INSTITUTUL
DE
MATEMATICA

PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

DILATIONS IN H-CONES

·by

N. BOBOC and Gh. BUCUR

PREPRINT SERIES IN MATHEMATICS

No. 55/1990

DILATIONS IN H-CONES

by

N. BOBOC*) and Gh. BUCUR**)

August, 1990

^{*)} Faculty of Mathematics, University of Bucharest, Str. Academiei No. 14, 70109 Bucharest, Romania.

^{**)} Institute of Mathematics, Bd. Pacii 220, 79622 Bucharest, Romania.

Dilations in H-cones

by N. Boboc and Gh. Bucur

In potential theory there are situations when starting with a cone of potentials we construct others which are bigger. For instance if S is a cone of potentials and B is a balayage (or only pseudobalayage) on S then the subset S_B of S-S given by S_B : $S_B = S_B / S_B = S_B / S_B = S_B$

Suppose now that $\mathcal{V} = (V_{\mathbf{x}})_{\mathbf{x}>0}$ is a resolvent of kernels on a measurable space (X, \mathcal{B}) such that its initial kernel $V = V_0$ is bounded and let P be a bounded kernel on (X, \mathcal{B}) such that V - PV is also a kernel on (X, \mathcal{B}) and such that , for any positive \mathcal{B} -measurable function f on X, we have

inf(s, Ps+u-Pu + Pf) $\in \mathcal{E}_{\mathcal{V}}$ for any s, u $\in \mathcal{E}_{\mathcal{V}}$. (Here $\mathcal{E}_{\mathcal{V}}$ (resp. $\mathcal{E}_{\mathcal{V}}$) is the cone of strongly \mathcal{V} -supermedian (resp. \mathcal{V} -excessive) functions on X). Mokobodzki shows ([2]) that the set $\mathcal{E}_{\mathcal{V}}$ of all functions on X of the forme s - Ps where s $\in \mathcal{E}_{\mathcal{V}}$ is a solide subcone of the cone of all excessive functions with respect to the kernel V - PV. This assertion is proved when X is a compact space, \mathcal{V} is a Ray resolvent on X and P does not charge the set of branching points of \mathcal{V} . One can say that this generalize the above situation when P is a balayage. The kernel P is called subordination kernel with respect to \mathcal{V} .

In this paper we develop a general procedure as above in the frame of the theory of H-cones.

If S is an H-cone, a map $P: S \longrightarrow S$ which is additive, increasing and contractive $(PA \le A, s \in S)$ is called a <u>pseudo-dilation</u> if we have $s \land (Ps + t - Pt) \in S$ for all $s \in S$, $t \in S$. A pseudo-dilation is termed <u>localizable</u> if $s \land (Ps + Pf) \in S$ for all $s \in S$

and f (S - S). A pseudo-dilation is called dilation if we have

$$s - Ps < t - Pt \implies s < t$$

We remember that a map $B: S \to S$ is a pseudobalayage if it is additive, increasing contractive and idempotent ($B^2s = Bs$, (lambda) $s \in S$).

It is proved: 1) any pseudo-balayage is a localizable pseudo-dilation; 2) for any pseudodilation P on S the subset $S_p = \{s - Ps \mid s \in S\}$ is an H-cone; 3) If P is a pseudo-dilation on S then there exists a pseudo-balayage B on S and a dilation Q on S_B uniquely determined such that

$$1 - P = (1 - Q)(1 - B).$$

We have also P localisable iff Q is localizable. 4) If P is a localizable pseudo-dilation on S and Q is a pseudo-dilation on S_p then the map

$$L := P + Q(1 - P)$$

is a pseudo-dilation on S and we have

$$(1 - L) = (1 - Q)(1 - P)$$

Moreover if Q is localizable then L is also localizable.

Definition Let S be an H-cone. A map

is called <u>pseudo-dilation</u> on S if it is additive , increasing, contractive (i.e. Ps \leq s for any s \leq S) and

s.
$$t \in S \Rightarrow s \land (Ps + t - Pt) \in S$$
.

