) 5(t )922"1’11“\2*1("* )+Py 5 A55 (1 )=3y (£)B,(%)

]

e



« =

ep g BIR e B At eryun oy » ' i A (t)"B (’t)B'%(If)
€ Pog= €Ay ()P g+ € PIoAT) (£)+An, (8)P 0 4Pp, AN (1)A 213,
Under the assumptations of Lcmma 1. . this system has &. unique _
bounded on R solution .Je are lookinb for the asympto+ic structuy
. 0f this solution ., Let P be the un&que{ bounded oniR solutlon .;
o , . 3 : ,
g .»v:‘ ~ A ok . =l e .-
PLA(L)P+PA(t)-B(t)B (t) et (10)
“Let P22 be the unique bounded on R.so]ution for:
EPgy= A:zz(“Pzz*PzzA:zz(“ ~By(£)B,(t) ,
Under the assumptions of Lemma 1 we shall have :
..f:((d -t/
\ A2 (s Gy &)l
e (see V.Drdgan,A, Halanay 1983 ).
~ Deunote Lo(t,s,8)=X iA (t Siy £:)° 3 then ; ' '

Lr(t,s, £ )=X Sgty €£)
2(” _léA22(’!
hence ~w (At
X2(t,e,£)\s§e

-0 < £ A < oo |

¥e have also
A22<t)(t'”5 )é&. ~n
Xo(tys, €)= e . +X(t,5,5)
A Ar () (-t)/ s
X(t,s, )= %E S e [:AQQCC)‘AQQ(tiB XQ}Eﬁnh)db
A

and since e
Pss(t, 2):-2: Xz(t,s,EJBQ(S)BQ(S)X2<t,s,&) ds
t 2

we may write

= 1
T e

A S _ : B<~'
e tX(t,s,i)BQ(S) o(s)e

= AL () (&5 Cx A BE-V[e
S e " /£B2(S)B2(s)e Lo

NOSERTR i i

+

L e
t
b A

Xth.s, S)Bz(b)B (s?X (t Sy &)ds b
L

BZ(S)B2(S)X(1§ Se E_) ds + : S

A
i
we have next




.

Azz ('E)(("« Alle « Aqy (O (t-3)/¢
2(s)B2(s)e ; o ds =

Ass (1) < e
5 S i Bg<t>B§<t>eA“ elg -+

4+

L 29 2 Ann (‘C)(Q‘A)/i x
"<-‘J X

(B2(s)B2(s) Bz(t)BQ(t)~)e

;o
If we denote

& ol C{Z)Z A : A;L(é)z
S Bz(t)Bz(t)e : AR )

o i

R(t)=
we see that i
X <
A22(t)R(t)+R(t)A22(t);B2(t)B2(t) o
If we assume that 82 is uniformly continuous on R we

have the estimate

(0 A B | e ’k)[{_
T \2 2 (S)Bg(s) Bz(t)B2(t))e s \
A"“‘)({ Vi t‘ Danlkeagle -~ o

ég (82(8)32(5) Bg(t)Bg(t)> 6(?[+

—i

~
NE
o~

ol
c((a(&s.)—&-e /V‘)

\

By using the exp¥rssion for X we deduce

v -
\ia% X(t,9, £ )By(s)By(s)e ki o | S
t el ¥ : :
‘S% lxe@‘{(’tﬁ)/a S e;((t\(d)/& \ Azz(t)"’A?2<7:>\ dcds + :
o =

co e . A / : » dex
¢ " ey \e"‘“"“/@—\%m-%(mdzdss
3 _ ~ ‘

‘(}’f\l <
~ oAy
sm(uub)+e _&) ‘
p 5 A22 is uniformly continuous on R .

. We estimate in the same way

- e Aut{)({‘ 53/& :
A

N




=g

";X Xt s, )132(s)B2(s)’X J(t Sy ) ds\
£

. - df :
$ PlwlR) +e I ) with 1im (C)

Q-‘)o

0 ;
In thié way we proved - . |
Lemma 2. Under the assumpatations of lemma i and aésum@ing % :
that A,,,B, are uniformly continuous on R ,there exists 6g; g i
such that for ¢t & (o, €s) »' the equation ;
€ P -A22(t)P+PA22(t) Bz(t)Bz(t) '
has a unique bounded on R solution P22 sueh that :
Pzggt,g)=3(t;+g(t,s.>  , [ 8t,ex) s G(e) 132.; &(c) =0
for all t&R. ' | S
Let now’iiz .be the unique bounded on IR solution for the
linear equatidn : ey Sy ot

2P12-P12A22(t)+A12(t)P22(t £)+P11(t)A21(t) -B (t)BQ(t)
‘where B, Py; 1s a given boundex on R funection . ' .
Lemma 3. Under the assumptations of Lemma 1 gnd B1 5 82
uniformly continuous and bounded on R , there exists
1207 0 sﬁch‘that for €¢(¢ %) thefsolution 5%2 has the
asymptotic structuré
Bt 0= [By (B8 H (4IRCH- Pn(tmgl(t)}( ey

jlg(t €) :
w0 s o e Lim § ()=0
The proof proceeds by the usual t@chniques. iﬁ singular per- .
turbations (V. Dr*gén yA.Halanay 1983 ). S
We look now at the equation for Pll and replane 40 it P12 by
the principal part in P12 ; we deduce :



d0-

P{ )=y (6)Pyy +B 1 Ay (£)+) 2(““ Bi(8)B3(8)-hyp(R(1)-
-Pll(t)Agl(tﬂ gt ) | B (£)B5(4)-4) (£ )R(E)- :
"Pll(t)“'zl(tﬂ [ ] 12(“ By (4)B3(%) i
and if we take Pll—Pn, = = .
By (631 Ay (0)-Ap(0) | agp0)]" A21(t)3 P11<t)*P11(t){A 1(““
~A1p(8) [ Ay (9)) 1”‘21(“} < (” B (£)-B5(t) [A A e (t}J
+A12(t)IA22(t)]'1B2(t)B (t)- Alz(t)R(t)LA z(t)k"lA 2(1:)-

