INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

AN EXCISION FREE CHERN CHARACTER FOR

P-SUMMABLE QUASIHOMOMORPHISMS

- preliminary version -

БУ

VICTOR NISTOR

PREPRINT SERIES IN MATHEMATICS

No.49/1990

DUDIDECTI

AN EXCISION FREE CHERN CHARACTER FOR

P-SUMMABLE QUASIHOMOMORPHISMS

- preliminary version -

by

VICTOR NISTOR*

August, 1990

[₩] Mathematical Institute of Romanian Academy, Bd.Pacii 220, 79622, Bucharest, Romania.

An excision free Chern character for p-summable quasihomomorphisms
- preliminary version -

by Victor Nistor

Introduction

In $[Co\ 2,\ Co\ 3]$ Connes has defined the cyclic cohomology $HC^*(A)$ of an algebra A over C and has defined a pairing

$$K_{\bullet}(A) \otimes HC^{*}(A) \longrightarrow C$$

and a Chern character

$$K^{\star}(A) \rightarrow HC^{\star}(A)$$
.

In $\left\lceil \text{Co4} \right\rceil$ Connes has raised the problem of defining a bivariant cyclic theory and a Chern character

$$KK(A, B) \rightarrow HC^*(A, B)$$

compatible with the product of Kasparov's bivariant K-theory.

Important steps have been made in this program. In $\left[JK \right]$ Jones and Kassel have defined a bivariant cyclic theory enjoing all the formal properties of Kasparov's theory. In $\left[Wa \right]$, Kas $\left[Wang \right]$ wang and Kassel have defined a Chern character with values in Jones-Kassel bivariant cyclic theory. However their definition is not completely satisfactory since it assumes certain excision properties (H-unitality $\left[Wo \right]$) which are usually not satisfied in practice. As observed by Wang one could eliminate this drawback by providing an explicit formula for the Chern character of an arbitrary p-summable quasihomomorphism à la Cuntz $\left[Cu \right]$; he also provides such a formula for p = 1.

In this paper we show that Wang's formula may be adjust to provide such formulae by a sequence of homotopies suggested by the work of

Goodwillie [G]. We also give an explicit functorial form of the operator E_{D} which Goodwillie has shown to exist.

Thus for a p-summable quasihomomorphism (i.e. a pair $\varphi_0, \varphi_1:A \longrightarrow B(H) \otimes B$ such that $\varphi_0 - \varphi_1$ factors continuously as $A \to C_p \otimes B \to B(H) \otimes B$) we associate a sequence

$$\operatorname{CH}_{0}^{2n}(\varphi_{0}, \varphi_{1}) \in \operatorname{HC}^{2n}(A, B)$$
 $n \geqslant p-1$

such that S $\mathrm{Ch}_0^{2n}(\varphi_0,\varphi_1)=\mathrm{Ch}_0^{2n+2}(\varphi_0,\varphi_1)$ where S is the periodicity operator of the bivariant cyclic theory [JK].

Suggested by the case of the Chern character on K_0 we consider smooth C^* -algebras. For such C^* -algebras A and B we define a "smooth" variant of Kasparov's groups $K_{smooth}(A, B)$ and we show that the above Chern character Ch_0^{2n} define after tacking the limit a morphism

$$Ch_0 : K_{smooth}(A, B) \longrightarrow PHC_0(A, B)$$

compatible with the Chern character on K and the action of KK on K-theory.

The same results hold true for smooth extensions, i e extensions of the form

$$0 \longrightarrow C_{p} \widehat{\otimes} B \longrightarrow E \longrightarrow A \longrightarrow 0$$

which have continuous linear cross sections. This may be proved along the same lines using Cuntz's description of the universal extension [Cu 2].

Our results may be viewed as generalization of some results of Quillen [Q] replacing O-cocycles (i.e. traces) with arbitrary cocycles.

1.1 Let us recall first some basic facts about the Jones-Kassel bivariant cyclic theory [J.-K.]

A differential graded \bigwedge -module (abreviated dg- \bigwedge -module) is a differential module (X_n,b) , $b:X_n\to X_{n-1}$, $b^2=0$ endowed with a degree 1 map $B:X_n\to X_{n+1}$ satisfying $B^2=0$, $\left[B,b\right]=Bb+bB=0$. Here \bigwedge is $\mathbb{C}+\mathbb{C}$, the algebra of dual numbers ($\mathbb{E}^2=0$) and B corresponds to the multiplication by \mathbb{E}

Let $B(\Lambda) = \mathbb{C}[u]$, the polinomial algebra on a degree 2 generator u. If X is a dg- Λ -module then $B(\Lambda) \otimes X$ is endowed with the differential

$$d(u^p \otimes x) = u^p \otimes bx + u^{p-1} \otimes bx$$

and a degree -2 map $S:B(\Lambda)\otimes X \to B(\Lambda)\otimes X$

$$S(u^p \otimes x) = u^{p-1} \otimes x$$
, if $p > 0$, 0 otherwise

If Y is an other dg- Λ -module then $\operatorname{Hom}_S(B(\Lambda)\otimes X,\ B(\Lambda)\otimes Y)$ is the complex of morphisms $f:B(\Lambda)\otimes X\to B(\Lambda)\otimes Y$ commuting with S. A degree n such a morphism is realised by a sequence $(f_i)_{i\geqslant 0}$, $f_i:X\to Y$, f_i of degree n + 2i such that

$$f(u^p \otimes x) = \sum_{i=0}^p u^{p-i} \otimes f_i(x)$$

formally

$$f = \sum_{i>0}^{i} S^{i} \otimes f_{i}$$

The differential is df = dof -(-1) |f| fod . Here |f| is the degree of f. If f is as above then df = $\sum_{i \geqslant 0} S^i \otimes g_i$ where $g_0 = [b, f_0]$, $g_i = [B, f_{i-1}] + [b, f_i]$ (the commutators are always graded commutators). Then $HC^n(X,Y) = H_{-n}(Hom_S(B(\Lambda) \otimes X, B(\Lambda) \otimes Y))$.

