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1. INTRODUCTION

The notion of a normed almost linear space was introduced
in [1] as a generalization of the notion of a normed linear space.
The almost linear spaces appeared in [5] as an abstraction of the
algebraic structure of the class of ali closed intervals of the
real line. To cbmpensate the weakening of the axioms of a linear
Spaée, in our definition of a normed almost linear space the norm
is supposed to satisfy besides all the axioms of a norm on a linear
Space\also an additional one which makes the framework productive.
An ekample of a normed almost linear s@ace is the collection of
all nonempty, bounded and convex subsets of a normed linear space
(see [l] s .

In a series of papers we began to develop a theory for the
normed almost linear spaces similar with that of the normed linear
spaces. Thus, we defined the dual space of a normed almost linear
Spéce (where the functionals are no longer linear but almost linear)
the bounded linear and almost linear operators between two such
spaces and we obtained in this more general framework basic results
from the theory of normed linear spaces. The main tool for the
theory of normed almost linear spaces was given in [ 3] where we
proved that any normed almost linear space can be embedded into
a normed linear space, allowing us the use of the techniques of the
normed linecar spaces.

. In this paper we introduce the notion of a normed almost

linear algebra which generalizes the notion of a normed linear
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algebra. The main result of this paper is Theorem 3.6, where we
prove that any normedialmost linear algebra can be embedded into
a normed linear algebra. As a consequence we can now use the
techniques of normed linear. algebras to solve certain problems
in our more general framework. Examples of normed almost linear

algebras are given in Section 4.

2. PRELINMINARIES

Besides notation, in this section we recall some definitions
and results from previous papers, necessary for an easy understand.

ing of this work. We assume that all spaces are over the real

field R and we denote by R _ the set {)xéR', )\ 2 O} .
A commutative semigroup X with zero O is called an almost
linear snace([S]) if there is also given a mapping (\,x) —> Aex

of RXX into X satisfying (i)-(v) below. Let x,ye X and X,I*E R

(4% Jeg = %o 0ii) o0ox.=0 5 iid) )\0(x+y) = Xox+kcy %
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(iv) X°(r°X):=(xr)ox (v) (A+}Lﬁx :Xox+roxihryk,réﬁ+.

We set 0ff the following two subsets of X . (£1])2

V, = {xe}(2x+(-—lax)“'= OX
WX = {:{éXI:x = —1ox3

These are almost linear subspaces of X (i.e., closed under additio

and multiplication by reals) and VX is a linear space. Clearly,
VX{W WX = i OE . An almost linear space X is a linear space iff
X

it

Vy 5 iff Wy =30%.

In an almost linear space X we use the notation Nox for

the multiplication of N ¢ R with x ¢X, the notation /\x being
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used only in a linear space.

A normed almost linear space ([1]) is an almost linear

space X together with a norm [ jif:X—> R satisfying (Nl)—(l\’-4)
below. Let x,ye X, we Wy and NeR: (Nl) N x+v0l) < [ =il] + 1l Y.ﬂi 5
(Np) Wixil=0 3£f x = 0 5 (N3) () Nexill = IN[Mlxill 5 (¥,) Wxiij <
£ Wlx+wi]] . Note that |)j xll] Z O for each x¢ X. We also have([ 27 )

(2a1] w2 1 x+wiil] , Xe X, wély

Here we draw attention that in [l],and [2] we have worked with
an equivalent definition of the rorm and in{1] the last axiom

il

of the norm is superflbus.

2.1. LEMMA ([2]). Let X be a normed almost linear space

and let x,ye¢ X, wié WX’ vié.VX, Rl 25
(i) If x+yeVy then x,ye Vy.

(i) I WitV = wy+v, then wy = w, and vy o=V, .

As we observed in ([2]), Lemma 2.1 above is no longer true
in an almost linear space. 2

Let X,Y be two normed almost linear spaces. For a mapping

T{X—>7Y the definitions of a linear operator and an isometry

are similar with those from the linear case. We draw attention
that a linear isometry is not always one-to-one. For A < X we

denote by T(A) the set { T(a):zae!k}.

2.2, REMARK (f3]). If T is a linear isometry of X onto Y

then T(VX) = Vy and T(WX) = WY .



-l -

The following result is the main tool for the theory of

normed almost linear spaces.

2.3, THEOREM ({3], Theorem 3.2). For any normed almost

linear svace (X, ‘il ) there exist a normed linear space (E,il-il)

and a mapping WiIX—>E with the following properties :

(i) E = ew (X))~ w(X) and W(X) can be organized as an almost

linear space where the addition and the multiplication by

non-negative reals are the same as in E.

(ii) For z eE we have
(2.2) HziH= infé Wxil +llyilsx,7eX, z = W(X)-"«"(y)}

and (w(X),ll<)) is a normed almost linear svace.

(1ii) w ie o linear isometry of (O il ) opbhor COd (%), e,

2.4. COROLLARY ([3], Corollary 3.3). For anyv normed almost

Linear space (X =) the function (73X XX —>R defined . by

.f(x,y) =flw (x)-w(y)ll , x,y€ X is a semi-metric on X.

The semi-metric f* defined above generates a topology on X
(which is not Hausdorff in general) and in the seauel any topolo-
gical concept will be understood for this topology. Clearly,

_f is a metric on X iff.a) is one-to-one. Note that for VeV, €V
we have .f(vl’VQ) = [ vy-v,lif .
The proof of the following lemma is contained in the proof

of ([3]; Theowem 3.2 (iv), faet I),

2.5. LEMMA. Let (X, IMl*)l]) be a normed almost linear space

and let x,ye X. If wW(x) = W(y) then for each €& > 0 there exist
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Xz, sUg €X such that f x, W =10l y lll<e and jc+3£r +u

e = VAL 4U

£ L]
Let A be a subset of the normed almost linear space X and
let x€X. We denote the distance of x to A by dist (x,A)(=
= dnfd plealsnenl ).
For a normed linear space E we denote by E* the dual

space of E.

3. NORMED ALMOST LINEAR ALGEBRA

An almost linear space X is called an almost linear algebra

if there is also given a mapping (x,y) ~> xy of XXX into X

satisfying (A, )-(A,) below:
i 3

(A1) =x(yz) = (xy)z, XY,z ¢X
(A2) x(y+z) = xy+xz and (y+z)x = yx+2zX Xz e X
(43) (Aox)(poy) = (Npdeo (xy) ‘ AspeR,, x,7 €X

By (A3) it follews that x0 = Ox = 0 for each xeX.