~Ay (8[43 (53] TR(E)ATp(E) -

We have

R(t)[Agg(t)] lAzz(t)}_lR(t) ~[A22(t)} 1B2(t>Bg(1’-)[‘3*22(‘°)‘.\‘x

and we deduce
\)

Pll(t)=A(t)Pll('t>+pn(t)A(t)~Bl’(t )B’h(t)+ :'Bl(t%B(t)J B-l(t)-
-Alz(t)[p.gz(t)} Lo el Al o)Al () = '
=AC)P); (0)4F) ) ()R (89-B (603 )+ By (6)-8(£)] By (-

= (B, (£)-3(t) )@l(t)-B(f))cA(mpn(t)+Pn(t)A “C)-506387(n)

and P11=§’ corresponding to the reduced model,
¥e are now in position to prove

Theorem 1. Assume all the hypotheses in Lemma 3 .Then there

exists € > O such that for e (0, £)

Pll(t L= P<t)+P11<tsQ) 2 o e =
P12(t,t.)rPlQ(t,‘é_)+P12(t,£) '

p e e, v . :

gg(t,'c)— E<P22(t’ 9,)+P22<t9€)> . T
where \ﬁ;l(t,gjl +[ﬁi2(t,£)\ -4 9-(33) 1%206}03=0,

\I"/ Ctoe) | e5Y v ‘ v '
22\ % Sl Py, (t,€) By 5 (%)
v it
Proof,. P(t,e)i=\ v v e
T | P 5(%,€) Poo(ts &)

is the bounded on R solution for a Liapunov eq&étion ;we use

A
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the formula for this /é@dhtion and the éstimatés fof the sqiﬁ@k
tion operator and for the free term to deduce estimates‘ | -
- for the aolutlon.

 With A(t,tyz(' ) A12(t) we have

Ly () T &p(H) pRa

Tt F(t, 0208, 0 (t, 60488, AL, 3F(E, <)
Fll(t,t) Flz(t,i);

MBEEl By LR e

e

Fp (6,02 508) [\ ] 008, 02+ (8, s>A12<t> Ly Lo
Fyo(t, 9=y, (£)P) ,(t, ) : ;
22(t €)= A21(t)P12(t t)+P 2(t £ )A l(t 9, e

Bk, si=e &tX(t S, F(h,6)X (t,s,£) ds e

.Taking into account estimnates for Xij(t S,8£) and Fij(s <)

we obtain the estimates for Pij(t ©) in the statement . |

Remark., It &s well known that if A(.) 1s antistable and

5?t)>»0 is the unique bounded solution of the Liapunov equation
then4 u(t):-B‘(tfﬁ"l(t)x(t) : defines a stabilizing
feedback control. : -

If we apply this result‘to a singuiarly perturbed systém we

deduce that a stabilizing feedback will be

& - % (L)
u(t)==( B;kt) %’82(t) )P l(t,a) <; ! i)

vxg(t)
If we use for P(t t) only the principal part
= QP (t) S10(t)
P(tye)=\
8060 1 R(t)

85 (t)=(By (£)By(t)- A12<t>R<t> Beong 29 (45 m"]

~we obtain a control of the form



: ~12-
u(t):Fl(t)xl+F2(t)22
“« -1
where Ez(t)=-52(t)R22(t) :
e "l kY
Fl(t)=-lI+F2(t)Agz(t)Bz(tfj Bl(t)P (t)+F (t)A22(t)A21(t)-»
A direct computation shows that =« Lo ”*' e e
Py (t)=[ 145, ()45 (t)BZ(t)’} F(t)+F2(t>A22(t)AQi(t)
where F(t)=-B (t)\ Pll(tj) L
This is a two stage controller of the same form as described
in a more general setting by OfReilly (138Qk
Consider now the second Liapunov equation.“
’ *® < X o :
Q==A (t,¢)Q-QA(t,=)+C (tIC(T) S
Under the assumptation in Lemma 1 the equation has a unique
"bounded on R solution Q(t,t )z O.Denote J‘_ e

< [ Gy, 90) Qy,(t,€)
Qlbqe2) = Qra(t,%) Qoo (t,t)

A
and le(_t,a)Aing(t,z) :
622(*3,5)= 1&:/Q22<t,é) e
Then Q11’612 4 652 satisfy
a-lel -—--A (t)Qll-‘QllAll(t) Agl(t)QJ_Q "ngAQl(t)‘*'

+Cl(t)C (t)

