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ABSTRACT

It is proved that the range of the negative signature of the hermitian

: o B
completions of the partial matrix B* C* D! is an interval and explicit formulae
D” E

{
4

for the bounds of this interval are obtained. As application it is settled the solvability

-.0f the problemy of lifting with prescribed negative signature of defect.



1. INTRODUCTION

In connection with problems in dilation theory and interpolation of meromorphie
functions as those formulated in [1] or [7], it was considered in [3] a problem of lifting
with minimal negative signature of defect, which in the simplest formulation reads as

follows : assume that there are given two block-matrices

T =(T X, T =[r ¥I (1.1)
where "t" stands for the matrix transpose, such that
xQ-TT)=x"@-TiT)=%. (23
AT cc
It is asked whether there exists a lifting of Tr‘ and TC,
{T X}
S (1.3)
YA
with the property
w0 = TET) =%, (1.4)
The answer (Theorem 1.1 in [3]) is the following: define two spaces
s L RYty, X, =P « LU 5
&1 = Papert Y o g = Frep(i-TT) 7 st/
then there exists T satisfying (1.3) and (1.4) if and only if
1f. =L, : (1.6)

Using the matrices T and 'TC in (1.1) we can define a hermitian partial matrix

L

DR THEEN ]
R T x| .
K= 1 . ! (1.7)
B Gl 0|
Slade b T LI ]
! |
* |
L X 0 I|

S s AR T o A 2 SRSt



i

and by means of Frobenius-Schur factorizations we obtain

I 0 Y
bl 1 Py - =T R ) i {18)
V& T ]
and
S
o ) E =TT (1.9)
Xt I |

~
Moreover, if T is the matrix in (1.3) and K(Z) is the hermitian completion of K

with Z, we have
R e =TT . (1.10)

Thus, we are led to consider the following problem: assume that we are given a

partial hermitian matrix

B ]
a0 |

K= tB C D | (1.11)
|
b .
L D E |

and a non-negative integer W. Does theré exist a hermitian completion
i’A B 7
N (1.12)

:
{
|

{z* p* F‘t

such that % (K(Z)) =X ? This is the problem we are conéerning with.

Hermitian completions of partial matrices such that the minimal negative
signature is preserved were studied earlier in [4], [6]. In these papers the nonsingularity
of all principal hermitian submatrices appeared as a sufficient condition which assures

the possibilify of finding hermitian completions which preserve the negative signature.
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Also, in [5] it was studied the singular case for the partial matrix K as in (1.11) such
that A and E are scalars.

The main result of our paper is Theorem 4.1 which shows that the range of
% (K(Z)) is an interval [X X Ko ] in Z, where % . and X . are explicitly

computed in terms of the data of the problem (i.e. the matrices A, B, C,D and E). This
pe;'mits to find necessary and sufficient conditions in order to exist hermitian
eomé}.etiona with minimal signature (see Corollary 4.4). Thus, the phenomenon
discovered in [3] turns out to be more general, namely the analogue of the spaces Ts€1
and i (1.5) is reflected by the pair of subspaces R(p D) and (P B*) and
kerC kerC

the spatial positions of these spaces contain the basic information about the minimal
negative signature of hermitian completions of K (see Corollaries 4.4-4.6). i

The approach adopted in this paper requires a careful investigation on 2x2
block-matrices. We do that in Section 3, where there is produced a formula for
computing the negative signature of a 2x2 block-matrix (see Proposition 3.1). In
Section 2 we fix some notation and recall some results, most of them from [3], which
we need here.

In Section 5 we apply the results obtained for hermitian completions to the
lifting problem with control of the negative signature of defect, following‘the pattern
explained at the beginning. The results obtained in this section for the finite

dimensional case are true also for infinite dimensional spaces and will be published

elsewhere.

2. NOTATION AND SOME PRELIMINARY RESULTS

The objects appearing in this paper are matrices but despite the usual
understanding we will regard them as linear operators acting in finite dimensional
Hilbert spaces. These matrices will be usually represented as block-matrices with
respect to specified decompositions of the domains and ranges.

Let A€£(&) be a hermitian matrix. Denote by S, = sgn(A) the hermitian

partial isometry appearing in the polar _decomposition of AjA= SA\A\, Ker SA = Ker A.