There exists a degree 2 morphism S:HCⁿ(X,Y) \rightarrow HCⁿ⁺²(X,Y) comming from periodicity.If $[f] \in HC^n(X,Y)$ is represented by $f = \sum_{i \geqslant 0} S^i \otimes f_i$ then S[f] is represented by $\sum_{i \geqslant 0} S^{i+1} \otimes f_i$. The composition of morphisms defines a pairing $-\mathbf{c}-:HC^n(X,Y) \otimes HC^m(Y,Z) \rightarrow HC^{n+m}(X,Z)$ the Yoneda product. If $f = \sum_{i \geqslant 0} S^i \otimes f_i$ and $g = \sum_{i \geqslant 0} S^i \otimes g_i$ then $[g] \circ [f] = [h]$ for $h = \sum_{i \geqslant 0} S^i \otimes h_i$, $h_k = f_0 g_k + f_1 g_{k-1} + \cdots + f_k g_0$. Also

$$S[f] = S[id_X] \circ [f] = [f] \circ S[id_Y]$$

for any $[f] \in HC^n(X,Y)$. No confusion will arrise if we shall write S instead of $S[id_X]$, $S[id_Y]$ so the previous identity becomes

$$S[f] = So[f] = [f] \circ S$$

1.2. Let us also recall that the dg- \bigwedge -module associated to a unital algebra A over $\mathbb C$ is B(A) = ($\mathbb C_n(A)$,b,B) where $\mathbb C_n(A) = A \otimes (A/\mathbb C)^{\bigotimes n}$ and ba $_0 \otimes \ldots \otimes a_n = \sum_{i=0}^{n-1} (-1)^i a_0 \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_n + (-1)^n a_n a_0 \otimes a_1 \otimes \ldots \otimes a_{n-1}$

$$Ba_0 \otimes ... \otimes a_n = \sum_{i=0}^n (-1)^{ni} 1 \otimes a_i \otimes ... \otimes a_n \otimes a_0 \otimes ... \otimes a_{i-1}$$

Note that we have normalised from the begining . We shall write $HC^{n}(A,X)$ instead of $HC^{n}(B(A),X)$,

1.3. Let $D:A \rightarrow A, D(1) = 0$, be an arbitrary function. Following Goodwillie [G] we define

$$e_D:C_n(A) \rightarrow C_{n-1}(A)$$

 $e_D a_0 \otimes ... \otimes a_n = a_0 D(a_1) \otimes a_2 \otimes ... \otimes a_n$, and

$$E_D: C_n(A) \longrightarrow C_{n+1}(A)$$

$$E_{D} a_{0} \otimes ... \otimes a_{n} = \sum_{i=1}^{n} 1 \otimes a_{0} \otimes ... \otimes Da_{i} \otimes ... \otimes a_{n} +$$

$$+\sum_{j=2}^{n}(-1)^{nj}\sum_{i=1}^{j-1}i\otimes a_{j}\otimes\ldots\otimes a_{0}\otimes\ldots\otimes ba_{i}\otimes\ldots\otimes a_{j-1}$$

(D occurs only to the right of a_0 and exactly once in each term. This is an explicit form of a formula shown to exist by Goodwillie, loc. cit.)

$$L_{D}: C_{D}(A) \rightarrow C_{D}(A)$$

$$\mathsf{L}_{\mathsf{D}} \, \mathsf{a}_{\mathsf{0}} \otimes \ldots \otimes \mathsf{a}_{\mathsf{n}} = \sum_{\mathsf{i} = \mathsf{0}}^{\mathsf{n}} \, \mathsf{a}_{\mathsf{0}} \otimes \ldots \otimes \mathsf{D} \mathsf{a}_{\mathsf{i}} \otimes \ldots \otimes \mathsf{a}_{\mathsf{n}} \ .$$

Also let $1:A \otimes A \rightarrow A$, $1a \otimes b = D(ab) - aD(b) - D(a)b$

$$f_0: C_n(A) \rightarrow C_{n-2}(A)$$

$$f_0 a_0 \otimes a_1 \otimes \dots \otimes a_n = a_0 1(a_1, a_2) \otimes a_3 \otimes \dots, \otimes a_n$$

$$f_1: C_n(A) \rightarrow C_n(A)$$

$$f_1 \overset{a_0 \otimes a_1 \otimes \ldots \otimes a_n}{\otimes} = \sum_{k=1}^{n-1} (-1)^k \overset{1@a_0 \ldots \otimes 1}{\otimes} (a_k, a_{k+1}) \overset{\otimes}{\otimes} \ldots \otimes a_n + \sum_{j=2}^{n-1} \sum_{k=1}^{j-1} (-1)^{k+(n-1)j} \overset{1@a_{j+1} \otimes \ldots \otimes a_0 \otimes \ldots \otimes 1}{\otimes} (a_k, a_{k+1}) \overset{\otimes}{\otimes} \ldots \otimes a_j$$

We let
$$j_D = 1 \otimes e_D + S \otimes E_D$$
, $L_D = 1 \otimes L_D'$, $f = 1 \otimes f_0 + S \otimes f_1$

1.4. Lemma
$$dj_D = SL_D - f$$
.

If D is a derivation this is simply the check of [G, Theorem II.4.2]

<u>Proof</u> . We have to show that

i)
$$[b, e_0] = -f_0$$

ii)
$$\begin{bmatrix} B, e_D \end{bmatrix} + \begin{bmatrix} b, E_D \end{bmatrix} = L_D - f_A$$

iii)
$$\begin{bmatrix} B, E_D \end{bmatrix} = 0$$

iii) is obvious since we are working with the normalised $dg-\Lambda$ -module and i) is an obvious computation.

