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THE SECOND BRAUER-THRALL CONJECTURE FOR ISOLATED
SINGULARITIES OF EXCELLENT HYPERSURFACES

DORIN POPESCU *)  and 'MARKO ROCZEN

0. Onteodsction

Throughout, let R be an excellent local Henselian k-algebra over an algebraically closed
field k, (R,m) an isolated hypersurface singularity (i.e. the completion R* of R is iso-
morphic k[[XO,...,Xn]]/(f) ). The aim of this paper is to give a generalization and a
slightly different proof of the following two theorems of Dieterich (cf. [Dil).

Theowam I: Let T be the Auslander-Reiten quiver of R ( for the notations, cf. 1. ), C its
connected component containing the class of R. Then

" r(i)

r-c¢ —| l ZAOOKT >
= iel _

for a certain set I, and r(i) ¢ { 1,2 } for i ¢ I .Further, n(i) = 1 for all i if dim R is even,

and C = I' if R is simple.

Theovem II: The second Brauer- Thrall conjecture is true for R, i.e. if R is not of finite
representation type, then there is a strictly increasing sequence (ni) of positive integers,
such that for all i , there are infinitely many isomorphic classes of indecomposable

maximal Cohen Macaulay modules having rank n,.

* : '
) The first author was supported by a fellowship of the Humboldt-Stiftung during the
the last period of preparation of this paper.
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Both results are known by [Dil for the case of R = k[[X ,X 11/(f) and (in theorem II)
char k different from 2. We supress the condition on cha.r k usmg a recent result of
Greuel and Kréning [GK1 , while the base change from R to R™ was considered by the
authors in [PR]. ‘ '

A combinatorial remark replaces the application of [HPRI.

" 1. The AR-quiver of an Lsalated singulatity

- The results in this section are known and only included for convenience of the reader.
In the following, the word "quiver" denotes a couple I' = (I" F) where F is a set ( of
"vertices" ), Fl & F X F ( a set of "arrows" ). If all arrows appear in pau-s (i.e. (i,j)
r 1 iff (j,i) « F ¥ the quwer is determined by its underlying graph.

Consider the graph

A _: o o) o—
(o]
1 2 3
We define a quiver T'= Z Am by

=(N-{Oo}h Xz
l"1 = set of all (a,p I‘o X Fo such that B = (i,j) and

i { (*1,1) ifiis even,
(11, O) if i is odd, i.e.
I' is the quiver
j-1 i j+
R P T gy o o-l-50 .....
4 (3 4
& o e b s o] \’ o \—> o L.....
e T S
S e s o) o B s owwas
4 4 0
B o0 WG o \" o \" 0 " s
Further, let ©: T | —= T be the map 1(i,j) = (i,j+1). This is an automorphism of T, ie. 1

is a bijection of I‘ wnth the property (1,)) € I'l iff (i, e Fl Thus, for an arbitrary re N,
we may consider the subgroup G = < 'r > of the automorphism group and define in a
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natural way the quotiont quiver I'/G, identifying vertices, resp. arrows mod G. Consider
eg.thecase r=1: T = Z Am/<'t> is the quiver determined by the graph Am.

Now let R be an excellent local henselian Cohen-Macaulay k-algebra with residue field
k, having an isolated singularity ( i.e. R_ is regular for any nonmaximal prime g ). Let
MCMI(R) be the category of maximal Coﬁen—Macaulay modules, i.e. of finitely generated
R-modules M with depthRM= dim R. For M « MCM(R), M indecomposable, consider the
set

S(M) = { Se Extl(M,N)lsto, s:O->NS->Es->M->O, Ns= N indecomposable }

with s < t in S(M) iff there is a morphism f such that Extl (M,f)(t) = s. The (unique)
minimal element of S(M) (if it exists) is the so called AR-sequence of M:

O—-*T(M)-—%EM——-—)M——-—B’O,

the map M - t(M) is the "AR - translation” . Isolated singularities are characterized
by
the following
1.1.Theovem ( Auslander ): If M ¢ MCM(R) is indecomposable and not isomorphic to R,
then there is an AR-sequence ending in M.
11, Beéwaam The AR- quiver I' = T'(R) is given by

I‘D : = set of classes [ M 1 { = R-modules isomorphic to M } of indecomposable

modules M ¢ MCM(R)

Iy:= { (IN1,IMD I xT, | there is an irreducible morphism f:N—->M } ;
Here f is said to be irreducible, if it is not an isomorphism, and -given any factorization
f = g-h in MCM(R), then g is a split epimorphism or h is a split monomorphism.

