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LATTICE PROPERTIES IN THE SET OF RESOLVENTS

éﬁp SUBORDINATIONS IN EXCESIVE STRUCTURES

N.Boboc and Gh,.Bucur

Let (Xlﬁ) be a measurable space and let'ga(x) (resp.
CR‘/O)be the set of all resolvents of kernels on X which
a?e proper (resp,proper and absolutely continuous with
respect to a finite measure/u').

We endow K (X) with the pointwise order relation i.e.
t}ﬁ'wuz? &QQHQ for any «»0 and we deal with the study
of lattice properties of the ordered set (R(X),<). In a
very general case (73 countéb]e generated) we show that
the set (R(X),<) 1s a condlitionally 6 -complete lattlce.
o instead of pointwise order relation onfR(fJ, we consij-

/

der the followiﬁg order relation,

'Zy@ W= (V< 1% and Z\F gv_ )

S

&= : .
where éZV means the gset of all [/ ~excessive functions,

wie cshow that the\s@% >

e R UG

is a conditionally complete lattice,
.We develop also a theory of perturbation in the set

cﬂQ/(X). I-f ﬁQ;ﬂQ (X) then a prooer kernel P On X is called
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'1'2? -compression operator {f Vfé€& Z'?JV for any poS?tfve mea-
surable function such that Vf<o® , For any U’-compression

operators P there exists an unique resolvent 'Z]_Psuch that

‘V?=(Z PMYV . We have Z?—@?j—? and
n=0 : : '
Se %’U‘P = se Zv snd 5= Ts &b

Moreover, if’ﬁe ﬁ(/u) and P is absolutely continuous with

respect toJu then for any Q&KR(/«) such that

v @uev?

' , €Y,
there exists a ﬁ-compression operator 0 such that 747:?7
If P, are two ﬁ’-compresslon onerators and ?3 is aene-
T &
rated by 2Vthen U @2? i‘ff Of-Pfe—Z.w_ for any positive mea-

surable function f such tha-tv i.'zf< 0o

1, Subordinations in excessive structures

This part Is devoted to the study of perturbations of a
given resolvent on a measurable space (X/B) in the sense de-
veloped in fZJ, [3] ,fh],[Sj,[G],[?].

In the sequel (X,7) will be a measurable space, We de-

T 59 o . pi
note byJL(resp.fb) the set of all positive (resp. positive

and bounded) B -measurable functions on X,

e U= (v)

e is a resolvent of kernels on (X)@)then

we denote by \SO.D‘ the set of all U—supermedian functions on
' 29~

X and by %v— the set of all I/ - excessive functions on X

which are finite ﬁ- a.,s.

g
Definition, Let U’._.(V be a resolvent of kernels

rx)o( slo
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on a measurable space (X,B3). A famHy(P=(P,),,(>o of ker-
nels on X will be called - '?)'-compressfon ff for any.;x,P 6'(R+',

o(<}3 we have ' ‘ %

The kernel P=P, =sup P, s -termed ~the Initial: kernel of P .

>0
It is easy to see that for any > 0 we have

PV = PV, P =P +d VP,

where V is the initlal kernel of the resolvent 7

(\/=\lo=sup Vo )
<> 0
For any &2 0 we denote

- ;
z n

V« ¢= RV "
n=0

The 'ﬁ,-comoression o5 =(P°<)0L> o Is called hounded

(resp. proper)if the kernel P is bounded (resn.proper).

. P
We show that the family U/ =(\& )o<'>o is a resolvent

- of kernels on X which s‘atisfies the following relation

' P
One can see that V is the initial kernel of the resol-

{2
vent 1, '
‘ (4 ?) ;
The resolvent 7 will be termed the 2 ~derturbation o

i

L]

Remarks, For any real number 8, #>0 the family-



¢

¢V :=(8v ) is a [/ ~compression and we have
2 Tg> )
1 9ﬁ
Vss = Vi () = > 0,

fndeed, the assertion follows from the relations:

Bro = U (oVa) = VuleVp)

0L ARLP = 4 y=py +(B -of )V, (8Y5 )
o0 A A P : F
= \ n =S‘ n,n+ =V
V8 2 (0, ,6) "M, g2 8MITE = v
n=0 n=0
2, The fami]yO=(Pd\)o‘>0 where P =0 for any «> 0 is

a l%-compression and U =?j/.

