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NONDISCRETE LOCAL RAMIFIED CLASS FIELD THEORY

by
Adrien IOVITA and Alexandru ZAHARESCU

Ki. INTRODUCTION

Let p be a prime, Qp = the field of p-adic numbers, L = the algebraic closure
of Qp and JL the (topologic) completion of s2.. We consider the problem of describing the
finite abelian extensions of a complete subfield K of JZ. In this paper we study this
problem for those K which.have finite residual fields and for which the exponent of p in
the Steinitz number [K : Qp] is finite.

We give a description for the ramification of the finite abelian extensions of
such a field K by means of some subgroups of finite index of U(K), which coincide in the
discrete case (i.e. when K/Qp is finite) with that given by the classical local class field
theory.

We shall use the ideas of [2] and [3]. More precisely, via the one-to-one
correspondence (given in 83) between the set of complete subfields of /1 and the set of
subextensions of JL/QP, we shall reduce the situations involving K to similar ones
invoh)ing an increasing sequence of local fields, for which we shall apply the results of
[3L

Wé conclude this introduction by noting that a deseription of the set of all
finite abelian extensions of K is no more similar that given in the diseret cas (one has to
consider here some pr‘bjective limits) and that in the case when p divides the infinite
part of the Steinitz number [X : Qp] a description of the finite abelian extensions of K

by means of the subgroups of norms is no more possible.



{2. NOTATIONS

In what follows p will be a prime number, Qp the field of p~adie numbers, /1
the algebraic closure of Qp and JU the completion of s with respect to the unic
extension of the p-adic valuation. The valuation on Jt (normalised such that v(p) = 1) will
be denoted by .v. We shall use also the notations: M for‘the (topologie) completion of any
subset M € fland kv for the residual field of any subfield k of JL. 7(JL/QP) will denote
the set of fields k, Qpek’ ed, and Tc(ﬁ/Qp) will denote the set of fields K,
Qpe K ¢ L such that K is complete. If 1/k is a finite Galois extension then
Gal(l/k)ram = Gal(l/ko) where k | is the maximal unramified subextension of 1/k.

Let Qpé k ¢ JU such that kV is finite or is algebraic closed. Choose a sequence
of fields klé kzé ... € k such that ik>Jlki =k and all the ki are finite extensions of Qp if.
kv is finite, and respectively of (Qp;nr (the maximal unramified extension of Qp indL ) if
kv is algebraic closed. If 1/k is finite and Galois, and 1= k(=), let li = ki(<>< ). Then there
exists an n e N such that 1 /k is Galois and Gal(l /k )~Gal(l/k) for any n>n ..
Moreover 1= U1, .

DL ‘

Any field Qp_c ke JU defines a Steinitz number [k : Qp] which contains prime

factors which have finite or infinite exponenets. The product of those factors which

have the exponent ©° will be denoted by [k : Qp]w 5

We define similarly [k : (Qp)m‘]oc if (Qp)m_é len i .

}3. SUBFIELDS IN St

,_/
There is a canonical one-to-one correspondence between J ‘(ﬂ/Qp) and
— ~_' $
JLC(JL/QP). We sumarize in the following Theorem some results regarding it which are

used in this paper.

. — S Bt
THEOREM 3.1. a) The maps defined by J (ﬂ/Qp)skaé‘fc’(ﬂ/Qp) and



r)i(ﬁ/Qp) 2K— KN € ;(ﬂ/QP) are one-to-one and inverse each to the other.

b) Let k,1 ¢ I(ﬂ-/Qp) such that 1/k is finite and Galois. Then 1/k is finite and
Galois and one has Gal(l/k)~ Gal(1/k), the isomorphism being the canonic one.

c) Let K,Lé€ (DE(ﬂ/Qp) such that L/K is finite and Galois. Denote: k= KN
and 1=L N{. Then l/k is finite and Galois and one has Gal(l/k)~ Gal(L/K), the

isomorphism being the canonic one.

Proof. (a) We have to prove that:
i s (ol
(1°)k N =k for any ke 3 (ﬂ/Qp)

(2°) KA =K for any Ke 7, A(ﬁ/Qp)

t

Let k¢ Z (JL/QP) and let a€ kN . Denote by a, = 8yBlgseees the conjugates

1
of a over Qp. Since a ¢k there exists b¢ k such that v(a - b) > v(a - ai) for any i. By

Krasner's lemma it follows that Qp(a) S'Qp(b)é k, which proves (1°).