As in the linear case we call X a commutative 2lmost linear

algebra if xy = yx for:all x,y€X. Also an element ee¢X is a unit

of X if ex = xe = x for esch xeX; clearly eeX is unigue. When

X has a unit e, an element x€ X is called invertible if there

exists an element x 1 e X such that xx = %o Weoemae 4 clearly x-lg X

%

b

with the latter properties is unigue.

A subset Y& X is called an almost linear subalgebra of X

if Y is an almost linear subspéce of X and Ffor yl,y?efY we
have Y195 € Y.
Certain almost linear algebras satisfy one or both of. ther

following conditions(for examples of almost linear algebras which

>
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satisfy or not one or both of these conditions see Section 4

as well as Remark 3.1 below).

(A4) x(=low) = -lo(xw) (equivalently,v XW(-EWX)- y X €X, we&ily
(A5> (-lew)x = -lo(wx) (equivalently, wxewx) o Xe X, we‘WX

3.0, REWARE, (i) Tf ¥ = Wy then (4,) and (A;) are always
sebiat s ane (590 BAE 55 commuta tive Shen (AA) and (4g) are
simultaneously satisfied or not. (iii) Suppose X satisfies (A4)
énd (AS) is not satisfied. Then we can organize X as an almost
linear algebra such that (A5) is satisfied and (A4) i.¢ noh
satisfiecd. Indeed, for x,ye X define the produetap(x,v) by
p(x,y) = yx, x,ye€ X. Then the almost linear space X together
with, the product p(- ,») is.an almost linear algebra which
satisfies (A;) but not (Aé). Note that if X has’thé~unit e then
e is the unit for X together with the product p(-, ). Due to
this remark, certain counterexamples given to show that (Ai)
can not be dropped may be used to show that (Aj) cay not be

deoppeds it 9,7 € %445:i.

3.2. REMARK. Suppose X satisfies one of the conditions
(A4),(A5). We have . .
() iy is an almost linear subalgebra of X.
“Supposeé’iniaddition: that!e igr thectinit 6f. X.vWe have s
Eit) e eWX 18X = WX ‘

(iii) If an element Wo‘;WX is dnvertible in-% thenw X = WX ;

The statements in the above remark are no longer true in
general, when X does not satisfy (A4) and (A5)(see Examples 4.6
and 4.5(Case 4)).
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3.3. REMARK. Let X be an almost linear algebra suéh that
there exists a norm on X and let x¢ X, ve Vi . We have

(1) XV,vx € Vy and x(-lev) = -le(xv), (-lov)x = -lo(vx).
Indeed, we have 0 = x0 = x(v+(-lev)) = xv+x(-lev). By Lemma 2.1(i)
we get xv,x(~lov)é.VX and so x(-lev) = -le(xv). Similarly we
prove the other statements. Consequently, for A EIHJ P> € R we
have (Aﬁx)(rl3V) = (%ﬁ)O(Xv) and (rAvv)(XoX) = ()f&O(vx).
' (1) VX is an almost linear subalgebra of X which is & lineaf
algebra(use (i) above).

s

Sy Suppose tin addition that:e is the unit of X.:We have ¢

i

(i) ezeVX Jer VX' This follows from (i) above.

(iv) If an element VeV, dsdnvertible ip & then X = Ve o
Thie follows frowm (i) and (iii) above.s

The assumption that there exists 2 norm on X car not be

dropped (see Example 4.6).

3.4. RENARK. Let X be an almost linear algebra such that
there exists a norm on X. Suppose X satisfies (A4)((A5), Yesp. )

and let x€ X, veV, and we '-.’VX . We have 3

X

(1) vw = 0 (wv = 0, resp.). For the proof use (A4)((A5),
resp.), Remark 3.3 (i) and the fact that WeN Uy = 107 . Comse-
quently, when X satisfies both (A4) and <A5) and x; = W o+v, ,
WiE‘WX . Vie’VK g d=1,2, then X Xy = WqWotV 7V,

(da) Af X € WX+VX then xx € Wt Vg (XOX'EV&ﬁVX:, resp. ). For‘
the proof use <A4)((A5)’ resp.) and Remark 3.3 (i). Consequently,
WX+VX is an almost linear subalgebra of X. ‘

2. -Suppose’in’addition that' e isrthecldnit of L.vWe have ¢

(a9 e ENy+Vy 1ff X = 'NX+VX . This follows from (ii) above.



(iv) If an element XOE¢WX+VX ig inwvertible dn X thern ..
X = WX+VX » This follows from (ii) and (iii) above.

(V) If X satisfies both (A4) *+Vx
X #£ WX . Kk VX then Wy and VX are almost linear algebras with

- and (AS) grd K = Woa¥.

i 5 i = V [ = 18 [ 2 e
units. Indeed, if e = WtV 5 W€ WX y V8 VX then by Lemma 1

(35), w, and v are unicuely determined. By our assumptions on X,
Remark 3.2 (ii) and Remark 3.3 (iii) we get v, £50, W, # 0.

Simple computations show that Wy is: the ynit of WX and Y is -the

unid of VX o I e ) 88y, % = wev, we'.'VX s veVX is invertible

‘ solage e g S ) ;

in X - and ix -<”1+v1 y W€ NX y V9 € VX then w is invertible in

WX and we have Wi W Wy and v is invertible in VX and we
v

have vv, = V.V =
L 1 0

For some counterexamples that the assumptions on X can not

be dropped sec lxamples 4.3, 4.6 (case 4), 4.7, 4.8.

3.5. REMARK., Let X be a normed almost linear space such
that X = We+Vy , X # Wy s X #'VX . If Wy and Vy are almost linear
algebras, then X can be organized as an almost linear algebra
satisfying (A4) and (A5) and such that WX and Vy be almost linear

subalgebras o6f X. Indeed, if Xl,x2¢§X, By = Wadw sy Woe MX g

v,€ Vy , i=1,2, then define XXy = WyWotVyV, o By Lemma 2.1 (ii)

this product is well defined and X satisfies (Al)~(A If both

5)'

WX and VX are commutative, then X is commutative. Note that if W.

