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CONVERGENCE AND REPRESENTATION FOR STOCHASTIC PROCESSES

0.INTRODUCTION

In the articles [7] s [8:]-there have been introduced and
studied some preliminary problems (including Riesz and Doob-Meyer
decompositions) concerning latticial stochastic processes. In
this paper we shall treat the convergence and the It0 represen—
‘tation problems..Let’s recall the facts: consider < an order
relagion'and X=(X,+,",4 ) a vector lattice i.é. a linear space
over R which is a lattice and the operations are compatible;'

X is called (countable) complete if any bounded (and'countable)
subset of X admitsV and A .If A is a subset of X, denote o
{xeaX;Lx\Afa|=o for all ac Ajand A =(A*)*. We also consider a
filtrationﬂ@;(gf)wothat is an increasing family of components
(see [7] ) that generates a family of linear projectors (Et)éz =
which are bounded (Y< [ a, b_]g>E (Y)C (-a_,b ] Y positive hence

increasing, latticial ( By (V. x.)= \/E (x ) if the \J exlsts)

J&T J JeJ
and continuous E ((o)-l%g x.=(0)-1lim Et(x .);see (7] for order
) eJ
11m1t) Note that, if X is complete, then there exists N’Et

t20 .
because the operators are increasing and bounded by the 1dentity.}

1.THE CONVERGENCE PROBLEM

Denote 2 (k)Z ) 3 of course ‘2» ‘is a component and if

is easy to prove that Z is the smallest component that contains




e

“each ’&t .Remark that every increasing family ('&t)wm’& cX generates
a filtration namely ’Z, (}C’t /t ,so there are a lot of flltrarlons on
a given vector lattice. For such a flltratlon one can thlnk about

' )?,OO as - the generator 8 domaln for Z 1n the sense of L'6] . More

prec:.sely.‘ an operator A defined on.J(A)c X is called the generator

of the fil.traticn 2 if O(#) is the largest subset with the following

property:whatever xeD(N is, then there exists Ax=y such that
(y)=x. We have denoted E_, the projection on "Coo o It is

easy to see that,in our case O(A): T‘O and A is the identity on /@c,, .

The theory can’t go on followiﬁg E6] because on X we do not have
a multiplication, so the problem of the largest algebra contained
in.@k)is meaningless.

Now we shali prove

\LEMMA 1.1. Let be X complete vector lattice. For every x&X
we have (0)-lim E (x) E_, (x). |

tvo

Proof. Remark that 72: U?at &%

so, for xecX, we have
tzo *

(=)

Et(x)sEoo(n) for all t 7 o.In particular EtEoO: anEt: E¢ .Suppose tHat
there exists a bound y smaller then E_,(x) i.e. Ex(x) ¢y < En(=) ;
remark that y; o. Apply E; and obtain Et(")igt“‘j)‘—fc(k) => 'Et(xj: Tels)
w/y&é%” %ﬂ.c\i‘,tl/o ——/‘j{.&.m/a’* ( C’)

two

So €,,l§x)=0 => )=t (y.Hence y<&,(y) .Buii: /y?/, €,(y because y 0,50
y= Eoly)= En(x) .« Thus t\_){OEt(x‘)ﬂi: o . (3 Rop any xe X we have Et(x)=
Et(x4) - Ee(a) —> Ep (%)~ Eop (x=) = Eoo() and the proof is
complete. : :

COROLLARY 1.2. We have (o)-%%xél B (x)=X <=> X € (\if»t)

Indeed, both statements are equivalent to E_, (x)=x.

