INSTITUTUL DE MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

A REMARK ON RUNGE DOMAINS

by

V. VAJAITU

PREPRINT SERIES IN MATHEMATICS

No. 57/1990

A REMARK ON RUNGE DOMAINS

by

v. vajaitu*)

September 1990

^{*)} Institute of Mathematics, Bd. Pacii 220, 79622 Bucharest, Romania.

by Viorel Vajaitu

Runge domain D of any Stein manifold X (i.e. the natural restriction map $\mathcal{O}(X) \longrightarrow \mathcal{O}(D)$ has dense image) such that D itself is Stein and any coherent sheaf \mathcal{F} on X, the natural restriction map $\mathcal{F}(X) \longrightarrow \mathcal{F}(D)$ has dense image.

In this paper we drop the assumption made on D to be a Stein open subspace of X and we shall impose some conditions on the sheaf ${\mathcal F}$ so that the conclusion remains valid.

From now on X denotes a complex connected manifold of complex dimension n ($n \ge 2$) and by a "domain" of X we understand any open and connected subset of X. We would like to prove the following:

Theorem: Let X be a Stein manifold and \mathcal{F} a torsion free coherent sheaf on X such that $\mathcal{F}^{En-2I}=\mathcal{F}$. Then , for any Runge domain D of X (not necessarily Stein), the natural restriction map $\mathcal{F}(X)\longrightarrow \mathcal{F}(D)$ has dense image, for the canonical topology.

In order to establish this statement we need

some preliminary ingredients.

Lemma 1: Let D be a Runge domain of a Stein manifold X. Then the envelope of holomorphy \widetilde{D} of D exists and is an open subset of X.

Proof: From [5] it follows that there exists the envelope of holomorphy \widetilde{D} of D and \widetilde{D} is a Riemann domain over X, i.e. we have the following comutative diagram:

with Ψ locally biholomorphic. It remains to prove that Ψ is injective. Using Lemma 5.4.1 from [3] it follows that for every compact subset K of D we can find a compact subset K of D such that the $\mathcal{O}(D)$ - hull of K contains K. Now, let suppose that Ψ is not injective. Then there exist $\chi_1 \neq \chi_2 \in \widetilde{D}$, $\Psi(\chi_1) = \Psi(\chi_2) = \varphi_0 \in X$. Let $\widetilde{K} = \{\chi_1, \chi_2\}$ and let K be a compact subset of D stated as above. Since \widetilde{D} is a Stein manifold there exists a $f \in \mathcal{O}(\widetilde{D})$ holomorphic function such that $f(\chi_1) = 0$, $f(\chi_2) = 1$. By restriction to D, f induces a holomorphic map on D which can be approximated sufficiently close on K by holomorphic functions on X. Thus, there exists $h \in \mathcal{O}(X)$, $\|h \circ \Psi - f\|_{K} \leq \frac{A}{3}$.

It follows that $\|h_0 \varphi - f\|_{\widetilde{K}} \le \frac{1}{3}$. Since $\widetilde{K} = \{\chi_1, \chi_2\}$ we get $|h(y_0) - f(\chi_1)| \le \frac{1}{3}$ and $|h(y_0) - f(\chi_2)| \le \frac{1}{3}$ which can easily led to a contradiction .

Remark 1: Under the preceding Lemma conditions it follows that \widetilde{D} is the smallest open Stein subspace of X which contains D, i.e.

 $\widetilde{D}=$ the interior of $\bigcap D_{\varkappa}$, where the intersection is performed over all open Stein subspaces D_{\varkappa} of X that contain D .

Lemma 2: Suppose D is a Runge domain of a Stein manifold X . Then the envelope of holomorphy \widetilde{D} is also a Runge domain of X .

Proof: Let \widetilde{K} be a compact subset of \widetilde{D} , E>0 and $f\in \mathcal{O}(D)$. As in Lemma 1, there exists a compact subset K of D such that the $\mathcal{O}(\widetilde{D})$ -hull of K contains \widetilde{K} . Because D is a Runge domain of X, there exists $g\in \mathcal{O}(X)$, $\|g-f\|_{K}\leq E$. It follows $\|g-f\|_{\widehat{K}}\leq E$. Since $\widetilde{K}\subseteq \widehat{K}$ we have the desired approximation, $\|g-f\|_{\widetilde{K}}\leq E$.

Remark 2: Let D be a Runge domain (not necessarily Stein) of a Stein manifold X, \widetilde{D} its envelope of holomorphy and \mathcal{F} a coherent sheaf on X. Suppose that the restriction map:

$$\mathcal{F}(\widetilde{D}) \longrightarrow \mathcal{F}(D)$$

is surjective . Then the restriction map:

has dense image .

To see this we observe that the restriction map $\mathcal{F}(X)\longrightarrow\mathcal{F}(D)$ is obtained by composing the two restriction maps: $\mathcal{F}(X)\longrightarrow\mathcal{F}(D)$ which has dense image and the surjection $\mathcal{F}(D)\longrightarrow\mathcal{F}(D)$ (by the assumption just made). Therefore to conclude the proof of the Theorem it is enough to prove that the restriction map:

$$\mathcal{F}(\widetilde{D}) \longrightarrow \mathcal{F}(D)$$

is surjective .