= §

has a unit W and VX has a unit vO then e = wo+vO i@ vnid of 0,

Moreover, if w is invertible in WX y 1.€., there exists wlegwx

such that Wit s W S and v is invertible in VX y ives, there

exists Vi€ VX such that Wy = VW e then x = w+v is invertible

. -1
in X and we have x = W]+Vl .
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A normed almost linear algebra is an almost linear algebra 2

~ together with a norm yjj-il:X —>R satisfying besides (Nl)-(N4)

e

also the following-aondition s

(Ng) Wl =yl < Wl x il y i ' (x,y eX)

Clearly, if X(#50% ) is with unit e, then I elif =0

We now state the main result of this paper. 2

>

3.6. THEOREM. For any normed almost linear algebra (X, i)

there exist a normed linear algebra (E,H-l) and a mapping

wiX —>LT with the following vroperties 4

(i) <m :.Q)(X)—CU(K) and W (X) can be organized as an

almost linear algebra where the addition, the multiplication by

non-negative reals and the product are the same as in E. if X

satisfies (A4)((A5)) then w (X) satisfies (A4)((A5)).

(ii) Por z€E,ll zIl] is given by (2.2) and (w (X),H4) is

a normed almost linear algebra.

(iii) w is a linear isometry of (X, Hl-#l) onto (e (), 1)

and for x,ye X we have w (xy)=zw(x) w(y).

(iv) If X has the unit e then ewle) ¥'s the unit of Both

E and w (X).

(v) If X is commutative then both E and w (X)) are

commutative,

———

Cvid 1E (El, il'lll) and w ., X—> By satisfy (i)-(iii) above,.

then there exists a linear isometry T of E onto 'E. such that
— 1

T(lez) = T(zl)T(zz) for g1l Z),%, € E.
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PROOF. TFor the normed almost linear space (X,lli-ill) let
(E,H'll) and w (X —>F be given by Theorem 2.3. In the sequel
we shall use the properties of E,lI°ll and & given in Theorem a3

For z, e _E’ Zy = w(xi)-w(yi), X;9¥; €X, i=1,2 define
Gl 22, = UJ(xlx2+yly2)~¢U(xly2+ylx2)

To show that (3.1) is well defined, suppose we have for X,y €X,

l£i<y
(3a2) 2 e W) = “J(X3)~CU(V3)
(3=3) 2y = Wx,)-wly,) =W (x,)-w(y,)

and it is enough to prove (due to the properties of w ) that

we have 2
(3.4) UJ(X1X2+y1y2+x3y4+y3x4) = uJ(xly2+ylx2+x3x4+y3y4)
By (3.2) and (3.3) we get

w (X—L+y3) = w(x3+7fl)

il
!

w (>:2+.V4) w (x4+y‘2)

By Lemma 2.5, for each integer n > 4 there exist X1V, €X ang

XY su)! €X such that

(345) XYY XU = Kby by bu
(3.5") lx =ty il < 1/n
(3:6)  xprygemivag < xpeyperiouy

(3:6) Mg ll=ny2 < 1/n
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Using (3.5) and (3.6) we get

X < ? ) : 5
(xl+y3+xn+un)x2+(x3+yl+yn+un)y2+y3(x4+J2+jn+u£)+x3(x2+y4+x54uﬂ)

= (x3+yl+yn+un)x2+(xl+y3+xn+un)y2+y3(x2+y4+x£+uﬁ)+x3(X4+y2+yﬂ+ué)

Making all the products and then applying ev we obtain (using the
properties of w and the fact that we work now in the linear space

E)

aJ(Xlx2+yly2+x3y4+y3x4)—(u(x1y2+ylx2fx3x4+y3y4) =

2 : : ¥ 1N B = ? ~ 1
= c0(3n32+xny2fy3xn+x3yn) (ﬂ(Anx2+Jny2+¥3yan3An)

Using the fact that w is a linear isometry, X a normed almost

linear algebra as well as (Bi5Y) semd (3. 6%) e get

” w(xlx2+yly2+x3y4+ij4)"'w<x1y2+ylx2+x3x4+y3y4) " <
< 2n_1(ﬂlx2ul+lﬂx3ul+lﬂy2ﬂl+fHV31”)'“T>O

as n —» o0 , which proves (3.4).

Straightforward computations show that (Al)’(A?) hold for
the product on E given by (3.1). For the proof of (A3), 1ed
PN € R, and z; €8, z; = a)(xi)~cv(yi), X;9Y;{€ X, i=1,2. Then
(Xa)(pz,) = (A W(x1)=Ae(y))) (peoxy)-peo(y,))=

il

((\ow(xl)" >""“""(Yl>)(r“’ CU(XE)’-/WO&)(YZ)) =
<w<koxi)_—a)(>o;yf1>><w<;wx2>-—w<yoy2>> =

il

i

@ (( Noxy) (o x,)4( Xa:fl)(}w Foldie

—fﬂ((Xoxl)(poyé)+(Xoyl)aﬁoxg)) =
o (( Xr)?(xlx2+yly2))~60(()/L)v(xly2+ylxg))=
(Xf&ocﬁ(xlxg+yly2)~(}f')OLU(X1y2+ylx2)) =
(M) Geygryy vp)=( X p ) (xyyp470%,)) =

i

1

1l
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C o= (M ez .
As it is known (or By Remark 3,3 (1)), it Pollows whnt E is a
linear algebra. Bt
Finally we show that (NE) holds, which will complete the
proof that E is a normed linear algebra.‘Let giéEL 1=l 4,2,
By (2.2), for £ > 0 there exist X554 éX i=1,2 ‘such that
23 =W (x;)-W(y;) and [ix, U+ 0I730)L < nezgll +£, i=1,2. We have
Wz 2,0 = “W( 2 Eohdg Yo Iy vty ) Il
£ 2y xo+y yoli) + Hix Yoty %, |l £
< A il I+ 1 1 Wy e Wy 1+ W g1 iife il
LIl Gzl + £ Y+l Gz ff + £ )
é(HZf(-+£)(H22H-+£)-—>llZleZéU
as £~>0. Consequently, (E,lI ) is a normed linear algebra.
Let e w(X), F; = @ (x;) = @ (x,)-w(0), x, €X, i=1,2.