-V'Let Ke j:(ﬁ/Qp) and denote k = Kﬁ._f}.. Then k & K. Now fix an element z of
K and a real number d . Choose an <& . such that v(z -«)> J and denote by
0(1 =, 0(2,..., c(n the conjugates of = over k. They ére also the conjugates of < over
'k and over K since k is algebraic closed in K. Then 0('1 Py O(n - z are the conjugates
of X- z over K. As a consequence we have: \/(0{i -z)=v(X~-2z)> J.for any i, and we

derive:A(W): inf (V(X -« ))) >O(.
2<i<n :

From [1], Proposition 1, it follows that there exists an a€ k sueh that:

iiS= a) > Aozt
(p-1)

Hence v(z - a) >5 = ——-E-2 Since S was arbitrary one obtain finally 7 ¢k, which proves
(2°) and (a). T

(b) One has the equality T=k-1, which implies that“i/!? is finite, Galois and
that Res : Gal(l/k) — Gal(I/k) is a monomorphism.

From (a) it follows that k is algebraic closed in k. Then



|Gal@i| = k=121 = Gal/k)

and this completes the proof of (b).
(e) It sufices to show that 1/k is finite and Galois (the isomorphism follows then

from (&) and (b)). Since for any finite extension I' of k contained in 1 one has, as in (b):

e

Wekl=:KkI<:K]

it follows that 1/k is finite. Now let I & Gal({1/k). Since < is an isometry one may
extend it by continuity to an element I of Gal(fﬁ;/“ﬁ). "1/k being Galois one has

aOsONG @) = LT = 1. Thus I/k is Galois and the proof of Theorem 3.1 is complete.

THEOREM 3.2. Let ng; ke L-such that k is finite and p/‘[k : Qp] e

Then any cyclic extension 1/k of prime degree g/[k: Q is inertial (i.e.

p]cﬁ
[1V el lis a).

~ i =l
Proof. Let | kvf =p.

(a) Suppose that quh -~ 1. Let QP,C.' klf;;: sz;-' ...k be a sequence of®finite
extensions of Q, sueh that L/ k; = k. Let 1= k(<) and L, = k(). Choose an n such thats
i>1
[lno s kno] =q, (kno)v = kV and m = [kno+1 : kno] be divisible by g but not by p.
We may suppose that ln /kn is totaly ramified (if not, then

(0] 0

mno)v 2 (kno)v] = q, hence [1V : kv] = q). Since kno+1/ knO is also totaly ramified, one

may choose % and /f’v such that kn e kno(ﬁ ) lno =,kno(¢»() and Da/,(?s are roots of two

poynomials of the form f= x3 -7 and respectively g = 2™ - 1T and 7' being
uniformising elements of k-
0

Let ll=#;c’—U(kn ) and denote by U the image of u in kv. Since q‘/’Ph =l

0
X% - T has a root in kV , hence X9 - u has a root in kn .

0
: & m/q Eov :
It follows: 1no = kno( (»3 )Cikno+1 which is impossible.

b) Suppose that q/ph— 1. Let, as above, kno+1 :l<n0(f5), lno=kno(*><), and



us= i:c-U(k ). We may suppose that U(f[U(k ne.
4 o "o
— O(_" & v:: q"‘(}<q~"’
Let v= m/a € 1. One have v —~(;Tn~—,—l—~'— = u, hence the image ™V of v in 1

i B o = fiacse =
does not lye in kv. It follows [(kno+1 1no)V : kv] q thus ‘Iv : kv] q.

Q.E.D.
THEOREM 3.3. Let (Q ), < k< S such that pf [kt ()l - Then the degree
of any finite extension of k is relatlvely prime with [k : (Qp)nr']vL
The proof in the case of cyclic extensions of prime degree is analogous to that
of Theorem 3.2 (a). The general case reduces imediately to the Galois case, which

reduces to the prime cyeclic case by the resolubility of the Galois group.

' Q4. THE FUNDAMENTAL EXACT SEQUENCE

Let K,L < O.with algebraic closed residual fields.

THEOREM 4.1. LetI/iZ be finite and Galois. Then

Ng g (UE) = UE)

For the proof let us note firstly the following:

LEMMA 4.1. ([3], Cap. 2, Lemma 2 and Theorem 1). Let 1/k be a finite Galois
extension, where k< 1< Q. are complete, discrete, with algebraic closed residual fields.
Let 7', uniformising elements of 1 and k respectively. Then there exists s €N such
that for any k > s and any uek with uz1 (mod %) there exists an 3¢l, =1 (mod

i 'k) such that N, . (3 )= u. From the proof given there it follows that for 1/k eyelic of

