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REII{ARKS ON POSITTVE BLOCK-MATRICES

Tiberiu Constantinescu

,
1. INTRODUCTION I

In the paper [5], we presented a eertain structure of the posit ive bloek-matrices

which proved to be useful in. treating various problems (see [?] for applications to

faetorization theory, [9] for operator modell ing theory or [3], [8] for eonneetions with

graph theory).

Motivated by some remarks eoneerning [?] and [3] which are deseribed in the

next seetion! we are faeeid with some new eomputations into the strueture described in

t5l .

These computations are made in Seetion 3 and 4 and then, we return in Section

e .$ to some of the raised questions.
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2. MOTIVATION

A, We first consider a nonstationary proeess, i.e. there are given a family

l&nln ez\oflritbert spaces, a Hilbert space lfdo anri a family iJ=tvtn)lnez] such that

V(n) acts betrveen Jtn anO the evolution space Jd of the process for every n€T'-

The govarianee kernel 3 = [s,rl i , j  €u 1 of the proeess is defined by

s., = v*(i)v(j) for i, j€z,.-It is obvious that * is a positive-definite kernel and there is no
u

restriction in supposing sii = t&, for ieE. one more assumption whieh ean be made

without loss of generality is that \ 
= Yuvtnl'1fn.

A speeial interest is paid ," tn" -i"ees Itfl = g" V(k)8€k, p,q integers or ! * ,

p ( g, and to various angles between them (for t*o sutspu"u, 3 anO S of a Hilbert

spaee.1e, the operator angle between * anOfJ is def ined Uy n(9,S)=tq #f '

.where nf i, the orthogonal projeetiott of 6e onto* ')
)d

Thus:

(a) eompute the angle between the past f{ anO the present J4o.

(b) compute the angle between finite sections of past and future.

(e) eompute the angle between the spaee ?iiq: and the spaee

\ p \ <  n ' n  )  o .

Several methods for computing these angles (actually' for the stationarY ease)

are developed,  as those in  [4 ] ,  [11] ,  [14] ,  [15] ,  [16] '  [17] '

In the paper [5] a eertain strueture of the given

is uniquely determined by. a family of contraetions

G.. = O+, f.or ieV- and for i  ( j '
l l  o l i

G., €.9 (-$^ , s., * \
u t i+ l , i  t ' i , i - l '

(recail that for an operator tet$e,$) whieh is a contraetion, i 'e" \\TllJ 1'

Dr= (T -  t*r) i  and &, is the elosure of  the range of  D, anc' t (&,S) is the set of

bounded operators acting between {L and9 )'

I4lith these elements, it is obtainec in([z], Theorem 3.1) the following formula:

v(o) &0,

proeess U it inci"ated. Thus,1-I

(2 .1 )
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I& - B({to,1{; )=';![ (o.* .."nL;n..,o.ilr, (2.2)

and thus 1ve have a solution to the problem (a). n similar result can be obtained in

eonnection wigr problem (b) ano it  wil l  be deseriued in the last section of this paper.

The neeessary eomputations wil l  be made in Section 4.

But our main interest is about problem (c). The structure of the spaee

:[T" Jd_l suggests that it ean be the evolution spaee of a certain subproeess of the

^, - [n l
given proeess. Indeed, i f  we define the proeess \ i"" given by the operators:

V(-n + m) , m ( 0

vlnl(*) (2 .3  )

V ( n + m - 1 ) ,  m ) L

I
_ J

I
I

L

we remark ttrat .{VX{: =1{ 
f;1, ,t u evolution spaee of the process "'y[n].

So that, it wil l be bf interest to determine .the family 3 tnl of parameters

assoeiated to t l [n]. This wil l  be the question treated in the next seetion.