<&t le““éAll(t)le AQl(t)Q22'QllA12(t) Q12A22<t>+ 
+Cl(t)02(t) G i R

et Q22--Eﬁiz(t)le-&leAlz(t) Azz(t)Q20-Q02A22(t)+
+62(t)c £t | |

. o opiad e o
Let Qq4 be the unique bounded on R solution of the Liapunov =

equation



=1 %=

a'f Qli—~A(t)Q11 QllA(t)+, (t)C(t)
IF A defines an antistable evolution then the above Pquation
/('\ws @ JaLb‘ ww ( b o oo ( own, //2 ,W\/uclwz)

savkstdms Qll(t)v-o .Let Q22 be the unique bounded on m

solution of the equation ;
£ 3 Sop=do s (05 Ros A (R040H (000D )
In the same way as for “emma 2 we may prove »
Lemma 4. Assume a) Aros 02 are uniformly continuous and

bounded on R :
b) There exists c2 >;O’ such that nc¢

eigenvalue of A22(t) "less than 2 o > O for all t&R .
Then there exists € > 0 such that for all E,ﬁ—(czﬁ‘)

equation (44) has a unigpe bounded on R solution satisfying
Q22(t €)=S,,(t)+Ty,(t,e) where A22(t)Szz(t)+522(t)A22(t)—

-Cz(t)CQ(t) and \T22(t ey |ty Ln 8(gf =0 ,
Let now Q12 be the unigue bounded on m solution of the
equation
g 012=-Q12A22<t)+cftt>02<t>46’11<t>A12<t>-A‘{2ct>§"22<t,s>
Lemma 5. Assume Aij’ci are uniformly continuous and bounded
on R , assume glso assump%%tions in Lemma 1 hold. Then there
exists w20 such that for all © e (¢, &)
Q506 E15, (1142 (5,0 iR e
S5, (ko= \Cl(t)"z(t)-Qm(t)A o (t)- Azl(t>322<t>1[A22(t>} ol
\Tlg(t £y L86s) lim G(t) =0 . | ' o

The proof prOﬂeeds by the usual singular perturbations techniques..

as above. Denote now Qll(t Q) Qll(t £) Q11(t) for i

. le(t B= ng('t f)-le(t £)
sz(tv5)?Q22(t‘.€)nQ22(t,a)-,

We deduce that ; : o



e

: v v SE v ; - e
Ly € Qpltse) Qll(th) £ 4,59
a S e
b oley o) ¢ & Qpp(t,€) edy2 L) ‘J £ Q22”> 0
v : ‘
Q840 205 51000
- <€ e ; rA(t’E)+
TSRO IR P G0
,Gn(t' ) £G12(t £)

Bt £)=-An; (£)Ty 5(L, €)= 9 (8, )40 (1)
Gl2(t,t)~‘All(t)T12(t &) ; :
Gpop(t, E)=A7p(£)T15(,E)- Pyo(ts a)Alg(t)

L6, (t, D) £8(8) s \Glz(t s,)] + [ 6p5Ct, &) €

’ We use again reprezentation formulae and estimates to get
\Qaa(t,a)) +]Q12(t,‘c)\ +|Qp,(t, a)\ < B(¢)

1im &(£)=0 , Ve have thus

30 :
Theorem 2. Under the assunptations in Lemma 5 there exlisis

¢ >o such that for € & (0, &)

Qq1 (%, E)—Qll(t)+Q11(t £)

le(t = Slz(t)+ tle(t € )+ ngz(t i)
Qoo (ts 2= eszg(t)+£T22(t tptez(t £)

where the_remainders -Qia are estimated as abovee

4.'Asymptotic expansmons‘for théhsingular

- values

<

We state now the main result

. Theorem 3 Assume Aij’Bi’Ci are uniformly continuous anl

pounded on [R .Assume also A22 and A satisfy condition& in Lemma 1.
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Then there exists % > 0 such that for ifi(o,as) the

singular values associated to (1)'have the following asymptot¢.

structure

a) ny singular values are of the form e

A (k€)= (\ (t)+4 () lin 4(0) =0 CaE
and ')j are the singular. vai;;s for (2)

b) n, singular values are of the form

a3 (808 = [0+ 8 (), Lin 66 =0 o
CNYB LSy 1At and iy are the
singular values for (An(‘é) B, (L), G’ ﬂ)) IA 7(0@2"” time.
Ba08, Derote M E L)L 2) o Hante ‘vm(t&))
\Vzl<t 9 Vpp(t,e)
Taking into account the asymptotic structure of P(t, zj given

by Theorem 1 and of Q(t,:z) given by Theorem 2 we havé
v
Vi, (t,2)= Pll(t)Qll(t)+Vll(t €)

v i 7
Vzl(t £J=R12(t)Qll(t)+R22(t)812(t)+V21(t,£)

22(t &)= Rgzctggz(t)‘kvzz(tyt)

with \Vll(t,a)\ |V Vyolts e) | +\V21(t &)\ 4\{22% £)\ € B(e)
lim  &(¢)=0 .
€990
It follows that the principal part of the eigenvalues of
P(t,£)Q(t,e) is given by -the singular values of (2) and the
‘ singular values of the system defined by

X (T)=A5,(£)%(5) +B,,(t)U(F) '

¥ (8)=Cpp (£)x (%)
Let us remark that the singular values associated to A22,B2,
02 with frozen time are in fact the principal parts of the_

singular values associated to (3) e
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Remark finally that the results above do contain the Cdirésé

~ponding exnansions for'stationary systems and also that similar :

results may be obtained in the case of eprhentially.stable

evolutions.,
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UNIFORM CONTROLLABILITY
FOR SYSTEMS WITH TWO TIME- SCALES
by V.Dr3gan ,A.Halanay
It is a general program promoted primarily by P.V.Kokotovic

and his coworkers to obtain global results for systems with

two time scales from the analysis of the "slow" and "fast
systems " associated (see V.A.Saksena,J.0’Reilly,P.V.Kokotovic
1984 ),It is the propose of the present paper to discuss from
this view point the problem of uniform controllability for
time-varying linear systems. While the result is quite natural,
to prove it we had to use specific asymptotic expanéions fer
the evolution operator associated to a singularly perturbed
linear system (V.Drigan and A.Halanay 1983,1385 ).

