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Introduction

In [bo 7..Eo 3] Connes has defined the éyclic cohomology HE%(A) of aﬁ'
algebra A overtﬁ and has defined a pairing

K_},((A)Q@HC*(A)@C
and a Chern character

) = e (B .

In I:Co%] Connes has raised the problem of defining a bivariant cyclic

theory and a Chern character
KK(A, B) —> HC (A, B)

compatible with the product of Kasparov's bivariant K-theory.

Important steps have been made in this program. In [ﬁK] jones and
Kassel have defined a bivariant cyclic theory enjoing all the formal properties
of Kasparov's theory. in [wa", Kaé} Wang and Kassel have defined a Chern
character with values in Joves-Kassel bivariant cyclic theory. However their
definition is not completely satisfactory since it assumes certain excision
properties (H-unitality [Wotl) which are usually not satisfied in practice.
As observed by Wang one could eliminate this drawback by providing an explicit
formula for the Chern character of an arbitrary p-summable quasihomomorphism
a la CuntziiCu] ; he also provides such a formula for p = 1. Y

In this paper.we show that Wang's formula may be adjus§;%03provide

such formulae by a sequence of homotopies suggested by the work of




Boodwillie {pil" We also give an explicit functorial form of the operator ED which
Goodwillie has qhown to ex1st £

Thus for a p- summable qua51hom0morphlsm (i,e, a palr(fb,tf A ~%>B(HX§QB ’

such that ?90 - ?ﬂl factors continuously as A-—ﬁcpﬁng ~$»B(H)Q§B) we associate a

sequence

2n 2n
CH_ (990, 904) & HE (A, B) n 2 p-1
such. that S Ch2n( )i =ah 2n+2< ) where S is the periodicity operator
o PorPa Po> P4 P Ve

of the bivariant cyclic theory [ﬁK].
Suggested. by the case of the Chern character on K0 we consider smooth
¥ ¥
'C -algebras . For such C -algebras A and B we define a "smooth" variant of

(A, B) and we show that the above Chern character Chgn

1
KasparoY S groups Ksmooth

define after tacking the limit a morphism

Ch0 3 Smooth(A B)—> PHC (A y ;28

compatible with the Chern character.on K%?”d the action of KK on K-theory .

» The same results hold true for smooth extehsions, i e extensions of the form
)
0> C68>B —» E -2\~ 0

which have continuous linear cross sections. This may be proved along the same
lines using Cuntz's description of the universal extension LCu 2:1,
Our results may be viewed as generalization of some results of Quillen{:Q_l

replacing O-cocycles (i.e. traces) with arbitrary cocycles ,




L1 Lef us’recall first some basic facts abouf the Jones-Kassel
bivariant cyclic theory [iJ.~K.]

A difféfeﬁtiél graded A -module (abreviated dg—,ﬂ‘—module) is a
differential module (Xn,b), b:X ~> Xq5 b? = 0 endowed with a degree 1

map Ban'~> Xn+i satisfying B = 0, [B,b] = Bb + bB = 0. Here A is €+,

the algebra of dual numbers (€ 2 0) and B corresponds to the multiplication
by &
Let B(A ) = C[u]} , the polinomial algebra on a degree 2 generator u.

If X is a dg-/\ -module then B(A)® X is endowed with the differential
d(WP®x) = PRbx + up_16§8x
and & degree -2 map S:B(A )®X -> B(A) ® X
| s B oy i R - :
S(W® x) =u" " ®x, if p >0, O otherwise
If Y is an other dg-A -module then HomS(B(A )® X, BIADRY) is the

complex of morphisms f£:B(A)®X = B(A)®Y commuting with S. A degree n

such a morphism is realised by a sequence (fi>i>0 , fi:X'~9 s e fi of

degree n + 2i such that
5 K
tWP@x) = = WP 1’6§fi(x)
, i=0

formally

t= 7 stet,

i30




The differential is df = def ( 1)|fl de Here: Ifl is the degree N

of 1. If f is as above then gt = 2 S Q§g where- g0 [b fotl
; L;1 s . ]_>O

gy.= [B it l] Ye f.w (the commutators are always graded commutators)
Then HC™(X,Y) = H__(Home(B(LAD@X, B(A DBY)).