B. In [10] i t  was proved that a banded part ial posit ive matrix has a posit ive

eomplet ion.  A genera l  resul t  in  th is  d i rect ion was obta ined in  [13] '

Consider a partial block;matrix 14 =f s,rlr ( i, j  (- NJ , ' where S,, are bounded

operators aeting between the Hilbert spaees &, anO ie ,,  in the sense that some of the

elements Sil  are speeif ied and some of them are not specif ied' Moreover, the main

diagonal is specif ied (and we ean suppose, without loss of general i ty, that Sr'  = I5a.) and

all  the prineipal block-submatrices formed by specif ied elements are posit ive.

With I\4, an undirected graph G = (V,E). is associated in the fol lowing way:

V =.f 1,2,.. . ,N] and an edge between i and j exists ( i  I  j)  i f  Si j  is speeif ied' G is ealled

the assocjated graph of M and we say that M is subjaeent to G. As a main resuit in [13]

it is proved that a graph G has the property that alt the partial block-matrices

subjacent to G admit posit ive completions if  and only i f  G is a ehordal gaph' G is

qhordal i f  every cycle of length str iet ly greater then 3 has a chord, i 'e'  an edge joining

two noneonsecutive vert ices of the cyele (see [12] for a]l  the terminology on graphs

whieh we use here).
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This result in t13l is based

established by Fulkerson and Gross (see

of the vertices of G such that eaeh set

v €V, Adj(v)  = lw

eomplete.

on the following property of ehordal graphs

t12l): there exists an ordering d = [v'vr," ',v*l

Ai  =f  vr€.  Adl(v i ) / j  > i i  is  a c l ique. For a vertex

subset of V is a elique if the indueed graph is

An ordering as above is ealled a Perf(:gi yertel eliml$ti (p-erfeet

sghejLe) of C and it  has an useful I 'visual '  transeript ion. First, a block-banded strueture

of a (part ial) matrix is the speeif ication (after a reordering, i f  neeessary) of a famiiy of

i ndex  se ts  Bn  = l v /m t  (  v  (  nU lc l f , " ' , u } t k  =  1 , " ' ,P ,  * k  (  nk '  l "  =  m l  (  m2  ( " ' (  mO

a n d l ( n , ( n , ( . . . ( n o = N . F o r a n i n d e x s e t A , d e n o t e b y M ( A ) t h e p r i n e i p a l s u b m a t r i x

of a (part ial) matrix eorresponding to this index set '  The submatrices I\4(Bu) are the

bloks of the speeif ied bloek-banded strueture of M'

A sequenee of Posit ive integers:

1 (  f t  (  r r ( . . . ( r r= N

is cal led a eompletion seguenee of G if  satisf ies the propert ies:

(cc) there exists an ordering a(rr) of r,  vert ices of v(we denote by \t(rt) the set

of these vert iees) sueh that for. any part ial matrix M sub.jaeent to G' n4(V(r1)) has a

bloek-banded structure whose bloks eonsist of specif ied elements'

(Jb) for eaeh k, 1 < k < rrr there exists an ordering 6 (rU) of rU vertiees of V

(vt being the set of these vertiees) such that:

\
(i) \/(rn)) v(ru-r)

.  ( i i )  for any part ial matrix l \4 subjacent to G'

Ir{(V(rU)) has a bloek-banded structure, sueh tfrat M(V(rp-1)) appears as the f irst block

(of course, with a possible different order of the vert iees) and the other blocks eonsist

only on sPeeif ied elements'

2.1. PROPOSITTON.

pRooF. one implieation was already used in t3l (see also [2]) '

t t  )
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\ .  '

Thus, take C= [v 'vr , . . . ,v"J a perfect  scheme of G, def ine CU=f vU,. . . , ro[and

R be the least integer for which CO is a eiique. Then, CR_t is partit ioned as:

cn-r = LuR-f iU A*-rUDR-r

and def ine.L = N -  R + 2,  V(rr)  = C*-,  and

o, (rr)  = [Do-1, AR-l,  uR-t]

where the order in D*_, and A*_, ia arbitrarely ehoosen. It ' is obvious that (x") is

satisf ied.