For ii) let
$$D_i: C_n(A) \to C_n(A)$$
 $D_i a_0 \otimes ... \otimes a_n = a_0 \otimes ... \otimes D(a_1) \otimes ... \otimes a_n$

$$\mathsf{d}_{\mathsf{k}}\mathsf{a}_0 \otimes \ldots \otimes \mathsf{a}_{\mathsf{n}} = (-1)^k \; \mathsf{a}_0 \otimes \ldots \otimes \mathsf{a}_{\mathsf{k}}\mathsf{a}_{\mathsf{k}+1} \otimes \ldots \otimes \mathsf{a}_{\mathsf{n}} \; , \; \mathsf{k} = 0, \ldots, \; \mathsf{n}_{\mathsf{n}}.$$

$$d_{n}a_{0}\otimes \ldots \otimes a_{n} = (-1)^{n}a_{n}a_{0}\otimes a_{1}\otimes \ldots \otimes a_{n-1}$$
$$t : A^{\bigotimes n+1} \longrightarrow A^{\bigotimes n+1}$$

$$t a_0 \otimes \ldots \otimes a_n = (-1)^n a_1 \otimes a_2 \otimes \ldots \otimes a_n$$
.

(Note that the above definitions differ to the usual ones by signs).

$$b' = \sum_{k=0}^{n-1} d_k$$

of course $b = b' + d_n$

Finally, let
$$s: C_n(A) \rightarrow C_{n+1}(A)$$

$$s a_0 \otimes ... \otimes a_n = 1 \otimes a_0 \otimes ... \otimes a_n$$

and
$$B = s \sum_{j=0}^{n} t^{j}$$
. Then

$$e_D = d_0 D_1$$

$$Be_D = s \sum_{j=0}^{n-1} t^j d_0 b_1$$

$$e_0 = D_0$$

$$e_{D}B = \sum_{j=0}^{n} D_{0}t^{j}$$

$$L_D = \sum_{i=0}^{n} D_i$$

$$E_{n} = s E_{k}$$
 where

$$E_{D}' = \sum_{j=2}^{n+1} \sum_{i=1}^{j-1} t^{j} D_{i}$$

The relation bs = $1-t^4$ - sb' shows that

$$bE_{D} = (1 - t^{-1} - sb')E_{D}' = L_{D}' - \sum_{j=0}^{n} t^{j} D_{j}' - sb'E_{D}'$$

Let us observe that $t^{j}D_{j} = D_{0}t^{j}$ and hence $\sum_{j=0}^{n} t^{j}D_{j} = \sum_{j=0}^{n} D_{0}t^{j}$.

We obtain that ii) reduces to $f_1 = s f_1'$ where

$$f_1' = b'E_D' - E_D'b - \sum_{j=0}^{n-1} t^j d_0 D_1$$

we compute

$$b'E'_{D} = \sum_{k=0}^{n-1} \sum_{j=2}^{n+1} \frac{j-1}{j} d_{k} t^{j} D_{i}$$

now

$$d_{k} t^{j} = \begin{cases} t^{j} d_{k+j} & k+j \leq n \\ t^{j-1} d_{k+j-n-1} & k+j \geq n+1 \end{cases}$$

Next we divide the sum in two parts , the first one contains the terms with k+j \leq n and the second the terms with k+j \geq n+l. We replace k+j by k in

the first part and k+j-n-1 by k and j-1 by j in the second.

We obtain

$$b'E_D^{'} = \sum_{k=2}^{n} \quad \sum_{j=2}^{k} \quad \sum_{i=1}^{j-1} \quad t^j d_k D_i + \sum_{k=0}^{n-1} \quad \sum_{j=k+1}^{n} \quad \sum_{i=1}^{j} t^j d_k D_i$$

$$E_{D}' b = \sum_{k=0}^{n} \sum_{j=2}^{n} \sum_{i=1}^{j-1} t^{j} D_{i} d_{k}$$

Let us observe that if we denote $(-1)^k a_0 \otimes \ldots \otimes 1(a_k, a_{k+1}) \otimes \ldots \otimes a_n$ by $1_k a_0 \otimes \ldots \otimes a_n$ we obtain

$$D_{i} d_{k} = \begin{cases} d_{k} D_{i} & 1 \leq i \leq k-1 \\ d_{k} (D_{k} + D_{k+1}) + 1_{k} & i = k \\ d_{k} D_{i+1} & i \geq k+1 \end{cases}$$

Using these relations in the formula for $E_{\mathsf{D}}^{\mathsf{t}}$ b we get

$$E_{D}^{'} b = \sum_{j=2}^{n} \sum_{i=2}^{j} t^{j} d_{0} D_{i} + \sum_{k=2}^{n} \sum_{j=2}^{k} \sum_{i=1}^{j-1} t^{j} d_{k} D_{i} +$$

$$+\sum_{k=1}^{n-1}\sum_{j=k+1}^{n}\sum_{i=1}^{j}t^{j}d_{k}D_{i}+\sum_{k=1}^{n-1}\sum_{j=k+1}^{n}t^{j}1_{k}$$

Then

$$f_{1}^{'} = b^{'}E_{D}^{'} - E_{D}^{'}b - \sum_{j=0}^{n-1} t^{j} d_{0} D_{1} = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} t^{j} 1_{k}$$

The rest is obvious.