1.Main Results.

Consider the linear control system
Xlell(t)Xi+A12(t)X2+Bl(t)u (1)

ExS=Ay0 (£)%) +A5, ()X, +3, (1)

Theorem 1 Assume that Aij’Bi are defined on R and are uniformly
Lipschitz and hounded.Assume there exist Slvu gk, 7o Sugh
that for(all t&£R

T —A2 t)s
& 2 e
Sbe Bg(t)BQQt)e

Let Azq(t} be invertible , with bounded inverse and let

-’
-A5,(t)d
22 ds >/7<.1I

A(t)=A0; (£)=A 5 (£)AST(t A0 (1)

o -1,
B(t)“Bl(t)'Al2(t)Azz(t)52(t)
~ o~ .
and assume that (A ,B ) is uniformly completely controllable.
Then there exists €> 0 such that for all 0 < € s €  the

givén system (1) 4is uniformly completely controllable. o

Universitatea din Bucuresti ,?acultatea de Matematicd ,Str.

Academiet 14, R-70109 ,Bucuregti ,Romania
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A corresponding result holds for uniform observability.

Theorem 2. Consider the system

Ryl (R (0 (2)

€ Xp=Agy (£)xg +A5,(1)%5 ~
y= Cl(t)xl+02(t)x2
Assume Aij as above ,”1,02 ﬁniformly Lipschitz and bounded on
R, let C(t)=Cq(t)-Co(t)A5 (t)AQl(t) ;i

Ascume there exist §;7<u'1;7c such that

s A (t)s
ahReE e ds > %2 ]
O N A o
for all te@® and assume also that (C ,A ) is uniformly completelyp

observable., Then there exists € > such that for all <<@é< &
system (2) is unifbrmly completely observable.

Bheorem 2 is dual to theorem 1 and it is proved in the same
way .%e shall prove in the next sections Theorem 1 in twd steps,
stading with the assumption that there exists X >¢ such that
the real parts of the eigenvalues of A22(t) are larger than <2«

for 2l £t € R 3+ in. the second step we shall remowe this speeial

assunptionm .

2.Asymptotic expansions

Froposition 1. Assume Aij are uniformly Lipschitz and bounded
on R ; assume also that there exists o<>§ suéh that the real
parts of .the eigenvalues of Azz(t) are larger than 2AX>Q
for all t € IR . Consider the evolution matrix.associated to
the linear system T s :

x=A) (£)%g +4) 5 (1)x, L (35
£ %5=An) (0031 Ao, (1), ;



-3

and write it in block form

Xll(t,s,i) Xlg(t;s’é)

X(t{syé)z _ X i (4)
X2l(t,8,,§_) 22( 1S ,€)

>

~lhen dfor every Tso0  thore exdists £.7¢ sueh that for &t B )
the followinz asymptotic structure holds for *’“?t'iA < ter

A |
Xll(t,s,sJ=XKJ(t, s) +¢Xy1(t,8,¢)
i3 : _

X21(‘t,s y &)= &fg(tymé)%l(ﬂ')xx(f, 8)A6 + £ le(tysti)

/l
e
Xl e8] Xott, s )A ( gl A, (s)asles)x (t,s,= ;]
10(tss, €)== e,[ A(Es8)A 5 (8)A55(2)-A) 5 (5)ATS ()X, (t,5,2) | +
+ Ezilg(t:syﬁ)

X22(t,s,&)=X2(t,%é)+éinz(t,S,i)

where X;: is the ewolutidn oprerator ascociated to KJ, X2 ic

the evolution operator associated to ‘%AQQ and
£ A

\§ij(t7515)l€ F é-\ﬁ(s..t)

Ropnelelde Ay () |
Proof. Denote A(t,e)= | | . p e |
oy t) T Ay (E) '

The systém associated to -A”(t,a) is

b4

* { .~
Wy==dyy (VoW - g Ay (B)w,
o e A
WornippGt = = Aaol(hiv,
.and after the scalling Z1=W) Zzséiwz becomes
s - '
By7riyy (B2 =8y (B2,
’ K <
€25=-Ry 5 ()2, -Ayn(t)z,
This £ast system is in the conditions considered in V.Dr#gan,
A.Halanay 1983,1985 (for instance see V.Drégan,A.Halénéy 19895,

sectdon 2.8 ) .



e
If we denote by [* (t,s,g) the corresponding evolution opera-

tor and (T a corresponding rartition of this operator we

iy

have the asymptotic expansions
Y ras

1ﬂ11(t,s,£)=lj(t,s) + 2..r;](t,s,£)

A

rzl(t S,&) =~ %g[ﬂ(t 5}2)A120f)\ (o8) d5+ ifﬂ 1(t,s,€)
T o(t,8,2)=- \q‘(,gmgl(«)ﬂu 5,2) a5 € 9“7 J(t,s, &)