3, 1f A is a kernel on (X,B) then the familng=(."a\ )‘X> 0
where for any <> 0, P =V A, is aﬁ~compression, This particu-
lar case of ’L%~comp.ression was considered in (E(’:‘_k) .

L, If P is a bounded kernel on (%,3) such that for any

fé-flr the function Pf is z%-suoermedian, then the family

g)=(P ) where

0\6(70

: . . )
Pyfi=(l=aV )Pf (v) e,

i)
is a U-compression. This case extends the previous one when

the kernel A is bounded since in this case 77+ ~r= s g4
Pf=VAf and therefore Pf is (qj’-suoermedian for any bounded,

positive, Borel function f and moreover

P F=(l-aV )P =1V JVAF=Y AT,

This case was considered in 3}

D _ . S~ . . ;g
5. lme(P&)&.?O is a 1/ =compression and P is the initial

kernel of ‘§ then



P=P_+oV P () > 0

e
and therefore it follows that Pf&lﬂﬁ? for any fef . Lf, moreo-

ver, P Is bounded then we have
P =(1-xV, )P (V)i D
A

6, bf 7}‘ is a bounded resolvent of kernels and P is a
proper kernel such that Pféj&; for any positive, Borel func-

tion £ on X then there exlists a 27:compressionga=(ax)d 0

T
uniquely determed by P =P, In this case we pnut U~ instead of

7}97

, and 1f will be called thesP-nerturbation ofzj‘

Lemma 1, 5 =(P_ Xx> 0 ~=(Q*Lx7 0 are 77‘-comore5510ns

then we have

IPQO(

) 2P plp -Pq+(®-ozz P\
F '-}F elen '3";

A

2) o F>0>l PL\/ ple DL\/Pio
a4 F*ox

P+j=n S
for any neN.
Proof, We prove inductively the stated assertions, For

n=0 they follow directly from the definition, Suppose that

the relation 1) holds for n,ﬁé get

Pn-HO =P (P 9] +(‘3 o) Z D \/ DJQ )=
X )& P b ? P e 4

=(PP+(F'_4)\($P?)(p?nqi3+('§l-' 2_._ P \f d(ﬁ):

n+l

=FF’ 0 +(F A)Y P?U’ M )+('> o) ?;



Stnce !A%:%;ﬂ* we deduce

r
PZ\HQ =pD*tly o 5- ) el plo,
of P ? i+j=n+l P ?“

Suppose now that the relation 2) holds for n, YWe have

b ok P v e o y+y p™ g =P E P o Yy plitly -

i+i=n i"P &P B ,ﬂn?ﬁ “ B P
S E 1
=(p +(P-4)Vv P W - p v P Q )4V pite
=2_ P'+]V P ﬂ-HIP (D ) +(P ¢)§: V pJn )=
P B P faf=at B

:Z: i+1 i n
= By aoap -

i+j=n P =P o
= P'+1%39H1+V g:+lg Biios iy rgv pjo

g B P 45 hpfopa gl Pouoe

Definition, If 29/=(\/u.)d50,’1«9/=(\,4“.) sl Pre o resol =

vents on X we put’xZEZET
VW, (V) et>0

and we denote by~ ,/\ the lattice operations in the set
jz(X) of all resolvents on X endowed with the above order rela-
tion £ .
feis Z7’

. 2 =
Theorem 2, lf§? U;)d> 0

~compression then the

family ZF?;(Vy) is the smalest reqo]ventlﬁw=(w )
; L =0 ' : wlses o

verifyinag the relation

%{=Vd+ﬁiw& (¢) ofl> O

Proof, We have

T PRI PR



x<~%

o (2 »]
v;l(‘é: b (ZP"v)=z Py pMy
n=0 A

Using now the above lemma for the Z?“t"w'§r‘5

g) =(Pc()o(-> 0 and Q= (V )0(5 g We get
o .
. P e

AR =Va Vo

Using again lemma 1 we get

¢ P ’P

J<P~=9 v V+@ -d) \@

From the definition of V;? we deduce

i P
V, = \
Vimu+ B Vs
Let now W&(W,) be a resclvent such that
# A> 0
x&:v%erpdw(x (V) 2> 0

Obviously we have, inductively,

2 +
W o=V +P V +P Ve, . +P"y 4p" Ty
A ™~ o NS A 5 xR X

A

and therefore

oo y
Wz (2L PNy, =n,
"