1.5. As in [Wa, Wo] , given an ideal I C A we consider the filtration of B(A) = $F_0(A, I) > F_{-1}(A, I) > F_{-2}(A, I) > \dots$

where

$$F_{-n}(A,I)_{k} = \underbrace{\sum_{j=1}^{n} I^{0} \otimes I^{1} \otimes ... \otimes I^{k}}_{j + ... + j_{k} = n i} (I^{0} = A)$$

This filtration depends functorialy on the pair (A, I) in the sense that any unital morphism $\varphi:A\to B$ such that $\varphi(I)\subset J$ gives rise to a morphism $F_{-n}(A,I)\to F_{-n}(B,J)$ of $dg-\Lambda$ -modules .

Of course $F_{-1}(A, I)$ is the kernel of $B(A) \longrightarrow B(A/I)$.

From now on we shall no longer assume A to have a unit.

We shall use these remarks in the following specific situation. Let $QA = A \times A$ be the free product and qA the kernel of $A \times A \to A$ [Cu1]. Let i_0 , $i_1:A\to QA$ be the canonical embedings and $qa=i_0(a)-i_1(a)$. Recall [Cu1] that these simbols satisfy

$$q(ab) = aq(b) + q(a)b - q(a)q(b)$$

(we have identified A with $i_0(A)$) and that QA and Ω A (the universal differential graded algebra of A A (A) are linearely isomorphic C via

$$a_0 q \ a_1 \cdots q \ a_n \rightarrow a_0 \ da_1 \cdots da_n, \ qa_1 \cdots qa_n \rightarrow da_1 \cdots da_n$$
 From now on we shall identify QA with $\Omega A = A \oplus A \otimes A \otimes n$, $n > 0$

A⁺ being the algebra with adjoint unit. We shall endow qA with the negative of the grading inherited from Ω A(i.e. |qa| = -1).

 ${f Q}{f A}$ becomes isomorphic with $\Omega{f A}$ for the following multiplication

$$\omega_{1} \cdot_{1} \omega_{2} = \begin{cases} \omega_{1} \omega_{2} & |\omega_{1}| \text{ even} \\ \omega_{1} \omega_{2} + \omega_{1} \text{ d} \omega_{2} & |\omega_{1}| \text{ odd} \end{cases} \begin{bmatrix} cc \end{bmatrix}$$

Note that QA (as well as qA and Ω A) is not unital, so we shall have to consider QA⁺, the algebra with a degree 0 adjoint unit . Let $D: QA^+ \to QA^+, \ D\omega = -|\omega|\omega \text{ for homogeneous } \omega \text{. Then}$ 1(a, b) = D(ab) - aD(b) - D(a)b = + adb if |a| is odd, 0 otherwise , 1 is a degree -1 map.

1.6. i_0 , i_1 extend to morphisms $A^+ \to QA^+$ denoted also i_0 and i_1 . The corresponding morphisms $B(i_k): B(A^+) \to B(QA^+)$ have the property that $(B(i_0) - B(i_1))(B(A^+)) = F_{-1}(QA^+, qA)$ and $B(i_0) = B(i_1)$ on $B(C) \subset B(A^+)$ and hence $B(i_0) - B(i_1)$ defines an element

$$Ch_0^0(A) \in HC^0(B(A^+) / B(C), F_{-1}(QA^+, qA))$$

According to lemma 1.4. we may define $S_n = S - n^{-1} dj_D \in Hom_S(F_{-n}, F_{-n-1})$ $(F_{-k} = F_{-k}(QA^+, qA), k > 1)$ Let $i : F_{-n-1} \longrightarrow F_{-n}$ be the inclusion

1.7. Lemma. a)
$$[S_n] \circ [i] = S \text{ in } He^2(F_n, F_n)$$

b)
$$[i] \circ [S_n] = S \text{ in } HC^2(F_{-n-1}, F_{-n-1})$$

c) If $x \in HC^2(F_{-n}, F_{-n-1})$ is an other element

satisfying either a) of b) then $Sx = S[S_n]$.

Proof a) and b) are consequences of lemma 1.4.

Let x satisfy x[i] = S then $Sx = x S = x[i] \circ [S_n] = S[S_n]$.

1.8. Theorem (Definition and existence of the Chern character of the universal quasihomomorphism)

There exists $Ch_0^{2n}(A) = Ch_0^{2n}(A, i_0, i_1)$

a)
$$Ch_0^{2n}(A) \in HC^{2n}(B(A^+) / B(C), F_{-n-1}(QA^+, qA))$$

b) $Ch_0^0(A)$ is as defined in 1.6.

- c).
$$Ch_0^{2n}(A) \sim [i] = S Ch_0^{2n-2}(A)$$
, $n > 1$

d) Given a morphism $\phi:\mathsf{A} o\mathsf{B}$ then

$$\operatorname{Ch}_0^{2n}(\mathsf{A}) \circ \left[\phi'\right] = \left[\phi'\right] \circ \operatorname{Ch}_0^{2n}(\mathsf{B})$$

where $\phi': B(A^+) / B(C) \to B(B^+) / B(C)$ and $\phi'': F_{-n-1}(QA^+, qA) \to F_{-n-1}(QB^+, qB)$ are defined by ϕ .

-1.9. <u>Theorem</u>. (Uniqueness of the Chern character of the universal quasihomomorphism up to stabilisation)

If
$$\operatorname{Ch}^{'2n}_0$$
 satisfies a), b) and c) then $\operatorname{SCh}^{'2n}_0 = \operatorname{SCh}^{2n}_0(\operatorname{A})$.

Proof of 1.8.

Let $\mathrm{Ch}_0^{2n}(A) = \mathrm{Ch}_0^0$ (A)o $\left[S_1\right]$ o. o $\left[S_n\right]$ where Ch_0^0 (A) is as defined in 1.6.

c) follows from lemma 1.7.d) follows from the naturality of the definition of $S_{\mbox{\scriptsize n}}$.