Fuilher on, we define for k = 2,.. . ,R-1r tk = .k-1

C,-  as
K

c .  = f  v . J U a . \ J D . ,
K ' K ) K K '

+ 1, v(rk) = Ck and Partit ioning

. lhen

cr(ru) = [Dp, An, vul

- with arbitrarly ehoosen o.a"r, in DU and An. Again, it is obvious that (ib) is fulf i l led.

, Conversely, let 1 ( r, ( r, (...( r, = N be a eompletion sequence of G. Let

. 
V(rr) - V(rr-r) = [wr,...,w0], the ordering being that given by c(rs). Then, define

ul  = *p,  uZ = *p_lr . . . rVp = t1.

' 
Continuing in this way for all the sets V(rn) - V(rn-r), k = S - 1,...,R and V(rr)

alone, we obviousiy eonstruct a perfect seheme of G, by the property (i i) and ('L). @

2.2. REMARK. It  is known lsss [12J, for instance) that the graphs for which al l

the subjacent part ial matrices admit block-banded struetures are exaetly the proper

interval graphs. Recall that a graph is called a proper interval graph if its vertices may

be identif ied with a set of intervals on the real l ine so that an edge (i , j)  oeeurs i f  and

only i f  interval i  and interval j  intersect, and no interval is included in another.

The notion of eompletion sequence permits to introduee elasses of graphs
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intermediating between proper interval graphs and ehordal graphs. That

ehordal graph and r = L1 < r, (...( ., = N] a conrpletion sequence of G.

The index S = S(r) is called the length of this completion seguence r.

a completion sequenee of G J
N(G) = minls(r)/  r

is, take G a

Define

(2.4)

For a eonnex ehordal graph G, we have the fol lowing propert ies:

(1) N(G) = 1 i f  and only of G is proper interval graph.

(2) [N(c)/ the eardinal i ty\vI of v is f ixed \  = I  r ,2,. . . , \v\  -  z I
(3) 

*N(nt,n) = n - 1, where l(r,n is the comprete bipartite graph with n + r"

matrices part i t ioned into a 1-stable set and an n-stable set.

The connections with the representations of G as an interseetion graph of

subtrees of a tree will be presented elsewhere. B

Based on the existenee of a eompletion sequenee it  appears the possibi l i ty of

using the structure of a posit ive bloek-matrix established in [s] in order to parametrize

all  the posit ive completions of a part ial posit ive (bloek) matrix subjacent to a ehordal

graph.

'  
This was already realised in [3] (see also [2J) for part ial posit ive. matrices under

invert ibi i i ty assumptions. Of course, in this ease, the eompatibi l i ty relations (2.1) are

superf luous and our interest here is to see what happens in the general case. Take, for

instance,  the graph G = (V,E) ,  wi th  V =\ .Lr2,5,4,5,6J,  E =[  (L ,2) ,  (1 ,6) ,  (2 ,J) ,  (2 ,4) , , - (2 ,6) ,

(3 ,4) ,  (4 ,5) ,  (4 ,6) ,  (5 ,6) ] ,  then cr  = [1 ,3,5 12,4,67 is  a  per fect  scheme and r  = (4,S,6)  wi th

6 ' (4) .= 12,4,6,5) ,  g(5)  = [5 ,6,2,4,2J,  q(6)  =15,4,5,2,6,1J is  a  complet ion sequenee.

