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REMARKS ON POSITIVE BLOCK-MATRICES

Tiberiu Constantinescu

1 INTRODUC’I‘ION )

In the paper [5], we presented a certain structure of the positive block-matrices
which proved to be useful in. treating various problems (see [7] for applications to
factorization theory, [9] for operator modelling theory or [3], [8] for connections with
graph theory). .

Motivated by some remarks concerning [7] and [3] which are described in the
next section, we are faced with some new computations into the structure described in
£5],

These computations are made in Section 3 and 4 and then, we return in Section

-5 to some of the raised questions.
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2. MOTIVATION

A. We fu'st consider a nonstatlonary process, ive. there are given a family
i"&t /ncZ} of Hilbert spaces, a Hilbert space “Q, and a family L XV(n)/nC Z} such that
V(n) acts between 'S\'n and the evolution space 52,0 of the process for every néZ.

The covariance kernel if={s../i,jezk of the process is defined by

Sl] = V*({)V(j) for i,je Z. 1t is obv1ous that J is a positive- deflmte kernel and there is no :

restriction in supposing Sii =I.g, for i€Z. One more assumption which can be made

2 /
without loss of generality is that g7 V(e .
, O neZ n’
A special interest is paid to the spaces j)p \/ V(k)é?ek, p,q mtegers or Lo,

k=p
p< g, and to vamous angles between them (for two subspaces 4 and % of a Hilbert

space &€, the operator angle between 4 and D is defined by B(Y3 )= pzsé él% :
.where Piﬁ is the orthogonal projection of &% ontod.)

Thus: ‘ )

(a) compute the angle between the past QQ; and the present 3&0.

(b) compute the angle between finite sections of past and future. \

(¢) eompute the angle between the space ”31:6\//33;‘2 and the space V(p)kp,
\p\<n,n>0.

Several methods for computing these angles (actually, for the statio/nary case)
are developed, és_ those in [4], [11], [14], [15], [16], [17]. | |

In the paper [5] a certain structure of the given process U is indicated. Thus,U
is uniquely determined by- a family of contractions b =iGij/i,je Z i< f&, where
Gii = Oﬁﬁ. for ieZ and for i < j, '

Gije;i(@C 8D

iy Cige

A28
(recall that for an operator TEX(&%)which is a contraction, ie., WTl< 1,

E
" bounded operators acting between % and$).

k)
Dy = (T - T*T)* and &, is the closure of the range of Dy and L%, §)is the set of

With these elements, it is obtained in({7], Theorem 3.1) the following formula:




I B(¥ i& ) = s-1im (D ...D % w0.Dqx ) : (2.2)
360 n-><« G Gon ’ (’01 .

and thus we have a solution to the pr‘oblem (a). A similar result can be o‘btainved in
~ connection with problem (b) and it will be deseribed in the last section of this paper.
The necessary computations will be made in Section 4.
But our main interest is about problem (e). The structure of the space
- S0 -n . .
iLnV K_‘D suggests that it can be the evolution space of a certain subprocess of the

given process. Indeed, if we define the process \7[“] given by the operators:

‘ Vi-n+m), m<0 ‘ »
ik m) = (2.3)
Vin+m-1), m>1

we remark that ‘Q \JT B E) ], the evolution space of the process 'U[n] :

So that, it will be of interest to determine the family 41[ n] of parameters
associated to ’U[n]. This will be the question treated in the next section.

B. In [10] it was pr'oved' that a banded par.tial positive matrix has a positive
completion. A generai result in this direction was obtained in [13].

Consider a partial block;matrix M =Y‘-Sij/1 i) < N73 ,' where Sij are bounded
operators acting between the Hilbert spaces gﬁj and 5(’,]., in the sense that some of the
elements SJ are specified and some of them are not specified. Moreover, the main
diagonal is specified (and we can suppose, without loss of generality, that Si; = Ige ) and
all the principal block-submatrices formed by specified elements are positive. l

With M, an undirected graph G = (V,E). is associated in the following way:
A% =4{1,2,...,N73 and an edge between i and j exists (i #3) if Sij is specified. G is called
the associated graph of M and we say that M is subjacent to G. As a main result lin [13]
it is proved that a graph G has the property that all the partial block-matrices
subjacent to G admit positive completions if and only if G is a chordal gaph. G is
chordal if every cycle of length strictly greater then 3 has a chord, i.e. an edge joining

two nonconsecutive vertices of the cycle (see [12] for all the terminology on graphs

whieh we use here).