-
The signatures of A are defined as follows:

>oi(A) = dimker(I # SA) : . (A) = dim ker A. (2.1)

Recall that a symmetry J is a matrix such that J_* =J= J-1

. SA is a symmetry
while considered as acting on the space GR(A) (the range of A). .

The signature numbers % (A), X,+(A) and % (A) can be also expressed as the
dimension of the spectral subspaces (or, equivalently, the number of the eigenvalues,
counted according .to their multiplicities) corresponding to the negative semiaxis,
positive semiaxis, respectively, the nuli point.

In order to simplify the formulae we make also the following notation : for
Hlesﬁ (B‘Cl) and Hze_&(é’\‘iz) hermitian matrices we write H, = T(H,,U) if Hy = U*HZU
where Ue £ (X 1,"&2) has the property SR(U)2 R(H,).

In this paper we will make intensive use of three results proved in [2] and [3] in

operatorial case.
2.1. LEMMA. If H, = T(H,,U) then st H) = xHH,).

2.2. LEMMA. Let AGZ() be a hermitian matrix and J€ L (R) be a symmetry.

Then

{x"(a-2*2)/2€L (%R)Y =
= = = 2 + + o
={ x ¢ z/ max{0, £ (8) - X (@) <x<x(A)+ min§ X' (@), % (A) + % (&)
The third result is based on the analysis of the matrix equation
B*z+2*B=C (2.2)

which was done in [8].

2.3. LEMMA. For given Bed (&,K) and hermitian c e X(30), the equation (2.2)

is solvable if and only if PkerBC\ kerB = 0 ; in particular,

(xfc-B*z-z*p)/ze % ERIE
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={xez/x%p,_ C|kerB) $x < x (P xC|kerB) + rank(B)
kerB = kerB :
For a subspace :9 of a space X, we denote by Pﬁ the orthogonal projection of &
onto §. ;

In this paper we will frequently use Frobenius-Schur factorizations, i.e. for

matrices of gpppropriate dimensions A, B, C, D, if A is invertible it holds

e I 0 A o b kB

= , | (2.3)
oD cal 1 0 p-ca™1B|| o ot

and, if D is invertible then it holds
- -1

A iop I sp YlAa-BD'c 0 I o]

- (204)
. D 0 I 0 ‘g le 1

For later use we also record a well-known faét.

'2.4. LEMMA. Let S (&) be a hermitian matrix and Be L (¥,R). Then the

following factorization holds.

0 B [B o] - [o I B* s
= ‘ ;- 42.58)
Bt e dee o o] |o I
: . BB i
in particular, if B is invertible then g% g is invertible and
0‘ B -1 _B*-ISB-I B*-l
= (2.6)
B8 Bl 0

3. THE NEGATIVE SIGNATURE OF 2x2 BLOCK-MATRICES

Let Ac¥(X) and ce£(R) be hermitian matrices and Be L (X, R). In this
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section we are interested in computing the negative signature of the hermitian matrix

H= : (3.1)

In general, for a matrix X we denote by X—1 the generalized inverse, i.e.

X e LRx), R (x*).

3.1. PROPOSITION. Let H be the hermitian matrix given by (3.1) and denote

B1 = P‘R,(A)B’ B2 = PkerAB' Then

*

X (H) = % (A)+ rankB :

-1 ;
A""B)| kerB,).

gt % (PkerB (C-B

2

Poof. The matrix H has the representation

with respect to the decomposition QR(A)D ker ADX. Decomposing again ker A =

=CR,(B2)®I<€3PB’l= and R=CR(B;)® kerB2 we have

2
A 0 B BIZW
0 0 0 Byjic 210
H=1| 0 0 0 0 0
* E 3
By, By 0 Ci1 Ci2
* *
B e il T e
Now define
2o 0 0 0
H'=1| 0 0 0 0 0
0 R‘R(B;) 0 0 0
£ ,-1
10 0 0 0 5gn(Cyy=B oA B12)J




and
[ s 3 3
e 05,0818 s,\AUB,, ]
* ) o T T gL
0 B hadie, B4 B,,) Cy9B® Bpg
Vel 0 0 0 0
0 0 0 I 0
# 2=l 3
| 0 0 0 0 \CyyBIoA Bl |

and then a straightforward computation shows that H = T(H',V). Applying Lemma 2.1 we

obtain the required formula. @

Proposition 3.1 makes possible to obtain the negative signature for some

completions of partial hermitian matrices.

