INSTITUTUL
DE
MATEMATICA

PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

MONODROMY AND ZARISKI'S EXAMPLE

Бу

Mihai TIBAR

PREPRINT SERIES IN MATHEMATICS

No.51/1990

MONODROMY AND ZARISKI'S EXAMPLE

by Mihai TIBĂR*)

August 1990

MONODROMY AND ZARISKI'S EXAMPLE

by

Mihai TIBAR

This short note is subsequent to the work [4] and based on the results of Dimca [1]. As shown in [1] and [4], one may compute the Betti numbers of a hypersurface V in a weighted projective space P(w), which has 1-dimensional singularities in the affine cone. We are interested now in the following problem:

Let $f: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ be a weighted homogeneous polinomyal of degree d and weights w with 1-dimensional singularity. Describe the monodromy on the i-th complex cohomology of the Milnor fibre:

induced by the geometric monodromy $h:F\longrightarrow F$,

$$x \rightarrow t.x$$
, with $t^{d}=1$.

The monodromy matrix is diagonalisable and has eigenvalues $t_a = \exp(2\pi t_a)$, with $a=0,1,\ldots,d-1$. Denote by $H^i(F)_a$ the eigenspaces corresponding to these eigenvalues.

Note that $H^*(F)_0 \cong H^*(U)$, where U := P(w) - V and V is the hypersurface defined by f = 0.

We shall describe here a method to compute the dimensions of the eigenspaces.

Then we shall take one of the Zariski's examples, namely $f=(x^2+y^2)^3+(y^3+z^3)^2$, and make the computations.

Also we give examples of curves VCP^2 for which the corresponding monodromy h^* is nontrivial. Among them, a class of irreducible curves with only one singularity. They are important because the fundamental group $\mathcal{K}_1(U)$ is nonabelian, which is a consequence of the fact that $h^* \neq 1$, via one observation in [2].

1. The monodromy eigenspaces

In the following we shall use the notations from [1] and [4]. The projection $p:F\to U$ is a d-fold ramified covering. Using the isomorphism $p_*\Omega_F^*\simeq \bigoplus_{a=0}^{d-1}\Omega_U^*(-a)$ between the complexes of algebraic forms (see [1, pag.3]) one can compute the eigenspaces $H^i(F)_a$ by a spectral sequence, as in [1]. Another way of finding these subspaces is the following.

Let f''=f+f', where f' is a polinomyal of degree d in another set of variables $\left\{y_0,\ldots,y_m\right\}$. By a Sebastiani-Thomtype property (see [1]), we have:

$$\widetilde{H}^{k}(F'')_{o} = \bigoplus_{\substack{c=0\\s+t=k-1}}^{d-1} \widetilde{H}^{s}(F)_{c} \otimes \widetilde{H}^{t}(F')_{d-c}$$

and for the particular case $f'=y_0^d$:

$$\widetilde{H}^{k}(F'')_{o} = \bigoplus_{c=1}^{d-1} \widetilde{H}^{k-1}(F)_{c}$$

Here F' and F'' mean the Milnor fibre of f', resp. f''. We may define a monodromy-type action on $\widetilde{H}^k(F'')_0$ induced by a geometric one:

$$h^{s}:F'' \longrightarrow F''$$
, $(x,y_{o}) \longrightarrow (x,t_{a},y_{o})$

Then $\widetilde{H}^{k-1}(F)_c$ will be isomorphic to the eigenspace which corresponds to the eigenvalue $t_{a\cdot c}$ of the 'partial monodromy'

$$(h^*)^*: \widetilde{H}^k(F'') \longrightarrow \widetilde{H}^k(F'').$$

Taking in account the isomorphism $H^k(F'') \stackrel{\sim}{\circ} H^k(\widetilde{U})$, where $\widetilde{U}=P(w) \setminus \left\{f''=0\right\}$, we shall denote these subspaces by $H^k(\widetilde{U})_a$, so

$$H^{\bullet}(\widetilde{U}) = \bigoplus_{a=1}^{d-1} H^{\bullet}(\widetilde{U})_{a}.$$

