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EXQESSIVE AND SUPERMEDIAN' FUNCTIONS WITH RESPECT
TO SUBORDINATION RESOLVENTS OF KERNELS

N. Boboe and Gh. Bucur

In this paper (X,ﬁ) is a measurable space @ (Vi )o(>0 is a bounded resolvent
of kernels on (X 3) and P is a kernel on (X 3) such that PV f < v f (¥ £ > 0 and such

that there exists a resolvent 7{= (U )‘X>0 on (X,\ﬁ) with
U = N - PYO
Uy SV (W)X >0.
We denote by é (resp. o ) the convex cone of all supermedian (resp.
excessive and finite 7/-a.s.) functions on X with respect to the resolvent y

- We prove the following two results:
a) For any positive -measurable function w on X we have
we Jg¢<—::> inf(v,Pv + w)e ,f;@ for any v e 2&0
b) If
P( éo)c g C_ Z
/a a
then for any w& (% g) we have

weé <_<.~>V/\(Pv+w)ef for anyv € g
o
whence A is the infimum operation in the vector lattice ( ng gﬁ’ <)

PROPOSITION 1. (G. Mokobodzki). Let w be a positivég—measurable funection

on X such that we& fgé . Then we have

inf(v,Pv + w) & % o YE éy



Proof. Since V{ is bounded it is sufficient to prove the assertion for any

&

ve év which is bounded. From hypothe31s we have -
”_Uo(_<_V°< ; (V)O<>0

and therefore it follows ([ 5 1) that the bounded kernel

Gy, = 2 (U =1 40

n=0

is subordinated to the bounded kernel

- n_
G ooy, .-Z(ocvo() =1+ XV,
n=0
If we denote
B =G 4y, (xV, - LUy )=P(o<vo<')

then, using the fact that - ; o
waygcc sz (¥) x>0,
we get (see [ 3 1, Theorem 5) N

inf(v,P( ¢\, v)+w)= inf(v,P v+ w)& ‘Z

Vo ?

If o¢ tends to + o we obtain -
ihf v,Pv + w) & = .
(v, ) Q AYS jﬂy

LEMMA 2. For anyu & éﬁ’ u <=0 there exists
U= Tu € gy
such thaf
u, - Pu0

u_ < u u-Pu=
o—-é ’ .
”_

and such that

te@ t< ¢, Pt=t =>t=10

Moreover we have



veév ,v_§£((a)uo-Pu0—<_v—PVéu0§v_'
: v
~ Proof. We consider, inductively, the sequence (tn)n in é& defined by

to=~u A Pu

We put

v, ;:é&{tn | meN |
@f
and we have
e y VSR, BV EV,
o 5,

Let now u :=u- V. We have u, & éy/
| uo—Puo=u-Pu p
Ifte éy is such that Pt = t, tséaothen we deduce inductively
JL o
vo+ tgé = (¥) neN

and therefore

t=0
Let now v& f% be such that
uo—Puo§v~P'v.
We have
b = VSR, = v) < P(RVV (u, =) .
Ry”’ = v) < P(Ryy’ (e~ V).
From :
5
R @, -v € é&@
we get

5
P(R‘yvy (w, - LR v (uy - v)




P

P(Rfv (uo*V2)=Rf%(uo—v) ;
.Since ' :
%

R - Lw Ao
2 é&

we deduce from the above considerations

%

R,‘. .(uo—v)=0, u <v.

PROPOSITION 3. If w & éZé is such that there exists u e éy, u < o4 with
w<u-Pu
then there exists ve& é]f’ , v { u such that
w=v-Pv.
Proof. Let (fn)n be a sequence of positive bounded j—mesurable functions on X -

" such that

_Ufn T W .
We have
Ufn=an—Pan (V) n&eN
If we put
v = T(an)
we get

vngvn+1§u

and therefore w = v - Pv where

w=v-PV where v= supvn_<_ u.
‘ n

THEOREM 4. Let f be a positiveB—measurable function on X such that for any

VE&( 7 v bounded withv - Pv &€ éZC we have

inf(v,pv+ f) € fv/ : ‘




Thenfé %a

g

Proof. Let f be a positive function on X as in this theorem and letve é?f be

a bounded function such that v - Pv e éZL We denote by g the funetion on X define by

g = inf(f,y - P¥) .

We want to show that g € %é . Let us denote

%

t:= lim < U, R 9

o=y =0

Obviously we have

tefu R i 4 gonX, t=R “ g Z—a.s.onX
We' remark thét

t;—-g;cgweézdwgg Z(—a.s.onX}.. i

Indeed, forany we& é such that w>g _ a.s. on X there exists a
w° 'z

measurable subset A of X such that U(lA) = 0 and such that
w+oo-Uf1A)_>_g on X
Since w +ob ° U(lA)e f& we get
W+00'U(1A)_>_RZ( g, w>t

On the other hand t > g 7/~ a.s. on X.