1.3. Lemma (Relten): Let M,N ¢ MCM(R) be indecomposable, M not isomorphic to R and
O —> (M) — EM-——> M —> O the AR-sequence ending in M. The following conditions
are equivalent

(i)  There is an irreducible map N —> M.

(ii} “There is an irreducible map t(M) —> N.

(iii) N is a direct summand of EM.
For the henselian ring R , by uniqueness of the Krull-Remak-Schmidt decomposition
(and a duality argument ), we obtain: There are only finitely many arrows in I'(R) starting
( resp. ending ) in N ( "T is locally finite" ). Further, 1(M) can be computed using syzy-
gies [Aull; for the hypersurface R there are the simple formulas

1.4.Peoposttion : 1°(M) ¥ M , especially

174

) (M)
(ii) (M)

M if n is even, and

QR(M) if n is odd.

w
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Here QR(M) is the first syzygy module of M: Let y(M) be the minimal number of generators
of M, then OR(M) is the ( uniquely determined ) kernel of any epimorphism R¥ M)_, M.
From the preceding, we deduce

1.5. Remath: Let v: MCM(R) —-> N be a map with the properties

(i) ‘ \)(N1 (C] Nz) = v(Nl) + \)(Nz) ;

(ii) v(N) + v(N") > v(N) for any exact sequence O —> N' —> N —> N" —> O.
Then for all [IM] ¢ I'_(R), v(M) + vaa(M)) > % v(N) , where the sum is taken over all IN]
such that there exists an irreducible map N —> M in FI(R).

This follows by 1.3., since v(t(M)) + v(M) 2 v(EM) = 3, v(N) , where the sum is taken over
the Krull - Remak - Schmidt - decomposition of EM'

A function v which satisfies 1.5. is said to be subadditive on I'. Especially, this is true
for the functions

®=Up uR(M) = dimR/ m(M/mM)
( Q(R) is the field of fractions if R is a domain ).

1.6. Rematk: u(1(M)) = u(M).
(Consider the exact sequences
0 —> Op(M) —> M _, M- 0
0 == M~ REORMD _, Qp(M) —> O
and tensorize by Q(R); we obtain equal ranks for the middle terms.)
1.7. Definition : Let n : N —> X be a homomorphism of MCM - R-modules and N

indecomposable. Then 7 is called minimal left almost split, if it is not a split monomor-
phism and the following conditions are satisfied:

(i) For all n' : N —> X' such that n' is not a split monomorphism, there is a
peX—>X, o=y, _
(ii) All € ¢ EndR(X) such that g1 = n are automorphisms.

1.8. “Theotem (Auslander, Reiten): For all indecomposable N ¢ MCM(R) there is a minimal
almost split morphism n : N —> X, unique up to isomorphism. Further, let X = & Xi be
a decomposition into indecomposable objects. Thenthe induced morphisms g N-—3 Xi
are irreducible.

Note that there is a dual definition ( "right almost splilt" ) and statement to L7. and
1.8., respectively. ’

Further, we use the following version of the Harada - Sai - lemma ( the proof uses the
existence of a "reduction ideal", cf. [Di 11, [Pol ):

1.9. Lemma : There is a function p: N —> N - { O } with the following property: Let b
> O be an integer and M1 e M2 R i Mp(b).+1 sequence of p(b)+1 indecomposab-



le R-modules M and irreducible morphisms tp M ->Mi+1 (i=1,...,0(b)) such that u(Mi)
£h {1=4, ,p(b)+1 ). Then im (¢ olb) qJ Yie my Mp(b)+1

From 1.8. and 1.9. we deduce ( [Di 11, [Yol 1.1, [Pol 5.4. )