We may use the pole filtration and the spectral sequence of the algebraic de Rham complex $A' = \Gamma(\widetilde{U}, \Omega_{\widetilde{U}})$ to compute $H'(\widetilde{U})_a$. For this aim we have to work with forms $\omega = \frac{\chi}{(f'')^s}$, where $\chi \in \overline{\Omega}_{sd}^i$ and χ has in each term γ_o to some power congruent with a, modulo d. (We remind that Ω^i is the graded module of algebraic i-differentials and $\overline{\Omega}^i := \ker(\Delta : \Omega^i \longrightarrow \Omega^{i-1})$, where Δ is the contraction with the Euler vector field).

Now simply write down in the spirit of [1] , using the spectral sequence isomorphism from [1, Prop.1.7], the formula for the dimension of $H^n(\widetilde{U})_a$:

$$b_{n}(\tilde{U})_{a} = \sum_{s=0}^{n} dim E_{n-s}^{s,t}(f^{II})_{a} = \sum_{s=0}^{n} dim('E_{n-s}^{s,t})_{a},$$
 $s+t=n$
 $s+t=n$

where ${}^{s}_{1}, {}^{t}_{:=H}^{s+t}(Gr_F^s B^s)$, (see [1] for the notations and definitions) and the eigenspace $({}^{s}_{1}, {}^{t}_{1})$ corresponding to a is the subspace of those forms which have y_0 to some power congruent with a, modulo d, in each term.

For the hypersurfaces with 1-dimensional singular locus in the affine cone we get the other nonzero Betti number $b_{n+1}(\widetilde{\mathbb{I}})$ by computing the Euler characteristic $X(\widetilde{\mathbb{U}})$. In the notations of [4]:

 $b_n - b_{n+1} = T + S_0$, and moreover we may take the eigenvalue a corresponding part:

$$(b_n)_a - (b_{n+1})_a = T_a + (S_o)_a$$

About the second term of this formula, there is the following:

Lemma
$$(S_0)_a$$
 is the same for every $a \in \{1, 2, ..., d-1\}$.

Proof $(S_0)_a$ is computable as a shown in [4, pag.9] from the Poincaré series associated to the Koszul complex (see [3]). In fact, the Koszul complex decomposes into a direct sum of (d-1)-complexes, each of them associated to a value $a \in \{1, 2, \dots, d-1\}$ (i.e. regarding to the power of y_0 , as explained above).

But these complexes are obviously isomorphic in the following explicit way:

$$\Phi_{a_1,a_2}^{i} : (\Omega^{i})_{a_1} \xrightarrow{\sim} (\Omega^{i})_{a_2},$$

$$\omega^{1} = \sum_{j=0}^{\infty} y_o^{d \cdot j + a_1} \cdot \omega_j^{i} + d(y_o^{d \cdot j + a_1}) \wedge \omega_j^{i}$$

$$\omega^{2} = \sum_{j=0}^{\infty} y_o^{d \cdot j + a_2} \cdot \omega_j^{i} + d(y_o^{d \cdot j + a_1}) \wedge \omega_j^{i}$$

We conclude that $(S_0)_a = \frac{1}{d-1} S_0$.

For simplicity, in the following we shall work only in the homogeneous case i.e. all the weights are equal to 1. From [4] we have the formula:

$$T = \sum_{\alpha \in \Phi} \sum_{i=1}^{r(\alpha)} \dim E_i^{-i, n+i}(g_{\alpha}, 0)$$

$$T_{\alpha}$$

where $(g_{\alpha}, 0)$ denote germs of the transversal singularities to the singular locus $\sum C C^{n+2}$.

