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| Abstract, The small-amplitude cellular convection in

.‘a porous layer is studied in the critical regime, when the buoyan-
cy force balance the viscosity of the darcean fluid. We give rigo-
rous probfs on the fact that all the nodal properties of the appea-
rance of convection are associated with the planform eigensolutions,
Detalled results which were predicted by former studies (the point
spectrum of the linearized problem, the value of the critical
Rayleigh number, the non-existence of subcritical convective solu-

tions) are recast.

1. Introduction

The occurence of convective motions in a horizontal po-
rous layer bounded by two isothermal planes, maintaining a tempera-
ture gradient opposite to the direction of gravity, is quaily stu-
died by the mathematical model furnished by the DOB (Darcy-Oberbeck-
Boussinesq) equations. It seehs that this is the mathematically sim-
plest system of the nonlinear fluid mechanic§ which agrees with the
observed flows (see [?1 %70). The conduction solution Is easify ob~-
tained and exists for al] values of the temberature gradient, the
darcean fluid femaining at-rest., Also, as In this model the density

;of the gravitational force varies affinely with the temperature

(the buoyancy force), it iyields the comvectlten phenomenon: that on



e
exceéding some cfltlcal température qradieni the fluld starts to
mové and thus the heat.trangfer Is Increased.

From the mathematical point of view, below ‘the critilcal
Rayleigh ﬁuﬁber the boundary conditions are sufficient to determine
the conduction solution uniquely, while more stationary solutions
are possible above that value, It is genefally'accepted that the
convective motfon occurs in a periodic cell pattern, where a cell
is.defined bf‘an'impermeable and insulated closed boundary with ver-
t}cal wélls, while the periodicity means that all the cells are iden-
ticaly | | .

The early linear theories (see for instance{}]), determi=
ned the critefion‘for the stability of the conduction state and preQ
diéted séme feature; of the convective flow, Elementary separation
of 'variables leaded to the use of the planform eigensolutions and
vice-versas,

in order to study the small-amnlitude steady convective
solutions of the full nonlinear pﬁoblem, the assumption that the
smal]eét eigenvaluevof the linearized Droblem is associated with a
.planform eigensolution is crucial even when using the energy method
of stability (seeEﬂ §73) or the formal expansion method of Gorkov-
Malkus-Veronis (see[2] §78 or {h] Chity3

The main result of the present paper is that all the no-
dal properties of the small-amplitude convection are indeed deter-
mined by the planform eigensoluticns., It is contained in Sec.3 and
it Is proved using propérties_of the elliptic systems,

In Sec.2 we preseﬁt the conduction solution and formulate
the problem of the convective solutions. Sec.2 also contains Fhe'
non-dimensionalizing transformations of the DOB system which set the
linearized equations into the favorable forh of Euler'®s equations of
a variational problem,

a

In Sec.4 we establish the unlqueness of the conduction
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solutlon for subcritical Rayleigh numbers, by pronng rigorousliy
‘that the linearized problem can be recast into a maximum variational

formulation,

2, Mathematical formulation of the problem

Let 0 be the 6rigin of the coordinate system Oxyz, so
that négative 0z axis is the direction in which the buoyancy force
acts., Let B be a bounded Lipschitz open set in mz, connected énd lo-
cally located on one side of its bouﬁdary oB.

As mathematical model for the steady convection in a
fluid-saturated porous medium, confined in a vertical cylinder of

_chss~section-B and thickness Lp0, we consider the DOB system; deno-
ting by e the versor of the 0z axis, by V the velocity, by P the

"pressure and by T the temperature, it is given by:

{2.1) ' djse N in D=Bx(C,L)
(2.2) /.T;\;’vm7r>.—.~[’f (1-e<(T-T ))e in D
(2:3) - Ly VT=XAT in D

where &, Cfv/“ and f} are the coefficient of thermal expansion,
the specific heat at constant volume, the viscosity and.the dénsity
of the saturating fluid, g is the‘acceleration of aravity, while
K, 2% and T stand for the permeability, the thermal condﬁctivity
and the reference temperature of the porous medium,

Supposing that the domain is heated from below, we have

the boundary conditions of the corresponding Bénard problem:

(2.4) V.n = 0 and anT=0 on ¥Bx(0,L)

(2,.5) V.n=0 and T=To for =z =0

{2..65) V.n=0 and T=T for z=L .
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where T and T, are constants with TO}aTL, n Is the unit outward

normal on @D and BﬁT denotes the corresponding normal derivative.