1.10. Mﬂs&é&m Let C = (C iC ) be a connected component of the AR-quiver T of R. If
¢ is bounded on C then C, xs fxmte and C =T,

Pwo@ Let [N] ¢ F be such that [N] # [R] and choose any ¢ :R —> N such that im ¢ is
not contained in mRN By the dual statement of 1.8. there is a right almost split map
¢:Y N N, YN = Y1 ®.0Y , inducing irrreducible maps 2t Y —> N a.ndC R —> Y
such that ¢ = ¢y C , since ¢ 1s not a split epimorphism. Let b be an upper bound for
¢ on C

case a) If IR1 ¢ C [Nl C o the procedure can be continued inductively to obtain a
decomposition ¢ = Yy & where Yy M(lﬂ——-) . —> M(l)1 is a composite of ¢ irreducible
maps, ¢ ¢ N arbitrary. Since [M] € C for all i, lemma 1.9. implies im¢ < mpN if we
choose ¢ 2 p(b), contradiction.

case b): Let [R1 ¢ Co INI ¢ C, i apply similarly 1.8. and 1.9. to obtain a contradiction.
Consequently, C I‘ Further, by a similar reasoning, all [N] I‘ are such that there is a
chain

R—> Ml s e > Mc
of irreducible maps with ¢ < pu(b). Since T is locally finite, this implies FO is finite.
i, Mﬁd.ﬁan Let C be the connected component of [Rl and C5 be the subquiver,
obtained by removing [R]. If C' is a connected component of C® , then C' is finite or y is
unbounded on C'.
M: Let b be an upper bound for ¢ on C' and assume C' is infinite. Choose [Nl ¢ C'
such that there is no sequence R —= N1 —> > N = N of irreducible maps with
¢ < p(b) (if there is one for each N, C' is finite as in the preceedmg proof ). Now there is
amap ¢ : R —=> N’ , im @ o Mp: N, and this is in contradiction with 1.9. and the above
factorization property.

2. MCM - modules ooet nonsimple singulatities

The aim of this section is to prove the following

2.1 pw@'mééwﬁ : Suppose that R is not a simple singularity. Then there exists a positive
integer d such that there are infinitely many isomorphism classes of indecomposable
MCM-R-modules of rank < d.

By [PR1, (3.10) we may suppose R is complete ( from now on ). For the proof we need
some preparations. The following two lemmas can be deduced from [BGS] (1.7.) and
(2.5.) 3), resp. [BGS] (3.1.).

2.2. Lemma : If R is a complete domain and there are. infnmtely many different ideals I in




kLEX11, X = (Xl,...,Xn) such that

@ tene,
(ii) I is generated by r elements,

then there are infinitely many isomorphism classes of indecomposable MCM-R-modules of
rank < 2§ :
2.3. Lemma : Proposition 2.1. is true if R is a complete domain and either
a)fe(X4) and nx1, or
b) fe (X3) and n > 2.
2.4. Lemma : Our proposition holds for n=1.

Prosf : Suppose that R is a ( complete ) domain. Then we follow [BGS] (3.5.). Note that
in this case there are infinitely many different ideals I < k[[X1] generated by 4 elements
such that f « I and we are ready by (2.2). If R is not a domain, we have R reduced
because it is an isolated singularity. Let g be a prime divisor of f. Then as above, our
proposition holds for R' = k[[X11/(g). As MCM-R' -modules are still MCM-R-modules,
we are ready (here, for reduced rings we put rankRM = sup{rmkR/q(M/c;M) lg e Min(R)} ).
2.5. Lemma : Our Proposition holds if f = X +h,he (X)3 n 3.
Proof : We follow [GK] (3.6.) ;
c={x=(o,x,...,x ) ¢ P?
1 n k

where h@s the 3-form of h. Clearly, C contains infinitely many points because k is
algebraically closed.

o =01,

For X ¢ C let I{}) C k[[X1] be the ideal generated by all linear polynomials )\in -iji,

where O < ij < n, and I, = I0) + (X?). As in [GK] (3.6) we have I, # I, for X £ u
and f ¢ [ 5 Note, that all I)\ are generated by (nz-m) elements and so we are ready by
lemma 2.2. (R is a domain because n > 2 and f is an isolated singularity ).