A pseudo-dilation P on S is called <u>dilation</u> if for any s, te S we have

$$s - Ps \le t - Pt \Rightarrow s \le t$$

A pseudo-dilation P on S is called localizable if the following relation holds

$$f \in (S - S)_+$$
, $s \in S \Rightarrow s \land (Ps + Pf) \in S$.

Remark We remember that a map

$$B:S \rightarrow S$$

is called a pseudobalayage if it is additive, increasing, contractive and idempotent (i.e. $B^2s = Bs$ for any $s \in S$).

<u>Proposition 1</u> Let S be an H-cone and B be a pseudobalayage on S. Then B is a localizable pseudodilation on S and the convex cone

is an H-cone with respect to the natural order from S - S.

<u>Proof.</u> Since B is a pseudo-balayage on S then, from ([1], Theorem 5.1.5) it follows that S_B is an H-cone $\hat{}$. If s, t ϵ S then we have

$$(s - Bs) \wedge (t - Bt) = u - Bu$$

for a suitable u ∈ S. Since

it follows, from ([1], Proposition 5.1.2) that

or equivalently

Hence B is a pseudo-dilation on S. The fact that B is localizable follows as in ([1], Theorem 5.1.6). Indeed if s, te S are such that $s \le t$ and if $u \in S$ then we have

$$v := (u + Bs) \land (Bu + Bt) \in S,$$

$$Bv = Bu + Bs$$

$$u \wedge (Bu + B(t - s)) + Bs = v$$

Since

we deduce, from ([1], Proposition 5.1.2),

or equivalently

$$u \wedge (Bu + B(t - s)) \in S.$$

<u>Definition</u>. Let P be a pseudodilation on an H-cone S. We denote by B_{p} the map

$$B_{p}: S \rightarrow S$$

defined by

The following proposition shows that B_{p} is a pseudobalayage on S. It is termed the pseudobalayage associated with P.

 $\frac{\text{Proposition 2}}{2}$. For any pseudodilation P on S the map \textbf{B}_p is a pseudobalayage on S such that

and such that if B is a pseudo-balayage on S with

then we have

Bs
$$\leq$$
 Bps (\forall) s \in S.

Moreover for any $s \in S$ we have

where Ω_S is the set of all ordinals α on S with card $\alpha < C$ card S and where $(P^{\alpha})_{\alpha \in \Omega_S}$ is the family of maps $P^{\alpha}: S \longrightarrow S$ defined inductively by $P^{\alpha} = P$ and if $\alpha > 1$,

$$P's = P(\Lambda \{P^{\beta}s \mid \beta \in \Omega_{S}, \beta < \alpha\})$$

<u>Proof.</u> From the definition of B_p it follows that B_p is increasing and contractive Let $s_2, s_2 \in S$ and $t_1, t_2 \in S$ be such that

$$t_1 \le s_1$$
, $t_2 \le s_2$, $Pt_1 = t_1$, $Pt_2 = t_2$.

We have

$$P(t_1 + t_2) = t_1 + t_2$$

and therefore

$$t_1 + t_2 \le B_p(s_1 + s_2)$$

Since for any $s \in S$ and any t', $t'' \in S$ with

we have

it follows that

and therefore the set

is upper directed. From the above considerations we get

$$B_{p} s_{1} + B_{p} s_{2} \leq B_{p}(s_{1} + s_{2})$$
.