We also have a}dual problem. Let be (%t’)t‘w a decreasing

family of éomponents. An arbitrary intersection of components is

"also a component, hence h(\ is; denote it by %% _ oo o+ Remark that
%o

_*
(/&, }t is a filtration( increasing) so tt () converges (see
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from X 1ndexed by [0, e ) The stochastic process (mt)t7 5 is

-3

s A e 4

Jemma 1l.1.) %O the projection of X on(U g )Mt (f\ @t)r”‘ (\?’t ’B—oo
t7e
Hence (o) lim Ey(=) = x=(0)- b Etl") =X~ Ef,,o = t——oo(x) :

t7o t%9
A stochastlc process (mt)t7'o is a sequence of elemenus.

called % Qadapted if mtcyzt for t7 0. Remark that, if an adapted

process is order convergent, then (o)-lim my €'¢,, because
tzo

taoUd-Qumfwt) (o) - &m~ Lm(mt)‘ q-Qum/ut

The stochastlc process (mt)t 1s called Z, -martingale
if m=E (mt) for oc s<¢ t. It follows that any martingale is adapted.
For example, the process (Et(x))t with x€ X is a martingale

(because Zt increases with t) which we shall call basic martingale;

 they play the role of the uniformly integrable mqrtlngales in

classical theory (see[jl} ). We shall prove
PROPOSITION 1.3%. Let be X complete vector lattice and (mt)t7c
a martingale. The following statements are equivalent

i) (mt)t7 is order convergent

i) (mt)t7 is bounded

iii) there exists x& X such that mt“Et(x)
In this case (0)-11m m,=E (x).

Proof. 1)—4711) ig obvious and jii)=>1) follows from
lemma l.1. Now let®s see ji) =y iii). We know that there exists
a,bEX such that a< mté:b for t7 0.In particular Eg (a) & my3 denote
ct:=mt-Et(a) and apply Eg (8¢ t), 80 Eslir)>Mg- Eilay =Cy . =2

(ct)t;yo is a positlve martingale, hence increasing( seel,7j Y
In the same time Ct<ib B loy & el +-tt(a_) cbra. 20 (Ce)izc
is bounded and, as X is complete, it follows that there exists '/
=\ ¢ —(o) llm c,; hence mt~Et(a)+ct is order convergent. Let Dbe

. %o
s fixed and s<'t we obtain Mg = Eg(my) =7 Ws= (00'&- Eg(uy) =

fO
Take x=a+c and flnlsh the proof.

: “""Q‘j’" Eg(ne)>Es((0I- ﬂ“* W) = Efiol-Line Eila) +la 'f*‘m ) = Es(EplairazEs(axe
: /0 Jte
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If the family (’&f)w/c decreases, one can define the "réversed
martingales-“’ (see [23) A reversed martingsle is a pfocess (mt) it
such that for o s¢ t we have Et(m )=m,_. Remark that (mt)t7 5 18
adapted and m zEt(m )3 for t7 o, hence it is order convergent « (’t
decreases with t). As we have seen above, (o)~ :t%m mt—(o) %fg Et(m )=
E_ oo (mg). ‘

For x €X, the set )Lx}] is a component of Xj demote .~ by

x** the projection on this subset. If (Xt)t7o is inéreasing, then
({"Ktﬁ ) 1S a filtration; denote the associated projectors by xtMt

Example. Consider the vector lattice X= H. [0 ”0/‘79\5 and
fix he X. Denote a (u)—m»c\t'fx(u) oj and consider the filtration
Uﬂt\]“.)# . We obtain o, = @#H\’ ot and GLt (%)= {2//{& 4y} ;s so the
martingales (th)t o C X have the form £ -f/,)zkéklj with fe X. Also
remark‘ that -f_<cf<f 80, in this case all martlngales are basic

and (o0)-lim ft—ft L. (U r&”)’d
+two

Let’s give an example of a martingale that is not basic.

_ Consider X complete vector lattice, (’za'gh 0o 8 filtration; let be

t_70 the smllest index such that % #loyand o+ x ¢y . Define the
martlngale mtzzt 2 (t)x. Suppose that my is bounded: a< my< b=
to'foo

tx<¢b for t7,t =7 1, ;as X is archimedian, we obtain .c/—{/’l\ti b=o.
From a< m, =2 8 < tx for t7 t hence o< x. That is x=o-contradiction-

A stochastlc process (xt)t is called sub(super)martingale
if it is adapted and x < E (Xt) (resp. x7 E (xt)) for o< s< t.