2.6. Aemma : Our proposition holds if char k # 2 .

M ( after [BGS1 (3.6.)) Apply induction on n, the case n"l already being done in
2.4.; we suppose n 2 2 . By 2.3.b) we can assume mult f = 2. Then, changing variables,
we may suppose that f = Xg + g for g ¢ B g o5 k[{Xo,...,Xn_ll].Clearly, g defines an
isolated singularity which is not simple, because f does so. By induction hypothesis we
can suppose that R' := Poeq/ (g) = R/(Xn) satisfies our Proposition. Thus there exists an
infinite set {M'.ljeJ} of indecomposable nonisomorphic MCM-R'-modules of rank smaller
than a positive integer d' 2 1. Let () (M'J) ( resp. Q (M’ )) be the first syzygy of M'

an R-module ( resp. R' - module ), i.e. there exists an exact sequence

1) (0] ->QR(Mj) —_ Gj-—->M —> 0

iksan: O O M) —> G'j——Q—> M; —> 0)

of R-modules ( resp. R'-modules ) with G, ( resp. G'j ) free of rank i (M j) Since M'
as an R—module is killed by X we obtain from 1):



2) rankR(Q (M') = uR.(M')

By the depth lemma ( cf. [EG] (1.1.) )} we note that 0 p(M3) are MCM- R-modules. Now
we have an infinite set #4 of nonisomorphic mdecomposable MCM-R-modules,summands of
a certain () (M') j € J (J infinite). Indeed, otherwise all M, will be direct summands in
a certain MC -module of the form & M/ Xn(® M), the sums taken over MeM, because
3) Op(M) 7 X Op (M) = M| © Op.(M)

by [Scl (3.2)a), contradiction! But we have rankR(QR(M'j) = uR.(M'j) <ep (M'j) = e (R)-d

:d for all j ¢ J by [Mal (14.8.), where epr M') denotes the multiplicity of M'. Thus the
modules from M have their rank bounded by d; note that there is a system of parame-
ters x such that ep (M) = eR((x) M'j) = ¥(-1) length( H (x M‘j)) = length (M'j/xM'j) >
> WM} (IMal (14. ), (14130,

2.7. R&mt& The assertion 3) in the above proof can be found directly from [Knl (2.5.),(ii)
as follows: Let MF(f) ( resp. MF(G)) be the category of matrix factorizations of f ( resp. g)
over k[[X1] ( resp. Pn—l ) and CM(R) the category of all MCM-R-modules. Let

G: MF(g) ——> MFI(f)

_ X id ¢
be the functor o) +H—-> (O , O := ( )
' [} —Xn-id
( cf. [Knl p. 156 ),
Rest: MF(f) ——> MF(g)
the functor ®,Y) ———m> (Pn—lak[[X]]q)’Pmlnk[[X]]%
and CokR: MF(f) —> CM(R) be the functor given by

(@, ) F—=> Coker ¢ .
By [Knl (2.5.) ii) we have: Rest - G is equivalent with id @ TP , Where
n-1
T : MF(g) ———= MF(g) is given by
Pn—l
(o) > (d,p) . 2

But CokR. TP is in fact given by (¢,}) = QR.(M), where M := coker ¢ and the map
-1

CokR. - Rest - G is given by (¢,{) > DR(M)/X OR(M). Thus 3) holds.

Z0 meowosiilon 2.1.: It is enough to consider the case n > 2 and char k = 2 by 2.4.
and 2.6.; using 2.3. we may suppose that mult f = 2. Changing variables we may suppose
by the splitting lemma in characteristic 2 ( cf. [GK1 (3.5), corollary 3)) that either

= v2
1) f e XO + XIXZ AT XZI_IXZ’. & h ) Whel“e h € k[[XO,X21+1,...,Xn]],
he (X)3 with O < 2l <, or



2) f=X X, +...+X,X h, where h ¢ kI[[X aXodl
o1 21 n

2ls1 * 21+2'
he (X3 with1< 214 <n .
If n = 2 then R is not a rational double point, and we can apply e.g. [PR] (4.10).