1/k
prime degree we may take

W= )
v(71")

where U is a generator of Gal(l/k); and if

ke klg kz_f_l... ,L;Ikn =1



\

where ki+]/ki is eyelic of prime degree for any i, and if 5 is defined as above, then we

may take s = max 5 -

1<i<n _
Now let K,L satisfying the above hypothesis, let
Q) ckick s . K
pr= 17 72 % asin@Z,
(Qp)mf;. LEls..cL

and let ‘n'n, -,7'n be uniformising elements of kn and 1n respectively.
Let S be as in the Lemma 4.1. We shall prove that there exists noe~ W and

M&R such that: : | '
s V(T )<M for n>n,

Clearly we may reduce to the case when [L : K] =q is a prime. Let n, be such that
[ln tkl=q for n>n,  , and let i>n_. Then s;v( my) = vir} ~<I(7T'i)) where
<G = Gal(li/ki) = Gal(L/K). Let f(x) = x9 + alx(r1 e o 8, be the minimal polynomial

' sl = ol et o p g 5
of ﬂi over ki and let ’fil Mys IT5g oo T iq be the roots of f. One has:

=%
B = (= g e (1} - i =gl by

It follows:

B
V(ﬂ"i -q ('i‘r'i)) gzj_:_zv( i ';T'ij) = v(f'(?"r’i) =

: Lael =1
= min ‘{ V(Qﬂ"iq ),...}V(aq__l)}s V(C} T 'iq )

hence: siv(ﬂ’i) <.q-lvlg) + (g~ DL

Now let ue U(K). There exist a ,a ,-=+y Such that
0

+
nol
=k _for any n
an(.kn y
-m
] /an:u.
n=n
0

Since lim v(a_ - 1) = co, there exists m & N such that
n CC

via -1 >s v(7T) for n>m



From the lemma, there exists bn@: 1n such that N-fn/izn(bn) il and

via_ - 1)

gL A
v(bn-—l)— LI K] forn>m0.

From the discrete case of Theorem 4.1 which is proved in ([3], Cap. 2, § 2.1, Theorem 1)
it follows the existence of anb__ %Tm such that
0 0

Ne ik (b ilmm el g B
L o g "o o .

The product i bn converges in L and its limit b satisfies
n>m ~
-0

NT, /-k(b) =M | Q.E.D.

K and L being as above, we denote by V(L/K) the subgroup of U(L) generated
by }5 f’l o) 3 € U(L), o < Gal(L/K) }

One has: NE/R(V(L/K)) = 1. Let us suppose that [K : (Qp)nr]m is not divisible

by p. Theorem 3.4 implies then that [L : K] and [K: (Qp)m,] oo are relatively prime,

hence we may fix an n, such that [ki+1 : ki] and [L : K] are relatively prime and

[1i ; ki] =[L : K] for any i > N,

Forn>n_ and O &Gal(L/K) we define:
[kn:kno] . S
i(0) = (', ) " H{mod V(L/K))

where ,fT‘n denotes an uniformising element of ln.
It is easy to see that i(J°) does not depend on the choice of n and TT‘n , and that

"j" is & homomorphism of groups. Then one has the following sequence of groups:

: N
IUE e G ) G
(1) . 1~»Gal(L/K) — UL)V(L/K) — U(K)—>1

We shall prove in this sectidn that this is an exact sequence.

Clearly the homomorphism Nf/ﬁ e iis null and N‘i/-ﬁ is onto (Theorem 4.1).

PROPOSITION 4.1. If K, L are as asbove, L/K is abelian and [K : (Qp)nr] 518

not divisible by p then "i" is a monomorphism.



Proof. a) Suppose firstly that T/K is cyclic and let f> be a generator of the

Galois group. If a ¢ Z is such that i(f 8= 1 then there exists ge U(L) such that

.8 5
(l',‘}" )S _:1 e A
o )
I e
and we get ¢ (7,*'n = § ) = -,T'n.i . This implies that
0 )
o=t - \g—le-_K_.
"o

o T R a !
Th = = e K- e s ; = i
e [L: Kl 5= ) divisible by [L : K], hence £ =1 and "i" is a
0

e
monomorphism.

bl If G= Galzi/l?) is not cyclie, and if O €G, T # 1—i , then there exists a
subgroup H of G such that ¢ ¢ H and G/H is cyclic. Let M = LH ={x€_—: L/e(x)=x%, ¥

EGH} . Then M =“fJH and [M : K] is relatively prime with [k ] for any i> n, s

fepi
where no is defined as above. We have Gal(ﬁ/ﬁ) =G/H. Let g'= CI/»M # 1. Since
i : Gal(M/K)—>U(M)/V(M/K) is & monomorphism i(7") # 1. Then:

Fe T LR S T ol e

0o

M
Hence (o) # 1£ and "i" is a monomorphism.