There is a natural construction which assigns to every (pre -) sheaf $\mathcal G$ over X a unique topological space $|\mathcal G|$ over X called its sheaf-space (or "espace etale"). One provides each $\mathcal G(\mathcal U)$ with the discrete topology and defines an equivalence relation on the disjoint union

performed over all open subsets of X (viewed as a topological sum)

$$(x,f) \sim (y,g) \iff x=y \text{ and } f=g \text{ near } x$$

The quotient space $/\mathcal{G}/$ with the projection $\widetilde{\pi}:/\mathcal{G}/\longrightarrow X$ onto the first component has as fibers $\widetilde{\pi}^{-1}(x)$ the stalks \mathcal{G}_X (with the discrete topology); furthermore, $\widetilde{\pi}$ is surjective and a local homeomorphism (hence

an open-map) and all sections $\mathcal{E}(U, |\mathcal{G}|)$ are open mappings . The canonical maps

are bijective if \mathcal{G} is a sheaf.

For each element $f\in |\mathcal{G}|$ we denote by C(f) the connected component of $|\mathcal{G}|$ containing f , which we call the existence domain of f .

We call a sheaf \mathcal{G} over X a Hausdorff sheaf if its associated sheaf-space $|\mathcal{G}|$ is a Hausdorff space (e.g. the Identity theorem for holomorphic functions merely state that \mathcal{O}_X is a Hausdorff sheaf).

Since every torsion-free coherent sheaf over X can be injected , locally , in an \mathcal{O}_X^P , we get easily the following: Remark 3: Any coherent torsion free sheaf on X is a Hausdorff sheaf .

In this way, for the sheaf \mathcal{F} as in the Theorem , $|\mathcal{F}|$ becomes a complex manifold of the same dimension as X. Now, let $D = \left\{ \mathbb{E} \in \mathbb{C}^n : |\mathbb{E}_1| < 1, \dots, |\mathbb{E}_n| < 1 \right\} \text{ and } \delta D = \left\{ \mathbb{E} \in \overline{D} : |\mathbb{E}_n| = 1 \right\}$ We say that the Axiom of Continuity is fulfilled for \mathcal{F} when the following holds:

" For any biholomorphic map Ψ of an open neighborhood of \overline{D} in \mathbb{C}^n onto an open subset of X , the restriction map

$$\mathcal{F}(\psi(\overline{D})) \longrightarrow \mathcal{F}(\psi(\delta D \cup D))$$

is surjective" .

Now, if d is any positive integer, we define the sheaf \mathcal{F}^{IdJ} on X to be the sheaf associated to the following presheaf,

where the inductive limit is performed over all analytic subsets of U of dimension $\leq d$. We call $\mathcal{F}^{\mathcal{I}d\mathcal{J}}$ the d^{th} absolute gap-sheaf of \mathcal{F} . See also [6] We write $\mathcal{F}^{\mathcal{I}d\mathcal{J}}=\mathcal{F}$ if the natural sheaf homomorphism $\mathcal{F}\longrightarrow\mathcal{F}^{\mathcal{I}d\mathcal{J}}$ is an isomorphism (e.g. any locally free sheaf on X or $\mathcal{H}om_{\mathcal{O}}(\mathcal{G},\mathcal{F})$ where $\mathcal{F}^{\mathcal{I}d\mathcal{J}}=\mathcal{F}$, see [6], Prop. 3.15)

Therefore, the Proposition 3.14 from [6] gives us this:

Lemma 3: If \mathcal{F} is any coherent sheaf on X

Lemma 3: If \mathcal{F} is any coherent sheaf on X such that $\mathcal{F}^{[n-2]} = \mathcal{F}$ then the Axiom of Continuity holds for the sheaf \mathcal{F} .

In this way we obtain the following $\underline{\text{Lemma 4}} \colon \text{Let } X \quad \text{be a Stein manifold and } \mathcal{F} \quad \text{a}$ coherent torsion free sheaf such that $\mathcal{F}^{\mathcal{L}n-2\mathcal{I}} = \mathcal{F} \quad .$ Then , for each $\mathcal{F} \in |\mathcal{F}| \quad \text{, the existence domain } \mathcal{C}(\mathcal{F})$ of $\mathcal{F} \quad \text{is Stein .}$

To conclude the proof of the Theorem we state the next:

Lemma 5: Let \widetilde{D} be the envelope of holomorphy of a Runge domain D of a Stein manifold X and \mathcal{F} a coherent torsion free sheaf on X such that

the Axiom of Continuity holds for ${\mathcal F}$ Then the restriction map:

is surjective.