Y422(t S E)= rj(t S,E)+ & 122(t S, £) +e/ (t S,g)
wherel is the evolution operator for

e
xl=-A ()%, 1
r;‘ is the evolution operator for_ “xé:-AQ(t)x . r;L
1s defined by +
BLE L ) P t ] e
G e mEaa ) ) U (5008, (0L, (0 eld sl (R0 op

4
r22,\(5 38,&) =0
and
A 5
[ Fij(t’sii) I
We have further
o
Xll(t’s’£)= Pll(svty £)
[
Xy (tys, )= %ﬁf&Q(s,t,t)

S
s
o

A
g
\/

Xlz(t,s,e)zé'Xéi(s,t,sJ
X nltss, )= rgz(s,t,a) and we deduce
a4 - -f-.\*
X(t,8,8= [N(s,t,0)+ & l 1(8,t,%)
it“ g/\pz(., t, a)A,21(¢) [ (s, Tyds +¢F (s,t,2)
Byoltyessls S PR s (o )‘L(s, ,&)dT +a/21(s bea
1t rz@'tshzlzﬂst,a)]+blxxst £)

TN
Remark that "7 (r t)=Xx(t,s : fb( y 5y E)=K5(7,8,£) o

le(t,s,a)



Je have firther

t
: gtxg(t 7)Ao ()X, (25 5y 2) df— z(t S, £)+ Sxx(t,s)Am(s)Agé(s)f
R hyp(EIEH(T,8, 08T ; |
\flg(t,s,g)\ l;se’“(" = S e o b t—r\«.
and | %
StXF(t 0)Alg(s)Aé%(s)AQQ(J)X2(J,s,g)d6’=
/A

[Alz(b>A22(s)x (t,s,e)-Xp(t, s)Alz(s)AQQ(s) )-
SLMKA ,J) 10(8)A5 (s)x (6,5,6) &7
The above formulae lead directly to the aSJmptOtl“ expansions in
the statement . 1

Tet us reark that we obtained the expansions for the nonstandarad
in singular rnrtarbatlons case of an antistable A,,.

3, A first controlability result.

W¥e shall prove Theorem 1 under the assumptation on A22 stated

in Proposition 1. Uniform controlltability derend® upon the

: : e ' < -
behaviour of the matriz (;'Hll(t’“’to ng(t,a,cJ :)

o oo (6,558 H22(t,E‘, &)

Hlj(t,3,1)= g ( (t s,c)B (s) +-t lz(t s,t)BQ( )][ﬁB o) 4J(t,ﬁ5
=

+4§§;(5)X51(t,s,£)j3 ds
Using the asymptotic structure described in Proposition 1. we
have : tré . -. ‘
Hllct,S,é)= S (it S)B(S)B (s)x (t s,) ds + 'i:.Hll(t,u,L)
\ﬁnm,ﬁ,a) \ ts c '
|B (.80 | ¢ e ¢ :
Hyp(t, &, 8) =i{ sz(t s L)32(5)52(S)X2(t,_,,&) ds + H22(t s e_)

\552(t,s,£)\ :.

N
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: B Ctytt=s)/e ~
Since Xz(t,s,a)=e - .

+£0 0,8, &)
k‘ ; 9
we deduce that
A t+0
AR (t,y,z)B (s)B (s)& (t Bis)ds =
et <t><t s)/; A, (E)(t-s )k
=4 f22 BB () e = ds  +H,,(t, 6 )
g2 .
&
Usuwal in singnlar . pe

rerturbations proceduies lead to the estimate
v : e v
G| an

We deduce next that
- AQ,) t)(t-s)/s %

22(t)£¥ Dl
= B2(t)B2(t) e .
o (t)s -A,(t)s ik :
> s &e cae e 22 s s I
and finéily that (4 Hyn(t,s e %tlt-l.

-de have further

Hll(tpaz,a)"H]_Q‘(t,g, 5-”{5%(13 ,g,% )Hlﬁz(t,S ) =
= St Xa(t, s)B(s)B (s )Xﬂft,s Yds + z'ﬁil(t"’&)
{EypCbade) | s

£ ¢ , and we deduce that

Hll(t’g’z)-ngoty EI)H’)Q(t ,&'. JH 2(t €, 6) 7/"& I

This property proves the uniform controllabilify.

4, The general case.

A (L )e _FE
Since (Agz(t)l < ¥ we have le = \Dy - Lor
s>0

and the controllabilty property in the statement of
Thoorem 1 implkes

%2 A,,(%)s , e , =205,
S o B (tB Nt e e - b

o . A (t)s
Denoting W(t,w)= S ef40<s 2e

&
(t)s
Bz(t)BQ(t)eA22 ds ,

*5 0 , we have

Take Fz(t5=-B;Et)w (t,%) o
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Lemma 1. The real parts of the eigenvalues of the matrix

A22(t)+B2(t)F2(t) are not less thén 20,

Proof. Consider a solution of the system
x“(g)= [ACE)+B(£)F(£)]X(O)

and let V(t)=x“(t)w“1(t,x)x(6) .

A direct calculation shows. that

W Ge=r (T -{ ACL)- °o<I] (t @) (t,x) [A(t)-

DT }] X(e) +4AV(T) +2x*(c)w'1(t,«)é(t)3‘(t>w'1(t,x>xun

4x'~rl\‘

~ ~J
> 40 ) hence V(c) ze V(a)

2ince - 1€]D£W;l(t,x) < 7€~\I we deduce that
e * 2T :
“(?x. 9 =Z \[ﬁz < /x(o)l P
~

and §uch ehﬁtmate proves the lemma .

