INSTITUTUL DE MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

## EXCESSIVE AND SUPERMEDIAN FUNCIONS WITH RESPECT TO SUBORDINATION RESOLVENTS OF KERNELS

by

N. BOBOC and Gh. BUCUR
PREPRINT SERIES IN MATHEMATICS
No. 45/1990

# EXCESSIVE AND SUPERMEDIAN FUNCIONS WITH RESPECT TO SUBORDINATION RESOLVENTS OF KERNELS

by

N. BOBOC\*) and Gh. BUCUR\*\*)

July 1990

<sup>\*)</sup> Faculty of Mathematics, University of Bucharest, Str. Acquaintender 14.

<sup>\*\*)</sup> Institute of Mathematics, Bd. Pacii 220, 79622 Bucharest, Republic.

### EXCESSIVE AND SUPERMEDIAN FUNCTIONS WITH RESPECT TO SUBORDINATION RESOLVENTS OF KERNELS

N. Boboc and Gh. Bucur

In this paper  $(X, \mathcal{B})$  is a measurable space  $\mathcal{V}=(V_{\ll})_{\ll>0}$  is a bounded resolvent of kernels on  $(X, \mathcal{B})$  and P is a kernel on  $(X, \mathcal{B})$  such that  $PV_{o}f \leq V_{o}f_{*}(Y)$   $f \geq 0$  and such that there exists a resolvent  $\mathcal{U}=(U_{\ll})_{\ll>0}$  on  $(X, \mathcal{B})$  with

$$U_{o} = V_{o} - PV_{o}$$

$$U_{\infty} \leq V_{\infty} \quad (\forall) \propto > 0.$$

We denote by  $\mathcal{J}_{\mathcal{V}}$  (resp.  $\mathcal{E}_{\mathcal{V}}$ ) the convex cone of all supermedian (resp. excessive and finite  $\mathcal{V}$ -a.s.) functions on X with respect to the resolvent  $\mathcal{V}$ .

We prove the following two results:

a) For any positive measurable function w on X we have

$$w \in \mathcal{S}_{\mathcal{U}} \iff \inf(v, Pv + w) \in \mathcal{S}_{\mathcal{V}} \text{ for any } v \in \mathcal{E}_{\mathcal{V}}$$

b) If

$$P(\xi_v) \subset \xi_v, \quad \xi_v \subset \xi_u$$

then for any  $w \in (G_2 - G_2)$ , we have

whence  $\Lambda$  is the infimum operation in the vector lattice (  $\mathcal{E}_{\mathcal{P}} - \mathcal{E}_{\mathcal{P}}$ ,  $\leq$ ).

$$\inf(v, Pv + w) \in \mathcal{L}_{pe}$$
,  $(\forall) v \in \mathcal{E}_{pe}$ .

**Proof.** Since V1 is bounded it is sufficient to prove the assertion for any  $v \in \mathcal{E}_{\mathcal{V}}$  which is bounded. From hypothesis we have

$$U_{\alpha} \leq V_{\alpha}$$
 ,  $(\forall) \alpha > 0$ 

and therefore it follows ([3]) that the bounded kernel

$$G_{\alpha U_{\alpha}} = \sum_{n=0}^{\infty} (\alpha U_{\alpha})^n = 1 + \alpha U$$

is subordinated to the bounded kernel

$$G \propto V_{\propto} := \sum_{n=0}^{\infty} (\propto V_{\propto})^n = I + \propto V$$
.

If we denote

$$P_{\alpha} := G_{\alpha U_{\alpha}} (\alpha V_{\alpha} - \alpha U_{\alpha}) = P(\alpha V_{\alpha})$$

then, using the fact that

$$w \in \mathcal{L}_{\mathcal{U}} \subset \mathcal{L}_{\mathcal{U}_{\mathcal{U}}} \qquad (\forall) \propto > 0,$$

we get (see [ 3], Theorem 5)

$$\inf(v,P(\propto V_{\propto} v) + w) = \inf(v,P_{\propto} v + w) \in \mathcal{S}_{\propto V_{\sim}}$$

If  $\propto$  tends to  $+\infty$  we obtain.

$$\inf(v, Pv + w) \in \bigcap_{\alpha} \mathcal{L}_{\alpha V_{\alpha}} = \mathcal{L}_{v}$$

**LEMMA 2.** For any  $u \in \mathcal{E}_{\mathcal{O}}$ ,  $u < \infty$  there exists

such that

$$u_0 \leq g_0$$
  $u_1$   $u_0 - Pu = u_0 - Pu_0$ 

and such that

$$t \in \mathcal{E}_{\mathcal{O}}, t \leq \mathcal{U}_{\mathcal{O}}, Pt = t \Rightarrow t = 0.$$

Moreover we have

$$v \in \mathcal{E}_{y}$$
,  $v \leq g u_{o}$ ,  $u_{o} - Pu_{o} \leq v - Pv \Rightarrow u_{o} \leq v$ .