We say that an adapted process (Xt)t admits a bastc

70

Doob-Meyer decomposition if Xt=Et(a)+°t for tz o, where a€ X and
(ct)t7,o is an increasing process. ASs we have shown in (8] ’(ct)t7, o
is adapted and the decomposition is not unique. We also have the
follOW1ng characterisation result: in a complete vectof lattice,

the adapted process (xt)tz admits a basic Doob Meyer decomposition




b

if and only if (xt)tﬁ/ (; is a bounded below submartingale. From this
 we deduce
PI“%OPOSITIONTL#. ‘Any bounded submartingale is convergenﬁ.
- Proof . (xt)t Sk is bounded below, so it admits a bésic
lDoob.-Meyer deéomposition xtzEt(a)+c for t7 o3 but (xt)177 o 18
also bounded above Xt‘ b so: €= Ly~ E (@) € b ta_, hence there exists

:;_-V :-o,’MQ 80 3(0‘ Q).\M. xqt”‘(O(‘C\-f\M— t(l)f(ol Mct‘LoL&)fC,
t tzo t7o tvo 20
The converse of this proposition is obvlously true, '
Example. For the same concrete lattice and filtration as

above, we have that the submartingales (ft)’c7 o bave the form
& /

ft(u)so if h(u)z t and ft(u) increases in respect to t if h(u)< t. o

- Consider a bounded below submartingale ft7’ a with ae X. 1Its basic
Doob-—Meyer decomposition is f =8 p{& ’cj +Cy o The process (ct)t> 5
is 1ncrea81ng because, for o< s<&t, ¢ (u)-—c (u) equals o if
B8<t< h(u), ft(u)-a,(u) if 8 ¢h(u)< &3 &t(u)-fs(u) if h(u)< s< t.
Ifi,in addition,the submartingale (‘ft)t7 o is bounded above, then
there exists \C¢ and 3 (o) - L Q = A+ \Ic_t
two tzo ¢ o

A submartingale (Zt)t:r o 18 called a potential if, for

t 70, there exists (o)-lim E. (z )=0. In particular z < o. Remark

pro

that, if the potential is order convergent,then (o)-lim Zy =0
t>c

Indeed, let be z=(o- L\.UA T =20 ) =(o| - ‘t~ Ku E, kcr)—{&«»c (u~c)¢(,\,,t (C,-,

X0

00(21—726)27 .But (zt)t7 , is adapted so z et - ,hence z=0, We have
PROPOSITION 1.5, Let be X complete vector lattice. The

potential (Zt)tz 5 admits a basic Doob-Meyer decomposition if and

only if there exists (at)t7 adapted, increasing and bounded

above process such that zt~at-—l‘.t(a).where a= t\7{oat.

Proof. If Zt"’-EtUC) +A L then A4=2,- Epib) ¢ ~Eply) « i so there

exists a:=Vag ; for fixed t we have E_(2) = Ex(E Zolb) v Ep(ap) =
0
(o) - exw. Et(z:.;) =(9)- QN» Ef(ce(b)) + (9] - &.\M— Eplap) =2 0= (9) Ale Eclb) +
pZo

: Et((al LU»- a?) - O = Lt(b) *i:(/(a) ’%\UA\.\_ Z_J:: ]:f('“) t+ Ay

];//O

S T i

R T o
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Conversely z -—Et(-a)+at is a submartlngale and (o)- &u~ Ef(ZP)
_ Lol,-ﬁ;rk t(t (- )f(O wa_ Et ap) = (0] - &u\ tt(—a) t(:t(p( b.w ap) = t&l‘q”'b (a) =
' For example, 1n our concrete situation, the processes that
‘are increasing, oimple convergent to o, are potentials ano admit
the‘Doob—Meyer property. |
_COROLIARY 1.6. Let be (2.)y & bounded (above) potential.
The following ototéments arelequiValent ‘
i) (Zt)t;yo admits a Doob-Meyer decomposition
ii) (zy)y, o 18 bounded below
iii) (Zt)t is order convergent

