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THE $ECOND BRAUER,-THRATI CONJECTTIRE FOR ISOI.ATED
SINGIIIARITIES OF EXCH.IENT TIY?ERSIIRFACES

DORIN FOPESCU *} ard MARKO RoczEN

Q.9&rlarf,;tsl

Throughout, let' R be an excellent local Henselian k-algebra over an algebraically closed
fteld k, (R,m) an lsolated hypersurface singularity (i.e. the comple6on R^ of R ls lso-
morphic k[[Xo,...,Xn])/(f) ). The alm of this paper is to give a generalization and &
slightly different proof of the following two theorems of Dleterich (cf. tDtI).
Eh/ldAlen I: Let f be the Auslander-Reiten quiver of R ( for the notations, cf. l. ), C its
connected component containlng the class of R- Then

r_c =l  I  r ,A*/ l  " r$r)'  i e  I
for a certain set I, and r(i) e | !,2 ) for i e I .Further, n0) = I for all f if dim R ls eyen,
a n d C = I i f R i s s i m p l e .

%adEe,|8 II: The second Brauer- Thrall conJecture is true for R, i.e. if R is not of finite
- representation type, then there is a strictly increasing sequence {nr) of positive integers,

such that for all I , there are infinitely many isomorphic classLs of lndecomposable
maximal Cohen Macaulay modules having rank nr.

*) 
tn* flret author w€La supported by a fellovvchlp of the Hurnboldt-stiftung durtng the
the laet perlod of preparatlon of thle paper.
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Both results are known by tDiI for the case of R = kttXo,...Xnll/(f) and fin theorem II)
char k different from 2. We supress the condition on ctrar t 

-using 
a recent result of

Greuel and Krtining IGKJ , while the base change from R to R was considered bf the
authors in tPRl.
A combinatorial remark replaces the application of [HFR].

l

l. VAt AR-Crdoet o$ en ttota&A dryutradtn

" The results in thls section are known and only included for convenience of the reader.
In the following, the word "quiveC' denotes a couple f = (Io,f1), where Io is a set ( of
'vettices" ), ft c fo X fo ( a set of 'arrows" ). If all arrois ippu* in p"airs (i.e. fiJ) e

t iff (i,0 e I, ), the quiver is determined by its underlying graph.
Consider the graph

A-'
1 2 3

We deftne a quiver T = Z A.o by

r o = ( h I - { o l l x 7 '
I, = set of all (cr,pl e fo X fo such that F = (l,i) and

g - a =  {  
( t l ' i l  t f  l t s e v e n '

' (:1, O) if t ls odd, l.e.

f ls tfie qulver 
j,t J i+l

Further, let r: I o 
-* 

% b" the map r(i,i) = (i,i+1;. This is an autornorphism of f, l.e. r
ls a bijection of fowith the proper,ty (i,il c fl iff (ti,tj) e Ir. Thus, for an arbitrary r e [N,
we may consider the subgroup G = ( T' ) of the automorph,ism group and define in a r
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natural way the quo[iont quiver f./G, identifying vertices, resp. arrows mod G. Consider
e.g. the case r =1: r = z A*/(r) is the quiver determined by the graph A-.

Now let R be an excellent local henselian Cohen-Macaulay k-algebra with residue field
k, havlng an isolated singularity ( i.e. Ro is regular for any nonmaximal prime p l. Let
MCM(R) be the category of maximal Cof,en-Macaulay modules, i.e. of ffuritely generated
R-modules M with dePthOM= dim R. For M e MCM(R), M indecomposable, consider the
set

S(M) = 
{ s. extl(M,Mls*O, s:O+N*+E.+M+O, N"= N indecomposable }

with s < t in s(M) iff t'here is a morphism f such that Extl (M,fl(t) = s. The (unlque)
mtnimal element of S(M) 0f it extsts) is the 

"o ""llud 
AR-sequence of M:

O - + r ( M ) - + E M - r M - + O ,

the map M F+ t(M) is the "AR - translation" . Isolated singulariile6 are characterlzed
by
the followlng
Llffionaar ( Auclsnder l: If M e MCM(N ls lndecomposable and not isomorphic to R,
then there is an AR-sequence ending in M.
tt Da#nfls* The AR- quiver f = I(R) is given by

Io, = set of classes t M I ( = R-modules isomorphic to M ) of lndecomposable
modules M e MCM(O

l. 
r = {.ttNl,trtal , 

-ro1lo 
I there is an rrreducible morphism f:}+-+M } .