**Proof.** We consider, inductively, the sequence  $(t_n)_n$  in  $\frac{1}{2}$  defined by

$$t_{n+1} = t_n \bigwedge_{g} Pt_n$$
.

We put

and we have

Let now  $u_0 := u - v_0$ . We have  $u_0 \in \mathcal{E}_{\mathcal{V}}$ 

$$u_o - Pu_o = u - Pu$$

If  $t \in \mathcal{E}_{\mathcal{D}}$  is such that Pt = t,  $t \leq u$ , then we deduce inductively

and therefore

$$t=0$$
.

Let now 
$$v \in \mathcal{E}_{\mathcal{V}}$$
 be such that

$$u_0 - Pu_0 \le v - Pv$$
.

We have

$$u_{o} - v \le P(u_{o} - v) \le P(R^{y}) (u_{o} - v)$$
  
 $R^{y} (u_{o} - v) \le P(R^{y}) (u_{o} - v)$ .

From

we get

$$P(R^{1/2} (u_0 - v)) \le R^{1/2} (u_0 - v);$$

$$P(R^{SV}(u_0 - v_2) = R^{SV}(u_0 - v)$$
.

Since

we deduce from the above considerations

$$R \stackrel{\text{de}}{=} (u_0 - v) = 0, \quad u_0 \leq v.$$

PROPOSITION 3. If  $w \in \mathcal{E}_{\mathcal{U}}$  is such that there exists  $u \in \mathcal{E}_{\mathcal{U}}$ ,  $u < \infty$  with

$$w \le u - Pu$$

then there exists  $v \in \mathcal{E}_{19}$  ,  $v \le u$  such that

$$w = v - Pv$$
.

**Proof.** Let  $(f_n)_n$  be a sequence of positive bounded  $\mathcal{J}$ -mesurable functions on X such that

We have

$$Uf_n = Vf_n - PVf_n$$
 ( $\forall$ )  $n \in \mathbb{N}$ .

If we put

$$v_n := T(Vf_n)$$

we get

$$v_n \le v_{n+1} \le u$$

and therefore w = v - Pv where

$$w = v - PV$$
 where  $v = \sup_{n} v_n \le u$ .

THEOREM 4. Let f be a positive  $\mathcal{B}$ -measurable function on X such that for any  $v \in \mathcal{E}_{\mathcal{V}}$ , v bounded with  $v - Pv \in \mathcal{E}_{\mathcal{U}}$  we have

$$\inf(v, Pv + f) \in \mathcal{G}_{2}$$
.

Then  $f \in \mathcal{G}_{\mathcal{U}}$ .

**Proof.** Let f be a positive function on X as in this theorem and let  $v \in \mathcal{E}_{\mathcal{U}}$  be a bounded function such that  $v - Pv \in \mathcal{E}_{\mathcal{U}}$ . We denote by g the function on X define by

$$g = \inf(f, v - Pv)$$
.

We want to show that  $g\in \mathcal{G}_{\mathcal{U}}$  . Let us denote

$$t := \lim_{\alpha \to \infty} \alpha U_{\alpha} (R^{y})$$

Obviously we have

$$t \in \mathcal{E}_{\mathcal{U}}$$
,  $t \leq R^{\mathcal{G}_{\mathcal{U}}}$  g on X,  $t = R^{\mathcal{G}_{\mathcal{U}}}$  g  $\mathcal{U}$ -a.s. on X

We remark that

$$t = \begin{cases} w \in \mathcal{E}_{\mathcal{U}} \mid w \ge g & \text{$\mathcal{U}$- a.s. on $X$} \end{cases}$$

Indeed, for any  $w \in \mathcal{E}_{\mathcal{U}}$  such that  $w \ge g$   $\mathcal{U}$ -a.s. on X there exists a measurable subset A of X such that  $U(1_A) = 0$  and such that

$$w + \infty \cdot U(1_A) \ge g$$
 on X

Since  $w + \infty \cdot U(1_A) \in \mathcal{L}$  we get

$$w + \infty \cdot U(1_A) \ge R^{SU} g, \quad w \ge t$$

On the other hand  $t \ge g \mathcal{U}$ -a.s. on X.

