THE **COND** BRAUER-THRALL CONJECTURE FOR ISOLATED SINGULARITIES OF EXCELLENT HYPERSURFACES

by DORIN POPESCU și MARKO ROCZEN

October, 1990

Institute of Mathematics, Bd Pacii 220, 79622, Bucharest, Romania Sektion Mathematik Humboldt-Universitat zu Berlin Unter den Linden 6 Berlin 1086

THE SECOND BRAUER-THRALL CONJECTURE FOR ISOLATED SINGULARITIES OF EXCELLENT HYPERSURFACES

DORIN POPESCU *) and

MARKO ROCZEN

1

O. Introduction

Throughout, let R be an excellent local Henselian k-algebra over an algebraically closed field k, (R,m) an isolated hypersurface singularity (i.e. the completion R[^] of R is isomorphic $k[[X_0,...,X_n]]/(f)$). The aim of this paper is to give a generalization and a slightly different proof of the following two theorems of Dieterich (cf. [Di]).

Theorem I: Let Γ be the Auslander-Reiten quiver of R (for the notations, cf. 1.), C its connected component containing the class of R. Then

$$\Gamma - C = \bigsqcup_{i \in I} \mathbb{Z}A_{\infty} / \langle \tau^{r(i)} \rangle$$

for a certain set I, and r(i) \in { 1,2 } for i \in I.Further, n(i) = 1 for all i if dim R is even, and C = Γ if R is simple.

Theorem II: The second Brauer- Thrall conjecture is true for R, i.e. if R is not of finite representation type, then there is a strictly increasing sequence (n_i) of positive integers, such that for all i, there are infinitely many isomorphic classes of indecomposable maximal Cohen Macaulay modules having rank n_i .

*) The first author was supported by a fellowship of the Humboldt-Stiftung during the the last period of preparation of this paper.

Both results are known by [Di] for the case of $R = k[[X_0,...,X_n]]/(f)$ and (in theorem II) char k different from 2. We supress the condition on char k using a recent result of Greuel and Kröning [GK], while the base change from R to R^ was considered by the authors in [PR].

A combinatorial remark replaces the application of [HPR].

1. The AR-quiver of an isolated singularity

The results in this section are known and only included for convenience of the reader. In the following, the word "quiver" denotes a couple $\Gamma = (\Gamma_0, \Gamma_1)$, where Γ_0 is a set (of "vertices"), $\Gamma_1 \subset \Gamma_0 \times \Gamma_0$ (a set of "arrows"). If all arrows appear in pairs (i.e. (i,j) $\epsilon \Gamma_1$ iff (j,i) $\epsilon \Gamma_1$), the quiver is determined by its underlying graph. Consider the graph

 $A_{\infty}: \qquad o - o - o - \dots$ $1 \qquad 2 \qquad 3$ We define a quiver $\Gamma = \mathbb{Z} A_{\infty}$ by

$$\begin{split} & \Gamma_{o} = (\mathbb{N} - \{ O \}) \times \mathbb{Z} \\ & \Gamma_{1} = \text{set of all } (\alpha, \beta) \in \Gamma_{o} \times \Gamma_{o} \text{ such that } \beta = (i, j) \text{ and} \end{split}$$

β-α =	1	(±1,	1) if i		is	even,		
	ι	(*1,	O)	if	i	is	odd,	i.e.

 Γ is the quiver

	j-1		j		j+1	
	•		•		•	한 것은 것이 있는 것이 없다.
	•		•		•	
1	 0		0	- ^T - →	0	
	1	١.	1	\backslash	1	
2	 0		0	4	0	
	*	17	₽	/>	₽	
3	 0	'	0		0	
	1	\	↑	$\langle \rangle$	1	
4	 0	4	0	4	0	
	•	1.1	•			

Further, let $\tau: \Gamma_0 \longrightarrow \Gamma_0$ be the map $\tau(i,j) = (i,j+1)$. This is an automorphism of Γ , i.e. τ is a bijection of Γ_0 with the property $(i,j) \in \Gamma_1$ iff $(\tau_i,\tau_j) \in \Gamma_1$. Thus, for an arbitrary $r \in \mathbb{N}$, we may consider the subgroup $\mathbf{G} = \langle \tau^r \rangle$ of the automorphism group and define in a

natural way the quotiont quiver Γ/G , identifying vertices, resp. arrows mod G. Consider e.g. the case r =1: $\Gamma = \mathbb{Z} A_{\alpha}/\langle \tau \rangle$ is the quiver determined by the graph A_{α} .