Here f is sald to be irreducible, lf it ls not, an isomorphism, and.given any iact<lrization
f = g.h in MCM(ru, then g is a split epimorphism or h is a split monomorphism.

L3. tremm Retted: Let M,N e MCM(H be tundecomposable, M not isomorphic to R and
O -+ t(M) -+ Et-+ M -+ O the AR-sequence ending in M. The following cond.itions
are equivalent

, (l) There is an irreducible map N -.> M.
fiil There is an irreducible map r(M) -+ N.
ftil N ls a dlrect summand of E*.

For the hensehan rtng R , by uniqu"ie"" of the Krull-Remak-Schmidt decomposition
(and a duality argument ), we obtain: There are only finitely many ar?ows in fG; starling
( resp. ending ) in N ( "l is locally finite" ). Further, r(M) can be computed using syzy-
gies [AulJ; for the hypersurface R there are the simple formulas

L4,'i|taryltlarr, r2(M) g M, especialty

(i) t(M) 3 Il{ lf n is even, and

0i) t(M) g OR(M) if n is odd.



0)
0t)

Here OO(M) is the first syzygy rnodule of M: let p(M) be the minimal number of gs+erators
of M, iien O*M) is the ( uniquety determined ) kernel of any epimorphism ap(M)-+ M.
From the preceding, we deduce

1.5. Fcatct&: Let v: MCM(ru -+ hl be a map with the properties
v(N, @ NZ) = v(Nr) + v(Nr) ;
v(N) + v(N') > v(M for any exact sequence O -+ N -+ N -+ N' -+ O.

Then for all [M] e fo(R], v(M) + vtt(M))'> I v(M , where the sum is taken over all tNI
such that there exl,sts an irreducible map N -+ M in fl(ru.

This follows by 1.3., since v(t(M)) + v(M) > vG*) = f, v(M , where thd sum ls taken over
the Krull - Remak - Schmidt, - decomposition of Er.
A function v which satlsfies 1.5. is said to be subaiditive on f. Especially, this ls true
for the functions

0 = PR , Pp(M) = dimqtru(M np Q(R))

l, = lrR , Fp(M) = dimO, ̂ (M/mM)
( Q(R) ls the field of fractions if R is a domaln ).

1.6. Fsact&: p{r(M}) = p(M}.
(Conslder the exact Eequences

o -+ oRtll) -e pu(M) -+ M *+ o

O _+ M _+ pu(On(M)) _+ OR(M) _+ O
and tensorize by Q(N; we obtain equal ranki for the middle terms.)
t. l .De$,n&ot: Let n: N-+ X be e homomorphlsm of tvtcna - R-modules and N
lndecomposable. Then 4 ls called minimal left almost split, if it ls not a split monomor-
phlsm and the followtng conditions are satlsfied:

ttJ',1! 
X"tIr":;l.that 

4' ls not a split monomorphism' there is a

0r) All e e End*(X) such that €.n = I are automorphisms.

t.8.€Ekoowsa (Auslander, Reiten):l,For all indecomposable N e MCM(N there is a minimal
almost, split morphism 4 : N -+ X, unique up to lsomorphism. Further, let X = @ X, be
a decomposition into indecomposable objects. Th'enthe induced morphisms Il: N -+ Xi
are irreducible.
Note that there is a dual definition ( "right almost splilt" ) and statement to 1.7. and
1.8., respectively.
Further, lve use the following version of the Harada - Sai - lernma ( the proof uses the
exlstence of a "reduction ideal", cf. tDi lJ, [PoI ]:
1.9, Erlrurr-: There is a function p : [.] -+ hI - t O ] with the following property: Let b
) O be an integer and M, -t Mi -+ . . . -+ Mp.o)41 sequence of ptb)+l indecomposab-



-', t-,,-,,, t.'* .^"'fu;;*d,

s

t_u.*;T:Out":5 and irreducible morphisms 0i: M;-+Mi*l ( i = l,...,p(b)) such thar, p(Mr)
< b ( i=1,...,p(b)+1 ). Then im (0p(b). .....,1,/ . dR.frp(b)*t.