, 
When passing from the parametrization of the posit ive eompietions of M(V(4))

to the parametrization of the posit ive completions of [ f(v(s)) we are faced with the

problem of the modif ication # the parametrs of a posit ive bloek-matrix under a

permutation of the indiees. Further.on, when passing from M(v(5)) to n4(v(6)), we

remark that we are faeed exaetly with thesame problem as in the study of the spaee'

lqvJt:: of a nonstationary proeess.
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3. DELETING ROWS AND COLUMNS

We consider a family of Hilbert spaees
J r
J =\S.. / i , ieZl .  f . f r is  means that the operators:

t&"\ ne u and a eovariance kernel

. t
f
t
F', B

ft
$
f

Mmn(V)  =  l4 rn
l l n

: ,O &, . : r  O fe
kJm- K '  kJm 

-"k "

By Theorem 1'3 in [5], J is uniquely determined by a family of eontraetions
* r f , l = { = { c  / i i c q  t z : . 1-  \ - ,  -  - 1 - i i / i ' r e Z , ,  i 5 i 1 ,  w h e r e  G i i  =  0 6 .  f o p  i e  Z  a n d  f o r  j

, 
,r., le'z and for i ( r, Gij satisfieS

Q.r).

using the remark that r is a eontraetion if.and onry ir II * ]l ,, positive,

we obtain from the above result the strueture of bloek-eon,.""l,l"rt ;*; ,r, ,r;;;
T = (Tij/i, i > r) is a block-eontraction in d,t6 &,, 'E *,,,. Then, T is uniquery

.  i .  i = l  -  
l '  j = l  " ' J ' -

determined by a fami ly of  contraet ions *( .  l : .  1 l l .  *"r ,  of  them are zero and ure
L T '  I ]

retain only the family of eontractions t(T) = lC,r/O J i, jJ, with Gio = 0 as operators in
{t&i-r,-&i) for i : 1 and dtb = o, Goj = o as operators in tfx{-,6r1-1) for j ) 1 and
&o = O, and else where,

c, ,  e.{ , (8. .  ,&.*  )  (8.2)u  u i - l , i  " i , j - l

we wil l write T = T(G,r/11 i, i) in order to explain the dependence of T on
parameters.

Further on, - f ix h eovarignce kernet j  and * =l Crr j i , ieZ,
parameters of i. For every i€2, define the eontraetions:

R, , 6 s^ '------* tc.I  k= i+ l  , i * l ,k  _  
i

Ri '=  T(Gi ,k / i  >  k)

i s i i  a r e  t h e

M - - = t r r r Z t ( i , j ( n )mn .* iJ

are positive for m,neZ, m ( n.

i e L

( 3 . 1 )

We suppose, without loss of generality, that S,, = I*. for
I I  dL.

I

(3.3)
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S r-&

]

(3.8)

(3.4)

(3.5)

(3.6)

(3.?)

and eonsider the spaees

i - 1
K, =-.{*&*tnr)o & i *$ (o,)

.  
I  j =  

. r

and the unitarY oPerators:

r  w , , { { i * t * i l i

unitary operator . lb(nr) ,& o* -*S *(Ri) defined by
J  n i  J

of the unitary operator oc,(Rt)": &n.-* $(nr) defined 
r

I

eontraetion T€$(Se,9), we define the elementary

I

o

owr..lwn- 1/3Qn,

: .  t
I

W , = I @  tl \

L

wherg & *{nr) is tlie range of the

(z.z) in [5] and $(n,) is the rangd' l

iP

by (2,5) in [5]. lVloreover, for a

rotation of T,

:  *e  OS,

2.4 in [5]

,^
t  Gn*

J(T)

By Theorem

v(n)

n ( 0

n =

n )

0

0

,,r+ { oo"

f r or.l
,l(r) = I I

Ft 
'-r. 

J
,1,  i f  we def ine

td
o

[*]r*lr...w;/d€n,
vr"l =|rf o l&o ,' l * o

i , ieZ

then 
j

s.. = v*(i)v(j)u
Defining:

o$"i j' i -c\ @ $ ̂ * --u inlo
uii ' 

n$*I"t*r,r-*Gi 
5 rYi*cir

s

vij = Jj(ci,i*r)J5(ci,i+z)...Jr(c,.)