On the other hand if t ∈ S is such that

$$t \leq s_1 + s_2$$
, Pt = t

we deduce that there exist t_1 , $t_2 \in S$, such that $t_1 + t_2 = t$, $t_1 \le s_1$, $t_2 \le s_2$. Obviously we have $Pt_1 = t_1$, $Pt_2 = t_2$ and therefore

$$t \leq B_{p} s_{1} + B_{p} s_{2}, B_{p}(s_{1} + s_{2}) \leq B_{p} s_{1} + B_{p} s_{2}.$$

Let now s \in S. Since P B_p s \leq B_p s and since

$$t \in S$$
, $Pt = t$, $t \le s \implies t \le B_p$ s

we deduce

$$t \in S$$
, $Pt = t$, $t \le s \implies t \le P(B_p s)$

and therefore

$$B_p s \leq P B_p s$$

Hence $P B_P s = B_P s$. From the definition of B_P we get

$$B_p^2 s \gg B_p s$$
 , $B_p^2 s = B_p s$

Let now B be a pseudo-balayage on S such that

We deduce

$$B^2s \le PBs \le Bs = B^2s$$
 (\(\forall \) $s \in S$

and therefore

Bs = PBs
$$(\forall)$$
 s \in S.

From this fact and from the relation $\mathsf{Bs} \leqslant \mathsf{s}$ we get

Bs
$$\leq$$
 B_p s (\forall) s \in S.

It is easy to see that for any $\propto \in \Omega_{\tilde{S}}$ the map P^{\propto} is additive, increasing and contractive and that

Hence the map

is also additive, increasing and contractive .

Since

card
$$\Omega_{\rm S}$$
 > card S

it follows that for any s \in S there exists $\boldsymbol{\alpha}_0 \in \Omega_{\mathrm{S}}$ such that

Ts
$$\geqslant$$
 P(Ts) = P(P $^{\alpha_0}$ s) = P $^{\alpha_0+1}$ s \geqslant Ts, Ts = P Ts.

From this relation and from $Ts \leq s$ we get

On the other hand we get inductively

$$B_{p} s \leq P s$$
 (\forall) $\forall \in \Omega_{s}$

and therefore

<u>Corollary 3</u>. Let S be an H-cone and P be a pseudodilation on S. Then P will be a dilation iff any pseudo-balayage B on S with PB = B (or equivalent Bs \leq Ps (\checkmark) s \in S) is equal zero.

<u>Proof.</u> Suppose that P is a dilation on \$ and let B be a pseudo-balayage on S such that PB = B. We have

and therefore Bs \leqslant 0. Conversely let s, t \in S be such that

We deduce, inductively

$$s - P^{\alpha}s \le t - P^{\alpha}t$$
 $(\forall) \alpha \in \Omega_{S}$

and therefore

Since B_{P} is a pseudo-balayage on S with

$$B_{P}s = A \in \Omega_{S}$$
 Ps , $PB_{P} = B_{P}$

we get B_p s = 0, B_p t = 0. Hence s \leq t.

$$1 - P = (1 - P')(1 - B')$$

The cuple (B', P') with the above properties is uniquely determined, B' is the pseudo-balayage associated with P and

$$P'(s - B's) = Ps - B's$$
 $(\forall) s \in S$

Moreover if P is localizable then P' is also localizable.

 $\underline{\text{Proof.}}$ Let \textbf{B}_0 be the pseudo-balayage associated with P and P $_0$ be the map defined on $\textbf{S}_{\textbf{B}_0}$ by

$$P_0(s - B_0 s) = Ps - B_0 s$$

Qbviously we have

$$B_0 s \ge B_0 P s \ge B_0 P B_0 s = B_0 s$$
,
 $B_0 P s = B_0 s = P B_0 s$.

From the definition of P_0 it follows that P_0 is additive. Let now s, te Sysuch that

$$s - B_0 s \leq t - B_0 t$$

From ([1] , Proposition 5.1.2) we deduce that

$$s' := s - B_0 s + B_0 t \in S \quad , \ s' \leqslant t$$

Ps'
$$\P$$
Pt, Ps - P B₀s + P(B₀t) \leq Pt .

Since
$$P(B_0s) = B_0s$$
, $P(B_0t) = B_0t$ we get
$$Ps - B_0s + B_0t \le Pt$$

$$P_0(s - B_0s) \le P_0(t - B_0t)$$
.

Hence P_0 is increasing. On the other hand we have

$$P_0(s - B_0 s) = Ps - B_0 s \le s - B_0 s$$

and therefore P_0 is contractive.