From 1.8. and 1.9. we deduce ( tDi 1I, tyol 1.1., tPol S.4. )

1,1Qi,fua,postrttaa: Let C = (Co,Cr) be aconnected component of the AR-quiver f of R. trf
p is bounded on Co, then Co is finite and C = I.

fuoo$, Let tNJ e fo be such that tNl + tRl and choose any g :R -+ N such that im g is
not contained in m*'l*{. By the dual statement of 1.Q. there is a right almost split map
n"T U.* N, 

If.t 
= 

ft 
t:.. oY4, inducing irrreducible- maps p1: Y, -+ N and (r: R -+ y,

such that I = I gi' (i , since g-ls not, a split epimorphism. Lei b Le an upper 
^bound 

for
p on Co.
Glse e):If tRI I Co,[M . Co, the procedure can be continued inductively to obtain a
decomposition g = I ti. [i , i"h"r" yi, Ii{}-+ tf}, is a composite of c irreducible
maps' c e NI arbitrary. 

Linle 
tMrI e Co for all l, lemma 1.9. implies lm g c rap.N lf we

choose c > p(b), contradiction.
case blr Let tRt t Co, tM t Co ; appll similarly 1.8. and 1.9. to obtain a contradiction.
Consequently,.C = f. Further, by a similar reasoning, all tM e Io are such that there ls a
chain

R - + M ' - ? . . . * M "

of in:educible maps with c < pft). Since I is locally finite, thts implies l^ is finite.
Ln, Wo@dltl'on : Let C be the connected componenr of tRl and Cs bE the subquiver,
obtained by removing tRl. If C' is a connected component of CE, then C' is finite or p is
unbounded on C'.

fuaa$z Let b be an upper bound for p on C' and assume C' is infinite. Choose [NJ e C,
such thal there ls no sequence R -+ Nl -* .. -+ N" = N of irreducible maps with
c < p(bl ( if t'here is one for each N, C' is ltnite as ln the pieceeding proof ). Now there is
a map I : R -e' 1g', im g d -R',N , and this is in contradiction with 1.9. and the ab.ove
factorlzatlon property

2. MCM - moilulas crlcx twwtrllp{re fugala$ilst

The aim of this section is to prove the following
2,1, fuWdltt/lrr: Suppose that, R is not a simple singularity. Then there exists a positive
integer d such that there are infinitely many isomorphism classes of indecomposable
MCM-R-modules of rank < d.
By [PR]' (3.1O) we may suppose R is complete ( from now on ]. For the proof we need
some preparations. The followtng two lemmas ca,n be deduced from IBGSI (1.7.) and
(2.5.) 3), resp. ttsGSl (3.1.).

2.2. fdimfr,a: If R ls a complete domain and there are infinitely many different ideals I in
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k[[X]l, X = (X1,...,Xrr) such that

0 )  f  e 1 2 ,
0il I is generated by r elements,

then there are infinitely many isomorphlsm classes of indecomposable MCM-R-modules of--- =_< 
tank . Zl".-L,

2.3, lamanr : P-ropositiom 2.1, is true if R is a complete domaln and either
d f  e  ( X t  a n d  n ) 1 , o r

- .  b l f e  f f 3 )  a n d n > 2 .
2.&. Aamnn r Our proposltion holds for n=1.

fuoo6 r Suppose that R is a ( complete ) domain. Then we follow [BCSI (3.5.). Note that,
in this case there are infinitely many different ideals I c kttXll generated by 4 elements
such that, f , 12 and we are ready by Q.Z).If R ls not a domain, we have R reduced
because it is an lsolated singularity. Let g be a prime divlsor of f. Then as above, our
proposition holds for R' = kttXll./($. As MCM-R' -modules are still MCM-R-modules,
we are ready (here, for reduced rings we put rankpM = sup{rank,q(M/#,il l4e Min(R)} ).

2.5.  kwte:  OurProposi t ionholds i f  f  = Xj  -  h,  h.  (X)3,  n >3.

fue6: We follow tGKl (3.6.) ; let
c = { } ,  = (o,1r, . . . , rr ,}  e { t t(3)(r,)  = o },

where #Qu *,u 3-form of h. Clearly, C contalns infinitely many polrrts because k ls
algebraically closed.

For ), e C let I(I) c kttxll be the ldeal generated by alt linear polynornials ),rXj -liXi,

where O 
; t,i ( r r and I^ = I(),) + ff21. As ln fqKl (3.6.) we have II F Iu for ), ts p

and f , I 1. Note, that ali I^ are generated by (nz+d elements and s6 *" L* ready by
lemma 2.2. (R is a domaln because n > 2 and f is an isolated singularity ).