Now let R be an excellent local henselian Cohen-Macaulay k-algebra with residue field k, having an isolated singularity (i.e. R_p is regular for any nonmaximal prime p). Let MCM(R) be the category of maximal Cohen-Macaulay modules, i.e. of finitely generated R-modules M with depth_RM= dim R. For M ϵ MCM(R), M indecomposable, consider the set

 $S(M) = \left\{ s \in Ext^{1}(M,N) | s \neq 0, s: O \rightarrow N_{s} \rightarrow E_{s} \rightarrow M \rightarrow O, N_{s} = N \text{ indecomposable} \right\}$ with $s \leq t$ in S(M) iff there is a morphism f such that $Ext^{1}(M,f)(t) = s$. The (unique) minimal element of S(M) (if it exists) is the so called AR-sequence of M:

$$O \longrightarrow \tau(M) \longrightarrow E_M \longrightarrow M \longrightarrow O$$
,

the map $M \longmapsto \tau(M)$ is the "AR - translation". Isolated singularities are characterized by

the following

1.1. Theorem (Auslander): If $M \in MCM(R)$ is indecomposable and not isomorphic to R, then there is an AR-sequence ending in M.

1.1. Definition: The AR- quiver $\Gamma = \Gamma(R)$ is given by

 Γ_0 := set of classes [M] (= R-modules isomorphic to M) of indecomposable modules M ϵ MCM(R)

 $\Gamma_1 := \left\{ ([N], [M]) \in \Gamma_0 \times \Gamma_0 \mid \text{there is an irreducible morphism } f: N \to M \right\}.$

Here f is said to be irreducible, if it is not an isomorphism, and given any factorization $f = g \cdot h$ in MCM(R), then g is a split epimorphism or h is a split monomorphism.

1.3. Let $M,N \in MCM(R)$ be indecomposable, M not isomorphic to R and $O \rightarrow \tau(M) \rightarrow E_M \rightarrow M \rightarrow O$ the AR-sequence ending in M. The following conditions are equivalent

(i) There is an irreducible map $N \rightarrow M$.

(ii) There is an irreducible map $\tau(M) \rightarrow N$.

(iii) N is a direct summand of E_{M} .

For the henselian ring R , by uniqueness of the Krull-Remak-Schmidt decomposition (and a duality argument), we obtain: There are only finitely many arrows in $\Gamma(R)$ starting (resp. ending) in N (" Γ is locally finite"). Further, $\tau(M)$ can be computed using syzygies [Au1]; for the hypersurface R there are the simple formulas

1.4. *Proposition* : $\tau^2(M) \cong M$, especially

(i) $\tau(M) \cong M$ if n is even, and

(ii) $\tau(M) \cong \Omega_R(M)$ if n is odd.

Here $\Omega_{p}(M)$ is the first syzygy module of M: Let $\mu(M)$ be the minimal number of generators of M, then $\Omega_{\mathbb{R}}(M)$ is the (uniquely determined) kernel of any epimorphism $\mathbb{R}^{\mu(M)} \rightarrow M$. From the preceding, we deduce

1.5. Remark: Let
$$v: MCM(R) \longrightarrow N$$
 be a map with the properties

 $v(N_1 \oplus N_2) = v(N_1) + v(N_2);$ (i)

 $v(N') + v(N'') \ge v(N)$ for any exact sequence $O \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow O$. (ii) Then for all [M] $\in \Gamma_{0}(\mathbb{R}), v(M) + v(\tau(M)) \ge \sum v(N)$, where the sum is taken over all [N] such that there exists an irreducible map $N \rightarrow M$ in $\Gamma_1(R)$.

This follows by 1.3., since $v(\tau(M)) + v(M) \ge v(E_M) = \sum v(N)$, where the sum is taken over the Krull - Remak - Schmidt - decomposition of E_M.

A function v which satisfies 1.5. is said to be subadditive on Γ . Especially, this is true for the functions

$$\rho = \rho_R$$
, $\rho_R(M) = \dim_{O(R)}(M \mathbb{B}_R Q(R))$

$$\mu = \mu_R$$
, $\mu_R(M) = \dim_{R/m}(M/mM)$

(Q(R) is the field of fractions if R is a domain).

1.6. Remark: $\mu(\tau(M)) = \mu(M)$.

(Consider the exact sequences $O \rightarrow \Omega_R(M) \rightarrow R^{\mu(M)} \rightarrow M \rightarrow O$

$$O \longrightarrow M \longrightarrow R^{\mu(\Omega R(M))} \longrightarrow \Omega_{\mu}(M) \longrightarrow O$$

and tensorize by Q(R); we obtain equal ranks for the middle terms.)

1.7. Definition : Let $\eta : N \rightarrow X$ be a homomorphism of MCM - R-modules and N indecomposable. Then n is called minimal left almost split, if it is not a split monomorphism and the following conditions are satisfied:

(i)

For all $\eta' : N \longrightarrow X'$ such that η' is not a split monomorphism, there is a $\rho: X \longrightarrow X', \rho \cdot \eta = \eta'$.