Consider now the new system

x7ahy y (E9my + [ (8 )48, (BIP,(0) ) %, 4B, (8) v )

Sl {Agz(t)+32(t)F2(t)\]i2 +B,(t)u
Uniform-oontrollability of this system.is equivaleat to uniform
controllability for (1) . | '
#e have now to check that (53 satisfies all assumptions in
section 5 to netithe final result. |

The smoothness pwoperties are oBviously satisfied.

By using a ¥asoning in (L M.Silverman,B.D.0.Anderson 196?)

show ‘that there exist 5\> 0 ﬁu such .that Y
P (A (5)+B(8)ES(£) )8 A Gt BL CERC )T B -
S'e Aso 2(T)F, Bg(t)B;(t) Axo 2 (¥IF, oo

) .

Assume this 1is not true ; then for every r<> 0 there exist

>y Ct\ ‘3- (£)|=1 such that"



~

T L

St oA BB, (8PS (E))s 2
& [kgﬁv({-))er( 52 (£)+B5( . 2 ” Bz(t)\ e
4 A22(t)+32(t)1‘2(t)3g.:_ tl(t)
o .

(€3
Denote Qé(t)ze
Condider now the %ontrol oS - : =
; ALY, =8) 7 u)@ -5
*® 2 A, (t)( Azy :
u'(s)=3 <'°>e S =2 B (t)Bz(t)e 45 /2,

¢

and use it in the system
xé(s):Azz(t)x2(s)+B (t)ut((s)
If we take (O) O we shall have :
. « (‘-C.
Sz __)\ A22(C_2 u)
¢ SJ_): & Bz(t)Bz(t)e

G

» Az, (L) (i) Kol X
; 4 = & : < : 4 = .
. (& o : %LL{}‘SL(’&)Q 1 ch> Zi Gk )= % L)

M
and for the same x,(s) as above the control

v t‘(q\ = ULN(-\B— . (1) LAy used in the system

il
x5(s)= LAM(t)Hﬁ (£)F, (t)]x (S)+32(t)b ()
will lead again to  X,( §Ly= Zo (t) .
We have also | v {ay} é.f’(ﬂ;\ forall 59{0;21:3'where
the finction f does not depend upen t, M.

iec deduce that we may write

-g) : o — sy 9 -
2 T Gty Bt YR ) e a) o, _
’zg = ﬁ{ ¢ } Bt (“(’U >
2 ,
hence-
e ‘LA71 L)+ B, GE) T;_({)J'}

S e 0 e v o

2 <.
(9%

-[All({)+%,_t+)rn “))a

A= [)L (Jc)} b_ (= S[ 2_6{)3 , -3LL-{)‘V{“(S)C%N<

s -
&S e ety & (A“émrnud H.>Ag @ |« j( “{3 cb)

Y,
§.<{¢5ii>Lf>C8;_ 7 . 'ﬁ j i
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since t{ is arbitrary we have obtained a contrgdiction,

We have now to éheck the uniforn controllability for the couple
(87 (6)- [Aigctﬁan(tﬁ—‘ftﬂ[Azﬁmmgct)v Gl
By (£)- [4,(t)+3 (£)F,(t) X lA22(t)+u2(t)32(t)J = (t))
A direct calculation shows. that this couple 1ay be written
as (n(t)+3(t)F(t) 3(t)(I+*2\t)A22(t)B2(t)) ) ( we have
(Lar, 508, )7 =I-Fy(A,5+B,F,)718,) .
This last couple id obtained from (A, j) bj ﬁeedback
transformation and a change of coordinates in the control
srace , not influencinzg the wniform controllability .
This ends the proof.
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ASYMPTOTIC EXPANSIONS
OF THE BOUNDED SOLUTIONS OF RICCATI
EQUATIONS ASSOCIATED TO SYSTEMS WITH
TWO TIME SCALES

by Vasile Dr&gan and Aristide Halanay

Consider a control system with twd time scales.In previous
papers we have studied asymptotic expansions for associated
Liapunov equations as well as conditions for uwniform contro-
llability and uniform observability in terms of the correspon-
ding "slow " and "fast® systems. In this paper we discuss the
asymptotic structure of the bounded on |R stabilizing solutions
for the associated Riccati egations.

As an application we dcduce the asymptotic structure of the
correspohding invariants introduced by Joﬁ%h&ée and Silverman
1993 .’

1+ The prdblem Main result,

Consider the system
xi:All(t)Xl+A12(t)x2+Bl(t)u

Exé:Azl(t)xl+A22(t)x2+B2(t)u D
¥ =Cy(£)xy+C,(t)x, ‘ ‘
(t) Bl | B. (t)
Denote Aft,L) = e 1o B(t,% )= 5
Lan(t)  Lhagy(t) £3,()

C(t)=( Cl(t) Cz(t) )
Associate the Riccati equation . = _
Wo+AT(t, E)W+WA(L, £)-WB(t, £)B (t,e)+C¥(t)C(t)= © 2y ..