There exists a degree 2 morphism S:HC(X,Y) — HC”+2(X Y)  comming

from perlodlclty If i f] € HC"(X,Y) is represented by £ = 3 gt G@:f
1>0

then S[I] is repreeented by :Z“ Sl+ldb f . The composition of morphisms
i20

defines a pairing ~o-:HC(X, V)@ HC™(Y,Z) —> HC™™(X,7) the Yonedaproduct.

okl e ? S @f and g = L 5 @Q then Lg}{f}-[h} for

i>0 i20

e e s®h he = 208, + £40,q * oo + £,3, - Also

i>0
5[t] = S[idx] O[f] = []o s[iay ]
for any\ZflE:HCn(X,Y). No confusion will arrise if we shall write S instead
of S[ﬁdx], S[idY] so the previous identity becomes

s = so[£] = [£]es

1.2, Let us also recall that the dg-/\-module associated to a

unital algebra A over € is B(A) = (C 4(A),b,B) where C (A = AQ@(AﬁE) and
n-1
ba® ...®a_ = :{b (~’l)lao®...® aiai+,1®... ®a_ + (-1)" a,.3;®a,® ...@a_ 4

Bay® ...®a_ = *12__0( 1)nl’l®a®...@an@)ao@...@ai_,l

Note that we have normalised from the begining .

We shall write HC™(A,X) instead of HC"(B(A Yo%),




~ e
1.3.  Let -~ Behieus 5 SBCE) = 0, be-ap arbitrary {mwc.‘tl'an,
: Followmg Goodw:Lllle (6] we define - '
L ep:C (A) —> Cn41<A>
€ p® ... ® B aDI D(al)®‘ L& ... ®a_, and
By + M) > ()

: _
E, 80®“'®an:12:—1.,,1®a0®"' @DaiQ@ @an +

n e ' ‘
S S T e VD ... @00, ® ... @, 1
3=2 451 J . J-

(D occurs only to the right of 9y and exactly once in each tern, This is an

 explicit form of 3 formula shown to exist by Goodwillie, lae; Cit;)‘
C (A) —>¢ (A)

n
D .. ®a =§]ao® ...,@Dai(gé @an

Also let 1. A®A—~>A lagdb = D(ab) - ab(b) -.D(a)b
e (A)--a’ C 2(/\)

an @ai(@ ...,@an = aol(ai,az)@’) 338 ,...,® a

f Cn(A)“*? Cn(A)

i:
n-1
fi ao(Xﬁ)a (E‘,...,@an:Z (i) 1@8 @l(ak, a 1)% (g)a +

n-1

+JZ,2" i Chadle s 1Ra5) 8. ®a, .. ®1(a, , %)@ Ga,

We let jp = 1®eD+s®ED,L :1®LD' ’f:lj_®f0+s®f{l




1.4,  lemma - - dip = SLpy = 1.
If D is a derivation this is'simply the check of [G, Theorem II~.4.2]

Proof . We have to show that

i) Eb eD]
- > ]
ii) I_B, eD] +[b, EDX =y
1) [, Gt
iii) is obvious since we are working with the normalised dg-A -module

and i) is an obvious computation.

For: ii) lpt D, : Cn(A) —> Cn(A) Dia, ®....® a. = aOQQ...@D(ai“)@...@an

da 0 ® a = (=K 80® ..... ®akak+l® feo. ®a k =0,..., n-4,

d a2 & T..® -(1)aao®al® ®a

i ®n+i : A@nﬂ.
ta,®. ... ® =(D"a®a®....®3
0 n 17559 n Mﬁ@ﬁ
N——
(Note that the above definitions differ to the usual ones by signs).
n-1
bl w3
e

of course b = b' + dn
Finally, let s : Cn(A) - le(A)
58,@ ... Qa, :1®a®...é®an .