Proof of 1.9.

We proceed by induction on n . For n = 0 it is part of the hypothesis. Suppose now that S $Ch_0^{'2n-2}$ (A) Ci = S Ch_0^{2n-2} (A) then $Ch_0^{'2n}$ Ci = Ch_0^{2n} (A) Ci Multiplying by S_n the right we get the conclusion .

1.10. The next step is the definition of the Chern character of a p-summable quasihomomorphism.

Let A, B be complete locally convex algebras.

Recall $\left[\text{Co 2. (ul, Wa)} \right]$ that a p-summable quasihomomorphism (φ_0, φ_1) is a pair of continuous morphisms $(\varphi_0, \varphi_1) : A \to L(H) \otimes B$ such that $(\varphi_0, \varphi_1) : A \to C_p \otimes B$ is well defined and continuous. We shall write $(\varphi_0, \varphi_1) : A \to L(H) \otimes B \to C_p \otimes B$. Given such a quasihomomorphism (φ_0, φ_1) there are defined morphisms $QA \to L(H) \otimes B$, $QA \to C_p \otimes B$ Cull. Following $A \to L(H) \otimes B$ there exists for any $A \to L(H) \otimes B$ a morphism of $A \to L(H) \otimes B$ there exists $A \to L(H) \otimes B$ and $A \to L(H) \otimes B$ there exists $A \to L(H) \otimes B$ and $A \to L(H) \otimes B$ and $A \to L(H) \otimes B$ there exists $A \to L(H) \otimes B$ and $A \to L(H) \otimes B$ are $A \to L(H) \otimes B$.

defined by $\operatorname{tr}(\mathsf{T}_0 \otimes \mathsf{b}_0, \dots, \mathsf{T}_n \otimes \mathsf{b}_n) = \operatorname{tr}(\mathsf{T}_0 \dots \mathsf{T}_n) \mathsf{b}_0 \otimes \dots \otimes \mathsf{b}_n$.

(Here L(H) is the \widetilde{C} -algebra of bounded operators in the Hilbert space H, $C_p \subset L(H)$ is the subspace of those $T \in B(H)$ such that $\operatorname{tr}(T^*T)^{p/2} < \omega$ [Si] and $\widehat{\otimes}$ is the projective tensor product G^{*} .

Let $g_n = S_n \circ S_{n-1} \circ \dots \circ S_1 \circ (B(i_0)) - B(i_1)) : B(A^+)/B(C) \longrightarrow F_{-n-1}(QA^+, qA)$

$$\chi_n : F_{-n-1}(QA^+, qA) \rightarrow F_{-n-1}(L(H) \widehat{\otimes} B, C_p \widehat{\otimes} B)$$

1.11. Definition

$$\operatorname{Ch}_{\mathbf{0}}(\varphi_{0},\varphi_{1}) = \operatorname{Ch}_{\mathbf{0}}(A) \circ \left[\chi_{n} \right] \circ \left[\operatorname{tr} \right] \in \operatorname{HC}^{2n}(A,B), \quad n \geqslant p-1$$

If one whishes one may consider the topological bivariant cyclic theory. It is defined as before but considering continuous morphisms []K]. Then $\mathrm{Ch}_{\mathrm{D}}^{2m}(\varphi_0,\varphi_1)$ is the class of $\mathrm{tr}\circ\mathcal{X}_{\mathrm{D}}\circ g_{\mathrm{D}}$.

Here $HC^*(A,B) = HC^*(B(A^+)/B(C),B(B^+)/B(C))$.

1.12. Proposition. Let $\varphi_0,\,\varphi_1$ be a p-summable quasihomomorphism as above then

a) S
$$Ch_0(\varphi_0, \varphi_1) = Ch_0(\varphi_0, \varphi_1), n > p-1$$

b) Ch_0^{2n} depends functorialy on A and Bi.e.

$$\begin{array}{c} 2n \\ \operatorname{Ch}_{0}(\varphi_{0}\circ\psi,\varphi_{1}\circ\psi) = \left[\operatorname{B}(\psi)\right]\circ\operatorname{Ch}_{0}(\varphi_{0},\varphi_{1}) \qquad .\psi:\operatorname{A}\longrightarrow\operatorname{A} \\ 2n \\ \operatorname{Ch}_{0}((1\otimes\psi)\circ\varphi_{0},\ (1\otimes\psi)\circ\varphi_{1}) = \operatorname{Ch}_{0}(\varphi_{0},\varphi_{1})\circ\operatorname{B}(\psi) \ ,\ \psi:\operatorname{B}\to\operatorname{B}' \\ \psi \text{ and } \psi \text{ being continuous}. \end{array}$$

Proof.

Let $i : F_{-n-2}(QA^+, qA) \rightarrow F_{-n-1}(QA^+, qA)$ be the inclusion, then

The functoriality is clear from definition.

1.13. Corollary. $(\operatorname{Ch}_{\mathbf{0}}(\varphi_0,\varphi_1))_{n\geqslant p-1}$ gives a well defined element $\operatorname{Ch}(\varphi_0,\varphi_1)\in\operatorname{PHC}^0(A,B)=\lim_{\longrightarrow}(\operatorname{PHC}^{2n}(A,B),S).$

- 2. The relation with the Chern character in K-theory
- 2.1. We want now to define something like KK(A,B) if A, B are C^* -algebras as a natural domain of our Chern character. We stay very close to the definitions in [Ka, Cu].
- 2.2. Definition. Let A be a C^* -algebra. We shall say following Connes that A is a smooth C^* -algebra if there is given a dense complete self adjoint locally convex algebra $A^{\circ \circ}$ A such that whenever $a \in M_{\Gamma}(A^{\circ \circ})$ and f is an analytic function in a neighborhood of C° (a) then $f(a) \in M_{\Gamma}(A^{\circ \circ})$.