Let now s, $t \in S$. We show now that

$$(s - B_0 s) \wedge (P_0 (s - B_0 s) + (t - B_0 t) - P_0 (t - B_0 t)) \in S_{B_0}$$

Indeed we have

$$(s - B_0 s) \wedge (P_0 (s - B_0 s) + (t - B_0 t) - P_0 (t - B_0 t)) =$$

=
$$(s - B_0 s) \wedge (Ps - B_0 s + t - Pt) = s \wedge (Ps + t - Pt) - B_0 s$$
.

Since

$$s' := s \wedge (Ps + t - Pt) \in S$$

and

we get

$$B_0s' = B_0s$$

and therefore

$$(s - B_0 s) \wedge (P_0 (s - B_0 s) + (t - B_0 t) - P_0 (t - B_0 t)) = s' - B_0 s'$$

Hence P_0 is a pseudodilation on S_{B_0} . It is easy to see that we have, inductively,

$$P_0$$
 (s - B_0 s) = Ps - B_0 s, (\forall) s \in S, $\alpha \in \Omega_S$

and therefore

$$\alpha \in \Omega_{S}^{R} = \Omega_{0}^{R} = \Omega_{0}^{R} = 0$$

Using Corollary 3 we deduce that P_0 is a dilation on S_{B_0}

Let now B' be a pseudo-balayage on S and P' be a dilation on S_{B} , such that

$$1 - P = (1 - P')(1 - B')$$

We remark that

$$P = B' + P'(1 - B')$$

and therefore

$$PB's = B's$$
 $()$ $s \in S$.

Hence

$$B's \leq B_0s$$
 (\forall) $s \in S$.

We denote by B the map

$$B'': S_B \rightarrow S_B$$

defined by

$$B^{\prime\prime}(s - B's) = B_0(s - B's) = B_0s - B'B_0s$$

It is easy to see that ${\bf B}^{il}$ is a pseudo-balayage on ${\bf S}_{\bf B}$. We have

$$(1 - P)(B_0 s) = 0$$
 (#) $s \in S$,
 $(1 - P')(B^{ij}(s - B's)) = (1 - P')(1 - B')(B_0 s) = (1 - P)(B_0 s) = 0$ (#) $s \in S$.

Since P' is a dilation on S_{B} , , we deduce

$$B^{(1)}(s-B's)=0 \qquad (\forall) s \in S,$$

$$B^{\parallel} = 0$$

Hence

$$B_0s = B' B_0s = B's$$
 (\forall) $s \in S$,

$$B_0 = B'$$
.

Suppose now that P is localizable and let s, t & S such that

$$s - B_0 s \leq t - B_0 t$$
.

Replaceing s and t by

$$s' := s - s \land B_0 s$$
, $t' = t - t \land B_0 t$

where $\boldsymbol{\curlywedge}$ is the imfimum in S with respect to the specific order we get

$$s - B_0 s = s' - B_0 s' \le t' - B_0 t'$$
,
 $s' A_0 s' = t' A_0 t' = 0$

and therefore

$$s' \leq t', B_0 s' \lesssim B_0 t'$$

We have for any u ES,

$$(u - B_0 u) \wedge (P_0 (u - B_0 u) + P_0 ((t' - B_0 t') - (s' - B_0 s'))) =$$

$$= (u + B_0(t'-s')) \bigwedge (P(u + B_0(t'-s')) + P(t'-B_0t' - (s'-B_0S'))) - B_0(u+t'-s').$$

Since $B_0(t'-s') \in S$ and using the fact that P is localizable it follows that the element

$$v := (u + B_0(t' - s')) \wedge (P(u + B_0(t' - s')) + P(t' - B_0t' - (s' - B_0s')))$$

belongs to S and moreover

$$B_0 v = B_0(u + t' - s')$$
.