Then by (3.1) we obtain
(3-7) ‘}zlig = OJ(\(l)M.)(y2) = W(X ?)é‘ W(X)

Clearly, w(X) with the product defined by (3.7) is 2 normed
almost linear algebra where the product is the same as in E.
Suppose now X satisfies (A4) and let ¥e w(X) and W Vcd( ) 2
Then x = UJ(X), for some x &¥ and by Remark 2.2 there exists Ne%%c
such that w = W (w). By (3.7) we have Xw = W(x)w(w) = w(xw) e
€ UJ(J ) = CU(X) y dagivy X)) satisfiss (A4). Similearly, 3£ X
satisfies (A5> then w(X) satisfies (AS)' Using Bheorem 2.3 it
follows that wé have (i)-(iii) in Theorem 3.6. |

Since (iv) and (v) are simple computations, we prove now
(vi). Let ze B, say, o = W (x)-w(y), x,vyeX and define

T:E-—€>El by
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(308) T(Z) = wl(x)"wl(y)

To show that T is well defined suppose z = & (x)-w(y) =
= UJ(X')—OU(y'),'x,y,x',y'e X. Then w(x+y') =W(x'+y), whence

by Lemma 2.5, for each ¢ > 0O there exist Xy 9T, 20y ¢ X such that

¢ - LTI X
(3.9 X+y 4, U, = X Y4, Y

(3800« Yl i =g il <E

By (3.9) and (iii) for w, we get UJl(x)+CUl(y')+cul(X£)+Cul(ug) =

= Cul(X')+‘Ul(Y)‘+¢Ul(%;)+CUl(uE)whence

ﬂ( wl(x)'*wl(y))"(wl(x')"wl(y'))”1 = “ wl(ye )“wzl(xg )”l
'21“3;Hl+*“>i”| Eoie

ABigiaerl we gel Caix]-wily) = @let ) gl el ge

well defined . It is easy to show that T is a linear operator.
We show now that T is one-~to-one and onto El

z; = cu(xi)—cu(yi)é E, xi,yiegx, i=1,2 be such that T(Zl) = T(zg).

. Let

Then @, (xy)-w,(y;) = Wi (x,)-wy (y,) and so wq (xy47,) =

= W e . By Lemma 2.5, for each ¢ > 0 ther exiet x v o.w Eo
1(Y2+Jl) By Lemma 2.5, for each ¢ > 0 there exist A

such that Xl+y2+x&+u£ = X2+yjj¢;+ut and “(Xiu[zlﬂyéﬂ!é g . Then
(e (ey )= 00 ) )= (e ()= (g, )il = i w (3 )= @O ) < jles (3 )i+
+”CU(Xg)N =1H%u( +!”X£U[.< 2¢ ,.whence as ¢ —>0 we get z; = %
which proves that T is one-to-one. Let now z = aJ](X)—CUl(V)éiEl,

X,y€ X and let z = w (x)-w(y) € E. Since T(z) = z, , this proves

that T is onto E; .
To show that 'T is an isometry of E onto E

i let z¢ E and
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let € > 0. By (2.2) there exist x,y,x',y'e X such that
7 = W(X)—-W(y)
U+ 1yl = 1 zli+ €
T(z) = Cﬂl(x')—édl(y')

Hlx'ﬂf+l”y‘{u < HT(Z)U1+ £

Let gt = Qg wi(gv) ¢ B, Then z = 7! ginge M™az) = T(zt) anad 7
is one-to-one. We have I T(Z)”l = ”Cvl(x)~¢U1(y)lH}§ HCﬁi(x)Hl+
+ w, (¥l = Woxm+i v 2Nz +¢ =llz') +¢ =llw (x)-w(y" i+ <
UG W +& =Hllx" +l vy +¢ < trlzllly + 2¢ . As
¢ >0 we getf}T(z)Hl =ilzil and so T is a linear isometry of E
onto El . |
Finally, we show that T(leQ) = T(zl)T(zg) for 2492, &I,
Suppose z, = OU(xi)—cU(yi), X7, ¢ X, i=1,2. By 63,1 ), the
definition of T and (111} we get T(lez) = ¢ l(xlx2+vly2)—

- (% y,47%,) = W (%) @y (g )+ wy () ) ()= o (%) Wy (v )=

- @) ()01 () = (W3 (rg )= @) (7)) (@03 ()= 0y () = 2(2)005,),

which completes the proof.

By the above proof of (vi) it follows the following comple-

tion of THeorem 3.2 08 3] -

3+7. THEOREM. In Theorem 2.3 the normed linear space (E,li-l)

is unicue up to a linear iscometry.

Example 4.10 shows that if we do not recuire for the norm
of z& E to satisfy (2.2), then Theorem 3.7 and (vi) in Theorem 3.6
are no longer true.

A consegquence of Theorem 3.6 is the following !
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3.8. COROLLARY. Let X be a normed almost linear algebra

with unit e and such that E is a Banach algebra.

(LT R £ Vy (equivalently, w (X) # VcU(x)) then

ddet (e,VX) > 1.

(i )e Tf eui () # Weu(x) (in partiemlar, if X # Wy and w is

one-to-one) and X satisfies one of the conditions (A4),(A5),

then dist (e,Wy) 2 1.

PROOF. We first show that for any normed almost linear

space X we have X # V., iff w(X) # V,, /vy~ Suppose X = V.. Then
X w (X)

X
w (X) =(U(VX), whence by Remark;z.2hwénhavebe(VK) = VaJ(X)
Conversely, suppose w (X) = ch(x) and let xeX, Thenzu(x)éiVuJ(X)
and so w (x)+(-lew(x)) = 0. Then w (x+(-lox)) = 0 = w (0),

hence x+(~lex) = 0, i.e., xeVy ;

(i) Let v eV, such that p(e,v) < 1. Then (lew(e)-w(v)ll <1
and since by Theorem 3.6 the Banach algebra E has the unit cw(e),
the element w(v) is invertible in E; i.e., there exists z eE
such that zw(v) = w(v)z = w(e). Suppose z = w(x)-w(y), x,yeX
Then zw(v) = w(x)w(v)-w(y)w(v) = w(e). By Theorem 3.6,
Remark 2.2 and Remark 3.3 (i) we get UJ(X)CU(V),Cﬂ(y)cv(v)ésvu}(x)
and so & (e) ¢ Vaz(X)‘ By Remark 3.3 (iii) it follows ew (X) = VUJ(X
contradicting the hypothesis. Conseocuently, dist (e,VX) 2 ks

(ii) Buppose X satisfies (A4) g o (X WC&(X) and let we Wy,
‘such that j’(e,w) < 1l., As in (i) above, for w (w) there exists
7z = w(x)-wW(y)€E, x,y€X such that zew(w) = W (w)z = e (e).
Then.CU(X)CU(W)—CU(y)CU(w) = W(e) axid by Theorem 3.6, Remark Q.é
and (A) we get wx)w(n) =T €W,y » Wy W(w) = Fo€ W oty
Since Wl = W2+Cv(e), multiplying by -1 in the almost linear space
+(-Pw(e)

w (X) we get Wl = W2+(~1000(e)). Consequently w,+w (e)=w

2 2
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and since this relation holds also in E, we get ed(e) = ~lew(e),
i.e., W(e)€ wcu(xj'. By Remark 3.2 (ii) it follows ev (X) = WCU(X\
a contradiction. Consequently dist (e,V%();; Ls The . proof for the

case when X satisfies (A5) is similar.