Facultatea de Matematici,Universitatea din Bucuresti -str.
Academiei 14,R-70109 ,Romania
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Under suitable conditions for the "slow” system defined by
(A,B,C) i

A(t)=Apy (£)=A o (1)A55(£)As (F)

~ _1 :

B(t)=By (t)=A;,(£)A55(1)B, ()

-~

e -1

C(t)-Cl(t)-CQ(t)Agz(t)Azl(t)
and for the "fast" system defined by (A22,82,021,the triple
(A(t,€),B(tye),C(t.}): is uniformly controllable and uniformly
observable and the Riccati equation has a unique ,hbounded on IR
pozitive definite stabilizing solution W§(t,6).1f we write

_— =
W+(t,£) & Wll(t’6> W@2<tyt)
(W]5(t,£))" Wh,(t,€) o
~wWe shall prove that
¥ (t, 6= B+ e B (t,9)
1 G 13 il
~ 2-‘/

w{zct,e)=api“2(t,g)+g P1o(t,8)

5 ‘ ~ 2\/

3 (t,£)=tB], (t,€)+ E7R5,(1,€)
where

: |f;j(t,g) ¢te for all t€R and €>0 sufficiently small,

oimilar expansions hold for the negative definite,antistabilizing
solution W (t,e) and from here we deduce the asymptotic structure
for the eigernvalues of the matrix - [W‘(t,e):]'1w+(t,e) ; these
eigenvalues are invariamt with respect to Ligpunov transformations
in the state space and define the invariants introduced by Jonckhgge
and Silverman 19§83 .

The conclusion is that these invariants split into two sets,
one of them cl:se to the invariants associated to the "slow" system
and the second one close# to the invariants associated to the
"fast" system. -

o, Parametrized algebraic Riccati eguation

Theorem 1. Let A,B,C be continuous and bounded on [R.Assume
there exist = &20,.K50  such that far all LER

*
j At)s geyyp*ty o (M08 g5 » kI
0 &

et - ;
| eA (t)s G601t Alt)s 45 5 k1

(]



Then the egmation
A*(t)P+PA(t)-PB(t)B*(t)P+C*(t)C(t)=O

B A~

has a unigue solution P(t) such that ﬁml <P & P E

y >0 and the real parts of the eigenvalues of the matrix
A(t)-BCt)B (t)P(t) are less than -2« = ,0>0.

Proof. Denote A(t):A(t)-B(t)B*(t)ﬁ(t) ; existence and uniqueness
af %(t) are standard ; we ‘have " to prove only the uniform with
respect to t p051t1vity and boundedness , and the properties of the
eigenvalues of A(t) .

a) ue have the standard renr“sentation formyla

B(t)= 5 "W [ Q) G B+ PO BN Ple) 1o AW 2 s

Assume t’qere £s no j’> 0 such that for all te® P(t) ZPI

thery for every f£>0 there exists t,€lR and Xp with
: lx ’ such that X*'P(ff)Xf <‘f .From the representa-

tion formala it would follow that A&‘
17 alk)s 2
S ietﬁ}sentf)/’ iy + [ 1B P10 F 0 1 < g

oince

x » o
i _, s _ [ A9 g g Bl ol
| ,

we deduce that

v !Cu?) Pt oLa>JlO%)e%?' 120 —

—XfJ WP” oM o) | " U)o o Bl,) 8" () PLE) 2 f’)@/mf, i
5 ' N % :

- X J (f 1 mn)ug,) rb"[@)mq)eﬁ 09 45V ee otk o o x,

By uQin” the Cauehy-aehwarz inequality we have the estimate

,ij At "Lt)CLt)” Alte) (n- ﬂ DC@)P[#)QHC‘UJQ{O_)O(A f/é

(J ’ X Jeﬁl% » xu’) 96\‘}:’[/}—0‘,)0(/) Buf)/zald“) /2

J ~
(f | PQ} mﬁ X )%‘cﬁ f



and then
ps |10l fs > [ lewpet®, rols-261F

}Qviﬁ,bf) T wm‘radwfmn
The upper PStlﬂute for P follows from the reprezentation formula

#Le0- ("o As §o1 g o* (e P(t)e P o
L Z?Lt)/s B&)E%&L) 0 ,é-&)Ao(A v
and from JJ QH)AB&)G*M 9 ét)/awukz . ;
a

b) Let A (t) an eigenvalue of A(t) , x(t) with | x(t)l=1
x“(L)A%(£)=)(t)X* (t) .¥B deduce from A*(t)P L(t)+P (t)A(t)=

i | ¥ el o

==B 0L C )CRIBT () =B(1)B (L) - that

}ore Aty | B H(tax(t) = X (5)B(H)IBT(LIx(E)

#e prove that Yy > 0 exists such that for all teR
x*(t)B(t)B*(t)x(t) >d* If for every [}~ there were a tj.such

tnat _x (tJ)B(tJ)B (tJ)x(t )<y, then

Lo [ xrth) e 8548 U N2 5 Ll = ") 8155 W) xip)-
,/J 2/29,/\(,5')/.)

0 Q’-
a contradiction.

ol» <y d

Remark., The solution ﬁ(t) may be considered locally as being
obtained from the implicit function theorem ; uniqueness shows
that if A,B,C are C' then D is @1 .8y defferentiating the
equation with respect to t,it is seen that Pl(t) sglves a
Liapunov equation and we deduce that if A,B,C are C with
bounded derivative , the same 1s trfie for P.