Recall [Ccy% L(Q‘] tha/ /

/ b's + sb i// —

s

ﬂ‘nd B = s 3%) tjﬂ;j::@y

///;;': dg0y

R




PELoEE
=2 i

i ik
The relqtion bs = 1—t"— sb' shows that

- = ST T e
BEcail =1 e ch My =Ly ggé % [yj - sb'Ep

. . n . n :
Let us observe that tJDj = DOtJ and hence 2__ tJDj g DOtJ :
J=0 J=0

/
We obtain that ii) reduces to f1 = -5 f,1 where

i 1 n_:ﬂ.— J
= b'Ey - Eyb - pEE A

f
4 i-0 01
we compute
1 Dz_:j- gii J_':__,_
blE. = v ) J
S e S R
riow -
tJ dk+j k+tJ & n
j - i
dk t
. 1 _
tJ dk+j-n~1 k+3 >n+l

Next we divide the sum in two parts , the first one contains the terms
g e coulains '

with k+3 < n and the second "the terms with'k+j > n+l. We replace k+J by k in




the first part and k+3j-n-1 by k and j-1 by j in the second.

We obtain
kg i o g ety 5T G g
k2 22 ke - ekl st :
X figgaea it o
g2 = 9 Sl
k=0 - j=2 i=t

Let us observe that if we denote (~1)kaOG§..ﬁ@](ak,ak+l)Q§..

by I aUQQ...QQan we obtain

7 | dk Di l:gi g kel
O g =4 g0 +0 )+ 1=K
2 i i3 kel

i '
Using these relations in the formula for E, b we get

n-1 N et n-1 n
e e Bllen 5 S
ke Gl =l ket ekt
Then
] 1 1 %‘_ﬂ—_ J %—_’1 ‘__D_ J
FomlplE e e o el e )
: Lo e T B e

The rest is obvious.

Ba

Lo As in [:Wa, Wo:] , given an ideal I C A we consider the

filtration of B(A) = F(A, ID=> F_ (A, DD F (A, DO...



where g2 0 AT 2 v
=i Gy W
sl = ol 1] QI @...8&L " (I =4).
: baE A L, - :
This filtration depends functorialy on.the-pair (A, i) iﬁ-thé sense -
that any unital morphism (P : A —>B such that QQ(I) C J gives rise to a

morphism F_n(A, I)*~9l:_n(B,J) of dg-A -modules .

0f course F—i(A’ I) is the kernel of B(A) —> B(A/I).

From now on we shall'no longer assume A to Have a unit.

We shall use these remarks in the following specific situation.
Let QA = AXA be the %ree product and gA the kernel of A% A —>A ‘jﬁui}.

Let ig, 14 : A -—> QA be the canonical embedings and ga = io(a) - ii(a).
Recall [bu%] that these simbols satisfy
q(ab) = aq(b) + g(a)b - q(a)g(b)

(we have identified A with iO(A)) and that QA and £LA (the universal

—

differential graded algebra of A [h.7k¢§ﬁ) are linearely isomorphic Lﬁlﬁ} via
3g8 8 .-+ G 8, > 8y dai,.. dan, qa,...0a, —> dai... dan

@) .
From now on we shall identify QA with QA=A @ @ AT ®A n’
n>0
A being the algebra with adjoint unit. We shall endow gA with the negative
of the grading inherited from £2A(i.e. |ga| = 1) .

GA becomes isomorphic with QA for the following multiplication
) )
Wy, Iinl even
(), ¢, W =

CONEY ) )
5 /0%

; ,  leoy| odd [ccj




= s

'~ Note that QA (as well as qA'and.flA) is not unital, so we shall have to
consider QA+ , the algebra with a degree 0 adjoint unit- . Let
D:QA — QA" , Dw = -|wlw for homogeneous ¢ , Then
1(a, b) = D(ab) - abB(b) - D(a)b = + adb if |a| is odd, O otherwise , 1 is a
degree -1 map ' ”
1.6. io, i1 extend to morphisms A+-—4'QA+ denoted also iO and il
The corresponding morphisms B(ik) . B(AT) —»B(QA") have the property that

(B(ig) - B(i;))(B(A" ))<= F_(QA7, gA) and B(ip) = B(1)) on BE@) ¢ B(A") and

hence B(iﬂ) - B(il) defines an element

chaa) € HEO(B(AT) / B(C), F_(QA", qA))