-:-,,\ ".'tnl .,, :1

(3.e)

d



where the subseript j at J(Gi.i+1a) means that the elementary rotation of Gi,i+k was

the eorresponding sPaces and

*  D n *  . . . D r : *  G i ' D ^  " ' D ' -  iGii*r t t i , i -1 u ui+1,j  "  j -1, j

Two special features of the strueture of S,, are implied by the 19pmu1g5 (3'B)

and (3.11). That is, by (3.11) we obtain exactly the parameters on whieh s',  dePends'

o n t h e o t h e r h a n d , L e m m a 2 . l i n [ l J s h o w s a c e r t a i n m u l t i p l i e a t i v e s t r u c t u r e o f

Inr. in which the main role is played by the elementary rotations of the parameters'
" i  " '  .  

;  we have 
' t^u 

fo"o*ing results'
Motivated bY these remark:

3.1. LEnf,ntA. For i  ( j ,  therejxist operatorst, j , t , j  and A = A(S,r) such that:

E,:ti = A(sijfii

tit,i = siA(sij)

e*(silAei:l* ?if,, = r.

, PROOF- Define E,, such that ,

 
using [5]). Then, define Et, aecorotn9

(  m ,n  (  j ) ,

., .-:.,,, r uilgla*.ail.al,..

- 9 -

augmented with the identity operator on

- i " .  i  ^
U. . : QJ^ *, ---) 9.S6

U k- j  u-k , j  K=l  ' ' i k

uii = uij(ui+1,i i&cL)
" i j

we have bY Theorem 1.3 in [5] that

(an explieite formula for E' can be easily obtained

to the fol lowing general rule: for a formula (Gmn/i

S., = T(Gru /k = i+ 1,. . . , j )Ur*t, j - tT(Gt r/k 
= i ," ' ,1-1) +

(3.10)

(3 .1  1 )

lli \=1""'ff;:: '\



'^*,tuier;,n -

- l o -

there exist operators

(3.12)

(3.13)

EtI Et, and

",j, 
6,, and

rfir" = formula (cf-n,i-r/i < m,n J j)* 
j

Finally, using computations made in[5]' we obtain that

- , - . . , ' '

\ t ' :  
t i j  

\  
'

U , j = l  I

Lt,i A(sij) j

Uij i, a'unitary operator, we get the required relations between

B

/ \ - \

f  r t c ,o t i+ l l kS j )  B t i  
\  , r . rn ,

\ tt \
L  B i j  A \

rry operator' we get the required relations' B

. l

A. There exist o!g!3191! cnm, 6nr e"g A = A(r(G t{t S i 5 n'

and as

A(sij).

t.z. LEMMA. rgi i ( i,

A = A(r(G,u/i+t < k Sj)).99!-th"I

B:,T*(crLli + r S k I j) = ofii
u t K

r*(cik/ i  + 1 ! kl i f i i j  = BIA

A*n *Gifir, = l.

PROOF- Define tt j OO

formula (t.0) in [5],

[5]  and Qo = D.* " 'Dr:* '  Then'  bY
rJ  - i , i+ l  t ' i jformula (r .z)  in

! . .  =u

a unita

I,EM.ftI,

and as Utj t t

,' 3.3.

,:.il

l J i J m ) ) s u c h t h g t
A *

cnmT*(c i  { ! - i  Sm, 1 5 j  5 n)  = ACnt

T*(ci j /1 ( i  ( m, 1 S j S nfn* = cX*A

. A*a *tfi*6n. = I
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?ROOF. The Proof is based on

abuse of notation'

-  4 4 -

Lemma 3.2 and on the remark that, with a slight

r(Gij/ l  < i

=T(T(ctr/ 1

( h t

J J

l S j S m ) =  r ( r ( c i j / 1

< m ) / r ( i ( n ) .