In this case (0)-lim 2=0.
tyo

Proof. 1)»-/i1)\ ->iii) are clear. See ii)=r1i). %gz a =7
C{— =2 Epa) 70 amd G 7 E5(¢ ) =E (%) - Es(@) # 25 - Eg(a) =C5 ,
© 80O (ct)t'éo is a positive submartingale hence ({:8] ) 1ncreasihg.
‘ ‘The ‘potentials that admit a Doob-Meyer decomposition ( in
wiew of prop.5) plsy the role of "potentials genorated by increasing
processes" from the classical theory (see (4] ) and, in our case,

(by corollary 7) these potentials are the order convergent ones,

2. THE REPRESENTATION PROBLEM

For this purpose we need a stochastic integral. Let‘s try

with a classical one (as it is done is (5] ).

Let be X vector lattice, (%fhhofiltration, (mt>t7,o adapted
process and f: EO,+¢0 ) —> R simple i.e. there exists a division
Oty by <o cluctugtoo such thad f01= £ty oo tettatuey.

We define the integral of f in respect to (mt)t7 5 by S’QS)A“S‘
d

‘2 e g f@(eq(«t-u«t &) 12 k5.1y fox k o,the sum in the

=0

right torm vanishes. From this definition it follows that the

process (Sﬁgpims)t‘ is adapted and, if f(t)=c=constant, then
0 /%o : ;




t
S@(s)c\_ub = (o).

Remark that, if (mt)t7 5 1s a martingale and f is S:mele,
then(& fb)éu )t is a martingale, too. Indeed, let: be o< 8< t a*ld

. t
.oéack ‘such that tj<s<tjey . We have C (&\eu)lw )
i-4

Z ES {2(&\.)(*‘&”"“* )) + LS (ﬂtp) (/\Mt aR k)) = L("') +E ﬁte) qu M+3D +:

\.ao

4
Z( )+ Bs () (e wg)— +¥(g)(w5~~u+) g%;ml

(>34
-Now ex’cend the above definition in the next gituation: X=

countable complete, re”  where j*—{-}:[o ety R ¥ tze I L) A): S\fofcst
QA\‘&A(&) Q} v«[o Q}. Obviously, if f is Borel measurable, then £ & J

Let be t » 0 fixed; for le N, as (fn) is Cauchy, 3{,eN such that
lf,m({) EM)("— 7 @n waz ly o Let be m, n 7/20 . Put the division points f
for f f 1n a single d1v1510n (tgj o If T R llwe obtain |

\mmm sftu)sm*\ztmn {?Ath))(wm-whp (£ (te) —£a b))

(“t Mge) £ 1 Lz | sl £ e el)
The rlghttterm goes to o because X is archimedian, so the

sequence Sr,\(w‘lwq 18 order Cauch&y, hence J (OI"Q‘-M S Lon(w) g -

meN

Put by definition S &*,wa-(ot &wu &?,\(u;éw*. The definition does

(o} ©
not depend on (fn) ( put any two such sequences in a 51ngle one

and apply the above con51deratlons).

t: Remark that if (m. )., , is a martingale and £ € J then

(%(u)lw) _is a martlngale, too.Indeed, let be f —2 T, Deno’ce | |
t 70 |
Py n” \tf U\K\“« ; E, is order continuous operator so E_s Sﬁu)ﬁ\u*)

E{;,((O{ b‘“‘% S£»\(U\)'l\“ut CS((‘?\ 'Q*V*- t )‘ (W—-(Axw E<(\ot *) &4& a\\oO/u/ =