A n=

s . o .
Definition, A i%’—compre5510n ) ~(F;<)c_\5 @S called

. P Cre
exact if for any f & #F we have




Hifp s =k (¥) >0
F-&;s"b
Remark. If the initial kernel Proit S Sihe proper and

for any fe we have

lim B V Pf = pf
Poeo '

1]
then €F> is an exact1;}- compression,

)il vy-comnrcssion is exact iff for any (>0 the seauen-
ce (nvn+gaﬂf)n increases to P f,

3) Suppose that P is a proper kernel and let L}}ZJ* be
two resolventsto of kernels on X such that ”%r=120u Then P is
the initial kernel of an exact 25 ~compression iff it is the

initial kernel of an exact M7‘-comnrcssion.

Definition., Let ﬁ%’be a resolvent on (X,B). A proper ker-

nel P on (X,B) is called a'ﬁymcomoression onerator if Pfe é,%%

whenever fe ¥ and Pf<¢oeo ,
Obviously from the above considerations itifollows that
a proper kernel P on (X,B) is a 1?‘—compression onerator iff

it is the initial kernel of an exactlj’-comnression .

(o) 0 be twn'ﬁr-comores-

: &g’
Theorem 3. Let ad R‘)“> 0r.0=(0 Gt

sions and let (Ra) 0 be the family of kernels on X defined

A >
by

D

R =2 plyn
-4 n_____o



| f we denote

P 0 1=(p, 40 ), _oi B :=(r) o

e
we have

then & +Q is.a ny-compressidn, ) is-a

5
U7 - compression and

1}(?+Q)=(U§>)Q(?)

I f moreovergp and 0 are exact 29/-compressions then

32 +Q (resp.0(®) is an exath?/-comoression (resp,lfj?) Ll

compressions,

L

Proof. One can see immediatelv that ¥ +0 is a L?

~-compres-
P .
sion., Using the definition of ¥ and 6&?9 for anyx-,P >0
we have

6? o0 50 O c‘<’|
S it o Z .
N R D e LY 2 Py V= 2 PPl
2 fe)
A Ei P s X et dagen T
and from Lemma 1 we qget
o
=Y
%3%1 4‘Rﬁ
Using again Lemma 1 we deduce, for any X < P 3
? ﬁ:} = oD
R lBd )V, Ro=dl plo. 4 (B et ) (2 oMY, 3 (2 Pl )
: P I peg T P n=0 m=0 | P
s
=2 ey
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: -
Hence the family 0@) is a 7} ‘—compression.

7 LT

If we denote () ) =(%*XX7 g We have

To finish the proof it well be sufficient to show that

ol O ‘
2_(P rg )" (Z(Zp o)
n=0 n=0 k 0 m=0

Obviously for any neN we have

e e

: k k h h
(P +Q\ )n-. O !ZI 1(} .Pr- 20.{?..‘*qu0 .po‘m-*']
of ot h' +H +...+h‘ ERi=n A D e >
m+ 1
and therefcre
E? = b H r
R R R R 1..
e ( p +O.g()n=>-— ( 7\ el Pk‘lﬂ...P‘xmﬂ' p m'}'])::
= = = - 5 Lot o . LR
n={ n=10 k14k2+...+km+]+m n
[aron] oo
<~ ;
< ¥ k k k e
=2" ( ____/,, / Pq1 ﬁg\ P‘_J; ?-nu( i P:&mnr)( Pixm'{" ! ) o
m=0 k1+k?+;,.+k =0
. L m+ 1

= (2 st P et

m=0 k=0 : n=0

£ and 0 are exact 2?‘~ comnressioni then obviously
Q*‘
§7+Q is an exact U/ -compression. To finish the proof it is
sufficient to remark that for any X» 0, any f e—EF‘ and any

keN we have



Gl SR T f

and therefore

(an+n(Rdf))nTRdf,

5

nif, Byl nV°(+n(Rdf)iRdf,

(n\&T+n(Ro,\f))n/\\Rd .

pefinition, ¥ =(p )

i Q=(Q*)o(> 0 arextwoz9/—com-

pressions we putq?S Gt Bel for any o> 0., We denote by V¥,

A the lattice operations on the set of all i} -compressions

°

endowed with the above order relation £

(
Theorem Lk, Let" ==(Pm) be an increasing seauence
- n Al ky 0

Q

of?7—-compressfons and let :=(&\L*7 o be the family of kernels

def fined by P-=sup ﬁfn).Then q? 1s a Z?Fcompression,Q? =\vﬁ2 ;
n <? (§] n :

LSt 4]
Moreover the sequence (17' )n increases to U and.if-

o

is an exactlj -compression for any néN then ¢y is also an exact

'2} - compression .,

-

Proof, Let ,PéiR+ % o(<.P and neN , YWe have

, 6 -
V?Pd —\/&P?”

