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1 2

direct sums of C*-algebras of continuous functions from ecompaect Hausdorff spaces

We consider inductive limits A of sequences A.—> A_~>.... of finite

into full matrix algebras. We prove that A has topological stable rank (tsr) bne_

provided that ‘A is simple and the sequence of the dimensions of the spectra of Ai 'is
bounded. For unital A, tsr(A) = 1 means that the set of invertible elements is dense
in A. If A isinfinite dimensional then, the simplicity of A implies that the sizes of

the involved matrices tend to infinity, so by general arguments (see [23]) one gets

that tsr(Ai) < 2 for large ehough i whence tsr(A) < 2. The reduction of tsr from two -

.to one requires arguments which are strongly related to this special class of
C*-algebras. .

| The problem of reduction of real rank (see [6]) for these algebras was
recently studied in [2] in connection with some interesting features revealed in
several papers ([3], [1], [15], [5], [12], [11]). The reduction of tsr and real rank for
other classes of C*4a1gebras was studied-in [22]; 21, [81, [24), 17, ‘[25].
The paper consists of three sections :
1. Preliminaries and Notation
2. Local aspects of the connecting homomorphisms

3. The Main Result
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1.0 .
1. 1. For a unital C* —algebra A and-a fmltely generated prOJectwe -

A-module E, we denote by End (E) the algebra of A hnear endomorphlsms of E

~and by GLA(E) the group of units of EndA(E) For E A" we shall wmte GL(n,A) -

for GLA(An) and GLo(n,A) for the connected component of 1. Let U(A) denote the
unitary- group of A and U(n):= U(Cn). A selfadjoint idempotent element of a
C*—algebra' will be simply called projection.

.Recall some definitions from [23]. For a unital C*-algebra A and a
natural number n let Lgn(A) denote the set of n-tuples of elements of A which
generate A as a left ideal. The topological stable rank of A is the least n (if it does
not exist it will be taken by definition to be ==) such that Lgn(A) is dense in A"
One denot‘es‘by esr(A) the least integer n such that GL’(m,A) acts transitively by

right multiplication on Lgm(A) for any m > n. (If no such integer exists one takes

esr(A) = o0). For nonunital A one takes

~ ’~ ~
tsr(A) := tsr(A) and esr(A) := esr(A) where A is the algebra obtained from

A by adjoining a unit.

For a compact Hausdorff space X of finite covering dimension one has:

tsr(C(X)) = [9—‘1’2‘—’5] +1
esr(C(X) < [M—P%l] +:1
(see [23] and [18]);
1.2. We consider C*-inductive limits
A= 1_i_r;(Ai, $ ij.)
The Ai's are C*-algebras of the form -

s(i) ¥
Ay O i
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where X, is a Hausdorff compact space, s(i), n(i,t) are positive integers and M'n(l‘ B

is the C*-algebra of complex n(i,t) x n(i,t) matrices. The x-homomorphisms

@ij:Ai—-‘)Aj are not  assumed to be unital or injective. Wé denote by {)i the

: (i) 4
.natpral map Aiv-% A and by Xi —\F_;TiXit the spectrum of Ai‘

We begin with a brief discussion of the x-homomorphisms between certain

homogeneous C*-algebras. g

1.3. For given C*-algebras C,D we denote by Hdm(C,D) the space of all
+-homomorphisms from C to D with the point-norm topology. Homl(C,D) stands

for the subspace of unital *-hbmomorphism's. We shall identify

_ Hom(C(X), C(Y)®M ) with Map(Y, Hom(C(X), M ))

" where for topological spaces Y,Z, Map(Y,Z) denotes the space of continuous
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functions from Y to Z endowed with the comapect-open topology.

Each W ¢ Hom(C(X), Mn) has the forg

Y=t p,, feCX)

for suitable points xré X and mutually orthogonal projections P, in Mn' Let L‘P be
the set of all x's that appear in the above formula. More generaly, each
® e Hom(C(X), C(Y)®Mn) is identified with a map § : Y—>Hom(C(X), Mm) and we

define for each y¢ Y, L@(y) = LQ(y)' In the same way for given

§ ¢ Hom(@C(X V@M (4 y @C(Y!,,) X Mm(@))
andyeY we define |
Lg=lry ®
. é LS Qq‘@
where @d\jb denotes the component of @ from C(XO‘)C‘.C(X*)@

to C(-Yfi Yx M

() m(g)"



. . The map yHL@(y) has useful semicontinuity properties:

" a) if Lé(y) is contained in some open set U then \Lé(z)cU for any z in

- some neighborhood of y

b) the set {y 2l Q(y)nU # ¢S}is open for each open set U (see [9] and
[19]). | | |

1.4. The space Hom(C,Mm), C= @C(XA }x Mn(a y decomposes as a union
of disjoint open sets labeled by the systems of positive integers K = (ko() such that
the quantity i Mes :L_k% n(«) is positive. Let HomK(C, Mm) denote the open

subset corresponding to K. Then there is (see [10]) a principal bundle
()P
E(K)——)HomK(C, Mm)
with
G(K) =T Uk, ) x U(k ) as structural group
" 0
E(K) =TT Hom'(C(X_ ), M, ) x U(m)
A o
P . ; *
. P = u® § ®idM )@ DT

This déscription of p corresponds to the canonical embeding

@Mk& ®Mn‘g()@Mkoc M m

2.
We begin by givengtwo criteria of simplicity for C*-algebras A as above,
which extend the corresponding results for AF-algebras [4] and Bunce-Deddens

algebras [7].

2.1. Proposition. Let A =1im(A.,§.) be as in 1.1 and assume that the
—  Ln _ ‘
connecting homorphisms {)ij are injective,. Then the following conditions are

equivalent:



(i) A is 51mp1e

(i) For any positive integer i and any open nonempty subset U of X there
isaj_such that L@(X AU # ¢ foranyj> j, and xer,

(iii) For any nonzero a ¢ A, there is & j  such that '

§ij(a)(X) # 0 for each j> j_ and x (-Xj.
Proof. (ii}=>(iii). This is clear since for given a € A, one has
iD (a)(x) =0 if andonly if a=0 on L@ (x)

s+ (D=y(i). Assume that (ii) does not hold for some i and some open

nonempty U c;. Xi' Passing to a subsequence, if necessary, we may assume that for

any j> i the set FJ.={X€XJ., 3, (x)nU = ¢>\' is nonempty and F # X By the
ij

last part of 1.3 Fj is closed. Therefore the family (Jj)j>i where
J.= A.:a= F. °
j lae jia=0on F, \

defines a closed two sided ideal J in A. (Note that Ei)jk(']j) <J, since
L (y) <L (x) for- any ye L (x)). Also J # A since if e, is the unit of A. then
dlst(q) (e. ), J ) =1 for any j > i and so e, ¢ J. The ex15tence of J contradicts (i).

(iii)=> (i). Let J be a two-sided closed nonzero ideal of A. One has J=U@ nAi)
(see [4]). We shall 4prove that JﬂAJ. = A]. for large enough j. Take a& JNA,, a # 0. By
(iii) there is a j, such that @ij(a)(xﬁo for all j> jo and xeXJ.. Since
@ij(J ﬁAi)cJ (\'AJ. we find that éij(a) eJnAJ. for j> o Since (pij(a) does not

vanish at any point of Xj this forces J nAj = Aj' ]
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Let A =g"(Ai’ qJ ij) be as above. For a noninvertible element a€A, there
are X ¢ X, u&U(Ai) and a projection p €A, (both u and p "scalars") such that
_ua(xo)p = pua(x»o) = 0. .

For simple A the following sequence of Lemmas enables us to obtain
something similar for @ij(a) (for some j > i) locally around any point of X]., after a

‘small perturbation of a.

| 2.2: LEMMVA. Let & < Hom(C(X), C(Y)@Mm), k a positive integer , U a
non"empty-open subset of. X. Suppose that L@(y) nU has at least k points for some
ye¢ Y. Then there is a neighbourhood W of y and a projection valued continuous map
Gy 2 WM with rank qW(z)Zk for any z€&W such that for any feC(X) with
lf=00n'ﬁonehas |

. @(f)qw=qw<§(f)=0 on W.

U havihg disjoint closures sch that

" 'Proof. Take open sets Ul’ 9

L§>(y)nUcU1cU

L&(y)n (Y\U)c.U2

Using the semicontinuity of L¥ (see 1.3) we find a neighbourhood W of y

such that L@ (z) c U uU2 for any z € W. Take a continuous map g : X — [0,1] such

1

thatg=1onU, andg = 0 on U2 and define Gyy s the restriction of @(g) to W. It is

1
clear that g, is projection valued since g2 =g on LY;(W). The continuity of the
map z > tr CI)(g)(z) shows that for z close to y one has rank qw(z)-z k. The proof is

complete since fg = 0 on L§(W). O

) : 3
2.3. LEMMA. Let C :‘®i C(Z)®M 4y, § € Hom(C, C(V)®M ), k a
: B l= .

positive integer, U is a nonempty open subset of Z1 and yeY such that Lé (y)nU

has at least k points.
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Then there is a neighbourhood W of y and a projection valued map

pw s W—aM_ with rank pw(x) >k for x W such that for any a ¢ C satisfying

i

. ae

‘ 11.= e11a=0 on U ‘

(here (eij) is the canonical system of matrix units of Mn(l))
one has

@(a)pw = pW@(a) =0 on W.