 $A^{\circ\circ}$ will be called a smooth subalgebra of A.

If moreover $C_p \widehat{\otimes} A^{\infty}$ is smooth in $K \bigotimes A$ then A^{∞} is called absolutely smooth.

- 2.3. Example. If X is a smooth manifold then $\overset{\infty}{C_c}(X)$ is an absolutely smooth subalgebra of $C_0(X)$.
- 2.4. Let A, B be two non commutative manifolds with A° A, B° B the associated smooth algebras.

Let H_B be the Hilbert space on $B \left[K_A \right]$, i.e. the completion of $B^{(N)}$ $N = 1, \ldots, *_o$ for $|| (b_0, \ldots, b_n, 0, \ldots) || = || \sum_{k \ge o} b_k^* b_k ||^{1/2}$.

We define $\mathcal{E}_p(A,B) = \{ (\varphi_0,\varphi_1), \varphi_0, \varphi_1 \text{ are } * \text{-homomorphisms} \}$ $A \to L(H_B)$ such that $\varphi_{i|A}^{\infty}$, i = 0,1 factor continuously $A \to L(H) \otimes B \to L(H_B)$ and $\varphi_0 - \varphi_{1|A}^{\infty}$ factors continuously as $A \to C_p \otimes B \to L(H_B)$

 $\mathcal{D}_{p}(A, B) = \{ (\varphi_{0}, \varphi_{0}) \in \mathcal{E}_{p}(A, B) \}$.

These are "smooth"-forms of the cycles of KK-theory in Cuntz's picture.

The pair (φ_0, φ_1) defines by restriction a p-summable quasihomomorphism $\varphi_0, \varphi_1 \tilde{A} \to B(H) \otimes B \overset{\sim}{\otimes} D \overset{\sim}{C_p} \otimes B \overset{\sim}{\otimes} .$

We define addition as in case of KK-theory.

Homotopy is replaced by smooth homotopy: x_0 , $x_1 \in \mathcal{E}_p(A, B)$ are called smoothly homotopic if there exists $x \in \mathcal{E}_p(A,C([0,1],B))$ which restricted at the end points gives x_0 , respectively x_1 . Here C([0,1],B) is endowed with the smooth structure defined by C([0,1],B).

- 2.5. We let on \mathcal{E}_{smooth} (A, B) = $\bigcup_{p\geqslant 1}\mathcal{E}_p$ (A, B) the equivalence relation \equiv generated by
 - 1) addition of degenerate elements :

$$x_0 = x_1 \text{ if } x_0 + y = x_1 \text{ for some } y \in \mathcal{D}_{smooth}(A, B) = \bigcup_{p \geqslant 1} \mathcal{D}_p(A, B).$$

- 2) smooth homotopy : $x_0 = x_1$ if x_0 is smoothly homotopic to x_1 . Let $K_{smooth}(A,B) = \mathcal{E}_{smooth}(A,B) / = ..$
- 2.6. Observation a) Let $x=(\varphi_0,\varphi_1)$ and $u\in L(H) \otimes B$ be a unitary then $(ad_u\circ\varphi_0,ad_u\circ\varphi_1)$ represents the same element as x in K_{smooth} (A,B).

b) If $U \in \mathbb{C} + \mathbb{C}_p \otimes \mathbb{B}$ then also $(ad_u \circ \varphi_0, \varphi_1)$ represents the same element as x.

To see this one uses a smooth homotopy from $\begin{bmatrix} u & 0 \\ 0 & u \end{bmatrix}$ to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

The following Proposition is proved as in the case of KK-group.

2.7. Proposition. $K_{smooth}(A,\,B)$ is a group. The unit is the class of any degenerate element, the inverse of (ϕ_0,ϕ_1) is (ϕ_1,ϕ_0) .

K smooth is covariant in the second variable and contravariant in the first variable for morphisms of smooth C*-algebras.

Chafactors to a morphism Ch.: $K_{\text{smooth}}(A, B) \rightarrow PHC^{0}(A, B)$.

Chois clearly additive and vanishes on degenerate elements. Suppose $x_0 = (\varphi_0, \varphi_1)$ and $x_1 = (\varphi_0, \varphi_1)$ are smoothly homotopic via an element $x \in \mathcal{E}_p(A, C([0,1], B))$. Let $e_t: C([0,1], B) \to B$ be the evaluation at t, $x_i = e_{i*}(x)$. Then

$$Ch_{0}(x_{i}) = Ch_{0}(x)c[e_{i}] \qquad n > p - 1$$
Thorem 8.1,

 $\begin{array}{c} 2n \\ \text{Ch}_{\mathbf{0}}(\mathbf{x}_{1}) = \text{Ch}_{\mathbf{0}}(\mathbf{x}) \circ \left[\mathbf{e}_{1}\right] & \text{n} > p-1 \\ \hline \text{Therewe 8.1,} \\ \text{Since S}\left[\mathbf{e}_{0}\right] = \text{S}\left[\mathbf{e}_{1}\right] \left[\text{Kas}_{1} \text{pag 54}\right] \text{ we obtain from proposition 1.12 a)} \end{array}$ that $Ch_{0}(x_{0}) = Ch_{0}(x_{1}), n \ge p$.

There exists an obvious morphism $K_{smooth}(A,B) \rightarrow KK(A,B)$ and hence, given $x = K_{smooth}(A, B)$ the Kasparov product defines a morphism

$$K_0(A) \xrightarrow{-\otimes x} K_0(B)$$

Recall $[C_0 1]$ that $K_0(A) \simeq K_0(A^{\circ})$, $K_0(B) \simeq K_0(B^{\circ})$.