(ii)

All $\varepsilon \in \operatorname{End}_{\mathbf{p}}(X)$ such that $\varepsilon \cdot \eta = \eta$ are automorphisms.

1.8. Theorem (Auslander, Reiten): For all indecomposable N ϵ MCM(R) there is a minimal almost split morphism $\eta: N \rightarrow X$, unique up to isomorphism. Further, let $X = \bigoplus X_i$ be a decomposition into indecomposable objects. Then the induced morphisms $\eta_i: N \longrightarrow X_i$ are irreducible.

Note that there is a dual definition ("right almost splilt") and statement to 1.7. and 1.8., respectively.

Further, we use the following version of the Harada - Sai - lemma (the proof uses the existence of a "reduction ideal", cf. [Di 1], [Po]):

1.9. Lemma : There is a function $\rho : \mathbb{N} \rightarrow \mathbb{N} - \{ O \}$ with the following property: Let b > O be an integer and $M_1 \rightarrow M_2 \rightarrow \ldots \rightarrow M_{o(b)+1}$ sequence of $\rho(b)+1$ indecomposable R-modules M_i and irreducible morphisms $\psi_i: M_i \rightarrow M_{i+1}$ ($i = 1,...,\rho(b)$) such that $\mu(M_i) \leq b$ ($i=1,...,\rho(b)+1$). Then im $(\psi_{\rho(b)}, \dots, \psi_1) \in m_R, M_{\rho(b)+1}$.

From 1.8. and 1.9. we deduce ([Di 1], [Yo] 1.1., [Po] 5.4.)

1.10. *Proposition*: Let $C = (C_0, C_1)$ be a connected component of the AR-quiver Γ of R. If μ is bounded on C_0 , then C_0 is finite and $C = \Gamma$.

Proof: Let $[N] \in \Gamma_0$ be such that $[N] \neq [R]$ and choose any $\varphi : R \to N$ such that im φ is not contained in $m_R \cdot N$. By the dual statement of 1.8. there is a right almost split map $\varphi': Y \xrightarrow[N]{} \to N, Y_N = Y_1 \oplus ... \oplus Y_n$, inducing irreducible maps $\varphi_i: Y_i \to N$ and $\zeta_i: R \to Y_i$ such that $\varphi = \sum \varphi_i \cdot \zeta_i$, since φ is not a split epimorphism. Let b be an upper bound for μ on C_0 .

case a): If [R] $\in C_0$, [N] $\in C_0$, the procedure can be continued inductively to obtain a decomposition $\varphi = \sum \gamma_i \cdot \xi_i$, where $\gamma_i \colon M_1^{(i)} \to \dots \to M_{C+1}^{(i)}$ is a composite of c irreducible maps, $c \in \mathbb{N}$ arbitrary. Since $[M_i] \in C_0$ for all i, lemma 1.9. implies im $\varphi \subset m_R \cdot \mathbb{N}$ if we choose $c \ge \rho(b)$, contradiction.

case b): Let $[R] \in C_0$, $[N] \notin C_0$; apply similarly 1.8. and 1.9. to obtain a contradiction. Consequently, $C = \Gamma$. Further, by a similar reasoning, all $[N] \in \Gamma_0$ are such that there is a chain

$$R \longrightarrow M_1 \longrightarrow \ldots \longrightarrow M_c$$

of irreducible maps with $c \le \mu(b)$. Since Γ is locally finite, this implies Γ_0 is finite.

1.11. Proposition: Let C be the connected component of [R] and C^S be the subquiver, obtained by removing [R]. If C' is a connected component of C^S, then C' is finite or μ is unbounded on C'.

Proof: Let b be an upper bound for μ on C' and assume C' is infinite. Choose [N] ϵ C' such that there is no sequence $R \longrightarrow N_1 \longrightarrow ... \longrightarrow N_C = N$ of irreducible maps with $c \leq \rho(b)$ (if there is one for each N, C' is finite as in the preceeding proof). Now there is a map $\varphi : R \longrightarrow N'$, im $\varphi \not = M_R \cdot N$, and this is in contradiction with 1.9. and the above factorization property.

2. MCM – modules over nonsimple singularities

The aim of this section is to prove the following

2.1. **Proposition :** Suppose that R is not a simple singularity. Then there exists a positive integer d such that there are infinitely many isomorphism classes of indecomposable MCM-R-modules of rank \leq d.

By [PR], (3.10) we may suppose R is complete (from now on). For the proof we need some preparations. The following two lemmas can be deduced from [BGS] (1.7.) and (2.5.) 3), resp. [BGS] (3.1.).