.|

According to lemma 1.4, we may define S =35 - n dj[I&:HomS(F—n’ F;n—l)
(F—k = F;k(QA+’ gh) ,-k > lj ket & 1 F~n—1'"a‘F—n be the inclusion
1.7, - .Lemma, a) [:Sn"lo[}i1= S in HGZ(F_H, F_)
b) [i]e[s,|= s in HCZ(F_n-l, F;n_l)
o B E;HCZ(F_H, F_,.1) is an other element
satisfying either a) of b) them Sx = S [Snl "
Proof a) apd b) are consequences of lemma 1.4,
Let x satisfy x[i] =5 then Sx = x & = x\[i}0En3= S[Sn] 5
1.8, Theorem  (Definition and existence of the Chern character of the-

universal quasihomomorphism)
: 2n £ 20 . .
There exists OWO(A) = OWD(A, igs 11)

-+

a) ch2"(A) € HE™(B(A"Y / BE), F_,_,(OAT, A))

b) Chg(A) P e R




e

5 oyt

d) Given a morphism q): A ~>B then

o ChS”(A)a):i] 5 Chg”"z(m

2 = i 12
Crg (e[  [op keng"®
where (P : B(A+)‘/ B(C) —>B(B") / B() and (P"; F_ 1 (QAT, gd) —F_ (8", oB)
are defined by ?D,

=19 Theorem, (Uniqueness of the Chern character of the universal

quasihomomorphism up to stabilisation)

42
0

'2n

1f €k 0

satisfies.a). b) and ¢) then S Ch =5 Ch%n(A).

Proef of 1.:8.

/

Let Ch2'(A) = onl (A)o[s; Jo.. e[S, Juhere ong () is as defined in 1.6,

c) follows from lemma 1,7 ,d) follows from the naturality of ‘the definition of S_ o

Progfiof 19,

We proceed by induction on n . For n = 0 it is part of -the hypothesis .

'2n-2 e 2n-2 2 2n 2
Suppose now that S ChU (A)bl_l] = S Chy (A) then ChD 0[11 = Chy (A)a[}]

Multiplying by Sh» the right we get the conclusion .




e 10

1.0, =The néxt_step is the definition of the Chern character of a

p~5ummable guasihomomorphism.
‘ Let A, B be complete 1ocally‘convex algebras.

Recall [faQHC;ﬂVug} that a p-summable quasihomomorphism (790,?91) is

% ,- & ) ' A
a-pair of continuous morphisms %90,§91 : A~ L(H)&B such that

' A
%7t]¢-%0 1 PA - CpCE)B is well defined and continuous. We shall write

His e e D . . :
(?70,?91) : A L(H®B p»cpcg;s. Given such a quasihomomorphism (?90,791)

A
there are defined morphisms QA —2 L(H)®B, gA —> Cpé%)B [(h{] . Following

: “‘”Wa ) : there exists for any n 2 p - 1 a morphism of dg-/ -modules

/:\ + _’.% +
tr s P (LIDEB', £ (08) = B(B")/BE)
defined by tr(T[J@ By 1R = tr(TD...Tn)bO(Z‘?...@. by
(Here L(H) is the 84—algebra of bounded operators in the Hilbert
' : -+
space H, Cb<:fL(H) is the subspace of those T & B(H) such that tr(T T)p/2<:aﬁ

26 A : —
_S{:( and @ is the projective tensor.product L@.‘L].)
. 3 + +.
Let g_ - Sdasn_l@_..faslo(B(lo)) - B(ll>) : B(A")/B(C) - F—n—l(QA ,GA)

- : AL A
Kot P @ ,an = F_ L8, ¢ ©8)

150 1 B Definition

2 - Rt
chg?cpo,?p = Ch?/m{“&n}o[tr]é HeZ™A,B), nyp -1

If one whishes one may consider the topological bivariant cyclic
theory. It is defined as before but considering continuous morphisms [31<].
2y _
Then Cho(cfo,qil) is the elass of iro]X,nu g

n°

Hare HETAB) = "HC*(B<A+)'/B(<I:>,B(B*)/B(@)) -




S -

1.42, Progosition." Let 970, 391 be a pfsummable quasihomomorphiém

as above 'trme14 - ; Q“, i e dG R
oy - Aot '

fa’ =g ((fo(/) = Chy (L{JO S{l,n;p—‘l

27
b) Ch depends functorlaly on A and Bi.e .