The assumption in (ii) that X satisfies one of the
" conditions (A4),(A5) is essential (see Example 4.3).
For another application of Theorem 3.6 we need the following

lemma which hold in a normed almost linear space.

3.9. LEMMA. Let X be a normed alwost linear space and

e ¥\ % } If we have

(3.10)  fze8:5(a)> 0F & W (N Vg

then the eguality sign holds in (3.10).
PROOF. We first show that if we have (Bl ), then
(3532 W (XN Veyx) C$2€E21(2) 203

Tndeed,: Lot X el LNV, and supnose that f(X) < 0. Then

cw (X)
f(-X) > 0 whence by (3.10) we get -Xe W(K‘)\ch(x) « ‘Sinee
X+(-X) = 0, by Lemma 2.1 (i) we get ?(&VCO(X) & contradiction,
Consequently we have (3.11). | N

s Zuppose now that the eﬁhwljtv sign-does not hold in (3. Elo =
Ther - there existe x € cU(K)\ VuJ(X) gueh that (using (3.11)) £(%)-@
Since —loTEW(X)N Veo(x) » by (3.11) we get fi(-1e¥) 3 0. If

f(-1leX) > 0, then £(-X+(~10X%)) > 0 and bv (3.10) we get
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—X+(-10%) = ye eW(X)N VoU(X) . Hence -1loX = X4y and so
X = -lox+(-127). Then 0 = £(X) = £(-19%)+£(-16F), which is mnot

possible since f(-leX) > 0 and -leye oU(X)\svou(X) whence by
Ealian £f(-1¢7)= 0. Consequently, we have

£(X) = £(-10%) = 0

Since Ec}vw(x) we have fl X+(-Lex)ll # 0. Choose }\eR
QN 2l e na i

and Yek e By PFl= 1 sneh that £(¥) 0. Stvice FlX Foiofoiom)y

Then AF = %, +%+(~10%) and by 2.1) we have
\ .

T (LT £ i Ty 450+ (FLoF) = 1l AT R = A

contradicting the choice of A . Consequently f(?) > 0 which

completes the proof.

An inspection of the proof of Lemma 3.9 shows that we have
used only the linearity of £ £ 0 and not its contipwity. 1t ig
not difficult to show that (3.10) does not hold when f is

non-zero linear ‘functional which does not belong to E% .

®

In contrast to the linear case, in a complete normed almost
linear algeﬁfayﬂﬁfh unit e, it is possible that some elements x e X
with QP(X,G)Af]-tO be not invertible and also that the set of
invertible elements of X to be not’open (see Example 4.9). Another
consequence of Theorem 3.6 is the next corollary, where we give

sufficient conditions in order that those two results from the
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_linear case %o hold.

3.10. COROLLARY. Let X be a normed almost linear algebra . .-

with unit e such that E is a Banach algebra and e is one-to-one.

Suppose there exists fe E¥\ {0} satisfying (3.10) and such that

f(zlzz) = f(zl)f(zz) for z,,z, ¢E. We have

(i) Each xe¢X with p(x,e)< 1 is invertible.

(ii) The set of invertible elements is open.

PROOF. -Since f # 0, by (3.10) we get

(3:22) w(X) # Veu(x)

Since w (e) is the unit of the almost linear algebra W(X),
by Remark 3.3 (iii) and (3.12) it follows that w(e)é CU(X)‘\VQ%X)

Thus, by (3.10) and Lemma 3.9 we get
(3.13) f(wW(e)) > 0

We claim that if x € X is such that w(x)€ W (X)\V ;> and

w(x) is invertible in E, then x is invertible. Indeed, sinc

o

w (x) € OU(X)\\VCU(X) , by (3.10) and Lemmz 3.9 we get

C(3.14) £(e (x)) > 0

Since ‘W(e) is the unit of E and ¢u<x) is invertible in E, there
exists z ¢ E such that w(x)z = z w(x) =w(e). By the assumption on
f it follows that f£(W(x))f(z) = £(e), whence by (3.13) and (3.14)
cwe-have £(z) >0, By (3.10) we get ze LO(X)\.VCO(X) , hence

z =W(y), ye X\ Vy . Consequently, by (3.7) we have w(x)W(y) =
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= (xy) = W (e) = d’(y)uJ(x) = W (yx) and since o’ is one-to-one
‘we get Xy = yx = €y o4y, x is invertible, ;
‘ (1) Liet now xe X sick that p(x,e) < 1. By 3.12 ang
Corollary 3.8 (i) we hQVe xé VX and so w (x)e w ()N Vuu(X) :
Since [lew(x)-w(e)il <1 and E is a Banach algebra with unit
w(e), it follows that w(x) is invertible in E, whence the
conclusion follows by our claim above.
(i1) Let x €X such that x is invertible. By Remark S liy

and (3.12) we have x4 V, and so w(x)e DN Veurgy « As in (1)
above we get that e (x) satisfies (3.1Y%). Since W (x) is
invertible in CU(X))it 18 invertible in B and s there exists

£l > 0 such that z€ E is invertible if Hz— Ww(x)il < él . Since
BEE" byl 50 ke aris e Es 2 0. sich that Fla) g 59
zéb and Hz-w(x)j< £, « By (3203 dk -5V omes sk ZéCLJ(I{)\Vw'(X:
if ze B, | z-w(x)if <€, . Let &= min éél’ 22} . Then each vegX
with P(y,x)< ¢ is invertible. Indeed, if @Q(y,x) < & then
w(y)e w(XINV

w

claim y is invertible, which completes the P oot

(%) and W(y) is invertible in &, whence by our

The assumntion on c& to be one-~to-one can not be dronﬁmd in
Corcllary 3.10 (see Example 4.3)

In ({4], Lemra 6.1) we proved that a norned almost linear
space (X,N<fi) is comnlete iff (E,U*ll) is a Banach space and e (Xx)
is norm-closed in &. Conseouently, in Corollaries.3.8 ahd Eoeilo
the assumption on E to be a Banach algebra is weaker than the

assumption on X to be a complete normed almost linear algebra,
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4. EXANPLES

In this section we. give examples of normed almost linear
algebras as well as the counterexamples at which we reffered

in Seetion 3.