2.2. Lemma : If R is a complete domain and there are infinitely many different ideals I in

k[[X]], $X = (X_1, \dots, X_n)$ such that

 $f \in I^2$. (i)

(ii) I is generated by r elements,

then there are infinitely many isomorphism classes of indecomposable MCM-R-modules of rank $\leq 2^{r-1}$.

2.3. Lemma : Proposition 2.1. is true if R is a complete domain and either

a) $f \in (X^4)$ and $n \ge 1$, or

b) $f \in (X^3)$ and $n \ge 2$.

2.4. Lemma : Our proposition holds for n=1.

Proof: Suppose that R is a (complete) domain. Then we follow [BGS] (3.5.). Note that in this case there are infinitely many different ideals I c k[[X]] generated by 4 elements such that $f \in I^2$ and we are ready by (2.2.). If R is not a domain, we have R reduced because it is an isolated singularity. Let g be a prime divisor of f. Then as above, our proposition holds for R' = k[[X]]/(g). As MCM-R' -modules are still MCM-R-modules, we are ready (here, for reduced rings we put rank_RM = $\sup\{\operatorname{rank}_{R/q}(M/qM) | q \in Min(R)\}$).

2.5. Lemma : Our Proposition holds if $f = X_0^2 + h$, $h \in (X)^3$, $n \ge 3$.

Proof: We follow [GK] (3.6.); let $C = \{ \lambda = (O, \lambda_1, ..., \lambda_n) \in \mathbb{P}_k^n + h^{(3)}(\lambda) = O \},$

where $h^{(3)}$ is the 3-form of h. Clearly, C contains infinitely many points because k is algebraically closed.

For $\lambda \in C$ let $I(\lambda) \subset k[[X]]$ be the ideal generated by all linear polynomials $\lambda_i X_i - \lambda_j X_i$, where $0 \le i,j \le n$, and $I_{\lambda} = I(\lambda) + (X^2)$. As in [GK] (3.6.) we have $I_{\lambda} \ne I_{\mu}$ for $\lambda \ne \mu$ and $f \in I_{\lambda}^2$. Note, that all I_{λ} are generated by (n^2+n) elements and so we are ready by lemma 2.2. (R is a domain because $n \ge 2$ and f is an isolated singularity).

2.6. Lemma : Our proposition holds if char $k \neq 2$.

Proof: (after [BGS] (3.6.)) Apply induction on n, the case n=1 already being done in 2.4.; we suppose $n \ge 2$. By 2.3.b) we can assume mult f = 2. Then, changing variables, we may suppose that $f = X_n^2 + g$ for $g \in P_{n-1} := k[[X_0,...,X_{n-1}]]$. Clearly, g defines an isolated singularity which is not simple, because f does so. By induction hypothesis we can suppose that R' := $P_{n-1}/(g) \cong R/(X_n)$ satisfies our Proposition. Thus there exists an infinite set $\{M'_i|j \in J\}$ of indecomposable nonisomorphic MCM-R'-modules of rank smaller than a positive integer d' ≥ 1 . Let $\Omega_R(M'_i)$ (resp. $\Omega_R(M'_i)$) be the first syzygy of M' as an R-module (resp. R' - module), i.e. there exists an exact sequence

1)

$$0 \longrightarrow \Omega_{\mathbb{R}}(\mathbb{M}'_{j}) \longrightarrow \mathbb{G}_{j} \longrightarrow \mathbb{M}' \longrightarrow 0$$

 $O \longrightarrow \Omega_{R'}(M'_j) \longrightarrow G'_j \longrightarrow M'_j \longrightarrow O$) (resp.

of R-modules (resp. R'-modules) with G_j (resp. G'_j) free of rank $\mu_{R'}$ (M'_j). Since M'_j as an R-module is killed by X_n we obtain from 1):

 $\operatorname{rank}_{\mathbf{R}}(\Omega_{\mathbf{R}}(\mathbf{M'}_{\mathbf{j}}) = \mu_{\mathbf{R'}}(\mathbf{M'}_{\mathbf{j}}).$

By the depth lemma (cf. [EG] (1.1.)) we note that $\Omega_{\mathbb{R}}(M'_j)$ are MCM-R-modules. Now we have an infinite set \mathcal{M} of nonisomorphic indecomposable MCM-R-modules, summands of a certain $\Omega_{\mathbb{R}}(M'_j)$, $j \in J$ (J infinite). Indeed, otherwise all M'_j will be direct summands in a certain MCM-module of the form $\mathfrak{D} M/X_n(\mathfrak{D} M)$, the sums taken over $M \in \mathcal{M}$, because

$$\Omega_{\mathbf{R}}(\mathbf{M}'_{\mathbf{j}}) \neq \mathbf{X}_{\mathbf{n}}\Omega_{\mathbf{R}}(\mathbf{M}'_{\mathbf{j}}) \stackrel{\simeq}{=} \mathbf{M}'_{\mathbf{j}} \odot \Omega_{\mathbf{R}'}(\mathbf{M}'_{\mathbf{j}})$$