0 (({> M} P40 \})—[B(z )]bCh (7’0?1 ,qp:A'w»A

= 1 :! ~ : : / : ,’.' /
»,Ch0<<1®xp>ufp0, <1®11f>vcpl = Cha(({)o,q)l)o BCY) , Y:B->8
i
ﬂ# and'vf being continuous.
Proof.

let i : F_n_2<QA*, gh) —> F_n_l(QA+,qA) be the inclusion, then

D lef] [ e

and hence
2742 . 2ni2 P

: - Pl T
Chy (PgsPq) = Chy (A)o[x;ml"]ob;rl ="Ch, (A)_bJo[X,n]oLtrj "
= § cgch{)O,cfQ by The‘orem 1.8, g).

The functorlallty is Claar from definition.

)PP Corollary, (Ch (?50 ©,)) ) 9ives a well defined element

nzp-

: - 0 " ) 2n
Cq§q70,99l)éﬁ PHC™(A,B) = %ig (PHE-"(A,B), S




e

. 2. The relation with the Chern‘charaéter in K-theory

>2.1.  We want now to define something like KK(A,B) if.A, B are
ﬁ%—algebras as a natural domain of our Chern character. We stay very close
to the definitions in []<a )QZu{X

Sl Definition. Let A be a d%—algebra. We shall say following
Connes that A is a smooth 6%—algebra if there is given a dense cgmplete

o0
self adjoint locally convex algebraA C A such that whenever a€ Mn(ﬁp+) and
f is an analytic function in a neighborhood of O (a) then £(a)€& Mn(Aw+).

(e2]
A will be called a smooth subalgebra of A.

o Le0 . o0 '
If moreover CDQQ/\ is smooth in K& A then A is called absolutely

smooth.
o)
2.5, < Example. If X is a smooth manifold then CC(X) is an

absolutely smooth subalgebra of CO(X).

‘ o0 (€]
24 Let A, B be two non commutative manifolds with A < ABCB

the associated smooth algebras.

(N)

Let M, be the Hilbert space on B [Ka], i.e. the completion of B

B

s doaead i (lide e i b B O -—-H% bfbklll/z :

o

We define EED(A,B) & { (qp0,¥>l), ?90, ?’1 are % -homomorphisms
B> L(HB) such that C? ilﬁqo . 1-=0,1 factor eontinupusly

o0 P - o
> : e :
A =2 LD B ~=> L(HB) and:; 900 90 1] o0 factors continuously as

A
o0 o9
K= e @8> Ly }

B G = G, P el ant

These are "smooth"-forms of the cycles of KK-theory in Cuntz's picture.




el

The pair (§00,9>1) defines by restriction a p-summable quasihomomorphism

7

} 0‘9 ’ /;‘,,.C‘*O( 0‘:}\ i
([/O‘((,\d:AW*B(H)(yL’} P Cp@% :
 We define addition as in case of {K-theory.

HomotopyAié replaced by smooth homotopy : Xgs Xq GEE:p(A, B) are

called smoothly. homotopic if there exists x & g:p(A;é([ﬁ,ij ,B)) which
restrictéd at the end points gives Xg respectively Xq - Here C((D,%], B) is
endowed with the smooth structure defined by C ([O,i];ﬁ s

» 2.55 We let'on éismooth

(&, B) = v EE (A, B) the eguivalence
> P
Pz

relation = generated by
1) addition of degenerate elements :

= 1 = & : ' - /
Xg & Xy if Xy +y = x; for some y(:;hgmooth(A’ B) ;;1éﬁp(A, B).
~

2) smooth homotopy : Xg = Xy if Xq is smoothly homotopic to SR

bebife OB &

smooth

CB:B) 7 ez oy

smooth
; | ' o e

2.5. Observation a) Let x = (?70’ﬁ01) and u ¢ L(H) ®B Lkea
unitary then (aduc'?)O’ aduo %71) represents the same element as x in

Ksmooth (A, B). _
r. = o ; o ) )
b) If  U&€ + CpQﬁ)B then also (adU 4 U’ﬁﬂl
represents the same element as x.