3.2. COROLLARY. Let A€Z(X) and Be L (R, %) be given matrices, A = it

Then
[ <
{x ({ - })/ce:ﬂ(ja), giagtd=
B C
={x€Z / % (A) + rank B, < % < % 7(a) + dim K.
Proof. Direct consequence of Proposition 3.1. @
3.3. COROLLARY. Let A€ (%) and ceX (J) be given hermitian matrices.
Then

1A - B '
% ’ EALR
£ (L;* C})/Bé R, 30
ez / max{ % (&), X (C)] e x (A)+ X (C)+
r min (&) + x7(A), L)+ ()] -

A
proof. Let BEL(X,%) be a given matrix and denote X=X (!]:B* L)

Using Proposition 3.1 and Lemma 2.2 we immediately obtain




RO~ TR

= AKX =
X > max {X(4), (@}, (3.2)

In order to prove the other inequality notice first that

rank B, < min { x°(4) , dim (3.3)

and using Lemma 2.2 and Proposition 3.1 we have
x,gyf(A) + rank B2 + min{x,_(C) + min{_?bJr(A), Ij(C) + %O(C)} , dimJ - rank}32}=
- %7(A) +x7(C) + min{min{x (&), X7(©) + X*(O)] + rankB,, 1)+ X°(©)} <
< XA+ X7+ min{ %°(8) + X"(8), X7(C) + Xt}

From (3.2) and the above inequality one of the required inclusions follows.
For proving the converse inclusion, it follows using Proposition 3.1 that we have

to show that for any integer X satisfying the inequalities
max § 0, X (C) - %7 (A)} <X < X7(C) + min (X + xta), %%+ XOFE.

we can find Bzéi(k,ker A) and Blzei(ker BZ,@\(A)) such that

. -1
K = = BT .
ransz + % (C22 Ble B12) (3.5)

(recall that the notation is as in the proof of Proposition 3.1).
Let C=C_ - C_ be the Jordan decomposition of C. As a general pattern, we

will always choose 82 such that

R B2 =R B ker CORBHNRAC,) -

In particular, C has the representation

with respect to the decomposition R =/3\_ (BZ*)@ker BZ' Denoting



i }«’Jo = dim("f;(lﬁig)iﬂ) ker C) and J,<.+ = dim(fl(B;)«‘f "‘aff’::,;((‘Jr)) it follows that ‘/\,_(CZZ) =
=%, {C); ')LO(CZZ) =x°(C) - % and ')L+(C22) = "/L+(C) G Using these remarks and
Lemma 2.2, our proof will be finished if we ean find for any X satisfying (3.4) two
. . o o + + ; [+ + o
non-negative integers % < x (C)and X <% (C) such that X + x < X (A) and

x%+ %"+ max{0, X7(C) - X (A} <xg

(3.6)
- £ + + [ + [}
<x7©+ min{ X(a)+ X x®, )+ X°©OF.
When
= 3 + + [
x < x7(C)+ min{ %' (4), X (C)+x (OF, (3.7)
] %
holds, then we can take X = X =0.
When (3.7) does not hold, we can represent
% = %7(C) + min{ X (&), K(C)+ X’ (O)}+k (3.8)

with a non-negative integer k such that
k< min (XA) + X7(A), %) + X°(©)] - min{x"(8), X @)+ X°(C). 3.9
In this case, only when
A+ x> 2O+ X0 2 X (A) (3.10)

holds, we need a more careful investigation. Assuming that (3.10) holds, then (3.9)

becomes

k <x"(C) + %°(C) - X' (A). (3.11)

Then, inserting (3.8) in (3.6) we reduce the problem to that of proving that the
system with unknowns. % and x
%%+ %" @ %" (A) +k - max{ 0, X (C) - % (A)}
et (3.12)

ogfgﬁm,uﬂgﬁm,f+fgﬁm

always has solutions in Z.
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In order to do that, remark that
= i 2z -
k < %)+ % (8) + k - max§0,2C(€) - X" ()} (3.13)
and by (3.10) and 3.11), we obtain
0 <k < min{ X (8), X+ %) (3.14)

In particular, (3.14) shows that the straight line of equation % + 7L+ = k always
intersects at least two of the sides of the rectangle (0 < - £ x.(C), 0 £ % < %))

(see Figure 1).