by [Sc] (3.2)a), contradiction! But we have $\operatorname{rank}_{R}(\Omega_{R}(M'_{j}) = \mu_{R'}(M'_{j}) \leq e_{R'}(M'_{j}) = e(R') \cdot d'$ =: d for all $j \in J$ by [Ma] (14.8.), where $e_{R'}(M')$ denotes the multiplicity of M'. Thus the modules from \mathcal{M} have their rank bounded by d; note that there is a system of parameters x such that $e_{R'}(M'_{j}) = e_{R}((x),M'_{j}) = \Sigma(-1)^{i} \operatorname{length}(H_{i}(x,M'_{j})) = \operatorname{length}(M'_{j}/xM'_{j}) \geq \mu(M'_{i})$ ([Ma] (14.14), (14.13)).

2.7. Remark: The assertion 3) in the above proof can be found directly from [Kn] (2.5.),(ii) as follows: Let MF(f) (resp. MF(G)) be the category of matrix factorizations of f (resp. g) over k[[X]] (resp. P_{n-1}) and CM(R) the category of all MCM-R-modules. Let

 $\begin{array}{cccc} G \colon MF(g) & \longrightarrow MF(f) \\ \text{be the functor} & (\phi,\psi) & \longmapsto & (\Theta,\Theta) & , & \Theta := \left(\begin{array}{ccc} X_n \cdot id & \psi \\ \phi & -X_n \cdot id \end{array} \right) \end{array}$

 $(\Phi, \Psi) \longmapsto (P_{n-1} \cong_{k[[X]]} \Phi, P_{n-1} \cong_{k[[X]]} \Psi)$

(cf. [Kn] p. 156),

the functor

1)

and

2)

3)

 $\operatorname{Cok}_{R} \colon \operatorname{MF}(f) \longrightarrow \operatorname{CM}(R)$ be the functor given by $(\varphi, \psi) \longmapsto \operatorname{Coker} \varphi$.

By [Kn] (2.5.) ii) we have: Rest \cdot G is equivalent with id \oplus T_{p_{n-1}, where}

Rest: $MF(f) \longrightarrow MF(g)$

 $\begin{array}{ccc} T_{P_{n-1}} \colon MF(g) & \longrightarrow & MF(g) & \text{ is given by} \\ & & & & & \\ & & & & (\phi, \psi) & \longmapsto & (\psi, \phi) & . \end{array}$

But $\operatorname{Cok}_{R'} T_{P_{n-1}}$ is in fact given by $(\varphi, \psi) \mapsto \Omega_{R'}(M)$, where $M := \operatorname{coker} \varphi$ and the map

 $\operatorname{Cok}_{\mathbb{R}}$ · Rest · G is given by $(\varphi, \psi) \mapsto \Omega_{\mathbb{R}}(M) / X_n \Omega_{\mathbb{R}}(M)$. Thus 3) holds.

2.8. Proof of proposition 2.1.: It is enough to consider the case $n \ge 2$ and char k = 2 by 2.4. and 2.6.; using 2.3. we may suppose that mult f = 2. Changing variables we may suppose by the splitting lemma in characteristic 2 (cf. [GK] (3.5), corollary 3)) that either

$$f = X_0^2 + X_1 X_2 + \ldots + X_{2l-1} X_{2l} + h, \text{ where } h \in k[[X_0, X_{2l+1}, \ldots, X_n]],$$

$$h \in (X)^3 \text{ with } 0 \le 2l \le n, \text{ or}$$

$$f = X_0 X_1 + \ldots + X_{21} X_{21+1} + h$$
,

where $h \in k[[X_{2l+2},...,X_n]]$, $h \in (X)^3$ with $1 \le 2l+1 \le n$.

If n = 2 then R is not a rational double point, and we can apply e.g. [PR] (4.10).

Now apply induction on n and suppose $n \ge 3$. Using 2.5. we reduce to the case when (after permutation of variables) f is of the form $f = X_n X_{n-1} + g$, $g \in \mathbb{P}_{n-2} = k[[X_0, ..., X_{n-2}]]$. We apply [So] Proposition 4 i) (compare with 2.7.): Put R'' := $\mathbb{P}_{n-2}/(g) \cong \mathbb{R}/(X_{n-1}, X_n)\mathbb{R}$.

and

$$\begin{array}{cccc} MF(g) & \longrightarrow & MF(f) \\ (\phi,\psi) & \longmapsto & \left(\begin{pmatrix} X_{n} \cdot id & \phi \\ \psi & -X_{n-1} \cdot id \end{pmatrix}, \begin{pmatrix} X_{n-1} \cdot id & \phi \\ \psi & -X_{n} \cdot id \end{pmatrix} \right) \\ MF(f) & \longrightarrow & MF(g) \end{array}$$