PROPOSETION 4.2. Ker (Ni /‘}E)%'Im(l).

Proof. a) Suppose that L/K is eyelie and let G be a generator of the Galois

=1 1ot

group. If x €U(L) satisfies N--I—:/R(x) = 1, then there exists aT. such that x = a
al,az,...,an,.,.cr‘L such that 8n6’1n for any n and lim a_ = a. Let noc'»:N be such that
: n-rco

[L: Klis relatvely prime with [ki+1 : ki] for any i > n,

There exists m_>n_ such that via )= v(amo) for any n>m_. Hence
v(a) = v(a_ ). Let sy}~ be an uniformising element of 1~ and let ke Z be such that
0 0 0

aw”;'rl; & U(L).

o s e
Then, since (L : K], [km : kn 1) = 1, there exists k' «N such that
0 )



il
m :k ]O'k'

n 1
x=((ar’ ) S0 e V{L/R)), hence x = i(aX) .
- :

b) Let L/K be abelian, of degree n = {L : ] We shall proceed by induction on

n. Let as above n& N such that (n,[k ki]) =1forin,.

i+l

Let K& Mc L such that M/K be eyclie. Let 3 U(L) such that Ni/—f{(?) =1

and denote: 3'= Ng mi(5). Then Nppz(59=1, hence 3 i= (7 )% (mod V(/E))
O

where '/'T','] is an uniformising element of m (9 ). e miem = <M being &

n phrEr Tl g

o)
sequence of discrete valued fields as in &2 (one may choose 'ﬁ"r'] such that

(o)
"

: o Bakaic ook : : s o
[Tn = NL/M(” - ) W being an uniformising element of ln )

: o 0 s ¢ = =
Denoting t= j L i ) ] %, there exists V) €V(L/K) such that
0
t=Nemh)
One has:
=(3) (' N7 N () = (G, )
Ng& T =7 = INg g, n, Nt = Ny )7
where O“}M=0"'. Let A ='ﬁ'n‘:—1 Y}f “*. Since Ni/m(/\) 1, from the inductive

hypothesis there exists T¢ Gal(L/M) such that

A= q' “Lmoa v{T/i)

Then gl .yc’-l—l(mod V(LK )= ﬂ"'rpz—l_l(mod V(f/_f{_)) and
f= o M G e
3 =il e )CIm(l) Q.E.D.

We have obtained the following:

THEOREWM 4.2. If p'/[K : (Qp)m]CO then the sequence (1) is exact.

PROPOSITION 4.3. Let (Qp)m‘Cz KCL< Lxsuch that L/K is abelian and

p/IK : (0 ) Jo Then:

p'nr

a) If pf[i : K] then ™" may be defined as above and the sequenc (1) is exact.

catl e s e e
byIf[L: K]l=p,teN, then NL/K : U(L)/V(L/K) U(K) is an isomorphism



4D -

Proof. The proof of a) is analogous to that of Theorem 4.2. In order to prove
b), one may reduce to the case Gal (L/K) eyelic. Let o be a generator of it. If x&U(T)

satisfies N+ =(x) = 1 then there exists a<L such that x = a"’;‘l. Let a & ln fornd:d,

L/K
such that lim a_ = a and let n &N such that v(an) = v(an) = v(an ) for any n > n,. Then
nsc o 0
there exists ke N such that x:= Tng—l(mod V(L/K)). Since p/[K : (Qp)nr]m’ there exists
0 : -
: [km:kn ]
m > n such that pt /[k : k_ 1Then x:=(17 4 )g-_l(mod V(f/f))fi ‘
0 / m- R e
. 0 i \
beodle =] .
i fG mon =1
= Em )(m 0d V(L/K))=1(mod V(L/K)). Q.E.D.

REMARK. If (Qp)nrg‘;‘ K< 2, then K may haza finite immediate extension 3,
e e o : RSB e s T
Kz & Lonly if p/ [K (Qp)nr]w and [5: Kl=p, FeN".

For a proof one may apply Theorem 3.3.

5 5. THE MAXIMAL UNRAMIFIED EXTENSION

In this section we consider a field Qpn;kg L2 with finite residual field kv such

that pf[k : Qp]OO and we shall study the maximal unramified extension knr of k.

EROPOSE‘TION 5.1. Let k'be as above and let kl/kv be finite, of degree n. Then
there exists a unique extension ksle {1 such that:

1) the residual field of 1 is kl’
2)[1:Kk]=n.
It follows that 1/k is Galois and eyeclie.