:Fi'%u Ye 4.

v

0
(O
() et (), (D i
(bz)j wo+ =y (C)+ K(A) +K=max30, r\‘(C)vw‘(/»\)ﬁ.

The coordinates of these intersection points are always integer and, by (3.}3) and (3.8),

they are solutions inZ of the system (3.12)
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3.4. REMARK. It is obvious that
*7(A) +%7(C) + min §2°(A) X (8), X7+ X'O] =
= min§ X7(&) + dim R, X (C) + dim& .

For simplifying the notation in Corollary 3.3 and in the sequel, we define for

two hermitian matrices A €L (3) and CE £ (R) the numbers:

m(A,C) = max{ X (A), X7 (©)§ (3.15)
and

MAC) = 27(A) + X7(C) + min§ X7(A) + X(4), X°(C)+ X'©F =
(3.16)
= min{?b_(A) +dimR, ®(C)+dim 55} .

3.5. COROLLARY. Let Aed(§), A =A%, CR), C=C* and BeX(R,$) be

g_iven. Then

A X
L7 y xed(®,30), ze LR, )Y =
%% 6-p7-7 B

= ) :
{x€ 7/ m(A,PkePBC\ ker B) < %< rank B + M(A,PkerBC\kerB,

Proof. From Corollary 3.3 and Lemma 9.3 it follows that the analysed set is an
interval in Z, hence it remains only to compute its bounds. But these also follow from

Corollary 3.3 and Lemma 2.3. a

3.6. REMARK. Concerning the negative signature of the hermitian matrix H in

(3.1), there exists a formula which is dual to that obtained in Proposition 3.1, namely

% e )= (C)+ rank B} + x (P #(A - B' C_lB'*)\kérB‘*)
B ¢ 2 kerBj 1 1 2

where BY, = B|kerC, B} = B}&(C). From here and the formula in Proposition 3.1, we

obtain:
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~ (A) - % (C) = rank Bl, - rank B, +

= ‘ -1,,% % - %, -1
+ =R 1 - -
% (PkerB,z*(A BYC Bl)\kerB'z) 'X,(PkePBZ(C B}AT'B )\kerB,). B

4. THE MAIN RESULT

Lat us-considen Aed (30), A = A", CeR(K), c=0% Eel(%), E=E", and

arbitrary BEL (R, &) and pDe L (§,R). For any Z€ L (§,X) define a hermitian matrix

A B 7
Kizy= | B* ¢ D ; (4.1)
7% - p*. E

Our aim is to determine the range of % (K(Z)) when Z runs in %000t is

useful to introduce some more notation:

AT - 2.
B, = BikerC, D, = PkePBzD, b = &(B;)D\ker D, (4.2)
= i =1 * *
Boo = PkerB;(A BE3 (o)C By (c)B )\ker B, (4.3)
pLotp o . =4 9
22 kerDl(F, -D P@\(C)C P@(C)D)\ker D] (4.4)

Also, recall the definitions of the functions m and M are given in (3.15) and (3.16).

4.1. THEOREM. With the notation stated in (4.1) - (4.4), we have

(% (K@) /Z€L(§,8)F =€ Z/2 3 <X may b

max -
where
Les = 1
x’min =% (C) + rank 32 + rank D, + m(Azz,Ezz)
and
: i 2 e
)Cmax = e (E)r rank82 + rank DZ + rank D1 + M(AzZ’Ezz)'

Proof. Let us denote B1=B\CR(C), BZ=B\kerC, D, =B ()P and D, =

= PkerCD (for the moment we forget about the definition of D2 in (4.2)). Then



A B, By 7
%
B] C 0 D,
R@ =g
9 0 Dy
% E S *
2 D} Dy E |

Performing a Frobenius-Schur factorization and a reordering of rows and

columnos, we have

[ C 0 0 0 1
0 a-p.clg* B, z-B.c'D
K(Z)-:T( 1 1 2 1 1 ’V)
L3
0 B, 0 D,
* o~k ~—1 % * ~—1
0 z*-DiC°D; D, E-D;C "D,

where V is a certain invertible matrix. Taking Lemma 2.1 into account as well as the
fact that the change of variable Z—7Z - BlculD1 is bijective, it follows that, without
restricting the generality, we can assume c=0.