To see this one uses a smooth homotopy from

The following Proposition is proved as in the case of KK-group.

2.7 Proposition. Ksmooth(A’ B) is a group. The unit is the

class of any degenerate element, the inverse of ((PU,Q?l) is (Cpl,q?o) .




A

Ksmooth is covariant in the second vquable and contravariant in the first

-'variable for morphisms of. smooth C ~algebras.

2:8; Proposition. Ch,factors to a morphism

Csﬂ
Ch_: K (K3 B) => PHE (A B,

o smooth

Proof. Chyis clearly additive and vanishes on degenerate elements.

Suppose Xg = (?’0,??1) and x; = (720,901) are smoothly homotopic via
an element x € € (A, C([0,1], B)) . Let ey : c([o,1], B) —> B be the

evaluation at t, "= Xy = ei*(x). Then

Ct%%( ) cﬁ)[ ] 1
O x)eje. iz =
& = 5 ’"’émw?l

NSRS e L

Since S[eO] = 5[e; ] [m,,{aajbq we obtain from proposition 1.12 a)
that Ch (x Y = Ch (x Ji P

29, There exists an obvious morphism K (A,B) —> KK(A,B) and

smooth

hence, given x = Ksmooth(A’ B) the Kasparov product defines a morph1§m

Ko (h) —EX—> K (B)
Recall [Co 1] that K (A& k(A ), Ky(B) 22 Ky (E3.

o O
Theorem Suppose A and B are smooth Cb—algebras and B is absolutely

smooth, then the diagram

e avs -@x *, y 00
Ko )2 Ko(A) K (8) 2 Kq(B )
/ Ghy

PHCO(F\M) ol o PHCO(E’)M)

Ch

is commutative.




o gk

; oo
Proof. Let e A be a projection (a selfadjoint idempotent). Recall
that Ch(e) is defined as PHC (%7)(1)CL PHC (f‘) where 1 stands for the

generator of PHC (C)’“’E and qo C - 9/1 is given by 1 -2 e I,CO 3, Kar%&

00

The partial Chern character Ch2n K (ﬂ ) PC? (A ) is defined similarily
‘ / ‘

and Ch2l = § ch2M*2

Suppose x is rTep‘resented by (({)O,Cf)l)é & p(A, B).

Then our diagram is the inverse limit of

K@y 2k ) =B sk By K B
(R g =Ky
21 21-2n
Ch ] Ch
< M | R
—oCh (%)

’ 60
HCy (A ) ————F—> HCyy 5 (B )

L. 2z

, p-1 . Assume we have fixed Ch%}([ﬁ]) E&l%CZlQE) to be a distinguished
éet oi generators..Then from the definition of the Chern cﬁéracter on K0 and
the naturality of the Chern character for duasihomomorphisms we see that we
may assume A = (.

Claim. (C, B) XKy (B) . Let us first conclude the proof using

smooth

the claim. Let x& K (C, B) , the claim shows that we may suppose that x

smooth
is represented by (?90 QDI) such thafl? o) ?91(1)6} MN(B) for some large N.

Then L l@yx = L?QO(ljl L.%>l<1i} € K (B) and

e (1] ch 60 = S (Ao tng(o = S <cn21<[[)0<1>j> e [ipy (D] =

- Chil—zn([ll@)x) :

Proof of the claim . It is obvious that K €, 8) ~€%KD(B) is

smooth

onto. In order to prove that it is into it is emough to prove that every

element X.G:K (C,B) may be represented by a guasihomomorphism (900,991)

smooth
such that ?90(]) QO (1) EM (E)) for some 1arge N.