The proof follows as is the case: k/Qp finite.
Let k(n)
o= gl

#
M heN

be the unique extension of k given by Proposition 5.1, and let

The extension knr/k is abelian and one has knr = k(Voo), where V., denotes the

set of ali roots of unity of order qn -1, ncN*andq= ] kv.)



i

PROPOSITION 5.2. Let K:knr' Then, the residual field Kv of K is the

algebraic closure of kV and one has a canonic topologie isomorphism:
Gal (K/k) 2 Gal (}{V/kv) .

Again, the proof is like in the case: k/Qp finite.

Now we consider the following automorphism of Kv over kv:

(&%) &«-@»wq, for cueKv H

This corresponds, by the isomorphism of Proposition 5.2, to an automorphism

('9 of K/k, called the Frobenius automorphism of K/k.
The prolongation by continuity of (f’ to K will be denoted also by )f

One has the sequence:

(2) 1"‘“'?U(~§)'~J~>U'(§) .,,50;1_;) U('E)'«—‘sa—l

where j is the inclusion and ( y-1)(%) = ——E%j—z for any 3 cU(R).
THEOREM 5.1. The sequence (2) is exact.

Proof. We note firstly that Im j&ker (- 1).

Let Q ( k < k2 = ..=k be a sequence of finite extensions of QP such that

k=kJk. Let K. = (k.) . for any.i. Then:
e i i‘ne
=K.
(Qp)mg K, CK,G .. KandK Li K;

a) Let us prove that \F~ 1 is onto..

(e &l
If acU(K) then there exists a,< U(K, ) for any i > 1 such that a =1 | a . Since
i=1
the sequence:
5 e R el

e

is exact for any i ([3],% 4.2 Theorem 2), there exists 7 < U(K, ) such that ———;——-——- = a..
i



-_-12-

Denoting by "ITI an uniformising element of k (and thus also of K. andﬁl‘(.‘i) then

since Ti eki(Vw) one has:

<o [e0) v
> g el
7 /]0 yﬂ(; _%dijni, =, 7 0 xijaymu)\olf.

i
Now, if n.&N Ufcot  is the exponent of Wx in (ai - 1) then (f('fi)f-:'"ﬁi(mod'ﬁil) and we

derive:c{iqj ando( ek for j = 0,1,ece5n; - 1.

n.~1
3 3 ; . -,1 o i 5 Lo
Hence . =o(, +o<i17"ri ool _1_/1 & U(k)) = ker(ip, - 1) and denoting

i
')z o f;1§ ; one has:

n,
? ..l(modll and(‘/‘—lﬂ} =P 1)7 = g, for any i > 1.

Y (9a) O
Then the product e ?] is convergent and (Y 1) "TW =’ 1, =
i=1 =1 1

b) Let us prove that ker (¥~ 1)<Im j.

If x€ ker (- 1)< U(K) then there exists b.c U(K,) such that:

x =1limb.
)

({’(x) = x implies lim L{(b .) = lim b, , hence lim \I(({(b ) - b, ) = 00,

j-roo 1o i co
€0
Put, as above: bl~\ GX 773 o<3<“ -{O},o{i # 0.
. = 0 0

ol e R
From ‘f(bi) bi }i?o(»«ij o<ij)fTi.

We derive: q? = o(i. and o('i.cfk]. for Ji=, i,...ti - 1, where t,eN Uieey
denote the exponent of 1] ; in (‘-[p(b ) - b, )

te=d
Thens i weisputi e, siol, ol T % ekl TT.' ¢ k.ck, we have
i i 1= 1ti ol i

v(bi o)) e e hence x = lim e, ¢ U(k).

1o e



{ 6. The fundamental isomez*phism

Let k as in és and suppose for the moment that pf[k Qp —

Let E be a finite abelian extension of k, K = km' = ko= K/ E the maximal
unramified extension of k in E and let L = KE = Em" Denote by s and éf’/ the Frobenius
automorphisms of K/ k and L/E respectively. One has: )/QK = (}(1 and (“}?”- DV({L/K) =

= V(L/K). Then the homomorphism 7/ 1: U(L) —>U(L) from B 5 induces the (onto)

homomorphism, denoted also by ‘//F ]

‘{/- 1: ULy

WER) v yi/m)

One has the diagram:

A B
e T o i Nete L

I | j /5
(3) Mot i
A CL‘/(/-//\)WW—? UE ek 5) — Ul

| }

G D

where Y is the null homomorphism, 0{2\}/-- T, /% = (]ﬁo -1, A=kereY, B= ker;,’a 5
C = coker YL, D = coker (.
Also one sees that: C = Gal{L/K), D = 1, B = U(k) and A = U(E) - V(L/R)/V(L/K).