2,6. &amnu- r Our proposition holds if char k * 2 . :,

furlri|: ( after TBGSI (3.6.)) Apply irnduction on n, the case n=l already being done in
2,4.; we suppose n > 2 . By 2,3.b) we can assume mult f = 2. Then, changing variables,
\ r e m a y s u p p o s e t h a t f - X ; + g f o r g € P n _ l  : = k [ [ X o , . . . , X n _ 1 ] l . C l e a r l y , g d e f t n e s a n
isolated singularity which is not simpl,e, because f does so. By induction hypothests we
can suppose that R' := Prr-r/tgt 3 R /tXrr) satisfles our Proposltion. Thus there exists an
furfinite set {M',lieJ} of indecomposable nonisomorphic MCM-R-modules of rank smaller

: than a positive'irrt"g", d' > 1. L;t.frOtMy' ( resn. oR,(M j) ) be the first syzygy of M', as
an R-module ( resp. R' - module ), i.e. there exists an e'xact sequence

O -r OR(MI) -* Gi-r M' -+ O

o -+ oRM;) -+ or-r Mi -+ o )

1)

( resp.

of R-modules ( resp. R'-modules ) wtth C, t re11. G, ) free of rank pR, (Mj). Sfnce Mj
aa an R-module is killed by Xn we obtain ?rom l):



2t rankR(OR(Mi) = Fg,(M'r).
By the depth lemma ( cf. IEGI (1.1.) ) we note that O*(M',) are MCM- R-modules. Now
we have an infinite set /9t of nonisomorphic indecomposable'MCM-lR-modules,summands of
a certain OR(M''), j . J tJ infinite). Indeed, otherwise all M,' will be direct summands in
a certain MCM-module of the form OM/Xn(OM), the sirms taken over M#d, because

3) oR(M'jl / xnoR(M'j) 
- 

*'j o oR,(M'j)

by tScl (3.2)d, contradiction! But we have rank*t0OM'j) = pR,{Mj} < e p,(Mr) = e(R').d'
=: d for all j e J by tMal (14.8.), where e*(M') denotes the multiplicity of M'. Thus the
mod,ules from ft|" have their rank bouncled by d; note that there is a system of parame-
t e rsxsuch t ' ha t . : r yY j l ^ :eu ( (x } ,M j )= I ( -D l l eng t ' h (H , (x ,M, } )= leng thGa,zxna j )>
> U(M'r) (IMal (14.14), (14.13)).

Z,T.FamoGf.: The assertion 3) in the above proof can be .found directly from tKnl (2.5.),0t)
as follows: Let MF(f) ( resp. MF(G) be the category of matrix factoriaations of f ( resp. g)
over ktfXIJ ( resp. Pr,_l ) and CM{R) the category of ell MCM-R-modules. Let

G: MF(s) -+ MFff)

(p,{) F-+ (O,O}

( cf. tltul p. 156 ),
Rest: MF(f) --t MF(e)

(O,Y) F-+ (Prr*tokttxlI@,Pn_lrtffXttV)

Cokp: MF(fl CM(R)
(p,,1) F-+ Coker I .

By tIfuI (2.5.) ii) we have: Rest . G is equlvalent with

tt 
r-r' 

MF(s) -+ MF(e)

(p,0) |--+ ({,p)

be the functor

the functor

and

, o .= ( *i'o 
_*:.,0 )

be the functor given by

i d @ T D  , w h e r e
l rn-r

is given by

But, CokO,.trrr_ris infactgiven by (,p,Q) F+ nR,(M), where M := coker g and the map

Cok* . Rest . G is glven by (9,r!) l-+ OR(M)/X'OR(M). Thus 3) holds.

Z.S.WM e$ pspeanm2.l; lt is enough to consider the case n > 2 and char k = 2 by 2.4.
and 2.6.; using 2.3. we may suppose that mult f = 2. Changing variables we may suppose
by the splitting lemma in characteristic 2 ( cf , tGKl (3.5), corollary 3)l that elther

1) where h e kttXo,X21*1,...,Xrr1l,

h . (X)3 with O < 2l < n, or

f  =Xj * X1X2 + .  .  .  *  Xzt-tXZl + h,
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2 l  f  =  X o X r + . . .  *  X z l X z l * l +  h , where h e kttXO+Z,... ,XnJI,

h .  f f ) 3 w i t h 1 < 2 1 + 1  < n .