Lot epie, € L(H)@B be such that g5 =B € L @Fb




sdpo

We shall use a trick of Atiyah and SlﬂQEF\[:QS{] to flll in some gap

in €% - £1% v1ewed as an élement of L(eOHB, e ) is an esaentlal

isometry (an isometry modulo compact operators). This‘shows that'there exists -

n

a finite ny and a linear operator Ry & L(B 0

3

Hy) sugh Hiae

n
esHy, ® B Oww> elB is onto .

el Similarily choose Rl such that

€18y @ R :

, (l—el)(i—eo) @ Rl : (l~eo} HB @ BY.— (l—el)HB is onto.

Let
€1€g * (l—el)(l—eo) Rg Ry
‘ . 3L
V0= 0 0 0 & L(HB&BB @B )
0 0 0
ﬂL
It satisfies Vovaﬁ’;.dth for some ¢ > 0. Choosing some convenient small
; B

perturbation of RO and Rl we may suppose that V0 €1+ Cp(H ®C

Let X (0) =0, X (2) = z"l/2 , z# 0 be an analytic function defined in a

o

NA+N (82

. -* -& R
small neighborhood of CT(VOVU) . Then V :7((VOVO)VO is a partial disometry.
Let r _‘

1
e, = 0 . 1 0
Kk
0 0 0
« Then (eO ) el) represents the same element as
(eg, ey) in Ksmooth@E’ B). (They differ by a degenerate element).
il %
V0 l—VOVdW
Let U =
3% *
v 1-VgVy Vg
L .




L

O
kfe . u fga”z/
then e K]é Q)O commutes w1th ey - Since alsc (eU, & represents x by

Observation 2.7 we have reduced the problem to the case when &g anci €y commute.

But then lﬁeo, i} (E (1-e ) - e 51 1_80 15 eO i} and

eD(l - él),‘el(l = eo) are homotopic to projections in some matrix algebras.

2.10, We now treat the case of K,.
5 ; (694 ;
Let Luilé;Kl(A ), then, choosing a representative u we obtain a morphism

cf) :a:[z}»/f? Recall that HC (@f?é]) € for p > 1 [Bu, Ca, LQ] and that

S : HC («:m) =SHE, <C[ﬂ) is an isomorphism for p > 3. Let v be the

f generator of Z ; v is invertible in C[Z]. Then [kar Co ChZD'l([v]) =

B pthfl(Lv]) #0end oD = on?PHVD) - H82p+1(ﬁD)Ch2p+l([v]) .

I [V%9)
‘Theorem. Suppose A and B are smooth C -algebras and{ is absolutely

smooth. Let x €& K

smooth(A’ B) then the following diagram is commutatiye

) i) =% - M 60
KA~ = K (A) > K (B K ® )

Chy, ; ' v// Chy,

D
PHclaf) o) >PHC1(P)GO)

Proof. We may by functoriality suppose that A = COGR),A?0=‘3?(R) .
ey [j(?90a?7lj] for a p-summable quasihomomorphism (qu’ﬁDl) . Also
let u E,E?(R)+ generate Kl(A) be such that u : R‘_>“ﬁ‘\§1% is one-to-one .
- (e
Then [ul@x is represented by C{)O(u)(fl(u) 1 in Kl(Cp(‘g)B ) Q\J_Kl(B) since
c0 :
B is absolutely smooth. Observe that (FO and QDl are determined by ?90(U>

and ?Ql(u) and we shall identify ?Oi with CFi(u). : s




e

Then ((FU(U) (D q91(u> ?)1(U> CJ?QOl(u) ) also reoresents x and lS -o-=-‘

homotopic to (ﬁ? (u)ﬂ?l(u)~l ®1, 1ty U81ng agaln homotopy andi outtlng

out a degenerate element we may suppose that QDO(U)CJ MN(B ™) for some large

an (u) = 1. Then the resu ollows from the functoriality of the
N and )1( ) =1 Then th It foll £ the funct daby-af L

Chern_oharacter on Kl'

2.1,  Remarck. The previous theorems where based on the algebraic
M
properties of the Chern character (functoriality) and wo analytic facts :

smoothoc B) avK (B) and

Kemooth(Cg®R)» B) 2K, (B)

which in turn depended on the fact that the pairs (?90,?01) of smooth
morphisms ﬂ°mr ?91 : A= MN(B)

form a complete set of reoresentivas for the above K ~-groups.

smooth
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