The diagram (3) is commutative and has exact rows and columns, hence

N /R i
“Ni/f(" and "i" define the homomorphisms A .--._Ii./.lf_ B and C —= D and the "snake
lemma" gives a  homomorphism or: B—=C  .sueh - that - the . sequence
Nee &
A ,,__I:_Z.E, B = C—D is exact.

We get then an induced isomorphism:



_.1\4..

Cy s Uk )/Nm > Gal (L/K)== Gal (F/k )= Gal (F/k)

E/K, (U(E)) kal

THEOREM 6.1. a) If pf [k:Q ],1, and E is a finite abelian extension of k, then

one has an isomorphism

: UM/ 5 GalE/l)

£
SR Bk (U(E))

b) If p/ flcs Qp]m and E is a finite abelian extension of k such that p/[f . K]

then one has an isomorphism

—> Gal(E/k )

Sepet W _(ui@) i

E/k

e)if p/[k Q }w and E is a finite abelian extension of k such that [E : k] = pt

" then

Ni e (UEE)) = UK)

For the proof we need the following result:

LEMMA 6.1. If k is as above and k' is a finite unramified extension of k then

Nig (06 = v,

For a proof of Lemma 6.1 one may use Lemma 4 © 3.3 of [3] and the techfni‘ciuca
used in this paper. .

Now for a) let K = knr , L= Enr ; Kf’= the Frobenius automorphism of K/k,
\]J = g prolongation of k{ toL and 1 =«{ er/ sﬁ"(x) = x} . Then lnr =]l L,rlﬂ K =k, I/k
is totally ramified, E/1 is unramified, 1/k is totally ramified, E/I is unramified and one
has:
).: GalZi/ﬁ)

- (U(E) = U@ and UKY/
Ngji N,/k(U(l)

But N (U(I)) = Ng (U(F)) hence U(k)/ ~ Gal (L/K)
E/k(U(E))

which proves (a).

A proof of b) comes in a similar way, by reproducing Lemma 6.1, the diagram



(3) and all & 5 in the hypothesis stated in b).
As for ¢), let K and L be the maximal inertial extensions of k and E
respectively, denote ko =ENK and let Y and L/?O be the Frobenius automorphisms of

L/E and K/ko respectively. Then one has the diagram:
A B

&/ : /\/~/,k &/

e -* e ol ( ’r\.> e i
: Ve L>/\/'(E/ k)
(r |
L Ny e

TEERCS LJ(Z«)/\/CL/;Z) S U( E) e

|

1

From Proposition 4.3 it follows that: U(EO) = }“/k UE). Applying Lemma 6.1
which is also true in this case if k' is a finite iner tlal extension of k, we obtain

U(k) = Ng/'l%(E). Q.E.D.

REMARK 6.1. The isomorphism o(F/k defined by Theorem 6.1 a) and b) will be
called "fundamental isomorphism".
If k and E are as in Theorem 6.1 a) or b) and if Q k = 12 s ks g

sequence of finite extensions of Q such that L)k) =k, then there exists rxoe?;N such
D1 :

oy ki]) =1 for any i > n, . Let 77" be an uniformising element of En SH
o

= i o sty = 13 Ty = 1. AP ¢ i Cige -.: it
ueU(k) there exist u & U( O) with I\k/ko(uo) u. Then there exists [&U(I) with

that (K : &, [k

N.f,/ii( j’) =u. and there exists 0 €Gal(L/K) such that
e Tl o d W)

The isomorphism O /K is given by:

u(mod Niz /k(U(E)) ———TeGal (L/K) = Gal (E/E)ram

The isomorphisms E/k has an important property of functoriality.
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Let k and E be as in Theorem 6.1 a) or b) and let ke: E'CE.

Then NP/k(U(E)) B/ ~(U(E") and one has the diagram:

u(& WEMEOR.

(5) : l

(/('f./ . G;cv( (ké://’i//zq»;
/V'-'//f ((/(fi )

where the vertical homomorphisms are the canonie ones.

PROPOSITION 6.1. The diagram (5) is commutative.

For the proof, see [3], C’g 5.2, Lemma 3, and the above remark.

Ky 7. THE SUBGROUPS OF NORMS

PROPOSITION 7.1. Let ngk < Q. such that the residual field kV of k is finite
and pf[k:Q loe Let k<l be a finite abelian extension and let 3 k.}, 51.2r

sequernces as in (:]2 Denote: H = N (U(l ) (U(1)) and H =Ny -(U(1)). Then:
1

v 1/k
1
i+1

2) HCH, for any ie N

B ; o i
1) Niﬂ =N (H,) for any ie N

/ki

3)H=(J H, where i & N is such that ([k ki 1 kD =1 for anyi>i
]>1

4)H

Proof. 1) follows from the equality 1. i+ ki+1 . li .