We deduce that

$$(u - B_0 u) \Lambda (P_0 (u - B_0 u) + P_0 ((t - B_0 t) - (s - B_0 s)) = v - B_0 v \in S_{B_0}$$

and therefore P_0 is localizable dilation on S_{B_0}

Since for any $s \in S$ we have

$$P_0((1 - B_0)s) = Ps - B_0s$$

we get

$$(1 - P_0)(1 - B_0)s = s - B_0s - (Ps - B_0s) = s - Ps$$

Remark The following theorem shows that if P is a pseudodilation on a given H-cone S then the convex cone $S_P := \{s - Ps / s \in S\}$ is also an H-cone with respect to the natural order from S - S.

The preceding proposition represent a way to obtain S_P in two particular steps; first we pass from S to S_{B_0} where B_0 is a pseudo-balayage (the pseudo-balayage associated with P) and then we pass from S_{B_0} to $S_P = (S_{B_0})_{P_0}$ where P_0 is at this time a dilation on S_{B_0} .

Lemma 5 . Let S be an H-cone, P be a pseudodilation on S and let M be a subset of S - S which is dominated by an element of the form s - Ps with s ϵ S. Then the set

has a smallest element \mathbf{u}_0 . Moreover we have

$$u_0 - Pu_0 = \Lambda \{ u - Pu / u \in A \}$$
.

Proof. If we denote $u_0 := \Lambda A$

we get

$$f + Pu_0 < f + Pu \le u, (\forall) f \in M, u \in A$$

and therefore

$$f \leq u_0 - P u_0$$
 (\forall) $f \in M$,

$$u_0 \in A$$
.

Let now $u\in\mathcal{A}$. If we put

$$u_1 := u_0 \wedge (P u_0 + u - Pu)$$

we get $u_1 \in S$ and $u_1 \leqslant u_0$. On the other hand we have, for any $f \in M$,

$$f\leqslant u-Pu,\ f\leqslant u_0-Pu_0\ ,$$

$$f\leqslant (u_0-Pu_0)\wedge(u-Pu)=u_1-Pu_0\leqslant u_1-Pu_1$$
 and therefore $u_1\in\mathcal{A}$, $u_1\geqslant u_0$. Hence $u_1=u_0$,
$$Pu_0+(u-Pu)\geqslant u_0,$$

$$u-Pu\geqslant u_0-Pu_0$$

<u>Corollary 6</u> For any s ∈ S there exists an element MS ∈ S such that

s - Ps = Ms - PMs and such that for any t \in S for which s - Ps \leq t - Pt we have Ms \leq t. Moreover we have

$$Ms = \Lambda \{t \in S / s - Ps \le t - Pt\} = \Lambda \{t \in S / s - Ps = t - Pt\}.$$

Proof If we put

$$Ms = \Lambda \{t \in S / s - Ps \le t - Pt \}$$

then we have, using Lemma 5,

cone

Hence MS is the smallest element of the set

Theorem 7 Let S be an H-cone and P be a pseudodilation on S. Then the convex

Sp: = {s-Ps | ses}

is an H-cone with respect to the natural order in S - S and

$$A = A$$
 A for any $A \subset S_p$

 $A = S_p$ A for any upper directed and dominated A C_p

<u>Proof</u>. If A < S_p we denote

$$M := \left\{ f \in S - S \mid f \leq t \ (\forall) \ t \in A \right\}$$

and

$$A = \{ u \in S \mid f \leq u - Pu \ (\forall) \ f \in M \}$$

Obviously

$$A \subset \{u - Pu \mid u \in A\}$$

and from Lemma 5 there exists $\mathbf{u}_0 \in \mathcal{A}$ such that

$$u_0 - P u_0 = \bigwedge_{S_0} A$$

Suppose now that $A = \{s_i - Ps_i \mid i \in I\}$ is upper directed and dominated in S_p . We denote