Pof“)=P(")+(?-o<)\/¢P(”>

i P
V;(?“ =‘-2: (P(n))k\/o‘
k=0




and therefore, passing to the limit we qget

%;%‘=V“%3
L =F{3+(P s i P?
V?=nsup %j?“

lf<§l is an exact 2; - compression for any keN then,

using the relations,

(k)
nw+nwd flenv (P FleP f

we get

b
B rﬂ&+n(R$fBF;f :

n-e

Ilmm\l‘,(+n(Pdf)=Rxf .
n -9 e

Theorem 5, Letcg? be a'i}—comnression which is bounded

and exact. lf’ﬁk is a bounded resolvent then there exists a
sequence (An)n of bounded kernels on X such that the sequence

G?;)n’ of i%—compression§§;=(Q£n)xx> o defined by

: P(n)
[>8

= 3 ,!
VA, (¥) £5> 0, nel

n

is increasing and \ﬁfl =q?.

Proof., If P is the initial kernel of QF then for any

'ﬂfgb we put

Anf:=n(Pf~nvnPf)




Gy s

o

Silnce PfQ:EW,we have Anfzo,‘AnfﬁnPf, I & An is a-boun=-

ded kernel on X. From the relation
V,A_f=nV, (PF=nV Pf)=nV (Pf-ay, PF)
we deduce that the seqguence (\/(x.!\n)n is increasing and we have

o 35 X7 % T e 5 . i
im W A f=pf-a PF=(1-«V, )PF=p, fisup V, A =P .
n->o n

Theorem 6, Let(ff;)n be a decreasing seqguence of'i3lcom-
- Y
pressions such that Qﬁ is bounded and supnose that 2/ is a boun=-
; Q©
ded resolvent., Then the family3 =(Q‘Xx> o defined by

e e S
%.— inf ﬁx

n

q-
is a 2/—compression and it is the greatest lower bound of the

[ o

- }, 2
seaquence CSZ)n in the ordered set of all L‘-comnre55|on$,|f mo =

o
reover.ll" is a bounded (or only proper) resolvent then
V4

4 {’:’
,?“ ; ‘-( c’ly 3
S /

ATT=

Proof: Eof anyd ,ﬁ’? 8 and anv neM we have

G ) N
V‘”PPr -—~\,.PPMn ey =P5 e N

we deduce

From the relations



%
\Y
& m=0

M 2

(p (”)) 1

it follows that for any fefg;, xeX and €> 0 there exists

n N such that
ae

<&

==
27_ (P(]))m\/‘f(x)
mﬁna = «

Hence

- 4

9 5
ind iy f>2— 478 WoF =W (f)
n A m=0

and on the other hand

m
ZPVf(x ZPVf(x ~:nf(}:(P(”) k\/f)CX)P
m=0 k=0 n

AR B S
inf(\/o( f(x)=-8)= inf vV (F) (x)- =inf(\/°\, YF(x)=—&
n n n

The number £ being arbitrary we get
[£8

o
- (L
2 PN f=inf v f L
<
m=0 n

Qj’ Q@
Definition, The -compression g=(&*hx> 0 is called

-

absoclutely continuous with respect tozy—if P(f)=0 whenever

V=0 ,) ~§'é:<§j °

Theorem 7. Leti? —(P s be a zj-compreSSIon and let

s be an element of }:. Then we have the following assertions;.