If n = 2 then R. is not a rational double point, and we can apply e.g. IPRJ (4.1O).

Now apply induction on n and suppose n > 3. Using 2.5. we reduce to the case when
. (after permutation of vhriables ) f is of the forrn f = XrrXrr-ln B, g e Pn-2:= k[[Xo,...,Xrr*21].

We apply tSoI Froposition 4 il ( compare with 2.7. ): Put Bi." := Pn_r/kl : R/(Xn-1,Xn)R.

F : MF(S) MF(fl

and Rest : MF(fl MF(s)

thefunctor (Q,Y) F.  *  (Prr-Zokttx '@,Pn-Z*kt fX'Y).

By [Sol,proposition 4il we have Rest.F = id tttr_r, and thus

3) Cok*F(9,{r}/(Xn,Xn-r)Cok*F(e,{,} : Cok*,'Rest'F(p,{r} 3

3 CokerR..g @ Oo,,(Cokerp,,p).

By lnductlon hypothesls we can suppose that R" satisfles our Proposition, l.e. there exlsts

an furffurlte set {M," lj . J} of nonisomorphic furdecomposable McMjR"-modules of rank

smaller than a poiitirc lnteger d" > 2. By tEi), CokO gives an equivalence of categories,

and given M," . CM(R"), we can find g, from a minimal resolutlon of Mr" over k[[XlI,

and the tanli of the adress of g 
, 

is tiO,,(nlr"). Denote N, := CokerO F(pj,+j).'By 3) we"

have

4)  Nj / (Xn,Xn- l )Nj  :  * " j tCIR,(Mj ' )  ,  j rJ .

Then there exists an infinite set fr, of nonisomorphlc indecomposebb MCM-R-nnodules
j *hich are direct summands in a certain Nr. Indeed, otherwise by 4) all M,i' will be direct

i 
rummands ln a certain McM-R"-module df the type

, o N/( xn,xn_l)N ,
}{r/t

t 
contradiction.

Now by construction of F we have U*(Nr) < 2pR,(Mi'). But as in 2"5., we obtain

pR,(Mi') < e(R") rank{Mr"} < e(R")d" .

Thus all lndecomposable R-modules from 1&1, have their rank bounded by d := 2e(R")d".
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3.W4 06 tAc {:&rlantms

3.1. fumnw: Let f = ( fd fl) be a quiver with two maps
t: fo

p :  t  
-+  h l - t0 )

'. such that
(o) (r(il)+ = i- for all i ( here J+ denotes the set of all k suchthat there exists an ar?ow

" |l-rrk 
i1f1, 

ad i- denotes the set of all k such that, there is an ar.row k -+ i in fl).
fi) r- is the identity.
fii) p is subadditive, t.e. 2p(i) > I p(j) for all t.

oiil p ts unbounded on every 
""i.tj.* 

componenr of f.
ftv}p(t(i)) = pfi) for all i e Io.
Under these assumptions, we have:
(a) F+J e fl iff there is an arrow rftF+t(j) e f1 , and for all F+i , there are arrows

i - + i

r l
l q \

r(j)+- rfi)
(b) t acts on the components of I.
(c) Let I- = f/t be the followtng quiver:^f,- = I mod t, and lr- denotes the set

of arows p(D-+p(j), where p: fo-+Io" is the projectlon. Then p is well defined
and subadditive on l*, i.e.

Zp(l) >. _I. _- p(j) ( here k denotes p(i l  ) .
,,lj)krt- 

' -

, Proof: (d and (b) are obvious. Now (c) follows from 00 and (a).
3.2.(dlmna:Underthe assumptions of lemma3.1., let f be connected and t the identtty

I 111ap. Then all arrows appear in pairs i<--+j, and the underlying undirected graph of f is

i  A  :  o  o - . . .
; @ 1 2 3

; Further, with these notations, p is the map

l-
u(il = 

1\ 
, c, lnte8ers with t . 

"rnt 
. 

"j 
fot all i > 1.

" 
[*] For all n, there is a subgraph

0 - o
l 2 n - l n

of I such that
for I < j  < n-l,  dj = I i f  1=1 and d, = 2 l f  i  > 2,where d, = t( i-),  i .u.
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oi = o( terol:rlerrl, and for 1 < j < n

Before proving ,ril'];""1i;J t 
with integers 9' 1< i < n' such that 1<cr<'i-1 '

[*x] fmonotony]: Let

t i k
be a subgraph of I. Then p(i) > p(j) impties fr(j) > p{H.