$$\mathcal{B} = \{ u \in S \mid f \leq u - Pu , (\forall f \in A \} .$$

From Lemma 5 the smallest element \mathbf{u}_0 of \mathbf{B} is such that

$$u_0 - P u_0 \le u - Pu$$
 $(\forall) u \in \mathbb{B}.$

Using Corollary 6 we may suppose that $s_i = MS_i$ for any $i \in I$ and therefore we deduce that the family $(s_i)_{i \in I}$ is upper directed and dominated by u for any $u \in \mathfrak{F}$. Hence $s_i \in u_0$ any $i \in I$. We have

$$\begin{aligned} \mathbf{s_i} &- \mathbf{P} \mathbf{s_i} \leq \mathbf{u_0} - \mathbf{P} \mathbf{u_0} \\ \\ \mathbf{s_i} &- \mathbf{P} \hat{\mathbf{s_i}} + \mathbf{P} \mathbf{u_0} \in \mathbf{S}, \ \mathbf{s_i} - \mathbf{P} \mathbf{s_i} + \mathbf{P} \mathbf{u_0} \leq \mathbf{u_0}, \ (\forall) \ \ \mathbf{i} \in \mathbf{I} \end{aligned}$$

and therefore the element

$$t := \begin{cases} s_i - Ps_i + Pu_0 & | i \in I \end{cases} = Pu_0 + \begin{cases} s_i - Ps_i & | i \in I \end{cases}$$

belongs to S and $t \le u_0$. Since $s_i \le t$ for any $i \in I$ we have $t \le u_0$. On the other hand $s_i - Ps_i \le t - Pu_0 \le t - Pt$ for any $i \in I$ and therefore $u_0 \le t$, $u_0 = t$. From the above considerations it follows

$$t - Pt = u_0 - Pu_0 = \sqrt{\{S_i - PS_i \mid i \in I\}}$$
.

It remains only to show that for any f, $g \in S_p$ we have

$$g - R^{S_p}(g-f) \in S_p$$

From the preceding considerations we have $R^{S_p}(g-f) \in S_p$ and

$$g - f \le R^{S_P} (g - f)$$
.

Let u, v, w \in S be such that g = u - Pu, f = v - Pv and R $^{S}P(g-f)$ = w - Pw

From Lemma 6 we may suppose that

$$w = \bigwedge_{S} \{ w' \in S \mid g - f \leq w' - Pw' \} .$$

We show that we have

$$(u - Pu) - (w - Pw) = R^{S_P}((u - Pu) - (w - Pw)) \in S_P$$

Indeed we have, using again Lemma 6,

$$S_{P}$$
 ((u - Pu) - (w - Pw)) = v'- Pv'

where

$$v' = \Lambda \{ s \in S \mid (u - Pu) - (w - Pw) \le s - Ps \}$$

and

$$v' - Pv' \leq v - Pv$$

Since

$$(u - Pu) - (w - Pw) \le v' - Pv' \le v - Pv$$

we deduce that the element

\belongs to S and t ≤ v' + w.

Let

$$r := R^{S}(t - w)$$

We have $r \gtrsim t$, $r \leq v'$. On the other hand , from

$$(u - Pu) - (w - Pw) + Pr \le (u - Pu) - (w - Pw) + Pv' \le r$$

we deduce

$$(u - Pu) - (w - Pw) \leq r - Pr$$

and therefore r = v'. Hence

We put $v_1 := t - v'$. We have $v_1 \in S$, $v_1 \leqslant w$, $t \leqslant w + v$ and we deduce

$$(u - Pu) - (v - Pv) < (u - Pu) - (v' - Pv') =$$

$$t - v' - Pw = v_1 - Pw \le v_1 - Pv_1$$

From the definition of w it follows that

$$v_1 = w, w = t - v'$$

$$(u - Pu) - (w - Pw) = v' - Pv'$$

Theorem 8 . Let P be a pseudodilation on S and f ϵ (S - S) $_+$. Then the following assertions are equivalent:

a) $f \wedge u \in S_p$ for any $u \in S_p$

b)
$$s \land (Ps + f) \in S$$
 for any $s \in S$

c)
$$s \land (Ps + t - Pt + f) \in S$$
 for any $s, t \in S$

where \wedge means the infimum in S - S with respect to the natural order.