In this work we also use Bx’ Ey and az as partial derivative nota-

tions.

' . ' el =1 52
Denoting the Rayleigh number by Ram/& %5‘ ffoKLgM(Tov

'~“TL)’ a dimensionless form of the system (2.1)-(2.6) can be obtained
by defining
(2.7)" a%='Ra1/2 9 (XW‘»Y%;Z‘r’é):'l-“'1 (X’Y»Z)
- * -1 * o 1/2 _ “1 o
(2.8) Vi fc L% v, T =Ra "T(T, T (r-T))
g =11 ' Py
(2.9)  Pr=pMX P k(pP+ Frg (142 (T =T ))) .

The conduction solution (corresponding. to the case when
the fluid remains at rest and the heat is transported only by con-
duction) e lsitn o any value of the parameter a >0, Omittina the
asterisks in order to simplify the notations, the conduction solutidn
is gfvén by. |
2(

(2.10) V.= 0, T_=all-2), P =a 22-22)/2 + const.

Iintroducing the féllowing change of dependent variables
{2 .1:1) Py o B=PAR ., §=T-T

C

the system (2.1)-(2.6) finally becomes

(a9 div V=0 in D

(2.13) T Ule ¥Q = aSe in D

(2.14) - As+U Vs=ale in D .
(2.15) U.n=9 5 = 0 on 9Bx(0,1) , ‘

(2::1.6) U.n=5=0 : for z=0 and z=1,



o § .

The so=-called convective solutlions are the elgenfunctlions

of the'previous system; obviously, of major physical interest are
those which appear when the buoyancy force balance the viscoslty

of the darcean fluid.

Introducing the Hilbert spaces

(2:17) H={v€(L2(D))3Z div V=0 i.n D, V.n=0 on BD}

(2.38) w={T&Pﬂ(D)lT=O for z=0 and z=1}
with the corresponding scalar products and norms

(2.19) (U,V)=Suvd0 , {v(:(v,v)‘/z

(2,200 ((s,T)= (Vs,¥T), [7f=C(1,7)"/2

the variational formulation of (2.12)-(2.16) is the following:

To find a>0 and non-trivial UEH,S€ VW satisfying

'(2.2‘1) (U, M) =a (5e.,%), (¥lveH

(2.22)  ((s,T))=(U,s VT)=a(u,Te}, ()Tev.

Supposing that the incrementyof the velocity and of the

temperature have small amplitude (i.e.lU\2+”S”2<k;1), we obtain
to first order the linearized (about the conduction solution) pro-
blem:

To find a>0 and non-trivial VEH, SEW satisfying

(2.3 (U,v) = a(se,v), () veH
(2.28) (€8, T =alu, Te) , () Tew.

3. The smallest eidgenvalue of the linearized oroblem

Lf’st {Alzlém be the eigenvalues and let {Q’@ 1€
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be a complete set in L2(B) of orthonormal eigenfunctions of (~A)
with homogeneous Neumann boundary conditions on2B (i.e. the plan-

form problem). We have %b=0, ?Z=const. and

(31 0<>\1<\>\2§-#—+w

For‘ahy k€§NN we define a R —#R by

(3.2) : ak()\)=>1/2 v g 2yt1/2

Prosositlon 2.1. The set of all elgenvalies of the limeas

rized‘problem (2.23)=12.204) is glven by

proof. It Is easy to verify that

it

(3.4) Ukl=(k7fbx(p]cosk7fz,k7!’3y ﬂp]cosk'?("z, >\1 Q]sin!d/’z),
’ skléyﬂTiﬁﬁ sin k2

are eigenfunctions of (2.23)-(2.24), corresponding to the eigenvalue
ak(Al).

Conversely, let a»0 be an eigenvalue of (2,23)=(2,24)
with U=(u,v,w)€H and SEW as corresponding eigenfunctions. As the

orthogonal complement of H in (LZ(D))3 is
(3.5)4HL={V€(L2(D))31 (3)q€H1(D) such that V=Yq }

then there exists qul(D) such that the following system is satis-

fied in some {weak) sense: _ -




(3.6) . a#u + ayv + ng = 0 in D
(3.7) utd, q=0, ~V+3yq=0, wtd q=a$ in D
(3.8) e S=aw in D

(3591 U.n=g $=0 on PBx(0,1)

(3.10) w=5=0 for z=0 and z=1,

Moreover, one can prove like in [h] Ch.2 that In fact
qehZ (D) and consequently UE(H'(D))3 and ser®(p).