 $(\Phi, \Psi) \longmapsto (\mathbb{P}_{n-2} \alpha_{kf[X]} \Phi, \mathbb{P}_{n-2} \alpha_{kf[X]} \Psi).$

the functor

3)

F :

Rest :

2)

By [So], proposition 41) we have Rest $\cdot F = id \otimes T_{P_{n-2}}$, and thus

$$\operatorname{Cok}_{R}F(\varphi,\psi)/(X_{n},X_{n-1})\operatorname{Cok}_{R}F(\varphi,\psi) \cong \operatorname{Cok}_{R''}\operatorname{Rest}F(\varphi,\psi) \cong$$

 $\stackrel{\sim}{=} \operatorname{Coker}_{\mathbb{R}^n} \phi \, \oplus \, \Omega_{\mathbb{R}^n} (\operatorname{Coker}_{\mathbb{R}^n} \phi).$

By induction hypothesis we can suppose that R" satisfies our Proposition, i.e. there exists an infinite set $\{M_j^{"} \mid j \in J\}$ of nonisomorphic indecomposable MCM-R"-modules of rank smaller than a positive integer d" ≥ 2 . By [Ei], Cok_R gives an equivalence of categories, and given $M_j^{"} \in CM(R")$, we can find φ_j from a minimal resolution of $M_j^{"}$ over k[[X]], and the rank of the adress of φ_j is $\mu_{R"}(M_j^{"})$. Denote $N_j := \operatorname{Coker}_R F(\varphi_j, \psi_j)$. By 3) we have

$$N_j/(X_n, X_{n-1})N_j \cong M''_j \oplus \Omega_{R''}(M''_j) , j \in J.$$

Then there exists an infinite set \mathcal{M} of nonisomorphic indecomposable MCM-R-modules which are direct summands in a certain N_j. Indeed, otherwise by 4) all M_j" will be direct summands in a certain MCM-R"-module of the type

$$\underset{N \notin \mathcal{M}}{\textcircled{O}} \overset{N/(X_n,X_{n-1})N}{,}$$

contradiction.

4)

Now by construction of F we have $\mu_R(N_i) \le 2\mu_{R''}(M''_i)$. But as in 2.6., we obtain

 $\mu_{R''}(M_i'') \le e(R'') \operatorname{rank}(M_i'') \le e(R'') d''$.

Thus all indecomposable R-modules from M have their rank bounded by d := 2e(R'')d''.

3. Proof of the theorems

3.1. Let $\Gamma = (\Gamma_0, \Gamma_1)$ be a quiver with two maps $\tau: \Gamma_0 \longrightarrow \Gamma_0$ $\mu: \Gamma_0 \longrightarrow \mathbb{N} - \{0\}$

such that

(o) $(\tau(i))^+ = i^-$ for all i (here j⁺ denotes the set of all k such that there exists an arrow $j \longrightarrow k$ in Γ_1 , and j^- denotes the set of all k such that there is an arrow $k \longrightarrow j$ in Γ_1). (i) τ^2 is the identity.

(ii)
$$\mu$$
 is subadditive, i.e. $2\mu(i) \ge \sum_{j,\exists j \to i} \mu(j)$ for all i.

(iii) μ is unbounded on every connected component of Γ .

(iv) $\mu(\tau(i)) = \mu(i)$ for all $i \in \Gamma_0$.

Under these assumptions, we have:

(a) $\rightarrow j \in \Gamma_1$ iff there is an arrow $\tau(i) \rightarrow \tau(j) \in \Gamma_1$, and for all $i \rightarrow j$, there are arrows

$$\begin{array}{ccc} i & \longrightarrow & j \\ \uparrow & & \downarrow \\ \uparrow & & \downarrow \\ \tau(j) \leftarrow & \tau(i) \end{array}$$

(b) τ acts on the components of Γ .

(c) Let $\Gamma^{\sim} = \Gamma/\tau$ be the following quiver: $\Gamma_{o}^{\sim} = \Gamma_{o} \mod \tau$, and Γ_{1}^{\sim} denotes the set of arrows $p(i) \longrightarrow p(j)$, where $p: \Gamma_{o} \longrightarrow \Gamma_{o}^{\sim}$ is the projection. Then μ is well defined and subadditive on Γ^{\sim} , i.e.

 $2\mu(i) \ge \sum_{j,\exists j \Rightarrow k \in \Gamma_0^{\sim}} \mu(j)$ (here k denotes p(i)).

Proof: (a) and (b) are obvious. Now (c) follows from (ii) and (a).