4.1. EXAKNPLE. TFor X,p &R, &< g odsete T =
P . <, 0.

= { }\eR; otz X 5(5}, i.e., Ia{,(b is a closed interval

(possible a singleton) of R with end points e ang £ . Let
T 51,,,(, x,peR, xsp ]
For‘Jl,Jzé X and M\eR define &

(a1 J1'-+-.J2 = { >~1+ /\2 5 /\lé Jl’ /\26 Jg}
(4.2)  hog, = PO >\léJl}

The element 0e X is IO 0 :-{O} - Then X is an almost linear space.
’
feibans Wy sidilne e D ham B S0 Jo ol iy =31y 43 heRr S

and X = WX+VX 3

For dfﬁ, X = tf Let we put i

<XJ~T LY

bhaad ok :
¢ s pS
z

(4.4) o

i

i

For I°(’F ) ]IX ir é X We define the product

SR Ty
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L]

where ,\,r) are given by (4.3),(4.4)'. It is easy to show that

(Al)"(A3) are satisfied and that X is 2 commutative almost linegyp

algebra with unit e = IO,Q . Note that X satisfies (AB) for

'X,/fé R instead of R+ . Consequently X satisfies (A4) and (A5)°
For J€ X define

(4.5) W alll= sup S0 2 Nea §

Then (X,M*Hl) is a normed almost 1linear algebra. The normed
linear algebra (E,N-ll) and the mapping w iX—>E given by
Theorem 3.6 are the following : E = R2 y the product on E being

the usual one, i.e., (%,p)(Y,d) = (mx,“aJ'), (ot , Pl g o Vel

Bletap i Lalalpl (<o p ) eBamyios(n Yo iSst Aag @

Clearly, «w is one~to-one and we have au(VX) & {,(04,0)2 *® ER T,
w (4 s g ¢ = B i . " :
() = g 0 ms ﬁeR{_} and w(X) = w(Wy)+ (V).

The complete normed almost linear algebra. X satisfies il
the conditions in Corollary 3.10. Indeed, one éan choose f e 7
defined by f((D(,P b el (O<,(3)£.E. Let us note that each

5 | friegna 3 i 6 c SRV -—l - wh e
I“’P é,(\.(NXLJVX) is invertible and we have (%x’@) = Iyﬂf where

2 2 2 2 2 2 o

Y= (A=) p7- %) and = 4p2/(p2-a?). Here p2- o2 £ 0
since {x,péngt)VX - By Remarks 3.2 (iii) and.3.3 (iv) the elements

io{r{b éWKUVX are not invertible.

4.2. BEXAVMPLE. For of < P let I¢ A be defined as in Example 4.1
= b
[¢] )
- 8 \ _ i 1 y o "t':' z L
and for o < let Ia(,!3 = {AGR et 2 A < f 3 I(,;,{ﬁ” {z\eR, 61:)“*[‘-'-3
and IQL',P::{/\GR',-x<,\$@.}. Let

O
Io(,/s’ Io:’,p" I;',’@; o(‘,p ¢ R, occpﬁgU{Id,P; «,p € R,o(s(j}

P
il

We organize X as an almost linear space défining for Jl,Jgegx
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. 0,0 °
We have o= { I}\,) . AeR} and W, = 5 I_,\,A;/\GR+§U§I_I‘H\;X>O}
Clearly X # WtV ; '

and kéR, J1+d, as in (4.1),}\og1 88 in(4:2) and 0e X by I

X °

We organize X as a commutative almost linear algebra in

the following way ¢ for o(f_(!, 5 XSJ Tet A P . be defined
by (4.3) (440

!
i

ion(lfé’ur 3 :f,d "> 3’)5]‘ :io(yfslxug: Iao( spIJ ;J /\7"‘
IO(:(&IK’(; & Io( ,pId’,f % Iﬂ’@I;‘"{ —- Il\;r’
10(’ " IA’ o Iz\ Y

Id,pIK,J 5 ih;ﬁ

|
|

? n

Iot,p e I}m/*«

We dqaw attention that in the first line the equalities hold
when they make sense. Clearly, X satisfies (A4),(A5) but X has
not anit.

For Je X define M Jlj| as in (4.5). Then (X,iit- 1) ig =
commutative (complete) normed almost linear algebra. The normed
linear algebra (E, N i]) and w !X —> L given by Theorem 3.6 are

the following ¢ (E,il-ll) is the same as in Example 4.1 and

i

g o+ f3 p -
I = BT = e (I cw (Tn -
B ol ) el ey oo giEE e d
for e < p and uJ({*cx) = (et 0], ot &R, Clearly, e is not
3
one-to-one. Here cu(VX), UJ(WX) and e (X) are the same as in

Example 4.1.

4.3 EXAVPLE. Let X be the almost linear space described

in Example 4.2. We organize X as a commutative almost linear

algebra in the following way 2 for o(5/5 1 ﬁ‘f let X,r~ be
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I«,pfx,é’ o ft\_rr- ; S=f Y
Id,pIK;fzI,\,r» , <P g=<d
L e e x<p g<d
;«»P;X’f ;;»\af-l' e ke e y<d
o 3p ¥ sd Xp ¥ 1p Xrd S d d<p,%“f
s ol g T |
I‘*"PIA”X:: Ie;,pIX»x = I;,@Ia’,'x = IA’}L x<p, YeR

Note that X does not satisfy (A4) and (A5)' Together with the

norm defined by (4.5), X is a complete normed almost linesr : -

algebra. The element e = 10,2 is the unit of ‘X. We have

¢ = Ip,0 =I5 1t 1€ WytVy (ond e is invertible) but X # WtV
The normed linear algebra (E,ll-fl) and Wi X—> E given by

Thed}em 3.6 are the same as'in Example 4.2. All conditions in

Corollary 3.10 are satisfied, except’for W one-~to-one. Indeed,

f e 5* defined in Ixample 4.1 can be chosen. The conclusions

o
of Corollary 3.10 are no longer true since G pasraon: e IO 5
iR
Q
we have \P(x,e) = 0-and IO 5 is not invertible. Hence the set of
?

invertible elements is not open.