As we are dealing with forms in this local spectral sequence also, for each value $a \in \{1,2,\ldots,d-1\}$ we get the following:

 $(T) = \sum_{\alpha \in \Phi} \sum_{i=1}^{r(\alpha)} \dim E_i^{-i,n+i}(g_{\alpha},0)_{\alpha} , \text{ where } \Phi \text{ is the set }$ of the singular points of $\widetilde{V} = \left\{f'' = 0\right\}.$

The limits $r(\propto)$ could be revealed by the condition:

 $T_{\infty} = \mu(g_{\infty}, 0) = \text{the Milnor number, or better:}$ $\sum_{\alpha=1}^{d-1} (T_{\infty})_{\alpha} = \mu(g_{\infty}, 0).$

Proposition. For any transversal singularity $(g_{\alpha}, 0)$, the terms $(T_{\alpha})_a$ are equal to $\frac{1}{d-1}$ T_{α} , for every $a \in \left\{1, 2, \ldots, d-1\right\}$.

Proof. As in the preceding lemma, the local complex $(\Omega_{(g_{\infty},0)}^{\bullet},d)$ decomposes, regarding the action of t=exp $^{2\pi i}/_{d}$, into a direct sum of (d-1) subcomplexes which are isomorphic. Then this isomorphism induce one between spectral sequences, which at the E₁-level looks

$$E_1^{s,t}(g_{\alpha}, 0) = E_1^{s,t}(g_{\alpha}, 0) = 2$$

Corollary. The Euler-Poincaré characteristic for each eigenvalue a, i.e. $\sum (-1)^i b_i(F)_a$, is the same for every a $\in \{1,2,\ldots,d-1\}$ and equal to $\frac{1}{d-1} \times (F'')_0$.

2. The Zariski's example

If every transversal singularity is quasihomogeneous, then the local spectral sequence degenerates at E_2 and this fact means that we have to know only the maps $g_{\alpha}: M(g_{\alpha}) \longrightarrow M(g_{\alpha})$, the multiplication by g_{α} inside the Milnor algebras ([1, Cor.3.10]).

In case of the Zariski's example $f=(x^2+y^2)^3+(y^3+z^3)^2$ we have six cusps as transversal singularities. By adjunction of y_o we get $f''=f+y_o^6$ with transversal singularities of type $g\sim x^2+y^3+y_o^6$. Hence $\mu(g)=10$ and $M(g)=\mathbb{C}\left\{1,z,y_o,y_o^2,y_o^3,y_o^4,zy_o,zy_o^2,zy_o^3,zy_o^4\right\}$. So we get:

$$(T_{\alpha})_{1} = \dim M(g)_{0} = \dim \mathbb{C} \langle 1, z \rangle = 2,$$
 $(T_{\alpha})_{2} = \dim M(g)_{1} = \dim \mathbb{C} \langle y_{0}, zy_{0} \rangle = 2,$
 $(T_{\alpha})_{3} = \dim M(g)_{2} = \dim \mathbb{C} \langle y_{0}^{2}, zy_{0}^{2} \rangle = 2,$
 $(T_{\alpha})_{4} = \dim M(g)_{3} = \dim \mathbb{C} \langle y_{0}^{3}, zy_{0}^{3} \rangle = 2,$
 $(T_{\alpha})_{5} = \dim M(g)_{4} = \dim \mathbb{C} \langle y_{0}^{4}, zy_{0}^{4} \rangle = 2,$

and $(T)_{a} = \sum_{\alpha \in \Phi} (T_{\alpha})_{a} = 6 \times 2 = 12$, for any $a \in \{1, 2, \dots, 5\}$.

To get S_o , we must find some coefficients c_i of the Poincaré series $P_{reg}(t) = \frac{3}{1-t} \frac{(1-t^5)}{1-t} = (1+t+t^2+t^3+t^4)^4$, because $S_o = -\sum_{k=1}^3 c_{6k-4}$.

We get easily $(S_0)_a = -\frac{105}{5} = -21$, for every $a \in \{1, 2, 3, 4, 5\}$. Hence $X(F)_a = -X(\widetilde{U})_a = -((T)_a + (S_0)_a) = -12 + 21 = 9$ and $X(F)_0 = 8$.