3.S5ingularly perturhed Ricrati equations

Theorem 2. Assume A,3,C as tn Theorem 1 and moreover of
class C* with bounded on [R derivatikves ,Condider the equation

P +AH)P + PR —PRIN(H) P+ C7 ) Clt) = O

Then there exists " £,> 0 such that for: L €(0,£ J this equation
has a unique stabilizing positive definite bounded on iR solution

o

P such that ff(t,&)-ﬁ(t)! & of - for.all teR .
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Proof., It is known (see for example Cv@pe[ {9

. that P(t €)= 1im Pl ey where P(t,T is the solution
of the same equatlon with P(T,T,€e)=0 .

By repeating the same caleculations as in Dr3gan and Halanay 1980,

we deduce that T (> 1)

[P0t - )Ae}qg+./ié IP(/))T&)—P(A)I%

Denote \)’ (ﬁ&) &ﬁ je J: e o /p(/)/?;e)‘ ?(A)} O&

A direct calculation %hows that

(iv ke) > 12-‘lz(v(ég) ek ) k‘ 2fbey. T

and that \};(ﬁ,é) < wr (te)
where ' _
&Li Wl (£,) =240 (4,0) -~y w7 (£16) - tohoe - valmo eh.
It is seen that 1im wy (30 =Wy 4 2611
and then f?(ti) - P(t)lL &&L. for all t.

4, Bounded,positive definite, 5105a1 stabilizing
solution for a Rlceatl eguation

~ o~

Proposition 1. Let ﬁ,g,E,L,K be continuous and bounded on
~ : -~ ~ _ .
R o K(E) 2ok1I - (A8 ) ‘uniformly conbtrollable & Then the Riceati

equation P4 A7 (£)P +?9£ﬁ) LPB(U*LUJ)]K 4(7‘: ZB (f””-

+ I+ EXy 0ty -0
has a unique solution ,deﬁiped on R , such that for gall Lt &l

:?:h [ e *’5’&)9&1‘ : fM >0 and with-
Fu) =) [ 8%)Pey + L*(H)]

the matrix A-3F defines an exponentially stable evolution.
Proof. Remark that uniform controllability of (K ﬁ} implles
uniform controllability for (g;gfﬁii’— T ). The Riccati equation
may be written as

DILA L -B@) K LX) T P «PLA &) - mf//g%//jwﬂ,
“P@'&)/Z"JLL)B*&/P+G*(HCéf)rLLf)L’gg]L*&L);Q '

and the conclusion follows from weli—known facts,
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5. Proof of the main result

We start by proving a useful result

Lemma 1., Assume Aij’ By

bounded on R and moreover
a)There exist J,>0, 7 <1 PR

= gl s
J'f ﬁaz(ﬁ)o @L)B_?_(t)e OLJ /,/( I

(o]

'Ci are uvniformly Lipschifz and

b) (A,§,C) as defined in oection 1 1is uniformlly controllable
and uniformlly observable.

Then there exist €, >0 such that for &€ (O,&) the Riccati
equation (2) has a unique baunded solution W+( ,€) which is
positive definite and stabilizing .Moreover W (t €)<ec for
all temr with ¢ not depending upon &

Proof. We use results in Drigan & Halanay 1990 to see
that a) and b) imply uniform controllability and uniform obser-
vabdlity for (A(-,E£),B(";€),0( ,&)) -hence existemece of the so-
lution ﬂ+({,&). To see that W' 1is bounded by a constant not
depending on & we have to remark that there exist Fy, F, not
depending on € such that IxEx® Exizx with F=(F; ,F,)
A(*,£)+B(* ,£)F(+) defines an exponentially stable evolution.

( see 0“Reilly 4990 ) Since W' is the optimal
value of the cost for the linear-quadratic problem it is majora-
ted by the cost corresponding th the feedback control

F o ()=F) x,@ +) %, (£)  and tnis cost is easily esti-
mated by

VIt Ome= [T (0t ) [CmICt) + FLn) Fla) 17 (0 e Ven
where rq(éqt%) gﬁ the evolution operator associated to
Al e Bl IR )
The proof of the main result proceeds by writing the equations

+

for Wil, W+12,W§2 then by denoting E4=\xﬂ4 : 'Ez=-%L\XA:j<

i+ : 3
TED:%;VUEL and obtaining the corresponding equatlons for ?ij'
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Under the assumption in Lemma 1 the functions (A22, »C 5)
are as in Theorem 1 and there exists P22 w1th the corresponding
properties ; we use next Theorem 2 to get P22 with corresponding
pr0pert1es o« We use proposition 1 with

;< (£)= I +B () miwr’@"w A () B, (£

I~

Iea C*(z‘)C () A5 () B, (4

to obtain Pll(t) and define P12 as the unique bhounded on R
solution for the singularly perturbed linear system

E0 =Pl B ) B er]

B ﬁ/;z V[, () -B,(2) BSTE) B, (fgj]

|
It is in this way ‘that we have debcribed the princiral parts i
in the asymptotic expansions, }
#ith the notation in Section 1 we write down complicated equas 1
tions for ?%U

3 after long computations we obtain for the

corresponding bounded on IR solutions representation formulae descki-,
v

bing ?;'
precisely as fixed points for certain integral operators.,

as solutions for certain integral equations, more

3y usimg the Theorem of Schauder-Tichonov such f£ized points are
shown to exist 1in a given ball and uniquenecs arguments show
that Pé' are bounded by constants not depending upon € .,
The arguments are completely similar to the ones in Drijgan 1983.

meRn T
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