This result in [13] is based on the following property of chordal graphs
established by Fulkerson and Gross (see [12]): there exists an ordering O’ = [vl,vz,...,vN]
of the vertices of G such that each set Ai_ =ivj € Adj(vvi)/j > i% is a clique. FO;’ a’ver‘tevx
vev, Adj(\;) =§;w€V/(u,w)EE} and a subset of V is a cliqué if the indUced graph is
complete.

An ordering as above is called a perfect vertex elimination scheme (perfect

scheme) of G and it has an useful "visual” transeription. First, a block-banded structure
of a (partial) matrix is the specification (after a reordering, if necessary) of a family of

index sets B, =3{v/mk <v<n 73¢{1,...,N1.5k = 1,e,Dy My <My, 1=my <My Conlm

1 < n, <...<np = N. For an index set A, denote by M(A) the prineipal submatrix

of a (partial) matrix corresponding to this index set. The submatrices M(Bk) are the

and 1 <n

bloks of the specified block-banded structure of M.

A sequence of positive integers:

L

1< r‘l < 1°2<...<r'S =N : . ’

is called a completion sequence of G if satisfies the properties:
\

(%) there exists an ordéring G(rl) of ry vertices of V(we denote by V(rl) the set
of these vertices) such that for any partial matrix M subjacent to G, M(V(rl)) has a
block-banded structure whose bk;ks consist of specified eleﬁents.

(&) for each k, 1 <k<r, there exists an ordering G (r,) of ;'k vertices of W

(v( rk) being the set of these vertices) such that:
1YV
(i) V(r, )2 vir, ;)
~ (ii) for any partial matrix M subjacent to G,
I\"(V(r )) has a block banded structure, such that N‘(V(r‘k 1)) appears as the first block

(of course, with a possible different order of the vertices) and the other blocks consist

only on specified elements.

¥

2.1. PROPOSITION. G is chordal if and only if it has a completion sequence.

PROOF. One implicétion was already used in [3] (see also [2]).
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Thus, take G = [vl’VZ""’VN] a perfect scheme of G, define Ck =§:vk,...,rN7;and

'R be the least integer for which Cp, is a clique. Then, Cp, 4 is partitioned as:

Cr-1= L VR-15" AR-1YPRr-1

1 = - / =
and definer; =N - R + 2, V(r;) = Cp_, and
Sl Wp i depip g
where the order in Dy ; and Ap_, ia arbitrarely choosen. It is obvious that @) is

satisfied.
Further on, we define for k = 2,...,R-1,r, =r, 4 *+1, V(rk) =Cy and partitioning

Ck as

- »

C, =1v}UA UD,,
then :

Q‘(rk) = [Dk, A ]

k* Yk
with arbitrarly choosen orders in Dk and Ak' Again, it is obvious that (D) is fulfilled.

Conversely, let 1< ry < Ty ool P ¥ N be a completion sequence of G. Let
V(rs) - V(Ps~1) = [Wl""’wp]’ the ordering being that given by G(rs). Then, define

vy = wp, Vo = Wy_prensVyy 1

Continuing in this way for all the sets V(rk) - V(rk_l), k =8« 1,.:;R and V(rl)

alone, we obviously construct a perfect scheme of G, by the property (i) and (3+). #

9.2. REMARK. It is known (see [12], for instance) that the graphs for which all
the subjacent partial matrices admit block-banded structures are exactly the proper

interval graphs. Recall that a graph is called a proper interval graph if its vertices may

be identified with a set of intervals on the real line so that an edge (i,j) occurs if and
only if interval i and interval j intersect, and no interval is included in another.

The notion of completion sequence permits to introduce classes of graphs

#
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intérmediating between proper interval graphs and chordal graphs. That is, take G a
chordal graph and It =>§ 1< ry olir_= N7§ a completion sequence of G.
o -

The index 8 = S(r) is called the length of this completion sequence r. Define
N(G) = min{S(r)/ r a completion sequence of G B , (2.4)
For a connex chordal graph G, we have the following properties:

(1) N(G) = 1 if and only of G is proper interval graph.
(2) {N(G)/ the cardinality| V| of V is fixed { =§ 1,250\ V| - 2 X

(3) N(K1 n): n -1, where K is the complete bipartite graph with n+ 1
5 : _

1,n
matrices partitioned into a 1-stable set and an n-stable set.
The connections with the representations of G as an intersection graph of

subtrees of a tree will be presented elsewhere. &

Based on the existence of a co‘mpletion sequence it appears the poséibility of
using the structure of a positive block-matrix established in [5] in order to parametrize
all thé positive completions of a partial positive (bloek) matrix subjacent to a chordal
graph. |