Now, let us remark that for any (x,y)eB, the eigenfunc-

tions of (3:6)-(3.10) belong to LZ(O,T) and hence they can be deve-
leped in Fourier series using any orthogonal complete set in LZ(D,I).

Therefore we consider

(3550 Sz7r§jjfj(x,y)sin £ T WZWQ'EZ jog.(x,y)sinj¥ z

whitch satisty {3.10) also,

Using €3.11);, the ecuations (3.7) yield:

(3. 12) q=- > h.cosiTz, u= > }xh.cosj'?z, ve 2 D hjcos_i 7z
e iR igt Y

—_—

where hj(x,y)=afj(x,y)~7fgj(x,y).
' Finally, introducing (3.11)-(3.12) in (3.6) and (3.8)-(3.°

we find that for any j€,m1¥ it holds:

35 ~4&¥3 = A %3 in B
. o |
(3.14) : O\'}FJ 0 on @B

where ¥ is the unit outward normal on 2B, ?3 is the vector of

components fj and 95 while Aj is the (2x2) matrix given by
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(3015) e .Au = . . :
-ai 27 B

‘,lfiﬂj has no pcsitivé eig&nvalges then fhe»problém
(3.13)-(3.14) has only the friviai solution (see[?] 5.vThus we are
lead to consider the ffrst Endex for which the Qroblem (3.13)=(3.14)
has a non-trivial solution: let s dencte-1t by ke The characteris- -

tic equation of Ay yields
{3.186) . ooa = a (u

k‘

it Ak has distinct eigenvalues, then it is diagonizable

_where/ﬂ is eigenvalue of A

and using the corresponding transformation upon (3.13)-(3.14) we find
that at least one of the eigenvalues of Ak belongé to {\X] f]ém%‘
Thus (3.16) implies a€ 07,

i Ak has a dpuble eigenvalue then it is k2772a Consegueng

ly a=2k% and (3.13) can be put into the form

(3.18) ~¢ﬁ(2kfk~gk)='ﬁ2kzgk 3

We make the scalar products of (3.17)-(3.18) by (Zkfpu

»gk) and respectively fk; equating the right hand sides we obtain
: 2 '
(3:19) gy=kf,  In L7(B),

Introducing (3.19) in (3.17) we find that this cese holds
only i f kzﬁpzﬁ is an eigenvalﬁe of the planform problem also; again

(3.16) implies a€ 0 ; B



In the following we denote by X €§>§ }IQEN%‘ a mlnfmizer

of the functlon ay and by ?’(3%%” glew any eigenfunction corres-

-ponding to the same eigenva?ue X i lt Is obvious that k is nnt uni-

- que only when-')‘\' #Ti‘ and /\ I“ )\ flﬁ{f\lt : in thfs case wa de»no"\
,\’ 3
te. by ¢ C%@yjk”Nﬁ the exgenfunctlons correspondtnq to Ac‘ fn order

s
-to cover both s&tuatlonSIW@ define ?2=0 when Ac= /2 or when Ac §f

%Ajgle E

Proposlition 3.2, The smallest elgenvalue of the |inearis

zed problem (2,23)-(2.24) is given by

(3.20) \//\ e

Cc

Proof. Obviously, for any k,lélN% , we have ak(kl) ;3

Zal(}”)>al(kc) and the proof 1s completed: by Proposition 3.1. Bl

Proposition 2,3, The eigenfunctions of the linearized

wom

problem (2,23)-(2.24) corresponding to the smallest eigenvalue a.

are generated by

(3.21) U‘Cz( i Bxc(’cco_s 7z, Zf"‘()y ?Dccos 7z, )\C ‘?CsinTz) :
SC=VXZQf‘sin772

and by

(4%

(3.22) ?Jl=(773x((icos7'z /la Q”cosT/"z /\ C)psm z),

c
g p/-¢?b sinif z

Eipof. | f AC=V72, then ac=2ﬁ’and from (3.19) we obtain

gy=fi. Thus problem (3.13)-(3.14) reduces to

PRSEIP S S RV,



(3.23 ) | .,.Af,l:-:‘]}'zf-'.‘: b B Bpf‘z”” on 28,

and hence fy Is generated by the set of all Qi.