(o) -b-'\;w \05,.\ —‘io} :c&"\": é em(u) A\MQ_‘ S e‘“\)‘\“‘\w

put §= 1 - S and see that S S = -S  and, if
- S0 t € un\Eusk)
(m)y,, 188 martlngale, then £, (SLN,A\M) g;m;\“ for s<t

: S
where mid(r,s,t) 1s the mlddle term of the tm_ple (r,s,t). Indeed,
if resct => E%(g )= E,E(g = Bl )= 3 - ? =0 if senct=
S o o
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EQ_(S S S: & amd { 5" SN =2 E (S\ S S S N P‘V\!"\wiu/l_
Sﬁ 9 © {:S P
The purpose of th:Ls 1nteg;ral is to solve equatlons {ike this:
for Be] f:md (mt)t such that
1) My =+ X ﬁm,étk(g) MW\ e X ﬁ{xcl
i.e. which are the processes that can be represent:d as stochastic
integrals in respect to a basic martingale?
As we have seen above, the process (m,) must be a
t’tzo
martingale. Conversely, suppose first that £ is simple. If f=1 on
[tk't&ﬁ) then any m= tt(z) is a solu’clon for (1) Bk £41 o0 Lt,.,téﬂ)
A
Z_ 7 o =
then m ¥(t¥ i"‘o g{t,g)tg (x) + H )(t 4) t; (*))ﬁ .0 m
constant on each[t tu.u\ . Now suppose that f is Borel measurable,

we can choose a sequence (fn) of sunple functions f —> f such
K*J—/_ Ehe

that fnf-l ¥ ne N. For example take ,\: -TA e )]194‘“‘3
KH%M “ < -;5%; Mt d o ’\fzw“ﬁ «On each of these
partltlons mt-.constant so the solution for (1) is a locally

constant basic martingale: m.= Z &)c oy (*) From the

Lt teed) tx 7
martingale property it follows that (c -C )E (x)=\/but Ehls is too
restrictive. The unicity also fails because S*‘W)J\td‘)‘ S fiuyd E (b
for be X. Finally remark that, if mt—:constanz,then X=0 c;uance m,=0.

S0, the problem (1) is not "well posed" and this is
because of the classical type integral. In the sequel let’s
construct an extension of the stochastic integral concept, useful
to us,. |

Consider X=countable complete vector lattice with unity 1

§o0s. k 38 pobal (2% =Jo]) and 170, & filtration (%f)ti,,\mt,u e X,
t70, u& R such that t —> mt,u is adapted for all ueR and

M A
f:R —> R a function.Consider .. <u._\<uo=0< Uy <o a sequence

of divisions for R and ATe[u}ul, )for ieZ. If there exists




==
_ Q.w., p £ - A n , g
ADWo0 (oL ( -l:&"b-‘ﬂ ot w“t) for every Ty o then thts limit
will be the integral of f in respect to (mt u);denote 1 7 by&h*)c&w“&
m

As Et are order continuous, remark that, if t —>7 m is @

sl .
;Sﬁ(w)émt i is also
a martingale for every u because E (f{ww e ﬂ?(/)v )(wt Ay “'u'x) =
no -y teZ LiEEs
’QJ«’\A— Z @(/\L )(M “‘% = ’\"‘<' L ‘\.)
§ A-y0 ch_ e

This klnd of mtegral generalises the first one because

& [o,+oo )—>R is continuous and (mt) is adapted (suppose

t30
m,=0) then, if ve denote my = %EO,{J (u)m, then we obtain
S:&“)A Mg QW‘L Z_Q(Q )(,\M' R A ‘) where O=ur.w/_uﬂ,‘¢....<u.: =t
w W2aNi-ro =4 Ui {

are d1v1510ns for [o, t] s Bk taklng; s (u) f(r ) for m CELH o

V)

with fixed r; c,[u wr) i=0,1,4.0,t -1 and, as f is uniformly

Lt

contlnuous on [o t] y we have £ —— f.S80,%he last integral equals

| &M, \(f% u)lu g{/,(«q‘lu . Also remark that ({todu,z{fid (u rx) for xex.