Since t < v - Pv we deduce, using Lemma 2 and Proposition 3, that there exists

ueév,uﬁv such thatt=u—Puandsuchthatfor any w € Z<L,t_<_w—1£>w we have

u < w.

From the preceding considerations we deduce
u-Pu<v-Py, inf(f,u-Pu)<g on X
g < inf(f,u - Pu) 7(- a.s. on X

and fheref ore




-6 -

g = inf(f,u - Pu) Z(— a.s. on X
g*thihf(uf+Pu) ?Z— a.s. onX o ey -:" =

By hypothe51s the functlon inf(u,f + Pu) belongs to Jéc, and therefore the functlon ‘

U= lim o Vg, (inf(u,f + Pu))
KX =30

belongs to ﬁﬁ' and u' = inf(u,f + Pu) Z[— a.s. on X.

We have also
g+Pu=1u ?{—a.s.onx,u'ﬁu,
g=u'—Pu_<_u'—Pu' ?Z-a.s.onX
and therefore
u—Pu=.t<u'—Pu',u§u‘,u=u‘.
Hence
u\—Pugf,u—Pugv-Pv,u—Puig on X
g<t=u-Pu Zz-a.s.onX

and therefore g & \}ﬂu i

From the above considerations we get
inf(f,U ¢ )= inf(f,VzIo = BViep )
for any positive, bounded, measurablev function <f on X and therefore the function
b Sﬁp’ (/'V\f(—f, U{n)) :
belongs to f/p% . Moreover we ha\}e
f0= 0 on the set A :=[U1 = 0], fo_<_fon X3
f = f on the set X\ A.
Since U(1 ) =0 we get

U, 1=l f<f < Aie, feﬁp%,




In the sequel we suppose that_

P fﬁm éy and év & f

PROPOSITION 5. For any element w & Zén( éﬁ ; ) we have

s/\(Ps+ w & §

for any s C where /\ is the infimum operator in the vector lattice ( ; ¥
Y gl Z“ -

Proof. Since w€ é?[ then there exists a sequence (gn)n of positive, bounded
: : ,3—measurable function on X such that Ugn,’w_lt will be sufficient to show that
SAPS+w) & év W s e gﬁ,

where w is of the form u - Pu with u efy , U bounded.

Sincé Uw <V (¥) « > 0 and since

U=V-PV

then we get, using Proposition 1,
t := inf(s,Ps+ u - Pu) & jéw

We have
t + Pu = inf(s + Pu, Ps + u),
ok .
t+ Pu=(s+Pu)A(Ps+u)

where A is the minimum in é&" and
Al
te=sup <XV t
ol

and therefore

/t\=(s+Pu) A(Ps+u)-Pu=s A(Ps+u-Pu).

THEOREM 6. If £ €( é?}— év)ins such that

vAPY+DE éy W) v e 52”
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where A is the infimum in the vector lattice ( é”_- é% <), we have
f e éZ& b
Proof. Let u;, uy € bee such that
f+u,=u;

We denote by g the function

f(x) if uz(x) g o0
g(x) = 4
+e4 if uz(x)z + o0 .

We have for any v & éz},
w+u2=(s+u2)/\(Pv+u1)
where
w = VA(Pv + f).
If we put’
t = ihf(s + Ug 5 Py + ul)
weget,g+u2=u1,
t = inf(v,Pv + g) * u,

and therefore

A
w + u2 =t
where
T= sup <V, t
o
Hence

oA Vg t= Vg (inf(v,Pv + ) + X Vo Uy = AV W+ oLVpe Uy

and therefore .
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oV, (inf(v,Pv + gL aV, W < w < inf(v,Pv + g)
on the set [u <eo). Since g =+ on D = o] we deduce
(mf(v Pv + g)) < inf(v,Pv + g) on X

and therefore

inf(v,Pv + g) € 32@»

From Theorem 4 we get g € %L
But from

+ =
- g+uy=u

we deduce

where

and therefore, f = g & %Zl .
REMARK. Let u (Ug )o‘ K ﬂ/ (v 000 , be two rezolvents on (X,93)
such that the initial kernels U and V are bounded and such that
U=V-PV
where P is a bounded kernel. Then H. Ben Saad in ([2)) proved that we have
U, £V W)L >0

iff Pf éj‘@é for any positive B-measurable function f. On the other hand G.

Mokobodzki proved in ([3)) that we have
Uog £V W)L >0
iff
inf (s,Ps+u-Pu+Pf) & 5%,

for any s¢ 27} . The above Proposition 1 and Theorem 4 show @ - how we can obtain

directly the M okobodzki result from the H. Ben Saad results and conversely.
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