2) is obvious.

3) follows from the equalities: Nl/k/ =N, 1/k for any i > 1
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4HIf x¢ H then x = Nf/f (), e UlD). Since ¥ = lim y, » where V& U(1) one has
n &
e (lim Ve )=1lim N, . (y ) hence H & H.
/ n»w e ]/;

. . o 3 . L-d . *
In order to obtain the other inclusion it is enough to prove that H is closed in

U(K). We shall show that W is an open subgroup of U(k), hence it is also a closed

subgroup of U(K). Let ¢ H and choose ac U(l) such that &= Nl/k(a) Denote by

et oGy gl WAl T
flx) = x~ + % 4...+c\q~1)&f‘s{q

the minimal polynomial of & over k. Then & “0"31 where m = [1: k(a)l. Let cS > 0 and
(y’ € U(K) such that v(v{w‘/é) >c§.
Let [} & “O* be a root of B (x) = x™ -A for which v(ior - is largest. If
fq p 4 qa” fd &

% €.-L2 denotes a primitive root of 1 of order m, then:

1 9“:,1 ‘ c
e o k@q)?_?n‘\f(i/:é 7 ﬁq» = —-—v(o( g )>.,___
( .
Hence for large. < one has: vt - (é S5 ol ‘%;)2
1<i<m~1
> SUP_ wlof - G( ) and from Krasner's Lemma we derive: k(5 ) k(ef ), i.e.
~oeealyg q By :
gt )
g # ot

frqc K

¥

ey S g-1 s 5/ ; 5
Now let gix) = x4 <>‘\1x F ek O\q 1% +o q and denote by b D50 bq the roots

of g(x) in 1, arranged such that v(a - b)) > vla - b') forz2<j<a

I
: 1 ’ = :
Since  v(a - b,) Zav((a = bl,) wer @ = bq)) (g(a)) = ('/ Fo q) o a8

E @§H

< :
follows from Krasner's Lemma that for large < one has k(a)e k(b ), hence g(x) is

cone NS

irreducible over k, k(a) = k(bl), and H3N-

(b)) :lﬂs - =\> . Thus H is open in U(k) and

1/k
this completes the proof of (4).

Let k, % kizf be as in Proposition 6.1. Let io(iz’N and Hi be a subgroup of

; 0
t .
U(ki ) such that: ) U(k. )/_ ’ is relatively prime with [ki : kio] for anyi> i~ Denote,

0]
i M

ford > t: M= Nki/ki )and et H ={_/ H,.

1>1



_18..

"Denote by xH»(k) the set of subgroup H of U(k) which are obtained in this

manner (by varrying io and H, ) and by?‘fz{(}?) the set of subgroups H of U(K) where H runs
= 0
over k).

PPROPOSITION 7.2. Let ng k< L) such that pf[k - Qp] and kv is finite. For
any Hé‘fiﬂ;(k) there exists a finit totaly ramified abelian extension 1 of k such that:

Nl/k U(l) = H and N—f/k(U(I)) = H.

Proof. For any i > io let 1i be a totaly ramified finite abelian extension of ki

such that H, = Nli/ki(U(li)). One has 1i+1 = ki+11i hence if lio = kioM) then li = ki(é{) for
any i > io. Now put 1=k(>) and conclude the proof by applying Proposition 7.1.

THEOREM 7.1. Let k,1, 2 ki'l( ; é lizﬁ be as in the Proposition 7.1. There exists
an isomorphism Crl/k such that the following diagram (where Res is the restriction and

&F is induced by the inelusion U(k)< U(k)) is commutative:

U(m{; )/ﬂ _«.._ffgj@ Gal ( C:—/ ji‘),’zcrm

¢ f /A Res

utky, e

Proof. We have to prove that &,C is an isomorphism (then we put
@i AR RN e A e
Jl/k = Res © ¢ W o t)[)),l Let o<1’°’<2 oo € U(k) be a system of representatives for
U(k)/ﬁ.
(n)

i

(n)

For any neN let ¢ ')(_(n)

1 reeesX € H be such that v(:?i -t

(n) (n)

We assert that for large n the images of K Q5 e

)>nfori=1,.,m.

in Uk)/

o . £
o gy are distinct. If not,
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then there exists 10?53'0 and an increasing sequence nt){~ teN such that
(n) (nt) % (n - - o t)
(Q(io )/(o(jo )¢ H for any t, and this implies (o '. )(44 )~hm ((O( )/(>( NeH
t«%/s

contrary to our assumption.
We have thus the inequality:

UK)I/H] > S U&)/ﬁ)

a1 U(k) which have distinet images in U(k)/H then

they also have distinct images in U(k.)/H. , where "i" is choosed large enough such that

If there exist (’1,

oy b g © U0 But UG/ =1k =T R, = V) Theratore:

\U(k)/H} = \U(I%)/ﬁ‘ ;
Now let < & UK H. Fix an ac UQ) for which N f(a) =, Let
f(x) = x9 + 0<1xq~1 Fea +0(q be the minimal polynomial of & over k, Thene =o¢ M 4 where

m = [7: k(). Let:
g(x) = %3 + {‘ 1 v F (gq_lx +@{q , where ﬁiek, v((é P - of i) > (S

If c( is large enough, then from Krasner's Lemma it follows that there exists a root b of
g(x) such that k(a) = k(b). Moreover, g(x) is irreducible over k and Nf/i«}(b) z<><'g’ =,
Since g(x)€ k(x) it follows tht bel and ae H.

This proved \]0 is injective. Hence it is an isomorphism, as asserted.

THEOREM 7.2. Let Qpc;_;k ¢ L2 such that p7'[k : Qp]w and \kv\ = q € vo. Let

q; = (g~ 1, [k:Q ]CL.) and Vq = the group of roots of 1 of order g, from U(k). Then:
_ 1 :

\ NUHUGD:V
ab

Proof. Let ae—Vq and let 1 be a finite abelian extension of k. Then

g,= | vtz <Ua»\“ \Gattn0,, \

L Ny/k

is prime with [k : Qp] «, hence is prime with q;- Since the order of a(mod Nl/k(U(m isa
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divisor of both d, and aq it follows that a = Nl/k(U(l))' Thus:

1
f\ N, (UD)

ab

Now let a€U(l), a¢’Vq . We have to prove the existence of a finite abelian
1
-extension I/k such that a¢ Nl/k(U(m“ Let i¢ N such that:

1)(p-—~°—-~l [le. 2k V=1 forany i 1.
T e

2) ae U(ki).

Let meN. Denote Um(ki) =; uek, /u =1(mod '/7”im) S and
Vm(ki) = Um(ki) . Vq . Since m(ki)/Um(ki)} =q, and \U(ki)/Um(ki) { = qm(q A
1
m
follows that U(ki)/vm(ki) ’ = g—ﬁg-—:—lz is re]ati\rely

| q, prime to [kj 1 ki] for any j > i.

Let Him - Vm(ki), = Nl (H ) and H" = UH}“. From Proposition 6.2 it
e 2

follows that there exists a finite abelian extension im of k for which

Nlm/k(U(lm)) =
Since ag[\/ql : thet.’e exists m&N such that ag Vm(ki)' Then one has for any
20
[kj:ki] = ,
Nkj/ki(a) =a a2 H.', hence ag Hj

Therefore a glz ik

- il
COROLLARY. Let Q < k< Llsueh that p [ [k ¢ Q ]

Then /\ N

|l
ab

and \kv\ =qg< e

X2

1/k(U(1) =1if andonly if - 1 and [k: Q ] _are relatively prime.

THEORERM 7.3. The hypothesis and notations being as in Theorem 6.2, let k o

be the maximal abelian extension of k. Then on has:

Galtk_ /k) == UK/,
q1



)

Proof. For any finite abelian extension 1 of k one has the isomorphism:

U(k)/N (U(})) e (Ggl (i/k)l’an’"

¢ ~
k/("Q) ______ f it://il..? (;a [ (C //7/\,)/2(«297
Norg (U(EY) l

-
//\/(’/% ( € ({/) - ) Gal (6/ %) oo

is commutative. Then there exists a canonic isomorphism

(

dy s Lm lim U(k)/ I/k(U(m —heale hm Gal a/!‘)r‘am

But

lim Ul)/y (U)X meN

= T/
1/k ui) ¥

I/ k q,
and )

lim Gal (l/k)mmfi': Gal (Kab/knr) ~Gal (kab/k)ram

Q.E.D.

We conclude this paper with the following result which.comes naturally from

what was already proved.

THEOREM 7.4. Let @pc; k< D» such that the residual field of k is finite and

pf[k Q . Then there exists a canonical one-to-one correspondence between ﬁ(k)

and the set of finite abelian extensions of knr , and a canonical one-to-one

correspondence be‘tween'?];(ﬁ) and the set of complete finite abelian extensions of En-*
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