(sefvand Ps 4 ))(st+P s¢s (¥)al> 0)=D séf]a P
if-(f %



= EibE s

"Proof, We suppose seﬂy % Pséifns and let téj%y he such
1‘,/
that Ps+t=s, Since «V t<t (¢v)>0 we qget
AS 05d V“ S"—-"v('Va( PistotV T ol Vd\Ps+t,

A~ 03 Pc( s+o(Vd squ s+n<VdPs+t=E¥, s+c(VPx s+t=

= Ps + t = s, P*s +o\\/‘xs£s.
We suppose now that for any x> 0 we havg
+ <
o(&\s st £ s

We want to show that s&f%g7\ . Using the definition of
5% "
Y; we have to prove, inductively, the relation
~
;l_ Qf g(sss for any neN
k=0
From hypothesis it follows that it holds for n=0,
Suppose now that it is true for the natural number n i.e.
P 5
A

=K

0

=M

and therefore we get

n g
? k
¢ L p :
&V s+P( P Y os)doi YugP 5 & 84

= k=0
n+l k
> Ry V*S ¢S,

0

=
1l

Theorem 8, Let 5’ be an exact 1}.—compression and sed .

Then the following relations are eauivalent:



a) s G—'}ZD_S’
b) Se.rgrv— and Ps ﬁzws‘

c) SEZV and «VY s + P dis () e 30,

Proof. The relation b)=>c) and c)=p a) follow directly

from the previous theorem and using the obvious relations
°<V°< AV (v) > 0

alE> b)) Let se /Zovg? . I f ’Z];( is the resolvent
27‘=_(V&+F)B> o we have:

A

tnly

ADD

Since q) is an exact _ﬁtfw\”{)“ess‘ow i ggt

e
lim n\é(+n(P°‘F) =P f W)fe I

n o

& d

If moreover U i e ﬁ'—a.s. then using the relation

TV 57
= \
vd f vd\fwd(;f)

¥

we deduce that V £ and P (V f) are ?/Q- excessive functions
ok of of o
and therefore
- e 3 P P
' oI 5 ; / £,
: v f e y and Py, f) 3, v f
" g
A

For any neN we denote by Fe the function

. ? %

o s(x)—n\/d_ms(x) if s(x) <coo
F(x)= ~ -
i i+ o0 if s(¥)=+ o0



Obviously we have

'n” Y +n

3 PP Q@

Vd f'n+n\{“ Vo(+n5 = Vd s

P P @ £%

/ =

\oH_ns + nVo( V¢+ns V<,l s

and therefore V  f <o "|/0-a.s and

43

Vif =y s

o N lEn

From the preceding considerations we deduce

5

Viof
n

o -

5 é g g
Vif € aly : (At
L Tac oy rd,(\oaij)é' 3 (et s

Hence

¢
nVv. se% P (nVv S)(Lf?? P (nVv g)ivad - opVf 5
. d*n ry;’ o A+n y:; LR o N \Z oL 4N

%
and thereforé,

SQ}?p P st‘%r P e s

DEieke Va o

d 2,
From the previous considerations we get
sej}a ; Psez e ?, S,

Yo v Z,

Y

Remark, lf"? is absolutely continuous with respect to

23 then for any s éfy we have Ps=P(5) where

-
= 1i XV
s im B

o N ] caa=



SaPh

Theorem 9, If ® is an exact fﬁ' -compression which is ab-

solutely continuous with respect to’ﬁ’and Se(‘:—g is finite

’”"-a.s. then the following assertions are eguivalent

a) s & f'uff’
bj s ¢ and Ps 2, s

v e \
c)o(VoLs+Pd\sgs (+) L5 0

Proof; Using Theorem 7 it remains on'ly to show that a)=>b).

First we remark that if u is an excessive function with
respect to a resolvent%7—=(wc()d> o and veF is such that ugv
"
on X, u=v 27' -a.,s. then ve}f’ . Let now se J, g . Obviously
W A
the function

P
s = lim LV s
et

e -
, belongs to v and therefore by Theorem 8 we get s ¢ @_,

-

H

A v -
F.s=Ps %{z 5500 Ps 2 g
vV j})‘

2, The order relation in the set of resolven‘gs

L RO e R

In this section .(XJ) will be a measurable space., Ye de-
note by(\/,[{(x) the set of all resolvents of kernels on X which
are proper and for any finite measure/J on (X{B) we denote by

'R(/:J the set of all resolvents fromR(X) which are absolutely
continuous with respect to e We remember that in‘R(X) was qi-
7

ven an order reiation & definmed’ by

Véﬁ e VLW (W)X> 0
o8

p

whereZ?-:(\! ) D)

FRVEN

Q.J

O’ﬁ‘z(“”@\)a>0‘ We remember also that If




=g =

‘we have denoted by 3;_(resp.%ar) the set of alfl}g-supérmedian

function (resp.27; excessive functions).