Proof: Let $f \in \mathcal{F}(D)$ and C(f) be the existence domain of f over \widetilde{D} (it is easily checked that $\{f_{\mathcal{K}}; \ \chi \in D\}$ is a connected open subset of $|\mathcal{F}|$ and $C(f_{\mathcal{K}}) = C(f_{\mathcal{K}})$ for every $\chi, \chi \in D$, so we have $C(f) = C(f_{\chi_o}), \chi_o \in D$.

First, we show that $\mathcal{T}|_{C(f)}$ is injective.

Let $\chi_1 \neq \chi_2 \in C(f)$ such that $\mathcal{T}(\chi_4) = \mathcal{T}(\chi_2) = \mathcal{T} \in \widetilde{D}$.

Since C(f) is holomorphic separable, there exists a holomorphic map:

$$g: C(f) \longrightarrow \mathbb{C}$$
, $g(x_1) \neq g(x_2)$

We can view D as an open subset of C(f) via the map $x \longmapsto f_x$ and let $h:D \longrightarrow C$, $h(x)=g(f_x), x \in D$. It follows $h \in O(D)$.

Let $H:\widetilde{D}\longrightarrow \mathbb{C}$ be the holomorphic extension of h and let $g'\colon C(f)\longrightarrow \mathbb{C}$, $g'=H\circ \pi$ We get the following comutative diagram:

We have: g'=g on $D(g'(f_x)=H(x)=h(x)=g(f_x), x \in D)$ From the Principle of analytic continuation we obtain that g=g' and so $g'(x_4)=H(y)=g'(x_2)$. Thus $g(x_4)=g(x_2)$,

which is a contradiction . It follows that C(f) is an open Stein

subspace of $\widetilde{\mathbb{D}}$ containing \mathbb{D} Now, we show that $\mathbb{C}(f)=\widetilde{\mathbb{D}}$

If this were not the case , there would exist a holomorphic function on C(f) (and also on D) that cannot be extended to a holomorphic function on \widetilde{D} , but this contradicts the fact that \widetilde{D} is the envelope of holomorphy of D.

Finally, let $\Delta \in \Gamma(D, |\mathcal{F}|)$. Defining:

$$\widetilde{S} = (\widetilde{I}_{C(f)})^{-1} : \widetilde{D} \longrightarrow C(N) \subset |\widetilde{F}|$$

we obtain a section $\widetilde{\Lambda} \in \Gamma(\widetilde{D}, |\widetilde{\mathcal{F}}|)$ which extends Λ Therefore, the map $\widetilde{\mathcal{F}}(\widetilde{D}) \longrightarrow \widetilde{\mathcal{F}}(D)$ is surjective. Proof of Theorem: It follows at once from Remark 2 and Lemma 5.

We conclude this paper by giving an example of a sheaf $\mathcal F$ such that $\mathcal F^{[n-2]} \neq \mathcal F$ and the Theorem does not hold for $\mathcal F$.

Let $X = \mathbb{C}^n$ and $H = \{ z \in X : \overline{z}_{n-1} = \overline{z}_n = 0 \}$ put $D = X \setminus H$ and $F = J_H$ (the ideal defining of H).

prof $\mathcal{F}_x = \begin{cases} n-1 & \text{if } x \in H \\ n & \text{if } x \in X \cap H \end{cases}$

and $S_{n-1}(F) = \{ x \in X ; \text{ prof } F_x \le n-1 \} = H$. So we

have $\dim S_{n-1}(f)=n-2$ and using Prop. 3.13 from [6] we obtain that $f^{[n-2]} \neq f$ (and f is obviously torsion free). It is obvious that $\widetilde{D}=X$ and the restriction map $f(X) \longrightarrow f(D)$ has not dense image (e.g. $1 \in F(D)$ cannot be approximated sufficiently close on the compact $K = \{z \in X : |z_j| \le 1, j = 1, ..., R, |z_{n-1}| \ge \frac{1}{2}, |z_n| \ge \frac{1}{2}\}$ because $R = \{z \in X : |z_j| \le 1, j = 1, ..., R\}$

References

- 1. Barth , W : Uber die analytische Cohomologiegruppe $H^{n-1}\left(\left. \begin{array}{c} P_n \land F \end{array} \right) \text{, Inv. math. 9, 135-144 (1970)}.$
- 2. Docquier ,F; Grauert,H; Levisches Problem und
 Rungescher Satz fur Teilgebiete Steinscher
 Mannigfaltigkeiten, Math.Ann. 140, 94-123
 (1960)
- 3. Hormander, L: An Introduction to Complex Analysis
 in Several Variables, Priceton, N.J.;
 van Nostrand, 1966
- 4. Kaup, L; Kaup, B; Holomorphic Functions of Several Variables,
 Walter de Gruyter, Berlin , 1983
- 5. Malgrange, B: Lectures on the theory of functions of several complex variables, Tata Institute of Fundamental Research, Bombay, 1958
- 6. Siu, Y.T.; Techniques of Extension of Analytic Objects,
 M. Dekker, Inc. New York, 1974.

VIOREL VAJAITU

Departament of Mathematics
INCREST, Bd. Păcii 220
79622 BUCHAREST Romania