. ( Indeed, subadditivity ((ii), lemma2.t) impltes 2.p(j) > I_p(t) > p6 + p1p) > p(j) + pft).)
t.j

To prove [x], we choose an element I e Io with p(o = minimum p{ro]. put p(il = cr. Now
assume [x] holds for some n > l. Then we firna a subgraph

"/_: i
|  2  n - l  

" \ :

o i ,

o f  f  w t t h  6 =  d r r - l  i f  n > 2 ,  u * d r r i f  n = 1
and r'

s u c h t h a t  
c f  " ' r c "  e  [ ' l - { 0 } '  1 ( c "  t " " * 1  t " ' t c l

P ( i ) = c t * . . . * c j  ,  1 < J c n
Subaddittvity of p impltes

[ *x* ]  2ph)>6.s (n- i l * r$ ru t i r t  ]  where  a=t?  i f i l ;1 .
Since p is not bounded on f, t*xl irnplies

lr**xrt] p(ir) > p(n) + I for some t.
Now choose any t with that prbperty, and denote ta 

: i-l 
. Then p(n+0 = p(nJ + crr*1 for

some crt*,. > 1 . We heve to show: cn > cn*' and s = l. put

I =.-i. urlr - p(ir)
r = l

Then X > O rvith.equality iff s = I .
caee a) n = 1 : By [*xr*J and[xx**].*u.:bt:* r: t , f ,  + p(2) = I + cl* .Z> cr+cr, i .e.

.  c l  t l? ' t "q"1- : *** : - .uTo) . tmpl ies I=  0-or I  * "1  ( t rnposs i6 l " ,  i i r r .u^" r3t l .
case b) n > 2: We obtain gimilarly . '

2ph) > p(n-l) + U.(n+0 + f, > Uh-il + p(n+D, i.e.
c n l c n * l  a n d  I t " r r - c n + l  . " L  l , l . e .  I = 0 .

3.3lcmpmq: Assume f is connected and there is an i e f with r(i) * i. Then the lnverse
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.:r

e

image of a subquiver
o 3-+ b

. pfi) p(i)

of f- vi,a p has the shape

i' o->o (i+il'

o - +  0 . + -  o  - + o

\  /  \  |  \ /

X X )
/ \  / \  / \
o - + o ' + -  o  - + 0 . . . .

1 2 3 4

(*) \1
/ \

i o-+o fi+1}

Eepecially, all r-orbits have lenght 2, and f is the "tube"

l t 2 ' , 3 ' 4 '

i
w i t h  p ( i )  =  p ( i ' )  = , _ I  . i ,  l  < " j * l r . i .

t r

nroofi By lernma 3.2., T* is of type A-. If i e tfi), i+l + r(i+l), we obtain easily the
configuration (r*) by lemma 3.1.(d ( further arro'w6 are excludqd by the subaddltlvtty of p ).
If r acts identtcally on i pr i+1, we would obtain one of the "degenerated" subquivers

O € 0 G - * O

i+ l  i= i '  ( i+ i l '



t2
I

0 6--), 0 €-* o
i (j+fl'= i+l

0 € - - ) O

i'

i=i' i+l = (i+fl'

By hypothesis, not all can be of the third type, and continuation of the first two with
Pff) = A* is in contradiction with the subadditivrty of p. Therefore, t(il * i for all i e f
and the i"ssertion follows by lemma 3.2. 

- - - o'

3.4.Cd€ddl6lvg z Under the same assumptions as in the introduction, &ssumethatthe AR-
qulver of R is not finite. Then there ls a sequence (nr) of strlctly irrcreaslng natural
numbers such that for all i, there are infinitely many isomorphlc classes af indecompo-
sable maximal Cohen Macauhy modules M with p(M)= n..
fu4;8y2.1. , there is a number d e b{-t0} such that p-1,", j U . I is inftnite. Let c be
mintmal with that property. Put

M' = { t I ieM, c = mlnimum p(fr} },
where f, denotes the connected component of i tn f. Their fM' = co, and each furterval
lnc,h+l)cl, nehl, n>1, has an infinite inverse image via p: I --+ hl-{g} by lemma 3.3.
Thus we obtaln theorern II. Theorem I follows if we remove the connected component of
the isomorphic class of R from the AR quiver of R and apply 3.3.
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