When kcﬁtﬁz, if we define
(3.24) F=77f?»VG;g1 and g=~\Z&cf1 +'ﬁ@1

then the problem (3.13)-(3.14) becomes

(3.25) -Af= Af in B, d,f=0 on o8
~
{3.26) -Ag= Xcg in B, ?¥g=0 on & B
It follows that f an g are generated by the set of all 91 and qi’

In both cases the proof is completed by straightforward

computations. EI

Remark 3.1, For any NvéélR with K2+/32#0 we have

A NEAY
2 («U +/2U s LS +(5s e) :

ST Seefe g L

[bf +/3,U } /o(S +/)S }/ &

L., Norn-existence of subcritical convective solutions

MG 29 R TR VGO ~ il B § T BTG T T T | BT Sin s ST T B Tstman i, G5 7008 0 T Q000 P90 W, (050 iy . G @ioacbin—e

As in the most of thermoconvective studies, the linearized
problem can be recast in a maximum formulation. In the present case

we have

Proposition 4,1, If a. is the smallest eigenvalue -of the

linearized problem (2,23)-(2,24), then




= fo-
(1.1) . sngZ?%g.:;.?lveﬁ,mw, V]2 ny{?‘#ofm -

_Moreover, any maximizing functlon satisfy the linearized

problem for a=a_.

Proo:» Let us denote. by/}N”m the left hand side of (4.1);
Remark 3.1 |mpllcs/ﬁ

On the other side, let us notice flrst that

(4,2) /«= JupL2(V,Te)IV€H, Tew, [v]%+ }]T{{szz

It follows that for any &€>0 there exist \JEGH, 'léew with

I }4 [ 2. and such that ' ' =4

3 AR Z(V&,.Tee)>/k-g

Let VeH and TEW; then for sufficiently 5ma1\2¢>0 we

‘have

(4. k) [V&+?\/}2+UTE+?T”2 £ 0.

Using (4.4) in the definition oﬁ/ﬂ and taking in account

(k.3) we obtain

(L4.5) 2/ ; 42Ze v, T e)+2 ,{2 V,Te) '€+ }a?(vé,v)#
gt T I apy 1Tl

As the sequences gv { and % ? are bounded in H and

respectively W,we find sub-sequences (still denoted by&) for which

we have



(k.6) Ve ot U weakly In H
(L.7) ' Té ~w § weakly in W'(stréng)y in LZ(D)).

Therefore, If we let £-»0, (4,5) reduces to

(4.8) 2'(0,Te_)+2(v,se)nc-z?(v,Te)gz/u(u,v)+
+/41=( (s,“r))y»f/slv! z/wr//;T// 2

For ? ~30 and for a proper choice of the test functions,

(4,8) yields

(L.9) (u,Vv) =/«("1(Se,V) (Y)Y veH
(h.10) ((s,r)):/f‘(u,m (%) Tew

Moreover, using the Friedrich’s inequality in W and

the inequality (k.2), we obtain

afro

F CF g-+0 Foe

2 10 2 . { 1
(4, 11) }U] +[s)72 ==(u,se)= w= lim (Va,,T&e)>/é T

where c. is some positive constant.

Hence UEH, SEVW are eigenfunctions of the linearized pro- |
Cblem (2.23)-(2.24) for the eigenvalue/Mnjs then Proposition 3.2 |
implies /M“12ac and (L,1) is proved.

Let us finally remark that the previous considerations
contain also the proof that any maximizing function of (4.1) must
satisfy the linearized problem for a=a_. O

" The result concerning the non-existence of subcritical

convective solutions is the following:

Proposition L,2. If a is an elgenvalue of the nonlinear

SIS, T TP (T, 5 R () TR e R T e




(4.12) e a>a_

Proof. If a»0, UEH and SEVW Is an eigensolution of the

-nonlinear probiem (2.21)-(2.22) then

(h.13) Gy )= %-gdiv(SZU)dh - Ssz(u;m)d\)"’= 0
" Consequently, adding (2.21) and (2.22) for V=U and T=S, we get

(4, 1h) ‘U[2+HS”2=2a (U,Se)

Obviously, Proposition 4,1 implies azgac.

let us assume that a=a_j from (4,14) it follows that U
and S are maximizing functions of (4.1). Then Proposition 4.1 implies,
that U and § are ejgenfunctions of the linearized problem. Comparing

(2,22} with (2.2%) we obtain
(k.15) (U,sVT)=0 (MTEW.

If we set T=sin 27z in (4.15), then by using Proposi-

tion 3.3 we easily find a contradiction, 1
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