Proof. a)
$$\Rightarrow$$
 c) Let s, t \in S. From a) there exists s' \in S such that $f \land (s - Ps) = s' - Ps'$.

Since

$$(s - Ps) \wedge (t - Pt + f) = (s - Ps) \wedge (t - Pt + f \wedge (s - Ps)) =$$

= $(s - Ps) \wedge (t - Pt + s' - Ps')$

we get

$$(s - Ps) \land (t - Pt + f) \in S_P$$
 and $(s - Ps) \land (t - Pt + f) \leq s - Ps$

and therefore

$$(s - Ps) \wedge (t - Pt + f) + Ps \in S,$$

 $s \wedge (Ps + t - Pt + f) \in S$.

- c) \Rightarrow b) is trivial
- b) \Rightarrow a). Let s \in S. We consider the set

$$A = \{ t \in S / f \land (s - Ps) \le t - Pt \}$$

From Lemma 5 it follows that posseses a smallest element $t_{oldsymbol{c}}$ and moreover

$$t_0 - Pt_0 = \Lambda \left\{ t - Pt / t \in \mathcal{A} \right\}$$

We show that

$$f\ddot{\lambda}(s - Ps) = t_0 - Pt_0$$

Obviously $t_0 \le s$ and

$$f \wedge (s - Ps) \leq t_0 - Pt_0, t_0 - Pt_0 \leq s - Ps$$

Hence

$$f\Lambda(s - Ps) = f\Lambda(t_0 - Pt_0)$$

From the assertion b) it follows that.

$$t_1 := t_0 \wedge (Pt_0 + f) \in S.$$

Since $t_1 \le t_0$ and

$$f_{\Lambda}(s-Ps) = f_{\Lambda}(t_0 - Pt_0) = t_1 - Pt_0 \le t_1 - Pt_1$$

we deduce, from the definition of ${\mathcal A}$, that

$$t_1 \in \mathcal{A}$$
 , $t_1 = t_0$,

$$f_{\Lambda}(t_0 - Pt_0) = t_0 - Pt_0$$
,

$$f_{\wedge}(s - Ps) = t_0 - Pt_0$$

Theorem 9. Let S be an H-cone and let P be a localizable pseudodilation on S.

Then for any pseudodilation ${\bf Q}$ on ${\bf S}_{\bf p}$ the map

$$L := P + Q(1 - P)$$

is a pseudodilation on S and we have .

$$1 - L = (1 - Q)(1 - P)$$

Morover L will be a localizable pseudodilation if Q is a localizable pseudodilation on S_P

We show that L is a pseudodilation on S. Let $s \in S$ and let $u \in S$ be such that

Since P is a pseudodilation on S it follows that

and therefore

$$Ls = Q(s - Ps) + Ps = u - Pu + Ps S,$$

Ls < s

consider now $f \in \left(S-S\right)_{+}$. Since P is localizable it follows that

$$s \land (Ps + Pf) \in S$$
, $(\forall) s \in S$

or equivalently (see Theorem 8)

$$Pf\Lambda(s-Ps) \in S_{p}$$
, $(\forall) s \in S$.

Now we show that

$$f \in (S - S)_+ \Rightarrow Lf \geqslant 0$$

Let $s,t \in S$ be such that f = s - t . We have

and therefore

$$t - Pt \le s - Ps + Pf \wedge (t - Pt)$$

Since P is localizable we have $Pf_{\Lambda}(t - Pt) \in S_{p}$ and therefore

$$Q(t - Pt) \leq Q(s - Ps) + Q(Pf \wedge (t - Pt)) \leq$$

$$\leq Q(s - Ps) + Pf \wedge (t - Pt) \leq Q(s - Ps) + Pf$$

Hence

$$Pt + Q(t - Pt) \leq Q(s - Ps) + Ps$$

or equivalently

Lt
$$\leq$$
 Ls, Lf \geq 0

and therefore L is additive, increasing and contractive.