This was already realised in [3] (see also [2]) for partial positive. matrices under
invertibility assunﬁptions. Of course, in this case, the compétibility relations (2.1) are
superfluous and o'ur interest here is to see what happens in the general case. Take, for
instance, the graph G = (V,E), with V = S,__1,2,.'3,4,5,6“3, E =§(1,2), (1,6), (2,3), (2,4), (2,6),
(3,4), (4,5), (4,6), (5,6)3, then < =[1,3,5,2,4,6] is a perfect scheme and r = (4,5,6) with
6'(4) =[2,4,6,5], 5(5) = [5,6,2,4,3], T(6) = [3,4,5,2,6,1] is a completion sequence.

When passing from the parametrization of the positive completions of M(V(4))
to the parametrization of the positive completions of M(V(5)) we are faced with the
problem of the modification o? the parémetrs of a positive block-matrix under a
permutation of the indices. Further on, when passing from M(V(5)) to M(V(6)), we
remark that we are faced exactly with thesame problem as in the study of the space'

:{, \/3% of a nonstationary process.
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3. DELETING ROWS AND COLUMNS

We consider a family of Hilbert spaces %&en“g nez and a covariance kernel

: o= YL Sij/i,je ZE This means that the operators:

n e
an(':)") =l k(;)mzek-ﬁ kgmﬁek

‘(3.1)

® b

M =(Sym<iicn L e

are positive for m,n€ Z, m < n. We suppose, without loss of generality, that Sii = Igt," for
ieZ :

By ’i‘heorem 1.8 4in 5] % is uniquely determined by a family of contfaetions
%(f) =4 =5\Gij/i,jez, 1K j\g s Where Gii = O&. for i€Z and for i< i Gij satisfies
(2:1), :

. I T
Using ‘the remark that T is a contraction if and only if [T* :

K is positive,

we obtain from the above result the structure of block-contractions, That is, suppose

T:(Tij/i,jz 1) is a block-contraction in 'i(_@

" (&)
13€i, -®1§c'j)‘ Then, T is uniquely
1: J:

’ I T
determined by a family of contractions ‘5(_ \T* I}). Most of them are zero and we

retain only the family of contractions $(T) = SLGij/O < i,j\fg , With Gio = 0 as operators in
i({fﬁ'i_l,éc’i) for i>1 and &sz 0, Goj: O as operators in i(‘fffj,&’j_‘l.) for j> 1 and
'é)ﬁo = O, and else where,
G ey .,O%G;'_I') (3.2)
1=1,j sJ ,
We will write T=T(Cjij/1_<_i,j) in order to explain the dependence of T on
parameters.
; Further on, -fix 2 covarignee kernel % and ‘fI:SLGij/i,je Z i_<_j25 are the

parameters of . For every i€ Z, define the contractions:

BT BT ' (3.3)
Loleinl Sy - 0 ‘

R=TG; />R




i S e

|
..8.‘ ;(
and consider the spaces -
\
i-1 - : '
K.= & Q,R)O% IR, | : | (3.4)
1 j==0 ! 1 1 ‘ & = 2
and the unitary operators:
o B2 :
1 i 0 I | (3.5) -
w, = I® J(Ri) ‘ e
0 LR ER®R) 0 |

where & *(Rj) is the range of the unitary operator J"a(Rj) ted R* - *(Ri) defined by

(2.7) in [5] and '@(Ri) is the range of the unitary operator CiJ(Ri) :'SBR-—»% @(Ri) defined
i

by (2.5) in [5]. Moreover, for a contraction T€ L£(X,95), we define the elementary

rotation of T,

D) :&@&T*q 4 @@T

T . D,.* (3.6)
J(T) =

i

By Theorem 2.4 in [5], if we define

V(n) :'&En—-‘*r 3&0 _
(3.1

gk % * '
W W WE/ge , n<O
‘ ¥
o o)
, V(n)—P&O/E?@O. , n=0
Wowl'"_wn—l/Sen’ n>0
then
557 V(EVGE) LjeZ (3.8)
Defining:
. >
Vis QJ) @C ®§DG* ~—-_§>J®;® ®&G
0 peidl YLk ij k=i Mg ij _
| . (3.9)
Vi = JJ.(Gi’iﬂ)Jj(Gi,HZ)...Jj(Gij)



i s

~g~

) means that the elementary rotation of G ;4 Was
5 9

where the subseript ] at J(Gi,i+k

augmented with the identity operator on the corresponding spaces and

i
@3*-——»@%
kJGkJ k=i Cik

%ij ik ‘
S = (3.10)
UI&\J *)

P 1]

we have by Theorem 1.3 in [5] that

Uj; = ViU,

si]. = T(G, [k =i+ 1,...,])Ui+1’j_1T(ij/k = 4yeenyj=1) +
. : (3.11)

+ D % veeD A% G..D il
Cliar™ Gige1 B CGinng -1

Two special features of the structure of Sij are implied by the formulas (3.8)

and (3.11). That is, by (3.11) we obtain exaectly the parameters on which Sij depends.