Suppose A and B are smooth C -algebras and B is absolutely Theorem smooth, then the diagram

$$K_{0}(A) \simeq K_{0}(A) - \otimes \times K_{0}(B) \simeq K_{0}(B)$$

$$Ch_{0} \qquad Ch_{0}$$

$$PHC_{0}(A) - Ch(X) \rightarrow PHC_{0}(B)$$

is commutative.

Proof. Let $e \in A$ be a projection (a selfadjoint idempotent). Recall that Ch(e) is defined as $PHC_0(\varphi)(1) \in PHC_0(A)$ where 1 stands for the generator of $PHC_0(\mathbb{C}) \cong \mathbb{C}$ and $\varphi : \mathbb{C} \to A$ is given by $1 \to e$ Color 3, Kar2 1. The partial Chern character $Ch_0^{2n} : K_0(A) \to HC_{2n}(A)$ is defined similarly and $Ch_0^{21} = S Ch_0^{21+2}$.

Suppose x is represented by $(\varphi_0, \varphi_1) \in \mathcal{E}_p(A, B)$.

Then our diagram is the inverse limit of

$$\begin{array}{c|c} K_0(A) \cong K_0(A), & -\otimes x \longrightarrow K_0(B) \cong K_0(B) \\ \hline \\ Ch_0^{21} & & & \\ HC_{21}(A) & & -\circ Ch_0(x) \\ \hline \end{array} \longrightarrow HC_{21-2n}(B) \\ \end{array}$$

1 > n > p-1. Assume we have fixed $\operatorname{Ch}_c^{21}([1]) \in \operatorname{HC}_{21}(\mathbb{C})$ to be a distinguished set of generators. Then from the definition of the Chern character on K_0 and the naturality of the Chern character for quasihomomorphisms we see that we may assume $A = \mathbb{C}$.

Proof of the claim . It is obvious that $K_{smooth}(\mathbb{C},B) \to K_0(B)$ is onto. In order to prove that it is into it is enough to prove that every element $x \in K_{smooth}(\mathbb{C},B)$ may be represented by a quasihomomorphism (φ_0,φ_1) such that $\varphi_0(1), \varphi_1(1) \in M_N(B)$ for some large N.

Let $e_0, e_1 \in L(H) \widehat{\otimes} \beta^{\circ}$ be such that $e_0 - e_1 \in C_p \widehat{\otimes} \beta^{\circ}$.

We shall use a trick of Atiyah and Singer $\begin{bmatrix} AS \end{bmatrix}$ to fill in some gap in $e_A e_O \cdot e_1 e_0$ viewed as an element of $L(e_0 H_B, e_1 H_B)$ is an essential isometry (an isometry modulo compact operators). This shows that there exists a finite n_0 and a linear operator $R_0 \in L(B^{n_0}, e_1 H_B)$ such that $e_1 e_0 \oplus R : e_0 H_B \oplus B^{n_0} \rightarrow e_1 B$ is onto . Similarly choose R_1 such that $(1-e_1)(1-e_0) \oplus R_1 : (1-e_0) H_B \oplus B^{n_0} \rightarrow (1-e_1) H_B$ is onto.

$$V_{0} = \begin{bmatrix} e_{1}e_{0} + (1-e_{1})(1-e_{0}) & R_{0} & R_{1} \\ 0 & 0 & 0 \end{bmatrix} \in L(H_{B} \oplus B^{n_{0}} \oplus B^{n_{1}})$$

It satisfies $V_0 V_0^* \geqslant c^* 1_{H_B}$ for some c > 0. Choosing some convenient small perturbation of R_0 and R_1 we may suppose that $V_0 \in 1 + C_p(H \oplus C^{n_0+n_1}) \otimes \mathcal{B}^{\infty}$. Let $\chi(0) = 0$, $\chi(z) = z^{-1/2}$, $z \neq 0$ be an analytic function defined in a small neighborhood of $\sigma(V_0 V_0^*)$. Then $V = \chi(V_0 V_0^*) V_0$ is a partial isometry. Let

$$e_{k} = \begin{bmatrix} e_{k} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

. Then $(e_0^{'},\,e_1^{'})$ represents the same element as $(e_0^{},\,e_1^{})$ in $K_{\rm smooth}(\mathbb{C},\,B)$. (They differ by a degenerate element).

Let U =
$$\begin{bmatrix} V_0 & 1 - V_0 V_0^* \\ 1 - V_0^* V_0 & V_0^* \end{bmatrix}$$

then $e_0'' = Ue_0 \oplus oU$ commutes with e_1 . Since also (e_0'', e_1'') represents x by Observation 2.7 we have reduced the problem to the case when e_0 and e_1 commute. But then $[(e_0, e_1)] = [e_0(1 - e_1), e_1(1 - e_0)] + [e_0e_1, e_0e_1]$ and $e_0(1 - e_1), e_1(1 - e_0)$ are homotopic to projections in some matrix algebras. 2.10. We now treat the case of K_1 .

Let $[u] \in K_1(\stackrel{\sim}{A})$, then, choosing a representative u we obtain a morphism $\varphi : \mathbb{C}[\mathbb{Z}] \to A$. Recall that $HC_p(\mathbb{C}[\mathbb{Z}]) \simeq \mathbb{C}$ for $p \geqslant 1$ [Bu, Co, LQ] and that $S : HC_p(\mathbb{C}[\mathbb{Z}]) \to HC_{p-2}(\mathbb{C}[\mathbb{Z}])$ is an isomorphism for $p \geqslant 3$. Let v be the generator of \mathbb{Z} ; v is invertible in $\mathbb{C}[\mathbb{Z}]$. Then $[Kar, Co] = Ch^{2p-1}([v]) = S = Ch^{2p+1}([v]) \neq 0$ and $Ch^{2p+1}([u]) = Ch^{2p+1}(\varphi[v]) = HC_{2p+1}(\varphi)Ch^{2p+1}([v])$.