Since  $t \le v$  - Pv we deduce, using Lemma 2 and Proposition 3, that there exists  $u \in \mathcal{E}_{\mathcal{V}}$ ,  $u \le v$  such that t = u - Pu and such that for any  $w \in \mathcal{E}_{\mathcal{V}}$ ,  $t \le w$  - Pw we have  $u \le w$ .

From the preceding considerations we deduce

$$u - Pu \le v - Pv$$
,  $\inf(f, u - Pu) \le g$  on X

$$g \le \inf(f, u - Pu)$$
 2- a.s. on X

and therefore

$$g = \inf(f, u - Pu)$$
  $\mathcal{U}$ - a.s. on X  
 $g + Pu = \inf(u, f + Pu)$   $\mathcal{U}$ - a.s. on X

By hypothesis the function  $\inf(u,f+Pu)$  belongs to  $\mathcal{L}_{\mathcal{L}}$  and therefore the function

$$u' := \lim_{\alpha \to \infty} \alpha V_{\alpha} \quad (\inf(u, f + Pu))$$

belongs to  $\mathcal{E}_{\mathcal{O}}$  and  $u' = \inf(u, f + Pu)$   $\mathcal{U}$ -a.s. on X.

We have also

$$g + Pu = u'$$
  $\mathcal{U}$  - a.s. on X,  $u' \le u$ ,  $g = u' - Pu \le u' - Pu'$   $\mathcal{U}$  - a.s. on X

and therefore

$$u - Pu = t \le u^t - Pu^t$$
,  $u \le u^t$ ,  $u = u^t$ .

Hence

$$u - Pu \le f$$
,  $u - Pu \le v - Pv$ ,  $u - Pu \le g$  on  $X$   $g \le t = u - Pu$   $\mathcal{U}$  a.s. on  $X$ 

and therefore  $g \in \mathcal{S}_{\mathcal{U}}$ .

From the above considerations we get

$$\inf(f,U\varphi) = \inf(f,V\varphi - PV\varphi)$$

for any positive, bounded, measurable function arphi on X and therefore the function

$$f_0 := \sup_{n} \inf_{n} (f, U(n)).$$

belongs to  $\mathcal{G}_{\mathcal{U}}$  . Moreover we have

$$f_o = 0$$
 on the set A := [U1 = 0],  $f_o \le f$  on X;

$$f_o = f$$
 on the set  $X \setminus A$ .

Since  $U(1_A) = 0$  we get

#### In the sequel we suppose that

$$P(\mathcal{E}_{\mathcal{V}}) \subset \mathcal{E}_{\mathcal{V}} \text{ and } \mathcal{E}_{\mathcal{V}} \subset \mathcal{E}_{\mathcal{U}}$$

**PROPOSITION 5.** For any element  $w \in \mathcal{E}_{\mathcal{U}} \cap (\mathcal{E}_{\mathcal{V}} - \mathcal{E}_{\mathcal{V}})$  we have

for any  $s \in \mathcal{E}_{\mathcal{U}}$  where  $\Lambda$  is the infimum operator in the vector lattice ( $\mathcal{E}_{\mathcal{U}} - \mathcal{E}_{\mathcal{U}}, \leq$ ).

**Proof.** Since  $w \in \mathcal{E}_{\mathcal{U}}$  then there exists a sequence  $(g_n)_n$  of positive, bounded  $\mathcal{B}$ -measurable function on X such that  $Ug_n$  will be sufficient to show that

where w is of the form u - Pu with  $u \in \mathcal{E}_{pp}$ , u bounded.

Since  $U_{\infty} \leq V_{\infty}$  (\forall )  $\alpha > 0$  and since

$$U = V - PV$$

then we get, using Proposition 1,

$$t := \inf(s, Ps + u - Pu) \in \mathcal{G}_{\mathcal{O}}$$

We have

$$t + Pu = \inf(s + Pu, Ps + u),$$

$$\hat{t}$$
 + Pu = (s + Pu)  $\wedge$  (Ps + u)

where  $\wedge$  is the minimum in  $\mathcal{E}_{gg}$  and

$$\hat{t} := \sup_{x} \propto V_{\infty} t$$

and therefore

$$\hat{t} = (s + Pu) \wedge (Ps + u) - Pu = s \wedge (Ps + u - Pu)$$
.