4.4. EXANPLE. Let X be a normed almost linear space and

call T:X —> X an almost linear onerator (Cal) i P is addidive:

positively homogeneous and T(WX) W Let J£(X) be the set

5 -
of all almost linear operators T:X—>YX. We organize af(X) as an
almost linear space ([4]) defining the addition and zero as in
the linesr case and for T¢ JL(X) and N e B define ( kOT)(X) =

= 2(Nox), xeX. For 1€ (X) et MTH = supd oG % il xu < 1}
and let L(X) = §2e LX) MTUW < 00T . Then (L(X),l i) is

a normed almost linear space ([4]). Similar with the linear case

v
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we organize (L(X), l-Nl) as a normed almost linear algebra ,
defining for T1rT,€ L(X) the product T,T, by (Tng)(X> = Tl(TZ(X))

x & X. Clearly, T T, € L(X) ana iil T1T2H! < Tllll /ﬂ.T;z,lH it e
easy to show that (Al)-(A4) hold. Let us note that L(X) satisfies

the following stronger condition than (A4), namely we have
Ty (=1e1,) = ~la (R - (Tl,’l‘2é L(X))

At the end of this example we show that L(X) does not always
satisfy (A5). A |

The unit of L(X) is the almost linear operator I:¥ — X
defined by I(x) = Xy, x€ X. Clearly, when X = VX (i.e., when X is
a normed linear space), then (L(X),H-ill) defined above is the
usual normed linear algebra of all bounded linear operators
T: X —>X.

Let (E,lll) and ew be given by Theorem 2.3 for the normed
almost linear space X. For simplicity, in the secuel we suppose
&t one~to-~-one (forlthe gerieral case use Theorem 3.6 of [ 4] and
Theoremi3.6 above). Let K be the cone of the normed linear algebra

L(E) defined by
~J NS ~ \ . {
K=§ TeL(E): H(w(X)) ¢ ew(x), T(ew(iy)) < o (W, ) 3

Then the normed linear algebra (E Ml

L(X) ool SRR
W\ eL(X) —> E. .\ given by Theorem 3.6 are the following:
L(X) L(X)

Br(x) £ K-k equipped with the norm

) ; S = Moo PV 4V
” T“E = ll’lf{ H TlnL(E)+“T2”L(E)0T:T1~T2, Tl,T < I&%

L(X) 2 s Sl
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and for Te€ L(X) we define wL(X)(T) = ”i"é K, where for
z —-aJ(x) CU(J)e B, ®x,v€ X, T(z) W (T(x))-wW(T(y)) (which does
not depend on the representation of z). Here UUL(X) is one-to-one
and LUL(X)(L(X)) = K. Let us also note that when_a)(x) = x for
each x€ X then L(X) = § Tjx: Te B

Finally we show that L(X) does not always satisfy (A ) sidiel

=4 (@, p)ER T B oital) ] .. Defive the adsiiion sund the

multiplication by non-negative reals as in RQ and for (e, F e %
and A\ < 0 define Ao (X ,/’;) = ()\o(, IMP ). Then X is an almost
linear space and we have Vy = { (0,0)} : { (o, Be R” :PeR %
and X # WX x + For (,p)€EX define [|f(x ,P Ml = FX14-P v Then

- X 1s a normed almost linear space. Let T1,T,€ L(X) be defined by

2 ({=,p))
T,((,p))

i

(O,QF’) (0(,(%)6)(
(0, f - (S plex

i

Then T, € WL(K) and for (e, p)e X‘\WX we have (T T, ) ([, ﬁ))
(O,2(ﬁ4w¥)), i.e., L(X) does not satisfy (A5).

i

i

4.5 EXAMPLE. Let I be the Banach algebra of all

nxn

nXn matrices (cﬁij) equipped with the norm

(4:6) Mot Ol =2 0 b= |

l’J (9

Bet = Bl ) 1w 5T n { and let J, , J_ be two

(possible empty) disjoint subsets of J. Let
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Y=Y(J+1J_)={-(“ lJ)é Mnxn:«ij) Oy(iyj)éJ+ ,"(ijéo,(i,j)éJ_}

We organize Y as an almost linear space where the addition and

the multiplication by non-negative reals are the same as in Mn)¢n

and for N\ < O‘and}(°<ij)é Y we define X‘>{°<i.) = ((3ij)é'Y,where

j
(513 =Q)°<ij ' ’ (i;j)4J+UJ_
i ; :I)\[mij (i,;j)éJ+UJ__

We have

0 for (5, i) e 3T ¢

i
il

v e X
Y {("‘ij)éf‘ i

1 5 (4 *
Wy = %((xij)éY'“i

it

4= Ontom (G i g

Clearly, Y = Wy+V, and we have Y = V, iff J, =Jd_=¢ and in

G
this case Y = Mo ox . Yeor (9(ij)e§Y we define ”I(Otij)”l as
in (460, Phen 7 MY 95 & normed almsst linear space. The

normed linear space (EY,H'H' ) and the mapping WY —DE, given

B
T
by Theorem 2.3 are the following EY = L%lxlb equipped with the
&

norm (4.6) and aJY(y) =7 for eapch vie .

If we define the product of two matrices of Y as in the
linear case, then clearly this vroduct does not always belong to
Y. That is why we are now interested in those almost linear
subspaces X of Y which are almost linear algebras for the product

of two matrices defined as in Mn . Being hard in general,

Xn
we shall consider here the case n = 2. We denote by e the unit
matrix of M2)<2 . Due to the large number of cases ( there are
81 cases to be considered for obtaining mwaximal almost linear

algebras X of Y for all possible choices of J+ and J,) we shall

list below nine normed almost linear algebras Xl’XZ""’X9’ all
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with unit e, obtained for certain pairs J,,9_ « A1l the other
cases will be almost linear subalgebras of Xi y 1< 1< 9. Ve

—— Ny

recall that Y stands for Y(J+,J_).

Geipodls & T (aslle oy J o B
X o= Vg =Y =,

Case 2. 4, = § (1,10} , 0 _=¢
Xy = gl Jexset, =0

We have

in & {(«ij)e S P 0% =0
ey f(t;)€qy0 00, ==, =03
/ WX3=é(dla>éx3:0<12:b(22=03

1

and X. = W, +V,
i Xi Ki

, 1=2,3., Here we draw attention that if a normed

almost linear space Y is of the form Y = W’Y+VY and Yl is an almost
linear subspace of Y , then we do not have in general lewY +VY .
1 3
Case 3. J+={(2)2)}9 J_-:::Q .