3.2. Lemma: Under the assumptions of lemma 3.1., let Γ be connected and τ the identity map. Then all arrows appear in pairs $i \longleftrightarrow j$, and the underlying undirected graph of Γ is

$$\Lambda_{\infty}: \qquad \begin{array}{c} 0 & --- & 0 & --- \\ 1 & 2 & 3 \end{array}$$

Further, with these notations, μ is the map

$$\mu(i) = \sum_{j=1}^{1} c_j , \quad c_j \text{ integers with } 1 \le c_{j+1} \le c_j \text{ for all } j \ge 1.$$

Proof: By induction, we show:

[*]

For all n, there is a subgraph

$$0 - 0 - 0 - 0 - 0 - 0$$

 $1 \quad 2 \quad n-1 \quad n$

of Γ such that

for $1 \le j \le n-1$, $d_j = 1$ if j=1 and $d_j = 2$ if $j \ge 2$, where $d_j = *(j)$, i.e.

$$d_j = #\{ i \in \Gamma_0 | \exists i - j \in \Gamma_1 \}, and for $1 \le j \le n$$$

 $\mu(j) = c_1 + \dots + c_j \quad \text{with integers } c_i, 1 \le i \le n, \text{ such that } 1 \le c_i \le c_{i-1} \ .$ Before proving this, we remark

[**] [monotony]: Let

be a subgraph of Γ . Then $\mu(i) \ge \mu(j)$ implies $\mu(j) \ge \mu(k)$.

(Indeed, subadditivity ((ii), lemma 2.1.) implies $2 \cdot \mu(j) \ge \sum_{i} \mu(t) \ge \mu(i) + \mu(k) \ge \mu(j) + \mu(k)$.) $t \in j$

To prove [*], we choose an element $1 \in \Gamma_0$ with $\mu(1) = \min \mu(\Gamma_0)$. Put $\mu(1) = c_1$. Now assume [*] holds for some $n \ge 1$. Then we find a subgraph

of Γ with and

such that

Subadditivity of µ implies

[***]

$$\begin{split} \mathbf{s} &= \mathbf{d_n}^{-1} \quad \text{if } \mathbf{n} \geq 2 \quad , \quad \mathbf{s} \doteq \mathbf{d_n} \quad \text{if } \mathbf{n} = 1 \\ & \mathbf{c_1}, \dots, \mathbf{c_n} \quad \epsilon \; \mathbb{N} \text{-} \{0\} \quad , \qquad 1 \leq \mathbf{c_n} \leq \mathbf{c_{n-1}} \leq \dots \leq \mathbf{c_1} \\ & \mu(\mathbf{j}) = \mathbf{c_1} + \dots + \mathbf{c_j} \quad , \qquad 1 \leq \mathbf{j} \leq \mathbf{n} \\ \mu \text{ implies} \\ & 2\mu(\mathbf{n}) \geq \delta \cdot \mu(\mathbf{n} \text{-} 1) + \sum_{t=1}^{S} \mu(\mathbf{i_t}) \quad , \qquad \text{where} \qquad \delta = \{ \begin{array}{l} 0 \quad \text{if } \mathbf{n} = 1 \\ 1 \quad \text{if } \mathbf{n} \geq 2 \end{array} \right. \end{split}$$

Since μ is not bounded on Γ , [**] implies

[****] $\mu(i_t) \ge \mu(n) + 1$ for some t. Now choose any t with that property, and denote $i_t = n+1$. Then $\mu(n+1) = \mu(n) + c_{n+1}$ for some $c_{n+1} \ge 1$. We have to show: $c_n \ge c_{n+1}$ and s = 1. Put

$$\sum = \sum_{r=1}^{s} \mu(i_r) - \mu(i_t) .$$

Then $\sum \ge 0$ with equality iff s = 1.

case a) n = 1: By [***] and [****] we obtain $2c_1 \ge \sum +\mu(2) = \sum +c_1 + c_2 \ge c_1 + c_2$, i.e. $c_1 \ge c_2$, and $c_1 = \min \mu(\Gamma_0)$ implies $\sum = 0$ or $\sum \ge c_1$ (impossible, since $c_2 \ge 1$). **case b)** $n \ge 2$: We obtain similarly

$$2\mu(n) \ge \mu(n-1) + \mu(n+1) + \sum \ge \mu(n-1) + \mu(n+1)$$
, i.e.
 $c_n \ge c_{n+1}$ and $\sum \le c_n - c_{n+1} \le c_1 - 1$, i.e. $\sum = 0$

3.3. Lemma: Assume Γ is connected and there is an i $\in \Gamma$ with $\tau(i) \neq i$. Then the inverse

image of a subquiver $0 \longleftrightarrow 0$ p(i) p(j)

of Γ^{\sim} via p has the shape

Especially, all τ -orbits have lenght 2, and Γ is the "tube"

with $\mu(i) = \mu(i') = \sum_{j=1}^{i} c_{j}$, $1 \le c_{j+1} \le c_{j}$.