Now, the problem is:given f and (mt>t - find conditions
Y

on f such that the process (m )t7 o admits the latticial representat.o

(2) my=m_+ (£ J“‘t\u
In other words, solve the equation (2) known.ng i‘ and (mt)t S in
the case that £ is integrable in respect to (mt,u)'

THEOREM 2.1. Let be X countable complete vector lattice
with unity 1, (mt)t“ 5 < X stochastic process and f R — R monotone,
continuous and{}}t&f(t) £ v o Then there exists (mt u)c;X WOt
u&R such that f is mt,u-ln’cegrable and 0y is a solution for (2).

- Proof. We can suppose that mozo.Let be £ increasing and
denote my -«(i‘(u)lnmt) (1). Remark that u —_—7(?(%)-«(~M{—)t*is
increasing and (fqg-A- 4():% (’-?(u)-fi—ww) = (‘fo(u) I-Mmyp), @

i (fwyet- w)‘*"‘((}:(ﬁqw—w)* (mg) + (B4 g z(fmi ) (=)
# R =g = = (g A= a8, (2 g A v = L (ug) A ($u). 4= wai),

+ ‘ﬁw} 1~—v«t7/ ~("¢) He(u) {~wmyp = {)N) I“(“‘\’r),, i (>o X«r u7o _a)rS(\k)7o

i
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(by hypothesis) = £(u)-4-"\M<t) (4)7/{—&—- (wf) As X is archimedian
w) :
'--7\/ fl“)4 '\u\{.) (’(77/1 bu;k {i(q) %= q\&t)"“"(/{) Z so the sup is 1.

We _also have fm) @@44«%)_* i (%DWM- “Uf (w() s (ﬂu)‘/f' wa %
(ﬁm) L) 37 (my) 7 - (me) . Se, %n u<o => Py <o awd ByA-my 7 (4 ¢

ﬁ )(NH =5 /\('-E(u) {- w)’“"m o But ( (£ 4-w)3 ) Z 0  thus the

inf equals ) Consider <»&_A¢uo<u Z... @ division for R. We have
K

K
4 (%{? Ui+ \Mkkd = tu\\(ﬂ to I 4- M{O aMCl Z— {:“C\“q‘M‘QR\Z)Z
L— 1

’\v\.to-- M‘t U\K\E\M{O So 2“( t"‘L-b‘ ‘tut) 4 U»\-Lo\-\MtD.,/1
As 1 is total => 477 (fwuc)- wy %o as=EwW" fol N, =component,

Z_(Wt Wi t)“‘) (’W‘c)ﬂb\{, => (3) Z_( o "“H-’“&*%.(Wt)): A

te2 Wl
From: fm)i W [%LM MY, o => mt s ?(ql) {-mt) -
a4ty o =t %u) 4= wc) w.ﬂ(a"m().{-w) =5

(4) R00) W i ﬂo’(“()' JU&L € t U (i (““t') - ol )

From My . & WL iy, =2 '\mt ; (£luip)A- /w%) Z m&:l\*d(’f"l“iﬂ)-’i'“t) =5

(5] ?(m,,)a '\*«t% - M{M (my) ¢ me)' i Y P %J:Tu‘ﬂ(“*)

From (4) and (5) we obtain _

g(‘*t (wt Ui =M W) € ey kw(“‘*% ‘H .(Wc & %e(m‘ﬂ)("‘“c Uitq™ "‘*Lm‘).
In this relation add fw) wc NI e & W) with W €20 < W
We obtain (f(tt(%g(’h') (Mt wpy =i} & '\m*:bLH (W) - ’“"t M(Wt) .
%’K)(’“'L‘k(ﬂ"‘“tw() é(6(%*4)“(_2(7\())(“*,%*1— Mot g )

Now take (u’?){ez a sequence of divisions for R with llA™M|—= 0.