Assuming C = 0, we consider the decompositions
3 =R (B) Dker B, R =CR(B*)@DkerB, 4 =®\(D;)®kerD2
and also

%

ker B =‘R(D2)®kerD2

hence we have the representation

- 1 2
A, A, B 0 0 Z{ z% ]
*
Aty Bgy O 0 ¢ Z;0 2
. 1 2
B* 0 0 0 o D, Dy
K(Z)= 10 0 0 0 o D, 0 : (4.5)
0 0 0 0 0 0 0
P 1% 1x% 1% %
Zy 7 pi* Dy 0 Eyp Fppl
| 2% 2% 2% * |
Lz 2y Py 0 i Eio Eoou

Let us remark that now we are in tune with the notation in (4.2) - (4.4) (of
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course, in our special case C = 0).
Further on, by eliminating the rows and columns in (4.5) which are null and

reordering rows and columns, we obtain a matrix

e B 0 By ]

1% ; 1= % 1=
Bt By Dy Py Eig

@@= |B* Dy O 0 0 D% (4.6)

0 D. 0 0 0 0

% 2
Rk 0 0 B = B

E

2% 2% E

2 1 2 22

s

Z
3=ty - : : Bl e
with % (K(Z)) = % (K(2)). Since the matrix pl* p* is invertible, it follows from
1 2

Lemma 2.4 that the matrix.

- 1
A, 2 B 0]
] 1% 1% *
BE) =4 2,7 Ey e 4.7
B* D} 0 0
| 0 By ol 0

is invertible. Using Lemma 9.4 and Lemma 2.1, we have
%" (H(z}) = rankB + rank D, (4.8)

Performing a Frobenius-Schur factorization in (4.6) with respect to the

invertible matrix H(Z}) we obtain

1y

H(Z1 0
K'(Z) = T( - s U)
0 G(Zl’ Z2)
where
S
Gz, 2=
: 2 % 2% “
Agg Zy - A1 ; ' 3}
= ‘ :
i 2% 2 ‘ oy O x-1.2 2 goliaed AT N
1. Z2 —DlA12 F‘22 2D1 (AllB D1+Zl) E(AHB D1 Zl) Dlj



,Agd

2,724 A%,D2* and

In G(Z? Z 2) we make the bijective changes of variables 72 12P1

Zz“""‘(7 SiRApE = 2) For finishing the proof we have only to use Lemma 2.1,

e
Corollary 3.5 and (4.8). &

Let us consider the partial hermitian matrix

A B
kK=| B¥* C D : (4.9)
ptoo B

By definition, the negative signature of this K is:
e e
= max [
6 Sl el ke (4.10)

Note now an alternative form of Theorem 4.1.

4.2. COROLLARY. The numbers X and X in Theorem 4.1 can be
min =— ~“max — — -

expressed in terms of % (K) by

X’min:'x' (K) +

: ’ e - 2 -
+ mmg_ransz’rmax{O,%(EZZ) -% (Azz)}, rank82 - rankDfmax{O,X (Azz) % (E22 )}

and

x = %00+ min{ K (Agg) + % (Azz) 2B )+ X HE ) +

: 2 -1 =
+ min{rankD, + rank Dy + X (Ey,), rank B, + x (Azz)k.
Proof. By Proposition 3.1 we have

*

= B = .
pe ({ - 1 Y= % A(C)+ ransz“+ W (Azz) (4.11)
B CJ

We claim that the following identity also holds:
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x(|C P )= X7(C) + rank D, + rankD_ 2 =l
pD* E %, 1 +’°(E22). (4.12)

In order to prove this claim we first notice that, as in the proof of Theorem 4.1,

we can assume without loss of generality that C = 0. Then, with the notation as in (4.5),

we have:
1 2 1
0 0 0 p; D’
0 0 0 D, 0
_To D )
| O PR (lo 0 0 0 0 )=
1=
Dy O 0 E;;p By
2% %* %
Dy Dy O Ejy Egg
- * 1%+
Eii Dy Ejp Dy
D. 0 0 0 " 9
9 _[E _fo
=% 2 )=x<[D11 02]>+>c( 2 1]):
*
Ef, 0 0 D] 9 1 Fag
1 2%
Dy 0 D" Egy