< i < n ) / 1 _ j S * )

(3 .15)

faet that the "parametersrr T(Gij/ l J i I n)

treorreeted't with some obvious unitary

(3 .16)

(3 .17)

The abuse of notation eonsists in the

and respectyively, T(G,r/l 5 i S m) must be, u

operators. R

Fix now a strietly inereasing sequence of integers, l i  = (f(n/n€Z) and let f,(X)

' t

be the eovariance. kernel obtained from f by deleting the rows and Columns indexed by

n: . Ordering Z- X with the natttral order, Z -K = [.. .rP-1rPs,P1," ') u consider the

fol lowing family of contractions: for ieL,

G -  ̂  (  ) = s ^ . , .'  Pi 'Pi+1 uirPi+' l

a n d f o r j > i + 1 '

c^ ^  (  )=  T(G*n/p i l  m < P1a1,  P3-r  <  n < Pj ) '
Pi'Pi

M o r e o v e r ' w e d e f i n e t h e f o l l o w i n g D i c t i o n a r y r f o r i e Z ,

D,- trrl 
] Ep,,p,*,

" P i ' P i + l  
'  E l " l + r

D^* ------ ?*Pi,Pi."1(r ) "Pi'P1+1

GI - (rr) ----+A
pi ,p i+1

where the elements in the right are defined by Lemma 3'1, and for j  > L + 1'

ooo,,orto ) * 
"P1'0,

. A

l"i,n,(* ) 
* coi,o3

t lro,t"'-+ A
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where the elements in the'right are now defined by Lemma 3.3'

We can obtain the main result of this seetion' '  j

" 3.4. THEOREM. The elgrnegls of -thg-govagg1ree kerne! { tr<) are .eomputed

using formula (3.11) for the family *txl aeiorqing to the rules defined by the ?bove

* Dietionary.

4 
pROOF. For the proof we use formula (3.8) and eonputations similar to those in

the pioof of Theorem 3.2 in [1]' @
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4. COINCIDENCE OI'ERATORS

. We extend here a result in t6l ' Thus' use the rule (3'12) in order to describe a

certain dual process of a given process f' Then, take i the covarianee kernel of 1F and'

t )  m r :n fq .
t i ts parameters. we introduee now the following elements:

,^ i- l    
Q, ='6- 5 -d,l*ue-,*ro5ti, l  :  (4'1)

t  j= - *

/\ C /\ Q,2)'w i , i l i * i l r * ,

. , n *  / \ ,  

'

?(n) , {e n* &;

f f i1 f i ; . . . f i1nrden,  n(o  (4 '3)
I A L I I

i ( n ) =  { e $ t 1 r c "  
n = o

l n '  , A  4 -  , 4 ^  - \ n

1ft" f r1, . . .  f r -n*r /&n, n )  o

and the .ou"ri"n"u kernel of this processt i ,  glro{, in view of the propert ies of the

rule 
A.

- Consequently, bY general dilation theory (because the minimality eonditions

and ii' = Vjtnl{<. hold), there exists a unitary operator
- * o -  

n e Z " " '  n  -  r  n e Z  "  ^
r . \ n

V , Ao*Q', (cattec a eoincidqnee operator) sueh that-V(n) ='gV(n) for n€Z'

o u r p u r p o s e i s t o o b t a i n a c e r t a i n t y w i t h a w e l l u n d e r s t o o d s t r u e t u r e .

4.T.THEOREI ' | I .  The operator  I9  0J(T(G" / i  (  0 'k  )  1) )  induees a eoineidanee

.  . -  - 1 *  and  t .  