% & M
As f is continuous on each \L‘*‘ “}H) we have Yeso d66)>0 ¢ lwm

£

\[¢ﬂa ->\£NH0 Q(Ly} ls; in the same time, as I&lN-—>0 we obtain that
for §le)yvo Fwgt ’tucxx[& -Uk &t)‘\em w2y, « Take Eollall and M2y =
as f is :anroas:mg, we have —la| "*ﬂg(u“\ Ao(uw4) fm‘{)- {D/(/z:’) and

1) In this proof, m, was ocasionally denoted by x

. , e
and the component generated by an element of X, {xﬁ% ) was

denoted as the corresponding projector on this componente.




11—
I3 A L » | ‘ +—7‘ : : + * e }
f(u‘{ﬁ) ‘%Q‘i) ¢ B(q?ﬂ) ‘~Q\M‘1¢ 2% So lMt u4+ (we) — fu\* u‘ (s ) -
i(}Lﬂq) (’\l«{ “\41 M«{. “\) \ < HA H (w{ U\ =~ V\J( \“1‘) <(A\~\ O\W\,Leéo\»«A

GS\QM. Uﬂf\wg z)) | M- {2(/1 (vur ,«4—\*\4‘ )l \(A‘nl
tq Tl

Pass to 1lim and obtain the conclus:wn.
M

If f decreases —y -f 1ncreases so the equatlon my=m +S f(“)‘l“*tu.

admits the solutlon( (i(u, 1- M\ﬂ* (1) hence the equation (2) admits -
¥

the solution. -—( f(u 4 o=tbie) *(4)

For example, if mt-f(t)l and f is strictly increasing,

then the solution will be m, = %({ (%4 o The equation (2)

becomes :m this case i\{-) ‘19(0, A + _HZ“*)A%(“ w4 = {ﬂ,) {- =
f(o‘ ‘“f S {/(M 1 . Indeed, - (Zﬁ(u) {- {/ﬂ.} 4)+ (4) ((ﬁ(«,q ]eu-)) 4) (1/

For u ct = f(u)< £(%) = (fiu) - fi(c)) {40 and if u>t take into

* %

account that (cl) =1 =X for any ¢ > o,

In the sequel we shall consider f(t)=t for all t o and
Coquqlo_Qg_ ’ '
XVcomplete. Even if (trlt)t;?)O is a martingale, the family

‘b}-—-“)(u;l—%t)** is not a filtration (i.e. for u<o it increases in

.t.
respect to t, if uyo it does not). Indeed, for u<o amd o<s<t
we have (UM— M)y 7O =7 Eg ((wit-mg) )& (WA= W\'{)f S0

(wBe(t) ~Eg(mp))y ¢lut-myg) =2 (W Cg (1) ~mg), & (Wit My

But u¢ o =yu-h e w0 =p (Wi-wg), ¢<(wE ) ~ug) For u> o ;ve have only
(W h-mg) 4 & (Wwi-wg, tued IndAeed, denote m= (WA-Mt)y 7o w7 WiA-my o -
SO M7,(~th)vo il.es W7 (—\M:)f . But any positi\}e martingale increasesi
so (~Wt), 2 (W5), => W2 (Ws)p =D my-ug =D mrwd 7wl g =
VAL W A 7/(“&;4-"*‘\5,)4. ':)cuu«s%., ‘Wil 7o
So m'c,u has the shape of a (M U&(.] busnc martlng‘ﬂ.e (in respect to
t) but does not verify the martlngale condition (&{'4—4»« ) ” ( %t‘w)
£ g er(uct-mg) L (wte g, () # u-m) ) becamte (gl @ (wt- wglt!
In respect to u, mt,u is a (wi- “‘\‘CN -bagic martingale