Definition. A family (Vd)¥> o of kernels on (%R is.cal=

led sub-resolvent (resp.super-resolvent) if

+('?-°e)vv (v) o((i’s
(resp. \‘{“ZVP+(P Lol Vs o o) R

Proposition 1, Let (v ) o be a familyof kernels such

oL >
that there exists se§ s Bdsceos,  such: that

dX4s <s (v) «>0
-\7d~ = Vl‘s‘i'(ﬁ»—u)v&fvi; : v J d’PGLQ'*')d(P

Then (V,) is a resolvent family on X i.e,
"“oL')O

VAV sy, (e Be R

P

Proof. | £ °(<13 we have, inductively,

2 5.8 n,n+1 n+l,  ntl
V=Y - (B - ) V2 b, B} V" +(-y) VYV
L. P+(F =) N% (3 =k 5 P 5 P« A

Since

(?-d)n+lvn+‘s ﬁ(j3i3n+1s

P P

we deduce

[ aiS B R e
v f = \/?‘f +2=_1(p o) Ve £




oo o

for any d’PlouP and any f‘eg:, such that f<rs for a suitable

reR, r>0 , Hence
< =V \ - f »
VVfV&f, V"LVP LA (V) ayp e Ry

From now on, at this point,?jl(vo()ob/ g Will be a fixed
sub-resolvent on (X,®) such that there exists s¢ , 0¢s<coo

with a\:; s &s for any «> 0, We shall denote by DDU’ the set
jUU:={t§{dvdtgt (¥) ot> 92

The elements of \()O,U_ are called ﬁ—suoermedian functions,

Notation, For any o> 0 we denote by CL the set of all
finite subsets g"(o’ °(1""’°<n}c R° with "(=°‘o<°"<°(2,<"’<°(h

for any A =={o( ool 31_...7dn}é d,  we put

4
‘£(=f'+(°‘1‘°<o)"«o)(1+(°‘2'°<1)"°<1)'--(-'+(°‘n“"’n-1)‘é,{ﬁg,.)"o<“

Proposition: 2, [f4, Afted, ,4cd we have
osen halan ised B9 s
(XVO(SQS, cLéo(.$/O§ SG'D_, 0(>

Proof, Let s« Jy- and let A¢ d,()a =_£0<o,o(1,...,g(n}.
ol T

Since (I+(of , =0l )V, s<s + . s for any
+1 e Y
k=0,1,2,...,n~1 we deduce
a
oy ol o( A
: X2y -1 o, &

\
For the second part we may suppose that the set A <A

is 2 singleton i,e,



i

20 -

A ﬁ{do 9 Q’] 98 00 ’dkidk_!_] 96 60 ’o(n }', A’={o(’o,0(1 g o5 .dk’?’dk-e?”-lo(*\}

Since

V < (1+(B=o« )V

oLy Gl ety o<k)\7‘3
we deduce

("‘k+1'P)\£’f (O(kﬂ’?)(!+(’f3-o<k)v,,<k)vi3
and therefore

s o B - : S <
LR T U oot I e o <P M S

14 (B IV |+, =B) (|+(?~e<k)vmk)vp=(t +(§-s{k)‘/o;k) (l’+€3€k+,'-?>)% ).

Hence

a Al

Ny &ty

Simmilar proofs for the case

VN CANTITIRRT AN 3 '

€ N
Piroposition 3, For .any fékjf and any «£> 0 the function

A
X —> sup{ \/q(f(x)i/_*g, & d"(}

v LD :
ls,Jb - measurable. More precisely we have
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sup V f=sup{V3f‘A(_ do A\{d}CQ}.
Q& do( A :

<<
Proof. Let o{> 0 and let féac' be such that there exists
$€Jygs fés<eo, We show that for any aed , ,4 ={o(o,o(],...,a(n}

we have

7 )
\‘i f < sup{ fol Al Jdfco }'

For any keN, k»0 such that -11-(-50(”]—0(‘: we choose

P"((.Qn(o(i,o(r + -g(-), I=1325¢0emy L we denote
k ke cale k k
AN ={"f; ,\31,...,Pn} where?0=o(o=°(
wéhhave

Lt

R K | 5
e e

and therefore

Lim Mo £ =V
ke ?6 i -

e D
lim VAF=\uf,
k--)(.‘Q 2

' . 3
sup{\/f A e di s 2 ~§t Y Q}Z V;: 5

For an arbitrary fe? the assertion follows using the

fact that \/: is a kernel on (,X,(f)) for any o(& R_ and any

é\édo('