L  qLv r  ̂ a t  
o  

-  * ' -  '  -  
JK '  "

operator lor \.,, -

PBOOF. A repeated use of Lemma 2'3 in [1] together

the fol lowing relations:
get, with a slight abuse of notation'

wi th  the ident i t ies (3 '15)

,l(Ttcrn/i ( i, k > i)) = n *,*'1(T(cru/j 
( i' k > i))wi (4,4')

(4 .5)

the two elementarY

and

Itr(cru/j ( i,k ) i)) = ft-,(I&.@'l(r(G5r li ti 'L 1 1 + 1))'

Here, the abuseof notation eonsistsin the faet that



,  - ,111-

r -r :- t t t  ' t \  lo< (4'5)) must be treomeetedtt with $ome
r o t a t i o n s i n v o 1 v e d i n ( 4 . 4 ) ( a s w e I t e s t h o s e i n ( 4 . 5 ) ) m u s I u e - . \ i 9 [ l g U ! v v

in formula (2'8) in [6] '
un i t a ryopera to rs ,o f the typeo f theopera to rsAn .^ ' . - .

tcture of V(n) and'V(n) into account'  we

obtain the required property of l{eo@ ltt(crn/l ( 0' k I 1))'

f;

I \



5. APPLICATIONS

A. We return to question (u) in seetion 2A regarding the eomputation

angles between seetions of past and future' We wil l o[tain formulas in terms

/ 1  - ,  L ^ - - -  4 L ^

oarameter I of the given proeess. Thus, we have the following result:

,. 5.1. THE0REM. Fol q€ lke zlk < o\u [-"o! and p e $ez/ul 1] u l*l ,

B(Jt;,ilf = rf*tt*nP,

where

p : k l t l

of the

of the

/\
- 14r

P  = P ^  sI  -  r too  
6  ee1^

k:-! 
- \ro

and nf

PRooF. Define P+ = P*^b$Snr*

' o , . o

u : = n1-,y itr.lileu = y*(&ooflr*oil",.
. l  

k=g

T = p - r ( c i r . / o S j ( 0 ,

p
rA

ft=

and.remark that

Then,

Xr? = wo(&1@

and we obtain:

B(It;, Rf = Y*P-Ywor*lvf Y*P- tF '

i  
The last remark is that we can use formula (a'4) and the proof is f inished'

5.Z.REMARK. For q = 0 and p ="o '  we obtain formula Q'2)'

I\4oreover, the formula obtained in above theorem explains the results in

3.1", Theorem 3.2, Corol lary 3.3 and Theorem 3.4 in i t l .  rormulas in corol lary

Corollary 5.? of [ t ]  are also consequences of Theorem 5'1' W

)
2 G,rt

Lemma

5.5 'and

B. Now, consider question (c) in

spBee Ja;"q:. we alreadY remarked

proeess t1[n] d"finud by (2.3)' Let O 
:"

Section 2.A regarding

that 3{:v{f it tr'"

the eovarianee kernel

the eomPutation of the

evolution sPaee of the

'Y and 3of the Proeess.u



i ts parameter, and t"t g[n]

( . J

with the notation in Section

Theorem 3.4, we get

- t 6 -  l

,  [ - ]
be the eovarianee kernel of the proeess V"". Remark that,

r ,  $ [nJ ={ [w], where l f , ,= [-n * 1, -n * 2, .  , .  ,n-11. Using

5.3. COROLLAR1

rrylr.. .*-1(J2-:v]{::) =

-n-t ^ r.= .'6r- &*{n') @ &fr o &-neffino
j=-*  r

$o
@ &,.  ,

k=n+ l  
- -n , k '

'ts

of the column-edntraction of
rybglg atlf -rr tn" ro""trri.

parameters- (s-n,n,T(9-n-1rk/-n+ 1< k (  n) , . . .  )  and

3.1 .  e

'heorem 5'1' we ean obtain a
. 5.4. BEMARK. Using Theorem 3'4 and 'I

rngres B(A;, 1| l) ror q€ tk€ z/k So ]u[-o],

pe!t<e?k > l]Ul.ol 
"n9 

n ) 1, n < p. The formulas are similar to those in Theorem

? . , /  - [ n ]  ^ - f n ' l

5.1 with Treplaced Uy aTtnJ based on the parametersof the processlJr"r '  B

E is  th i r t  def ined in  Lemmq
t r s r t -

I
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