¥k
because for u<v we have (wA *W\{-L ((V = ‘“H’)*}( 1) = (wd-wg),” "4
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. X o 5ok
and u—>(u4-wt), is a filtration.
Our purpose is to. obtain a 1att10ml Tt0 representatlon

result (see the classical result in [5] ) for martlngales. Tbls

- means to represent any 729 -martingale as stochastlc 1ntegra1

in respect to basic martingales (possible in respect to other
filtrations). One can write any process (mt)t7 o 88 the difference
; _ 7
of two negative processes mtz-(mt)_—(—(mt)+)=(mt/\ o)-—(-—(mt)+)
a.-by for t7 o. Apply theorem 2.1. for (at)t o and (bt)t7 "
we obtain the existence of cﬁ:tf(‘vhqt): B{Tu (ud- Q{—)+ such that
)

(6) my=m + S qutM - gw cl\‘o.t‘u_

0
where 8y oA t, u(1) and bt =B 6, u(l)
The most interesting things are in the case (mt)t7 o = ’29 -

martingale: a, and b, are negative martingales, hence([’?]) they are
decreasing 857 8 =) u&—assu-t— Ay => "qs,w C \Af& and also_ |
f)s“c_: ﬁt& for o¢cs<¢t and any ucR. S0 t —— at,u and t k———abt’u,
are basic AL (resp. _B )-martingales. So we have proved

PROPOSITION 2.,2. Let be X countable complete vector
lattice with unity ‘and /27 g filtration. Then any Z -martingale
admits a latticial representation (6) in respect to It (resp. _f; 3
basic martingales, ' |

Suppose that X is complete. Let us notice that @{‘b\_ - is
bounded by (0,4 and t-— @, increases so, by the martingale
convergence theorem 1.3, we have (orQW.. At _\/qtu_ A:'d; KU)

t70

where Aw « 18 the projection on (\tj Rt w) \] (wA- qt) In the
same time Ec(th) = E () - qs)"‘ (1) because ag 1g° 2 -martingale.
The last term is < (- as)” for uzo (resp. it is7,=© for
u<o, u=o0) hence ti— U is %, -supermartingale (resp. sub
martingale; martingale). We saw (prop. l.#4.) that any bounded

sub(super)martingale is order convergent. In our casg we can



e
indicate its limit namelyA . (1) « Another remark in the case

: (mt)t7 =mart1nga1e is that A, =E_ . Indeed, for u=o we have
g 4

Eg(au)>Qs,u + By Lim wg ebtiain Es(Aano(n):aﬁ‘o + By lim we

Cobtain Ao ()2 Beo(Aeg () =3 R, 1) e}y » But el )

MO C ?, . Conversely, if x ¢, =>|x\Al4}= o for y such that

7o

for z such that P-\ Aluizo \} b QJL,O'O ; 4o €& aQa,'

@ °

Ylalajzo Yae U)?Qt .But U(cu.) ~U(“«t}i’cU%é~/l&M =0 -

The things are going wrong with the representation if
(mt)tzfo is a sub(super)martingale only: one of the processes

b, .is submartingale (and negative ) hence the corresponding

ity
filtration is increasing; the other is a submartingale (negative)
‘only.v ' |

| But, if you look carefully to the proof of prop. g
see that the point was that the proceSS'(mt)tZ'o'oould be
decomposed into the difference of two decreasing processes. Any
such process admits the latticial decomposition (6). For example,
the monotone processes and the processes that admits a basic
boob—Meyer decomposition. Indeed, mtht(a)+ct with (ct>tz s
increasing can be written as my=-E, (a_ )—(~E (a )“Ct> i.e. &3 the

difference of two decreasing processes ( Lt(a+ ) are pogitive

martingales hence increasing). So, the bounded below submartingales

admit this representation { also see [8] ).

1 thank Prof.dr.I.Cuculescu for pointing me out a big

mistake in an early version of prop.l.3.

|
(
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