Let's find now the Betti numbers b₁(F)_a. First:

$$b_1(F)_0 = b_1(U) = dim E_2^{0,1}(f) + dim E_1^{1,0}(f)$$
.

We have
$$E_1^{0,1}(f) = \bigoplus_{i=1}^{3} \mathbb{C} \langle [\omega] \rangle$$
, where

$$\omega = -xy^2 dx \wedge dy - z^2 y dy \wedge dz + xz^2 dz \wedge dx,$$

but $E_2^{0,1}(f)=0$ by some computation. As $E_1^{1,0}(f)=0$ obviously, it follows that $b_1(F)_0=0$.

Further, for the other values of $a \ge 1$, $b_1(F)_a = \sum_{s=-1}^{1} dim \ E_{2-s}^{s,2-1-s}(f)_a$. It is clear that $E_1^{1,0}(f)_a = 0$ and also:

$$E_2^{01}(f)_a = \begin{cases} c \langle [\omega] \rangle, & \text{for } a=1 \\ 0, & \text{for } a \neq 1. \end{cases}$$

For $E_3^{-1,2}(f)$, by studying the Koszul complex of f, we get

$$E_3^{-1,2}(f)_a = \begin{cases} c\langle [f\omega] \rangle, & \text{for } a=1 \\ 0, & \text{for } a\neq 1 \end{cases}$$

The final result is $b_1(F)_a = \begin{cases} 2 & \text{, for } a = 5 \\ 0 & \text{, for } a = 0, 2, 3, 4, 1, \end{cases}$

and
$$b_2(F) = \begin{cases} 8 & \text{, for } a=0 \\ 11 & \text{, for } a=5 \\ 9 & \text{, for } a=2,3,4,1 \end{cases}$$

3. Some other examples of plane curves with $\pi_1(\mathbf{U})$ nonabelian

Let's look to the plane curve $f=x^3y^3+z^6$. We can see rapidly that $b_1(F)_3 \ge 1$ because there is the form $\omega=xdy \wedge dz$ -ydx $\wedge dy$ for which $\omega \wedge df=0$ and $d\omega=0$.

(Our V has now two singularities). By some remark in [2], this is enough to imply that $\pi_1(U)$ is nonabelian, and the same is true for the Zariski's example.

Let's give now two examples of curves V for which $\pi_1\left(\upsilon\right)$ be nonabelian .

1) $f=y^k+z^k$, which is a union of planes.

Here the forms of type y dy A dz give a nonzero class $[\omega] \in (\mathsf{E}_2^{\,0\,,\,1})_{\,\mathbf{a}} \ , \ \text{for a} \neq \mathbf{0} \ .$

2) $f=xy^k+z^{k+1}$, an irreducible curve, for $k \ge 2$.

The forms of type $\omega=z^k(kxdy\Lambda dz+ydx\Lambda dz)$ produce a non-zero class $[\omega]\in (E_3^{-1},2)_{k-1}$.

Aknowledgement. I wish to thank Professors D. Siersma and J. Steenbrink for valuable discutions and suggestions during a visit to the Department of Mathematics of the Rijksuniversiteit Utrecht.

REFERENCES

- 1. Dimca, A.: 'On the Milnor fibrations of weighted homogeneous polinomyals', preprint INCREST nr.16(1988), Bucharest.
- Némethi, A.: 'On the fundamental group of the complement of certain singular plane curves', Math.Proc.Camb.Phil. Soc. 102(1987), 453-457.
- 3. Siersma, D.: 'Quasihomogeneous singularities with transversal type A_1 ', Contemporary Mathematics 90(1989), 261-294.
- 4. Tibăr, M.: 'Betti numbers for weighted-projective hypersurfaces with one-dimensional singularities in the affine cone',
 preprint INCREST nr.7(1989), Bucharest.