" On the other hand, Lemma 2.1 in [1] shows a certain multiplicative structure of

Wi in which the main role is played by the elementary rotations of the parameters.

¢

~ Motivated by thesé remarks we have the following results.

; ~ N
3.1. LEMMA. For i < j, there exist operators Eij’ Eij and A= A(Sij) such that:

* _ ok

S*E.. = EXA(S..)

1] 1) 1] 1]
I\

A (S )A(S ) Ej U—I.

PROOF. Define Eij such that

,

B Ui,j_lT(G_k’j/—J 4 EE0IE

E.. =
1] : DG ...DG
1] j"lvj

(an explicite formula for E.. i can be easily obtain

to the following general rule: for a formula (G /1 <myn< D

; ”~
ed using [5)). Then, define Eij according




»}{O~

- #* . oW
tormula = formula (G;__ . /i <mn < j)
j=n,j=m

i Bl e

(3.12)

Finally, using computations made in[5], we obtain that

~
Sij Eij
Y= o e
W de e
ij ij

(3.13)

' ~
and as Uij is a unitary operator, we get the required relations between Eij’ Eij and

A(Si].). 2

/\
operators  B., B.. and

3.9. LEMMA. For i<j, there exist

A= A(T(Gik/i+.1 < k <j)) such that

%

* : : sl
By;T (‘Gik/l F ks

G (o fi+1<k< B, =BlA
ik Ske by

R
AEAARIR oL
ij i

1]

ij ij —

B o ; A
PROOF. Define Bij by formula (1.7) in [5] and B..= D% "'DG*' Then, by

formula (1.6) in [5],
\‘ ' 5 5 Fa
TG [ b S k<3J) By

B A
1]

i il ij

(3.14)

and as Vij is a unitary operator, we get the required relations. @

R |

3.3. LEMMA. There exist operators Cnm’

1 < j < m)) such that

el i /1i<m'1<'<n)=A%*
‘nm ij—"=" S nm

G LG BIC o =
e R L L

*
nm

A

PAS
C

nm

and A= A(T(Gy/1L1L<m,




: e

PROOF. The proof is based ‘on Lemma 3.2 and on the remark that, with a slight
abuse of notation, :

\T(Gij/l / s (TR B m).= T(T(-Gij/l £i<m)/l j< m) =

=T(T(Gyy/ 145 ¢ m)/1<i<n). ' g m

The abuse of notation consists in the fact that the "parameters" T(Gij/l Lig n)
~and respectyively, T(Gi]./lgjﬁ m) must be "corrected" with some obvious unitary

operators. &

Fix now a strictly increasing sequence of integers, = (?tn/ne Z) and let ¥ (%)
be the covariance kernel obtained from ¥ by deleting the rows and columns indexed by
B Ordering Z-% with the natural order, Z-7C = [“"p—l’po’Pl""]"’ consider the

following family of contractions: for i€Z,

G _ ()=5S (3.16)

Ei’pi'*‘l i pi’pi;l
‘and for j>i+ 1,

l\fioreover, we define the following Dictionary: for i€ Z,

D —»E
G () Pas
pi?pi+1 l’ l+]‘

pi,pm( ) PoPiiq

G* () —»A
PpPisq

where the elements in the right are defined by Lemma 3.1, and for j> 1+ 1,

G¥ (%) —A
P _ , :

R CEA R S




2=

where the elements in the right are now defined by Lemma 3.3.

We can obtain the main result of this section.