THEOREM 6. If 
$$f \in (\partial_{\mathcal{V}} - \partial_{\mathcal{V}})_{+}$$
 is such that  $v \wedge (Pv + f) \in \partial_{\mathcal{V}} = (\forall) v \in \partial_{\mathcal{V}}$ 

where  $\wedge$  is the infimum in the vector lattice (  $\mathcal{E}_{\mathcal{V}}$  -  $\mathcal{E}_{\mathcal{V}}$ ,  $\leq$ ), we have  $f \in \mathcal{E}_{\mathcal{U}}$ .

**Proof.** Let  $u_1, u_2 \in \mathcal{E}_{\mathcal{V}}$  be such that

$$f + u_2 = u_1$$
.

We denote by g the function

$$g(x) = \begin{cases} f(x) & \text{if } u_2(x) < \infty \\ +\infty & \text{if } u_2(x) = +\infty \end{cases}$$

We have for any  $v \in \mathcal{E}_{\mathcal{V}}$ ,

$$w + u_2 = (s + u_2) \wedge (Pv + u_1)$$

where

$$w = v_A(Pv + f).$$

If we put

$$t = \inf(s + u_2, Py + u_1)$$

we get,  $g + u_2 = u_1$ ,

$$\dot{t} = \inf(v, P_V + g) + u_2$$

and therefore

$$w + u_2 = \hat{t}$$

where

$$\hat{\tau} = \sup_{\alpha} \langle V_{\alpha} | t.$$

Hence

$$\propto V_{\infty} t = \propto V_{\infty} (\inf(v, Pv + g)) + \propto V_{\infty} u_2 = \propto V_{\infty} w + \propto V_{\infty} u_2$$

and therefore

$$\alpha V_{\alpha}$$
 (inf(v,Pv + g))  $\leq \alpha V_{\alpha}$  w  $\leq$  w  $\leq$  inf(v,Pv + g)

on the set  $[u_2 < \infty]$ . Since  $g = +\infty$  on  $[u_2 = +\infty]$  we deduce

$$\alpha V_{\alpha}$$
 (inf(v,Pv + g))  $\leq$  inf(v,Pv + g) on X

and therefore

$$\inf(v, Pv + g) \in \mathcal{G}_{\mathcal{D}}$$

From Theorem 4 we get  $g \in \mathcal{G}_{\mathcal{U}}$ .

But from

$$g + u_2 = u_1$$

we deduce

$$\overline{g} + u_2 = u_1$$

where

and therefore,  $f = \overline{g} \in \mathcal{E}_{\mathcal{U}}$ .

REMARK. Let  $\mathcal{U}=(U_{\alpha})_{\alpha>0}$ ,  $\mathcal{V}=(V_{\alpha})_{\alpha>0}$ , be two rezolvents on  $(X,\mathcal{B})$  such that the initial kernels U and V are bounded and such that

$$U = V - PV$$

where P is a bounded kernel. Then H. Ben Saad in ([2]) proved that we have

$$U_{\alpha} \leq V_{\alpha}$$
  $(\forall) \ \alpha > 0$ 

iff  $Pf \in \mathcal{S}_{\mathcal{U}}$  for any positive  $\mathcal{B}$ -measurable function f. On the other hand G. Mokobodzki proved in ([3]) that we have

$$U_{\alpha} \leq V_{\alpha}$$
  $(\forall) \alpha > 0$ 

iff

inf 
$$(s, Ps + u - Pu + Pf) \in \mathcal{L}_2$$

for any  $s \in \mathcal{E}_{\mathcal{V}}$ . The above Proposition 1 and Theorem 4 show how we can obtain directly the Mokobodzki result from the H. Ben Saad results and conversely.

### BIBLIOGRAPHY

- N. Boboc, Gh. Bucur, Perturbations in excessive structures, Preprint Series in Mathematics, 68 (1981), or Lecture Notes in Math. 1014
   Berlin-Heidelberg-New York, Springer 1983.
- 2. Ben Saad, Examples de noyaux admettant des resolvantes, Math. Ann. 265, 149-154, 1983.
- 3. G. Mokobodzky, Operateurs de subordination des resolvantes, (Exposé a Oberwolfach 1984).