Notation, For any o{> 0 and anv fé(; we put



Sage

o 6
Vﬁf.=sup{ Vdfldédo( }
Remark. From Propositions2 and 3 it follows that the map
; 0
e Vc,(&

is a proper kernel on (X,R) for any &> 0 and

o(stss (V)seff#

Proposition 4, The family (MS) of kernels on (XRY s
>4

s 0
a sub-resolvent such that

g | *V‘,(s\ff (V) > 0
('+(F-°()Vd)\g"‘£ \/‘fl (v) A)pro, L<p,

Moreover, if (W ) is a sub-resolvent (of kernels) on
KAy 0 :

(X/®) such that

(1+(B-2)V )W < W (v) d B> . «
[ Wy & Wy .\F , %X <P
then we have
D,
V,,‘fwoc (v) £50.

Proof, For any o(“';>o)o(<F we have

VeV @=L « v
d‘ P ? ol P‘ oA

Let now o(,g;so, °<<}a and ietA&dd,A{o(,"f;,?h}zew,_ P“}



2o

If we denote by A'_ the element of dP given by

S TN

we have

[
Vj=(l+(?-a)vd)viﬁ

and therefore,AEC‘d being arbitrary,
g o
(I+(?-a<)vo<)\/?$ e

We suppoge that (wv‘)oﬁ') o is a sub-resolvent on (X,Q)

such that

Vg Wiy (¢) 50

(l+(p—a)vd)wstd (v) 2o, otcp

From these relation it follows, inductively, that for

v ) ‘ .
V“=(!+(a<,-o<,,)v%)(l+(°<5°h)\/a}q).. 5 ("+(°‘n“"n-1)va<h_ Vi 2

4 (:Jr(s(,‘-ap)\/d‘o)...(l+(o'\n:cfn_1)v‘,,n_])wa(f(1+(c><,,-og)v°‘0)...('-|+(;,~1h._]-,_-,/n_?_)VGI“Q)‘,&“;3
5" L ogos("i'(ﬂ]"";i)vda )wo("i‘fldo P
A
\];Q &V (Wak» 0

We show now that the family (V;J )d\ S 0 is a sub-resolvent on

(X,'ﬁ). If ocdd ¢ fg then for any A ¢ d + with fgé—d "
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A ={O<O,O<1,Olzgnon.dp’dp;*_1|n.o.o(n}’ o(p:? L
we denote by A ! the element of d_  given by
={dr’°(p+']’oo.,dn}

then we obviously have

TA
Vo = (et W dee (o (Fomat I N& WV g

Hence
A i ’ D 0
Vo2V N 2 v2 .. N 2 Ve
o P P £
, . ] _
AR <;<)V“k)...(|+(o<r c>(’,_,__’)vm‘w’)v‘3

on the other hand we show inductively that

(1 =)V, ) ('+(°<z'°‘q)"«ﬁ)-“(“‘(*}‘?“ <><‘,~1)\/0{P )£l+(o(,,-o<)\ld

-

Indeed, for p=1 the relation follows from the ineauality

(ﬂ$ < \ﬂj . We cuppose that the assertion is valid for p=k and
let d[;e R+ ’ i=0,1,2,...,D+‘,°§=0‘0(.0‘140‘2 ...édpég(p‘l"].

We have

S P
(I+(d2-d1)v&n ) (1+ (et <A Wy Vew o Clrfat ) -dp)v“r)i l+®&w1 %RV«

and therefore, using the relation

(14 oy~ o DYV, € Vg

we get



(1 (6, et W) (1, -k )Y, el o D) €
(1 Gt =)V (T (g D) =
=0+ (g oV # (kg mat ) (1 oty =) V V€ T (ot = )Y

o u a a
+(°’p+1"°( PPV T+ (ot g=a) Ve (ot p+]“ol1):’/‘=|+(o(p+]'°()‘ld _

n)

Notation, We define inductively the families (V¢) of

sub-resolvents on (X, ) by

1)
(n}
Vd\ = \lld
n+1q) (™ n
Vs ‘\/d\

and we put for any &> 0, " : .