Proof. Viewing § as a map @_ : Y—> Hom(C, Mm) let YK be the preimage
of HomK(C, Mm) under this map (see 1.4). The family (YK) is a partition of Y by
open sets. Choose K = (ki) such that y ¢ YK' Let Wc YK be a neighbourhood of y
such that the restriction of ® to W has a lifting &': W —>E(K). This is possible
since E(K)ﬂHﬁmK(C, Mh\) is a locally trivial fibration (see‘ 1.4). Therefore we

find eontinuous maps
u: W—>U(m)

O, WosHom(CEZ), M) i=1,...
| B
such that

@ = u(iél@i@id(Mn(i))@oko)U* on W.

Since L@ (y) = L a Zl’ shrinking W if necessary we may assume that Ql
1
_satisfies the condltlons of Lemma 2.2 and let Ay be the cox‘respondmg map. Put
Py = u(qW ®e11)u viewed as a continuous map W= Mk ®Mn(1) cM_. A simple
1

computation based on the conclusions of Lemma 2.2 concludes the proof. - U}

2.4. LEMMA. L'et G C(X)cx:l\'T and let a ¢ C such that det a(x) =0 for

some x ¢ X. Then for any & > 0 the are u,v ¢ GL(C) and b € C such that

|| uav - b” <t andbe,, =e b=0ona neighb\ourhood of x.

131



__8__'

Proof. Take u,v ¢ Gl(n,C) such that the matrix ua(x)v has only zero
entrigs on thé first row and onthe first column. Now b is easily found since
continuous functions vanishing at x can be uniformly approximated by continuous
: f‘unc'tions vanishing on a neighbourhood éf X v O k

3. 3w
‘The next step toward the mainl result is based on th.e following theorem

which follows from Michael's paper [16].

- 3.1. THEOREM. Let X be a Hausdorff compact space of dimension d, iet T
be a complete metric space and let Y be a map from X to the family of the
nonempty closed subsets of T.

Suppose tﬁat

~a) Y is lower sémicontinuous i.e. for each open subset U of T the set

{xeX: YX)nU# ¢}isopen |

'b) Each Y(x) is (d + 1) - connected

¢) There is £ > 0 such that for any 0 <r < ¢ and x ¢ X the intersection of
Y(x) with any closed ball of radiusrin T is a contrt-actible space.

Then there is a continuous map g : X—>T such that o (x) € Y(x) for all

x ¢ X,

Proof. The Theorem follows from Theorem 1.2 in [16] using the comments

from the second part of the same paper.

3.2. PROPOSITION. Let X be a Hausdorff compact space, let k' >k >1
integers, letW be an open cover of X and assume that for each WeW it is given a
continuous projection valued map Py * w— Mn such tha£ rank pw(x) >k forx ¢ W.
Haimi(X) < 20 =) =1 then there is a continuous projection valued map

p:X—‘rMn'such that for x e X

rank p(x) > k
“p(x) SV{pw(x) :Wel, xeW}
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Proof. For xeX  define WX = {W W xe W} and

H(x)—span{p (x)C Welﬂ'(x)k

For any linear subspace H ot Tet: V(H k) k< d1m(H), denote the St1efe1 mamfold
of - k-orthogonal frames in H - (see [14]). For any Xxé& X defme :

Y (x) = V(H(x), 'k)CV(Cn;k). We check that Y satisfies the conditions of Theorem |

3010
a) The lower semicontinuity of Y follows from the lower semicontinuity

of the map x »»H(x) c C" which is almost obvious having in mind the definition of

H(x).

b) V(H,k) is 9(dim(H) - k) - connected (see [14]). Thérefore V(H(x), k) is ‘

2(k' - k) - connected since dim H(x) > k'

e) For any m, n_}_ m > Kk, there is € i > 0 such that any closed ball of

radius 'at most £  in vic™ k) is contractible. (We consider v(c™,k) with the
metric induced by the restriction of a U(n) - invariant Riemann structure on
v(€" k). In this situation V(C M k) is a totally geodesic manifold of V(C M k) and the
same is true for any V(H,k) with Hc\Cn. Therefore the induced metrie form from
V(Cn,k) coincides with the metric given by the induced Riemann structure of

V(H,k) (see [13]). Having also the U(n) - invariance of this metric one can take

E=min{gm:k_<_m§_r;'§. O

We also need the following approximation results:

" 3.3. LEMMA. Let B be a unital c*-algebra and let k > max(tsr(B), esr(B)).