Now apply induction on n and suppose n = 3. Using 2.5. we reduce to’thé case when
(after permutation of variables) f is of the form f = Xan_1+ g, 8¢ Pn_2:= k[[Xo,...,Xn_zll.
We apply [Sol Proposition 4 i) ( compare with 2.7. ): Put R" := Pn_z/ (g) T R/(X__.,X )R

n-1""n
Ex MF(g) <> MF(f)
: X -id P X oid 0}
ok —— (72 e )
b - =X g id ¢ -Xhid
and Rest : MEFE(f) <> MF(g)
By [Sol,proposition 4i) we have Rest F = id @TP , and thus
n-2
3) | CokpFlp)/ (X, X, )CokpFlp4) = Cokpu-Rest Flp.4) =

ne

Cokerpep @ Qp. (Cokerpuo).

By induction hypothesis we. can suppose that R" satisfies our Proposition, i.e. there exists
an infinite set {M." | j ¢ J} of nonisomorphic indecomposable MCM-R"-modules of rank
smaller than a positive integer d" > 2. By LEi], CokR gives an equivalence of categories,
and given M." ¢ CM(R"), we can find ¢, from a minimal resolution of M," over k[[X1],

;nd the rank of the adress of ¢ j is uR..(Mj"). Denote Nj = CokerR F(cpj,kpj).‘By 3) we
ave

4) Nj/(Xn,Xn_ IN. = M". ®0,.M" , jel.

g pooRe oy

Then there exists an infinite set A of nonisomorphic indecomposable MCM-R-modules

which are direct summands in a certain N.. Indeed, otherwise by 4) all M," will be direct
) : A

summands in a certain MCM-R"-module of the type

®© N/(X X N,

Ne

contradiction.

Now by construction of F we have uR(Nj) < ZuR.. (M}'). But as in 2.6., we obtain
uR..(Mj") < e(R") rank(Mj") < e(R)d" .

Thus all indecomposable R-modules from #{ have their rank bounded by d := 2e(R")d".



3. Prooh of the theotams

3.4. Lemma: Let T= (T i l"l) be a quiver with two maps
Ldy 2l
w I ——> N- {0}

such that

(o) N* = i for all i ( here j+ denotes the set of all k suchthat there exists an arrow

j=—> kin 1“1, and j denotes the set of all k such that there is an arrow k —-> jin l"l).
(i) 1° is the identity.
(i) p is subadditive, i.e. 2u(d) 2 3 u(j) for all i.
j,dj=>i
(iii) ¢ is unbounded on every connected component of T.
“(iv) p(t(d) = p( for all ic I‘o.
Under these assumptions, we have:
(a) i—>j ¢ 1"1 iff there is an arrow t(i}—>1(j) ¢ I"1 , and for all i—=>j , there are arrows

i =

4 |
| v

(j)e— (i)
(b) T acts on the components of T.
(c) Let T =TI/t be the following quiver:NI‘oN = 1'(‘) mod 1, and I‘1N denotes the set
of arrows p(i)—~->p(jl: where p: T 0————>I‘o is the projection, Then y is well defined
and subadditive on T , i.e.

@z X ul ( here k denotes pli) ).
3j>kel’

?

. Proof: (a) and (b) are obvious. Now (c) follows from (ii) and (a).
3. 2. Lemma: Under the assumptions of lemma 3.1., let T be connected and t the identity .
map. Then all arrows appear in pairs i¢<—=>j, and the underlying undirected graph of T is