Theorem. Suppose A and B are smooth C^* -algebras and B^* is absolutely smooth. Let $x \in K_{smooth}(A, B)$ then the following diagram is commutative

$$\begin{array}{c} \mathsf{K}_1(\mathbb{A}^{\circ\circ}) \simeq \mathsf{K}_1(\mathbb{A}) & \xrightarrow{-\otimes \mathsf{X}} & \mathsf{K}_1(\mathbb{B}) \simeq \mathsf{K}_1(\mathbb{B}^{\circ}) \\ \mathsf{Ch}_0 & & & & & & & & \\ \mathsf{PHC}_1(\mathbb{A}^{\circ\circ}) & \xrightarrow{-\circ \mathsf{Ch}(\mathsf{X})} & \mathsf{PHC}_1(\mathbb{B}^{\circ\circ}) \end{array}$$

Proof. We may by functoriality suppose that $A = C_0(R)$, $A'' = \mathcal{S}(R)$. Let $x = \left[(\varphi_0, \varphi_1) \right]$ for a p-summable quasihomomorphism (φ_0, φ_1) . Also let $u \in \mathcal{S}(R)^+$ generate $K_1(A)$ be such that $u : R \to T \setminus \{1\}$ is one-to-one. Then $\left[u \right] \otimes x$ is represented by $\varphi_0(u) \varphi_1(u)^{-1}$ in $K_1(C_p \otimes B'') \cong K_1(B)$ since B'' is absolutely smooth. Observe that $(\varphi_0 \text{ and } \varphi_1 \text{ are determined by } \varphi_0(u) \text{ and } \varphi_1(u)$ and we shall identify φ_i with $\varphi_i(u)$.

Then $(\varphi_0(u) \oplus \varphi_1(u)^{-1}, \varphi_1(u) \oplus \varphi_1(u)^{-1})$ also represents x and is homotopic to $(\varphi_0(u)\varphi_1(u)^{-1} \oplus 1, 1 \oplus 1)$. Using again homotopy and cutting out a degenerate element we may suppose that $\varphi_0(u) \in M_N(\mathring{\mathcal{B}}^{0+})$ for some large N and $\varphi_1(u) = 1$. Then the result follows from the functoriality of the Chern character on K_1 .

2.11. Remarck. The previous theorems where based on the algebraic properties of the Chern character (functoriality) and two analytic facts:

$$K_{smooth}(\mathbb{C}, B) \simeq K_0(B)$$
 and

$$K_{\text{smooth}}(C_0(\mathbb{R}), B) \simeq K_1(B)$$

which in turn depended on the fact that the pairs (φ_0,φ_1) of smooth morphisms $\varphi_0,\varphi_1:A\to M_N(B)$

form a complete set of representives for the above K smooth -groups.

References

- [A] W.Arveson, The harmonic analysis of automorphism groups, Proceedings of the Am Math Soc , vol.38, part I.
- [AS] M.F. Atiyah and I.M. Singer, The index of elliptic operators III, Ann. of Math. 87(1968), 546-604.
- [Bu] D.Burghelea, The cyclic homology of group rings, Comment. Math. Helvetici 60(1985), 354-365.
- [Col] A. Connes, C*-algebres et geometrie differentielle, C.R.Acad.Sci Paris, tomme 290(1980).
- [Co2] A.Connes, The Chern character in K homology, Preprint IHES (1982).
- [Co3] A.Connes, De Rham homology and non commutative algebra, Preprint IHES(1983).
- [Co4] A.Connes, Cohomologie cyclique et foncteurs Extⁿ, C.R.Acad Sci Paris, t.296, 953-958.
- [CC] A.Connes et J.Cuntz, Quasihomomorphismes, cohomologie cyclique et positivite, Comm.Math.Phys.114, 515-526 (1988).
- Cul J.Cuntz, A new look at KK-theory, K-theory, vol 1 (1987).
- [Cu2] J.Cuntz, Universal extensions and cyclic cohomology, C.R.Acad Sci Paris, t.309, Serie I, p 5–8 (1989).
- [G] T.Goodwillie, Cyclic homology and the free loopspace, Topology 24(1985), 187–215.
- [Gr] A.Crothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem.Amer.Math.Soc., no.16(1955)
- [JK] J. Joses and C. Kassel, Bivariant cyclic theory, Preprint 1988(to appear in K-theory).
- [Ka] G.G.Kasparov , Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91, 147-201 (1988)
- [Kas] C.Kassel, Caractere de Chern bivariant, Max Planck Institut, Bonn, Preprint 1988.

- [Karl] M.Karoubi, Connexions, courbure et classes characteristiques et K-theorie algebrique, Canadian Math.Soc., Proceedings, vol II, part I(1982),p 19-27.
- [Kar2] M.Karoubi, Homologie cyclique et K-theorie, Asterisque 149, p 1-47 (1987).
- [LQ] J.-L.Loday, D.Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment Math Helv 59, 565-591 (1984).
- [Q] D.Quillen, Cyclic oohomology and algebra extensions, K-Theory 3, 205-246,1989.
- [Si] B.Simon, Trace ideals and their applications, London Math.Soc.Lecture Notes 35, Cambridge Univ. Press 1979.
- [Wa] X.Wang, A bivariant Chern character II, preprint (december 1988).
- [Wo] M.Wodzicki, Excision in cyclic homology and in rational algebraic K-theory, Annals of Math.