_ 2 -1
=rank D, + rank Dy + X (Ezz) ;

where, having always in mind Lemma 2.1, for the second equality we made the
cancellation of rows and columns which are null and a reordering of the remaining ones,

for the third equality we hade to perform a Frobenius - Schur factorization with

B *

2 D
respect to the invertible matrix [Dll 02} and, finally, we used twice Lemma 2.4.
2

Thus, we proved our claim. From (4.11) and (4.12), using the formulae for x .. and

xmax in Theorem 4.1, it is easy to finish the proof. &

4.3. REMARK. From the definition of D% it follows that Ker D% =
= ker(P D), in particluar Bl s actually defined by a similar formula with respect
ker C 22

and X’max obtained in Theorem 4.1 can be modified

to A22. Also, the formulae of Xin

‘ A B cC D
in such a way in which the matrices [ % and » have symmetrie roles.
(B~ C D" E

-



This will be made explicit while considering the application in Section 5. @
We can now consider the problem whether there exists any completion of the

partial matrix K given by (4.9) which preserves the negative signature, i.e. xmin =

= X (K).

. 4.4 COROLLARY. In order to exist Z& & ('§,8¢) such that X (K(Z) =% (K) it is

necessary and sufficient that at least one of the following alternatives holds:

I -l QR *
(D) if K(Ay,) > % (Egy) then R(P o D) & RlPy o B

oy e =yl Gy *y¢ O
(ii) if 7<-(A22)§ x (E22) then K(PkerCB )& (R’(PkepcD)'

Proof. Let us remark first that, just from the definition of Di it follows

rank D% < rank B,. Now, from Corollary 4.2 it follows that X . = X (K) if and only if

2
at least one of the following conditions holds: either Dz = 0 and x_(E}ZZ) < X/—(AZZ), or

rank B, = rank D% and x_(E§2) > x—(AZZ). It remains to notice that D, = 0 if and only if

) c sy - 2 . .
J\.(Pker CD) “&(Pker cB ) and also that rankB, =rank Dy if and only if
cp *yC G
K PyercB ) &R, cD a
In some applications, it appears the following condition:
_fa B _fc D - .
% (| 4 Y= X () ) (=% (K)) (4.13)
B C D E
4.5. COROLLARY. If (4.13) holds, then
S ) 2
X/min =X (K)+ maxgkrank D,, rank B, - rank D] }
and

- = . ° + o, 1 +,..1
x =250 (K) = XT(C)+ i (Agg) + X (Aggh X (Byg)+ X (E3) ) -

-

Proof. Taking into account (4.11) and (4.12) it follows that if (4.13) holds then

- _ N R |
rank B2 + X (Azz) = rank D2 + rank D1 + X (EZZ) .



It remains only to use Corollary 4.2. @

o

4.6. COROLLARY. If (4.14) holds, then there exists Z such that

~C(K(Z)) =X "(K) if and only if R(p, D)=R (P, _ B,

_——— e — kerC ker C

Proof. Indeed, by Corollary 4.5 it follows that X . = % (K) if and only if
D2 = 0 and rank B, = rank Dz. But we have already seen that these are equivalent with

9 1
— * S
Gp D) -@l(Pker SE

ker C

5. LIFTING WITH PRESCRIBED NEGATIVE SIGNATURE OF DEFECT

As we mentioned in Introduction, Theorem 4.1 has several applications. Here we
presented one of them, to the problem of lifting with prescribed signature of defect.
Let 5{1, ‘éfl'l, é{z, é{'z be Hilbert spaces of finite dimensions and denote
?sbﬁl i 1@@(’,'1 and ?’3{2 = S‘iz@)ﬁ{ ‘2 Assume that there are given two matrices
e -~ ~o
T Eﬁ(&l, 5{2) and Tce?ﬁ(ﬁl,g’iz) such that

Tr\ﬁl = PXZTC = Té&(éel,‘é{z) ; (5.1)

For a fixed nonnegative integer X, the problem we are interested in is the

following:

~ ~/ s
Determine, 1_t_‘ any, matrices Tei(«f{l,&z) such thatlx
(Py )

Tide. = T=T wng % T=-TED =4
T,\, l—Tc, Pé’QZT_ r El_!l_ ) = = .