Proof: By lemma 3.2., Γ^{\sim} is of type A_{∞} . If $i \in \tau(i)$, $i+1 \neq \tau(i+1)$, we obtain easily the configuration (*) by lemma 3.1.(a) (further arrows are excluded by the subadditivity of μ). If τ acts identically on i or i+1, we would obtain one of the "degenerated" subquivers

By hypothesis, not all can be of the third type, and continuation of the first two with $p(\Gamma) = A_{\infty}$ is in contradiction with the subadditivity of μ . Therefore, $\tau(i) \neq i$ for all $i \in \Gamma_0$, and the assertion follows by lemma 3.2.

3.4. Cotollary : Under the same assumptions as in the introduction, assume that the ARquiver of R is not finite. Then there is a sequence (n_i) of strictly increasing natural numbers such that for all i, there are infinitely many isomorphic classes of indecomposable maximal Cohen Macaulay modules M with $\mu(M) = n_i$.

Proof: By 2.1., there is a number $c \in \mathbb{N} - \{0\}$ such that $\mu^{-1}(c) \stackrel{!}{=} M \subset \Gamma$ is infinite. Let c be minimal with that property. Put

 $M' = \{ i \mid i \in M, c = \min \mu(\Gamma_i) \},\$

where Γ_i denotes the connected component of i in Γ . Then $*M' = \infty$, and each interval $[nc,(n+1)c], n \in \mathbb{N}, n \ge 1$, has an infinite inverse image via $\mu: \Gamma \longrightarrow \mathbb{N} - \{0\}$ by lemma 3.3.

Thus we obtain theorem II. Theorem I follows if we remove the connected component of the isomorphic class of R from the AR quiver of R and apply 3.3.

References

[Au 1]	Auslander, M., Functors and morphisms determined by objects.
	Proc. Conf. Representation Theory, Philadelphia, 1976, New
	York, Basel 1978, 1-244
[Au 2]	Auslander, M., Isolated singularities and existence of almost split se-
	quences, Proc. ICRA IV, Springer Lecture Notes in
	Mathematics No 1178 (1986), 194 – 241
[BGS]	Buchweitz, R.O., Greuel, G.M., Schreyer, F.O., Cohen-Macaulay mo-
	dules on hypersurface singularities II, Inventiones math.88 (1987), 165 - 183
[Di 1]	Dieterich, E., Reduction of isolated singularities, Comment.Math.Hel- vetici 62 (1987),654 - 604
[Di 2]	Dieterich, E., The Auslander-Reiten quiver of an isolated singularity,
	Springer Lecture Notes in Mathematics 1273 (1987), 244 – 264
[EG]	Evans, E.G., Griffith, P., Syzygies, London Mathematical Society Lec-

[Ei]	Eisenbud, D., Homological algebra on a complete intersection with an application to group representations, Trans. AMS 260, 1
(OV)	(1980), 35 - 64
LGAJ	Greuel, G.M., Kröning, H., Simple singularities in positive characte- ristic, Preprint, Bonn, MPI 19/88
[HPR]	Happel, D., Preiser, U., Ringel, C.M., Vinberg's characterization of
	Dynkin diagrams using subadditive functions with appli-
	International Carfornia D
	Contentional Conference on Representations of algebras,
	in Mathematics 832, 280 - 294
[Kn]	Knörrer, H., Cohen Macaulay modules on hypersurface singularities I.
	Inventiones math. 88 (1987), 153 - 164
[Ma]	Matsumura, H., Commutative ring theory, Cambridge 1986
[Po]	Popescu, D., Indecomposable Cohen Macaulay modules and their mul-
	tiplicities, Trans. AMS 319 (1990)
[PR]	Popescu, D., Roczen, M., Indecomposable Cohen Macaulay modules
[Dol	and irreducible maps, Compositio Math. 76 (1990)
LREJ	Notes in Mathematics 1273 (1987), 35 - 57
[Ri]	Ringel, C.M., Tame algebras and integral quadratic forms, Springer Lec- ture Notes in Mathematics 1099 (1994)
[Sc]	Schrever, F. O., Finite and countable CM-representation trans.
	Lecture Notes in Mathematics No 1273 (1987), 9-34
[So]	Solberg, Ø., Hypersurface singularities of finite Cohen Macaulay type, Preprint, Trondheim 1986
[Yo]	Yoshino, Y., Brauer - Thrall type theorem for maximal Cohen-Macaulay
	modules, J. Math. Soc. Japan 39, 4 (1984), 719 - 739

Dorin Popescu University of Bucharest Institute of Mathematics str. Academiei 14 Bucharest 70109

Marko Roczen Sektion Mathematik Humboldt-Universität zu Berlin Unter den Linden 6 Berlin 1086