Let now s, $t \in S$. We have

$$s_{\Lambda}(Ls + t - Lt) = s_{\Lambda}(Ps + Q(1 - P)s + t - Pt - Q(1 - P)t) =$$

$$(s - Ps)_{\Lambda}(Q(s - Ps) + (t - Pt) - Q(t - Pt)) + Ps .$$

Since Q is a pseudodilation on S_{P} it follows that there exists $\mathsf{u} \in S$ such that

$$(s - Ps) \wedge (Q(s - Ps) + (t - Pt) - Q(t - Pt)) = u - Pu$$

Hence

$$u - Pu + Ps \in S$$
,
 $s \wedge (Ls + t - Lt) = u - Pu + Ps \in S$.

From the above consideration it follows that L is a pseudodilation on S. Obviously we have

$$(1 - 0)(1 - P) = 1 - L$$

Suppose now that Q is localizable and let f = s_1 - s_2 , s_1 , $s_2 \in S$, $s_1 \geqslant s_2$.

We remark that for any $s \in S$ and any $u \in S$ such that

we have

$$(s - Ps) \wedge (Q(s - Ps) + Pf \wedge (u - Pu) + Q(f - Pf)) =$$

= $(s - Ps) \wedge (Q(s - Ps) + Pf + Q(f - Pf))$.

Indeed we have

$$(s - Ps + s_2 - Ps_2) \wedge (Q(s - Ps) + Pf \wedge (u - Pu) + Q(s_1 - Ps_1)) \leq$$

$$\leq (s - Ps + s_2 - Ps_2) \wedge (Q(s - Ps) + Pf + Q(s_1 - Ps_1)) \leq$$

$$\leq (s - Ps + s_2 - Ps_2) \wedge (Q(s - Ps) + Pf \wedge \overline{L}(s - Ps) + s_2 - Ps_2) \overline{J} + Q(s_1 - Ps_1)) \leq$$

$$\leq (s - Ps + s_2 - Ps_2) \wedge (Q(s - Ps) + Pf \wedge (u - Pu) + Q(s_1 - Ps_1))$$

and therefore

$$\begin{split} &((s-Ps)+(s_2-Ps_2))\bigwedge(\mathbb{Q}(s-Ps)+Pf_{\bigwedge}(u-Pu)+\mathbb{Q}(s_1-Ps_1))=\\ &=(s-Ps+s_2-Ps_2)\bigwedge(\mathbb{Q}(s-Ps)+Pf+\mathbb{Q}(s_1-Ps_1)) \ ,\\ &(s-Ps)\bigwedge(\mathbb{Q}(s-Ps)+Pf_{\bigwedge}(u-Pu)+\mathbb{Q}(f-Pf))=\\ &=(s-Ps)\bigwedge(\mathbb{Q}(s-Ps)+Pf+\mathbb{Q}(f-Pf)) \ . \end{split}$$

On the other hand if $s \in S$ and $u \in S$ are such that

then we have

$$f - Pf + Pf \wedge (u - Pu) \in (S_P - S_P)_+$$

Since P is localizable we get

and using the fact that Q is localizable we deduce

$$(s - Ps)/(Q(s - Ps) + g - Qg + Q(f - Pf + g))) \in S_P$$

From the above considerations it follows

$$(s - Ps) \land (Q(s - Ps) + Pf \land (u - Pu) + Q(f - Pf) \in S_{p}$$

$$(s - Ps) \land (Q(s - Ps) + Pf + Q(f - Pf)) \in S_{p}$$

$$(s - Ps) \land (Q(s - Ps) + Lf) \in S_{p}$$

for any $s \in S$ and any $f \in (S - S)_+$. Hence L is localizable.

Bibliography

- 1. N. Boboc, Gh. Bucur, A. Cornea :Order and convexity in Potential theory : H-cones . Lecture notes in Math. Berlin-Heidelberg-New York, 853, 1981.
- 2. G. Mokobodzki : Operateur de subordination des résolventes (Manuscrit non publié ; exposé à Oberwalfach 1984).