We need now to recall some definitions. Usually, for Tei(iel,é’ez) one

associates the defect matrices

] 1 .
DT=\I-T*TF, D, =| r=7mt|®, o BaP

the sign matrices of the defect

3 = sgnl - ) I sgn( - TT™) » (5.3)



)

and the defect spaces &T :@‘(DT) and O%'I‘* =@\(DT*).
Usually, JT and JT* are viewed as acting on &T and, respectively, on &)T*'

From (5.1) we must have
: ¢ |
1 [ o) = o (5.4)

where X€ EE(S{Il’XZ) and YEZL (3‘31,?( ‘2) are uniquely determined.
Moreover, there exist uniquely determined /\1632 (&, ker DT*)’

rl € (ker A 1’0%’]‘*) and A 1€ &(@\(/\’;), &)T*) such that

DT*Fl DT*A 1
X = (5.5)

1
and  similarly, there exist uniquely  determined /\_zese(kerDT, L)

T,E2@,, kerAj) and &, €L (Rp,RIA) such that
UyDep 0

Y= : (5.6)

& 9D A 2

All these are objects appeared during the approach followed in [3]. Recall also

the definitions of the functions m and M in (3.15) and (3.16).

: ; : ; ” !
5.1. THEOREM. Problem (P, ) has solutions if and only e i C L E

where

N i (1 - * a8 * e * o %
PR (1 - T*T) + rank/\, + rank(PkerAzT AARUL CodpFg o1 FlJT* (“1)
and

] —~ 1 _ * *
AR X T r'ank/\2 + Pank(Pker/\ZT /\1)+

+ dim(ﬁ;(f\;)!"\‘@i(ﬁ\l)) + M - Y‘ZJT\“;, ’{JT*\“l) :

'ad
<£o
%

2 o= P z = £ s
Proof. A matrix Tﬁr‘e,(«fkl,f’t ) such that 'I‘\-.w(”c = Tc and Pﬁf{; T= Tr must be of

2 2

the form



Loa

i X

-
"

(5.7)
Y 7

ov

: e
with respect to the decompositions &Pﬁl = X{l@é’{'l and §€2 =i 2@53'2, where only
ze{(K ,& ‘2) has to be determined.

We consider the hermitian matrix

I 0 Y %
0 I i X

A(Z) = T ; (5.8)
2 e ]

which is represented as a block-matrix with respect to the space
&b@é’ﬁ 2®§€ 1@56 '1 Performing a Frobenius - Schur factorization with respect to the

v
identity matrix of the space fil and using Lemma 2.1, it follows

s

~

X (AEZ) =X (1-T"T) (5.9)

hence, Problem (P ) is solvable if and only if % belongs to the range of % (A(Z)) when
7 runs in & (& L), -
Performing a Frobenius - Schur factorization of A(Z) with respect to the

identity on the space& P we obtain the hermitian matrix

ro

I

o

K@) 2

Z*

L

0 Y
I 0

0 1=T"T
0 T T
> 8 =X

Z

X

i |

~T*%

I

.1

and by Lemma 2.1 we always have % (K(Z)) = X (A(2)).

(5.10)

From what we have proved until now and using Theorem 4.1, it follows that

5 s . PO 1 1 1 P’
problem (P, ) has solution if and only if %' . < XA oy where 2 . and Xy ., are

those in Theorem 4.1 for K(Z) given by (5.10).

It remains to compute the matrices defined in (4.2

) - (4.4) in terms of the data



=

of Problem (P ). Now, using the representations (5.5) and (5.6) of X and, respectively

Y, the objects defined in (4.2) - (4.4), in our case, are

s R £
By=Ay» D, = PkeFAZT /\1 . (5.11)

S % L .y g*® ,
Bpp=T- UodpTy Egy=I FlJT* ¥y (5.12)

Then, from the second equality in (5.11), we have
KerD, = § x €4 |T*A ;% CRNDY=(xe &1\Ax€ TRAS) =
=ker A ;@A [ TRADORA)

because T is unitary as acting between ker DT and ker DT*. This implies

2 * ot S *
b _p@\(/\;)'r AN T TRADORA ) (5.13)
and then,
rank Df = dim(TR A SIOVGUNA D - (5.14)