: : 8.0 .
Then for any positive integer m and any a & Mm(B), the matrix( . ) belongs to
; , : - 5

the closure of GL(m + k, B)..

Proof. If m < k one can take

4. ;:_,‘.»,a.uzam i,




a .E 1m 0
b8 = ilm- Om 0 € GL(m + k, B)
0 : 0 ' lk-m K

- and bi-——) aas ¢—0.

For m >k we proceed by induction. Assume the statement holds for a fixed m > k

andlet a¢M . ,(B). Since m > max(tsr(B), est(B)) it follows from [23] that for each

€ >0 there are t ¢ GL(m + 1, B)a &M _(B)andbeB™ such that

1 0 . &
u a-(b al)‘t"“

By the induction hypothesis are can approximate

1 0 0
b g0
M . 0 0 0,

with an invertible matrix of the form

| R 0
b
0

a 0
Hence { e ) will be approximated by

k
b l . 0 lk | =i
A :

3.4. REMARK. Suppose B,k are as above. Let F,G,H be finitely generated

projective B-modules and put E=F@G®H. If F,G are free and G’.‘:Bk, then a

-

SRS
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slight modification of the above arguments shows that EndB(F) & GLB(E).

- In the proof of the main result we shall invoke - the {following_
straightforward approximation device:

nm——

3.5. LEMMA. Let B =UBi where the Bi's form an increeasing sequence of
unital C*-algebras. Let e be the unit of Bi' If for any aeBi and € > 0 thereisj > i

and be GL(e;B;e)) such that{|a - b{{ < £ then tsr(B) = 1.

Proof. Let ’};: B + C.1 be the algebra obtained by"?adjoining a unit to B.
Let x+A1€B with x¢ B. By hypothesis there is j>i and
ye GL(eiBjei) cGL(eiBei) such that {{x+ A e, - y\| is small. Choosing a non zero
scalar ' close to A, the element y+ N1 - ei) is invertible and approximate

x + A.l. Therefore GL(E)'is dense in B which means tsr(B) = 1. I
3.6. THEOREM. Let A = lim(A,, §. ) where

S(i , ‘ |
A.= 8 C(X.,)®M ,. ., each X. being a Hausdorff compaect space such that
L it n(i,t) it :

d = sup dim(Xit) < o0,

If A is simple then tsr(A) = 1.

Proof. Replacing each Ai by its image in A one may suppose that all the
@ij's are injective. We shall verify the conditions from lemma 3.5. Let euaAi be a

noninvertible element and put Z = { x €X, : det a(x) = o} . If Z consists only of

isolated points of Xi then it is obvious that a¢ GL(Ai). Thus we may assume that

there is x ¢ Z such that each neighbourhood of x is an infinite set.
Moreover by Lemma 2.4 we may suppose that aei1 = etll_a = 0 on some

neighbourhood U of x for some t. Fix integers k',k such that
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k>2d+4

2k - k) +1>d

‘Sinece U is an infinite open set and the C*-algebr'as A is simple it follows by

Proposition 2.1 that there is j > i such that L ~ (y)n U has at least k' elements for
ij
any y ¢ XJ This enables us by using the proof of Lemma 2.3 to find an open

covermg\U’of X suh that for each Wew there is Py € AJ satisfying

1) Py is prOJectlon valued on W
2) rank pw(y) >k' forany ye W
3) Py iy ij(a) = @ij(a)pw = 0 on W

: 4) Py < @ij(ei) where e, is the unit of A..

Probosition 3.2 provides us a projection peAJ. such that
a) p(x) < \/{pw(x) : WelS , x eW Jor all x¢ Xy
‘b) rankp(x) > k for all x ¢ Xj.