A 0 0 0
it 1 2 3
Further, with these notations, y is the map
i
u(d = -Zl < < integers with 1 < Cje1 < < for all j > 1.
M: By induction, we show:
[x] For all n, there is a subgraph
0 0 hk 0 0
1 2 n-1 n

of T' such that

forlsjSn—l,dj=lifj=1anddj=21fj22,Wheredj=$(j-),i.e.
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dj = #f ieI‘OIBi—jeI‘I}, and for1 <j<n

u(j) = Cy+ .. * cj with integers G 1 <i < n, such that 1$ci$ci_1 :
Before proving this, we remark
L] [monotonyl: Let
0——o0— 0
i j k
be a subgraph of I'. Then p(i) > p(j) implies ulj) = plk).
( Indeed, subadditivity ((ii}, lemma 2.1.) implies 2-u(j) > X u(t) = p(d) + wlk) = p(G) + u(k).)
tej
To prove [*1, we choose an element 1 ¢ " 5 with p(1) = minimum u(l”o). Put p(l) = Cy- Now
assume [*] holds for some n 2 1. Then we find a subgraph

0 () s — 0 0o — i2
1 2 n-1 n\ :
0 is
of T with 5§ = dn—l Enzs2 | s‘:dnifn=1
and g _
Cpp we oGy € N-{0} , 1< c, € Cpog S e < ¢4
such that
u(j)=cl+...4~cj ; 1<j<n
Subadditivity of p implies T 4
[on] 2u(n) 2 §-uln-1) + gu(it) . where o ={ 1 if g 3 9

Since y is not bounded on T, [¥x] implies
[k ] ' u(it) 2 u(n) + 1 for some t.
Now choose any t with that property, and denote i, = n+1 . Then up(n+l)

some Crit 2 1. We have to show: C, 2 €54 and s = 1. Put

]

uln) + cm_l for

8
2 =r§1 L) = i) .

Then ¥ > 0 with equality iff s = 1.
case &) n = 1 : By [##*] and [***x] we obtain 2cp2 0+ u2) =X + Cy *+ Cy 2 cpicy , e
¢y 2¢Cy, and ¢y = minimum p(C 0) implies >, = 0 or J, > ¢ ( impossible, since Co> 1).
case b) n > 2 : We obtain similarly g -

2uln) 2 y(n-1) + pylo+1) + ¥ 2 p(n-1) + pln+) |, ie.

Cp 2 Cpqy and ZSCn—cn+1£cl-l,i.e.Z=O.

3.3.Lemma: Assume T is connected and there is an i ¢ I’ with 1(i) # i. Then the inverse



i1

image of a subquiver
0 >0

pli) p(j)

of I'” via p has the shape

0—=>0 (i+1)'
o—>0 (i+1)

Especially, all 1-orbits have lenght 2, and T is the "tube"

'

O>Zo>é——-o
0=>,0 =0 20 % 4

1 2 3 4

with p(i) = i) = Z < 1<c
j=1

Proof: By lemma 3.2, I is of type Am. If i ¢ tli), i+1 + t(i+1), we obtain easily the

configuration (¥} by lemma 3.1.(a) ( further arrows are excluded by the subadditivity of p ).

If t acts identically on i or i+1, we would obtain one of the "degenerated” subquivers

e 5y

0 &———> 0 &> g
i+l i=1i (i+1)’
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0 < > 0 € >0

(i+1)'= i+1 i

[,

0 ¢—> 0
=i’ i+1 = (i+1)’

By hypothésis, not all can be of the third type, and continuation of the first two with
p(l) = « 18 in contradiction with the subadditivity of y. Therefore, (i) % i for all i ¢ F
and the assertzon follows by lemma 3.2.
3.4. Corsllary : Under the same assumptions as in the introduction, assume that the AR-
quiver of R is not finite. Then there is a sequence (n) of strictly increasing natural
numbers such that for all i, there are infinitely many nsomorphic classes of indecompo-
sable maximal Cohen Macaulay modules M with p(M)= n n.. v
Proof : By 2.1, , there is a number ¢ ¢ N-{0} such that m o =Mcris infinite. Let c be
minimal with that property. Put:

M' = {1i] ieM, c-mimmumu(f‘)}
where I‘ denotes the connected component of i in T. Then #M' = o, and each interval
[nc, (n+1)c] nelN, n21, has an infinite inverse image via y: ' —> N-{0} by lemma 3.3.
Thus we obtain theorem II. Theorem I follows if we remove the connected component of
the isomorphic class of R from the AR quiver of R and apply 3.3.
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