3.4. THEORFM. The elements of the covariance kernel =S (5¢) are computed

using formula (3.11) for the family (%) acéording to the rules defined by the above

Dictionary.
PROOF. For the proof we use formula (3.8) and computations similar to those in

the proof of Theorem 3.2 in [1]. &
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4, COINCIDENCE OPERATORS
We extend here a result in [6]. Thus, use the rule (3.12) in order to deseribe a
certain dual process of a given process ’7 Then, take :S the covariance kernel of v and

“% its parameters. We introduce now the following elements:

5 Sl S ek . ade Rl g
J{i=j<:a_ (RO OV®RY S @y
P . ~ S ‘
Wi:JLi-«»'S&m ‘ | (4‘.2)

/\. N
V(n):gﬁr;—»ﬁil

T o

w/lw2 Lo WD /g, n<o (4.3)
~ §
OERE IR n=0

W W ?v 3 >0

W Wiseeo —n+1/ €y I

1’
and the covariance kernel of this process U is also™S , in view of the properties of the
rule &

Consequen’tly, by general dilation theory (because the minimality conditions

n ~
31 \/Zv(n)gf and f}i = \/ V(n)'§€ hold), there exists a unitary operator

NV 'J{ b 3( (called a 001n01dance operator) such that V(n) WV(n) for n€Z.

Our purpose is to obtam a certain 1y with a wellunderstood structure

4.1. THEOREM. The operator Iy, @J(T(ij/j < 0,k > 1)) induces a coincidance
~ 0

operator for U and .

PROOF. A repeated use of Lemma 2.3 in [1] together with the identities (3.15)

get, with a slight abuse of notation, the following relations:

J(T(ij/j <i, k> =0 &i@ J(T(ij/j <i, k> DIW, | (“1_4)

and

5
J(T(ij/] <ik> i) =W &i(@ J(T(ij/] <i, k>i+ 1)) (4.5)

 Here, the abuse of notation consists in the fact that the two elementary




_.,“,),.

rotations in\lrolved in (4.4) (as well as those in (4.5)) must be "corrected" with some
unitary operators, of the type of the operators A in formula (2.8) in [6].

With these relations and taking the structure of V(n) and/\\’(n) into account, we
obtain the required property of VI&O@ J(T(ij/j < 0; k>1). @ .




e

5. APPLICATIONS

A. We return to question (b) in Seection 2A regarding the computation of the
angles between sections of past and future. We will obtain formulas in terms of the

parameter ‘% of the given process. Thus, we have the following resuit:
5.1. THEOREM. For g€ {k€ Z/k < 0§\ §-w) and pe fkeZ/k > 1Y 0 Lok,
€ 0 L Emmk
B(Sz.q, 3D = 1) S ¥
where
DA
T=P T(G. /q_<_j50,p_>_k21)
S{q i

"ﬁe ® @ SZ)G*
Ka-i

and  is the coincidence operator described in Theorem 4.1.

? :
PROOF. Define P = ' k that'
O efine ’&Q @&&G and remar that

Veg, TR j

qy \/ v(k)é’Ck (R Okc_Dl Gk
=- o

Then,

jzp—w & @@:%G )
Ak

and we obtain:
0 <y Dy _ni*p~ T T e T
BRG R = Py WP W P ('
The last remark is that we can use formula (4.4) and the proof is finished. @
5.9. REMARK. For g = 0 and p =%, we obtain formula (2.2).

Moreover, the formula obtained in above theorem explains the results in Lemma

3.1, Theorem 3.2, Corollary 3.3 and Theorem 3.4 in {1]. Formulas in Corollary B 5 “and

" Corollary 5.7 of [1] are also consequences of Theorem 5.1.

B. Now, consider question (¢) in Section 2.A regarding the computation of the

space &00\/“3&_“ We already remarked that ﬁw\/k—_n is the evolution space of the

process \[ n] defined by (2.3). Let < be the covariance kernel of the process, L and %




wl{@_.

1ts parameter, and let %&’[n] be the covariance kernel of the process \)’[n]. Remark that,
w1th the notation in Section 3, ty [n] =% [], where X =[-n+ 1, -n+2,...,n-1]. Using

" Theorem 3.4, we get

5.3. COROLLARY.

w* W AV =
=1 =L

—n 1 |
 A,ryedlleR oF ~F @ & &,
]=—f>ﬁ k=n+1 “-nk’

e,
.

where @)[*n] _is the identification of the defect space of the column-contraction of

parameters (S_n n’T(G-n—l k/-n +1<k<n)...) and E_ I that defined in Lemma

3 b :

3.1. &

5 4. RFMARK. Usmg Theorem 3.4 and Theorem 5.1, we can obtain a
computation of the operator angles B(R b 3 p) for Qe WkeZ/k<0 }U{—oak
pE{keZ/k > 1}\)%@’5 and n > 1, n < p. The formulas are 31mllar to those in Theorem

5.1 w1th T replaced by a T[ ) based on the parameters of the process'U[ n] @
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