Of course 4) and-a) imply that p < @ij(ei)' |
We have also

c) C_f,’ij(a)p = p@ij(a): 0
as avconsequence of 3) and a). _
Let b:= @..(a) have the components (b ) with b ¢ C(th)®Mn(. £y We shall use
Remark 3.4 in order to approximate each b by invertible elements in EndC(X )(F )
where E CI‘ (e )C(X )n(J’t). Consider also the finitely generated prOJectlve
C(?(jt)-modules |
j,t)

_ n(j,
B= PC(XJ.t)

Q= (Pye) - mMXVMM

1

It is clear that Et::. PtQ-DQt. Using the stability properties. of vector bundles (see
[14, Chapter 8]) one can find a finitely generated projective C(th)—module Rt of

rank at most d/2 + 1 such that Qt@ Rt is free. Since k < rank Pt is large ehough




- =Ahs

using again the results of [14, Chapter 8] we find finitely generated projective
C(th)¥’modu1es Gy and H, such that G, is free of rank greater than

. & : : i : ‘
[(a+1)/2] IZmax(tsr C(X]t)’ ,csrC(X]t)) and Pt is isomorphic to Rt® Gt®Htf

Puting F . =Q ®R, we have b, ¢ Endn g (Qt) cEnd ) by e). Using

t )
it
Remark 3.4 we find that bte GLC(X_].t)(Et)" It follows

(F
C(th) t

m————————— ————.

Bj@) = be GLiy (OF) = GLIE, o)A $yyfe))

and we are done by Lemma 3.5

REFERENCES:
(1] B. Blackadar, Symmetries of the CAR. algebra, Preprint 1988
[2] ' B. Blackadar, O. Brattelli, G.A. Elliott and A. Kumjian, Reduction of real

rank in induetive limits of C*-algebras, Preprint.

[3] B. Blackadar and A. Kumjian, Skew products of relations and the structure
of simple C*-algebras, Math. Z. 189 (1985), 55-63.

[4] 0. Brattelli, Inductive limits of finite-dimensional C*-algebras, Trans.
Amer. Math. Soc. 171(1972), 195-234.

[5] O. Brattelli, G.A.Elliott, D.E.Evans and A. Kishimoto, Finite groups
. actions on AF algebras obtained by folding the interval, Preprint 1989.
[6] L.B. Brown and G.K. Pedersen, C*—algebr'as of real rank zero, Preprint
1989. ’
[7] J. Bunce and J. Deddens, A family of simple C*-algebras related to

weighted shift operators, J. Functional Analysis 19(1975), 12-34.

[81 M.-D. Choi and G.A. Elliott, Density of the self-adjoint elements with

finite spectrum in an irrational rotation C*-glgebra, Preprint 1988.

[9] M. Dadarlat, On homomorphisms of certain c*-algebras, Preprint 1986.




[10]

[11]

[12]

[131 -~ /

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

...\L‘...

M. Dadarlat and A. Némethi, Shape theory and connective K-theory to
appear in J. Operator Theory.

G.A. Elliott, On the ciassi'fication of C*—alg‘ebras of real rank zero,
Preprint. : '

D.E. Evans and A. Kishimoto, Compact group actions on UHF algebras

obtained by folding the interval, J. Functional Analysis (to appear).

S. Helgason, Differential geoinefry, Lie groups and symmetric spaces,

Academic Press, 1978.
D. Husemoller, Fibre Bundles, 2nd ed., Springer Verlag, 1966.

A. Kumjian, An involutive automorphism of the Bunce-Deddens algebra,

C.R. Math. Rep. Acad. Sci. Canada 10(1988), 217-218.

E. Michael, Continuous selections II, Ann of Math., vol. 64, no.3, (1—956),
562-580.

-

‘G. Nagy, Some remarks on lifting invertible elements from quotient

C*-algebras, J. Operator Theory 21(1989), 379-386.

V. Nistor, Stable range for tensor products of extensions of K by C(X),
J. Operator Theory 16(1986), 387-396.

C. Pasnicu, On inductive limits of certain C*—algebpas of the form
C(X)®F, Trans. Amer. Math. Soc., 310(1988), 703-714.

G.K. Pedersen, C*—algebras and their Automorphism Groups, Academic
Press, London/New York, 1979.

LF. Putnam, The invertible elements are dense in the irrational rotation
C*—algebras, preprint 1989.

N. Riedel, On the topological stable rank of irrational rotation algebras,
J. Operator Theory 13(1985), 143-150.

M.A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras,
Proe. London Math. Soc. 46(1983), 301-333. '

M. Rordam, On the structure of simple C*-algebr’as tensored with a
UHF -algebra LII, Preprints. '

S. Zhang, C*—algebras with real rank zero and the internal structure of

their corona and multiplier algebras LILILIV, Preprints.