M= Pl e, =0 §

o= e Tiem ) =01
We have

o ’ ' — A.—
VX % %(“la)éxlo 0(22 = O} 1_4’5

i

Iy = §(;)€x,0 S =i



and we hgve Xi = WXi+VXi y di=l 5.

Case do = d1,0),02,2)) ., 7 =4¢..

x6={(°( Ye gy, =04

12
0 ¥

X7={(d ey 2 D<21

i

We have

i

Vi = 4 (e, SR L B, o _ i=6,7
¥, § (e )6X6'°<1=O}
{( ij)ex7.'>(12

=
]

=
il

i
o

3,
\

and X, = W, +V, , i=6,7. Note that eeWy , i=6,7 and X, # We o

1 i i i
Moreover for've\f \-{O} i=6,7 we have ev = ve = v £ 0. Also
ee€ily is 1nvert1blc but X, # Wy , i=6,7. Here X and X, do mnot
i 1
satisfy (54) and (@ Ve

Case 5. {(1 LY, 20,10, 02 ?)} =g .

Case 6. 7, = §(1,1),(2,2)], 3_= §(1,2),(2,1)} .

As exemplification we describe now the maximal almost linear
algebras of Y 'for two pairs of J+,J_ .
‘_QE?E_G__ (El). J =¢’ J__z-i(lyl)z'

+



e

ae -l
o {(“ JEX) L Xy

X {(az JEE.

X

\

]

|
o
nN

i

(@]
Lev

10

g s X

!
X
|
o
e

13 s

Case LB, J+ { (1,1),(211)} y

i
o~
P
O
N
v

Xlz-.:WXm:{(x )ex8,°(2=o122.—_0}

X3 = WX13 = { (ex ..)é:x Pt = oc22 = o‘z

Xl4=WX14+VXl4={(o< )exggo(21=o}=
= { (o( ) éksf cxlg =0 3

Finally, the normed linear algebra (& H'HF ) and

?
5 9,
CUXi.Xi——b EXi given by Theorem 3.6 are the following: “XiinmXi ’
Nell; is given by (4.6) and wy (x) = x, x€X, el g T

X i

-

4.6, EXANMPLE. Let
Ko bt p e RS BB g

Define the addition and the multiplication by non-negative reals
as in R° and for («¢ ,p)€X and A < 0 define No(=(,p) =
= (Aa<,tklp ). Then ¥ is an almost linear space and we have

V= S ilet0)l see R W= § (0, f): BER § and X = WesV. .

For (9( f> )e X, i=1,2 define the product

(=, PL(X0s Po) = (fyfofrfy)

Then X is an almost linear algebra which does not satisfy (A4) and

(o), Clearly, W, is not an almost linear subalgebra of X.
5 X

4.7. EXANPLE. Let X be the almost linear space described
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in Example 4.6. Equipped with the norm Jjj(« ) p Yitl =l°(l+ﬂ ;
(= ' P )é X, it is a normed almost linear space. For»(wi,/;i)é}{,

i=1,2 define the product

Pl o) - (ﬁf*é'FiFg)

PThen X satisfiesn (Al)—(A4) but (AS) is not satisfied. For
w €W\ 4 O} y VEVLN $ 0§ we have wv £ 0,

4.8, EXANPLE. Let X = R> . We organize X as an almost linear
space where the addition and the multiplicaticon by non-negative
‘reals are the same as in R° and for (9(1,0(2,0(3)65{ and A <0
we define'xﬂ (0(’1,°<2,°(3) = (Ad(l’ko(?_’ ‘MO{B)' We have

Vy =4 (o€, %,,00¢ o€, %, €eR}

x = §(0,0,¢,): ¢ eR}

=
il

and X = W, 4V There exists no norm on X, sirce otherwise, for
Wy = £050.1) €illy , W, = (O,O,—‘l)c%'f‘v’X vie have by (Nq_), 0 £ il Wlmﬁ
< Nl wy+wollf = 0, contradicting (N2).

For (0(1’9(2"%‘3)’( {31, [.32,[':3)6}( define the product

(o) 3¢5 323 ) (Pr3Pos f3) = G“lﬁl’qipz+“%(fi+ﬁz)'“i@3+“3<f1+P2)>

It is easy to show that (Alj~(A5) kheld and X is aﬁ alrost linear
algebra with unit e = (1,0,0).

We have eeVy and X # Vy . Moreover, for xe X\ Vy we have
Xe = x¢¥VX and x(-lee) # -le(xe) = -lox. Clearly éeVX is invertibhl
and X # Vy . For weily\ £0% we have ew = we = w £ 0. Note that

VX is an almost linear subalgebra of X.
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If we change the product defined above with the following

(1% 053 (P s for P3) = (g Py s Pty (Br+Py) 1% Bart (B +£,))

then (Al)"(AS) hold, but X has no unit. Here Vy is not an almost
linear subalgebra of X since e.g., for vy =V, = (i,l,O)EFVX
we have v,v, = (l,3,2)éVX .

4.9. EXAWPLE. Let X = § (<,p)€R®: B 2 Ixlf . We organize
X as an almost linear space similar with Example 4.6. We have
Vyo= A6, 00 5, Woo=-d(0,m) 3 PeR, T and X # WesVy . For
(ers,p;)eEX, i=1,2 define the product (i, 3.) =
= (a(lo<2, ﬂ1132). Then X is a commutative almost linear algebra,
satisfying (A4),(A5) and e = (1,1) is the unit of X. For the norm
Hl(m’,ﬁ W =Vl +p, (o ) p e X, X is a normed almost linear -
algebra. The normed linear algebra (E,U'll) and wiX —>FE given
by Theorem 3.6 are the following {E = R2 ecuipped with the norm
given: by (2.2) and W (x) = x, xé& X,

The set of invertible elements ‘of X is { Noe ¢ )\éR\SO}}
which is not an open subset of X. For x = (%41) € X we have ‘

y(x,e) & % <<l and x-ds not invertible,

4.10. EXANMPLE. Let X be the normed almost linear algebra
described in Example H.ﬂ. Let (E,li-fl) and w be given by
Theorem 3+6. Liet E, = E equipped with the norm I (o(,ﬁ )H1 =

= ledl +(pl , (e, p )EE, and let W, =W . Then (£, ;) and e

i _
satisfy (i)-(iii) in Theorem 3.6 except for (2.2) and (E,it-il)

1

is not isometric with (El,ﬂ-ul).
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