Inserting (5.11), (5.12) and (5.14) in Theorem 4.1 we obtain the required

formulae for X' . and X' s
min max

5.2. REMARK. Using Frobenius - Schur factorizations and Lemma 2.1 we obtain

I 0 ¥
o8 I T y=X"(I- TZTC) (5.15)
A e
and
PP | X
i O R 0 JEXRTI =T (5.1)
%,X* 0 I J

From here and Proposition 3.1 we obtain

XT(C-ToT) =% (- PET)rR (- F’{JT* )+ rank A, (5.17)



N

and

(= T T ) = T - T T (e FzJTY‘ 3) + rank /\2 (5.18)

These formulae were obtained in [3] by a different method. €3

5.3. REMARK. Using (5.15) and (5.16) and following the proof of Theorem 5.1
S 1 1 : G
one can express X’min and x’max in terms of the number maxi?(, (I TrTr)’

K- T:TC%, similarly to Corollary 4.2. @

An important case for the Problem (P« ) is when
o 3 = _ ¥ (1 _ *
= max{ - TET), XA TEak, (5.19)
the minimal negative signature of defect one can expect to be preserved by the lifting.

5.4. COROLLARY. Problem (P, ) has solutions for % in (5.19) if and only if

one of the following alternatives holds:

B e

(i) it = 5 T il = r;‘JT*Pl) then SYAZ) ST QA ).

(i) 4f - Vo d- Pr) skl = F;‘JT* ') then T*RA NEBUAY)

Proof. As in the proof of Theorem 5.1 and using. Corollary 4.4. ¥

In [3] it was considered the special case when
o BT * =X (I - * e .
=0 T ) (s T)=% (5.20)

5.5 COROLLARY. Assume that the condition (5.20) holds. Then, Problem (P )

e g L
has solutions if and only if (SRS B G S M where

i b * : %
R o =K max{ vank(PkerA 2']‘ AN L) rank(Py A TT /\2)

and

ST O ST =T



~2.6-
h o ° +
+ mm{L% PZJTFZ) + 7‘« (I - PZJT Y‘;), x (1-T TJT* rl) X FTJT* rl)} .

PROOF. Apply Corollary 4.5 taking into account that rank/\z—
=1 v * 3\ 07 = * P
dlm(Tk(/\z)T\@\(/“\ 1)) rank(Pker/\’{TAZ)' 7]
We can reobtain now (in the finite dimansional case) the result from [3,

Theorem 1.1

5.6. COROLLARY. Assume that (5.20) holds and take 7(,=7L_. Then Problem

(P, ) has solutions if and only if T*R(A n =@l(f\;).

5.7. REMARK. The problem (Py ) can be formulated in a much more generality.
On each of the Hilbert spaces 3{(1, 3’('1, &Y‘Cz and rﬁf'z there are fixed symmetries J,, J%,
J2 and respectively, J'Z.
~ o~
= 1
Denote J, = J1®J1 and J2

o~
and respectively, '?f"iz ik C R Conmdermg T and T satisfying (5.1) and nonnegative

~
= J,®Jy, which are symmetries on '56 =3 _@56 L

integers %1 and X 99 we formulate the problem:

[a %4

Determine, if any, TEH =T, |

» { ) such that T
X (lesz)

P

(
fv— A"N _N*.’v.’\/:”
y T=Tu% T*J,T) = %, and ><,(J2

9 1 2
Taking the identity
- % - . - _ sk -
x (Jl—T JZT)+ %(Jz)—x (J2 TJlT )+ X (Jl) (5.21)
into account, it follows that, in order to have a solution of Problem (P;{, X ), it 18
2

1’
necessary that

e _om* - - ST _ * S
:xz + X (J1 T J2T)+ e (J'l) xl + X (J2 TJlT Y+ A (Jz). (5.22)

Then, with the notation from (5.7), consider the hermitian matrix



S

iy 1
J, 0 Y 7
0 B R X
AZ)= | 5.23
YL 3, 0 {52d)
¥ * 1
Z X 0 Jl‘

and reasoning as in th proof of Theorem 5.1 one obtains explicit formulae for the

intervals where % . and X , must live in order that Problem (P ) be solvable. All
1 ) X,l, Xz
the details will be presented in a forthcoming paper treating the infinite-dimensional

variant of Problem (P, ., ). &
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