S, )
V = sup V
% n

(o

Theorem 5, The family by]f;(%x)d> o is a resolvent on

(X,® ) such that

~

\
Jo‘\i 5 (¥)r>0

and such that f%}= fﬁva

Moreover, for any resolventﬁj;(%*% of kernels on (X,R)

=l 5 0

such that
Ve () A >0

we have



P
; : , : o)
Proof. Obviously for any >0 the sequence (Vo_\)n is

Increasing and

(w)
oAV s £ 8 ’(V) s”ef)Dv

-

~J . n*’cbjj vi
Hence sejgr The relatlonqur 1yis obvious,

I'f o{(P we have, using the Proposition &
™ (n) (nw) ) (n4)  (nw)
7(.r+(§3-o<)\& )vﬁg (|+(p-4)vd)vP5 \&i(H(F-d)Vd )v?
and therefore

(-|+(§«-«)D;>VF =V,

'fﬁ;(“’«)&,ois a resolvent on (X, ) with Vu__gwo( for

any o{> 0 then we have by Proposition G .

D O ”
= t
\.&swd o (w) > 0
(‘h) ~ (
V eW Vdﬁw¢ ) oL 0,

From now on, at this point, 2,?/=(Vo-‘)°(‘> 0 will be a fixed

superresolvent on (X, B) such that v~  Is bounded for oS0,

Notation. For any o&&R, o{ >0 and any A G Ad

R O T IR R & oL = oy

we cdenote

4 y
Vo= (1 4= )V )(l+(o<2-o<1)\/°“ )°'°“+(°‘n"°‘n~‘.)‘& W

o 0
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| 1
Proposition 6, lfA,A’é; doc,‘ Acd we have

s )

Vokz VdZVO‘

[
4 A
Proof. For the inequality V¢~5Vx it will be sufficient

: ,
to suppose that the set 4~4 is a singleton ¢ e.

)
JA) ={°(0D0(1a°(2“~'9°(n}’A ={d0’o<1"."°(k’?'0(k+]"“’dn}
. ﬂ’ O
In this case to show the inequality V’SLVd is equiva-
™
lent to show the inequallity
> - i ; B el / -t
(A dkhmk);(u(? Ve, )40t =B IVR )
which may be drown from the fact that i%‘ is a superresolivent,
A similar proof for the case where §3>o(n.

The relation %fg:vd. follows from the above relations

and from the inequality

- VY v {
(1 (ot o(o)v“\)vo(\ - a, (v) o>

k] 4

Proposition 7. For any f é'EFL and any o> 0 the

function
O
inf Vak
of
AG({.,(

is P -measurable., More precisely we have

A
inf

A€ d o

H
£ = infiv
! o

v F \Ae-cid)Ag'a}c&}



Proof. Let o> 0, f e‘oﬂ,. We show that for any A'écid

we have

|

4 | V)
_v“ fyinf {vgl facl Aed«, A\{d}CQ}

i / : [}
LetA'={o((§,d\1,o(2,o--,d:1} be such thato(o=e(. For any

keN, k#0 such that

%5nﬁn{dg+‘-d; i¢n }.

)

we choose the numbers ?5& Q such that

/
diLFki Ld,i +‘2€

and we denote
k_ L e
VA *{da?1932v~-':(n}
Form the lnequalities

st A, (o) 1, Veign, (W) keN
and from the above considerations we deduce

! / . i !
Dl e e T e W

el L BT !+("K - k)\/
faatnll a2 Fie1" B! Vax
[3 k-—-)cQ Fb

and therefore

o A A
e, o R | aedu , anu3e ]
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Notation. For anyo{& R, &> 0 and any f & c;h

we put
« 75 b
Vufr = tnefv . f |2 edy?

Remark. From the above considerations we deduce that

the map
il £
- V_
is a kernel on (X,R) for any > 0.

o
Proposition 8, The family (Vd)cx of keenels. on (X493

> 0

is.a superresolvent such that

(K] .
Vo2V« (¥ ed> 0
! ,
('J’(?"‘*)V&)V;Zva (’v)c/\,[%}o) L P

Moreover, If (w&hi>()is a superresolvent on (X,T3) such

that

W eVy (%) otab

('+(?_*)Vd)w??‘ W (U)o(,“?po) 044%;
then we_have
(¢) o>0

Proof, The assertion follows using Proposition 6 and si-

milar arguments as in the proof of Proposition &,



w 3=

Notation, For any superresolvent ﬁFQ(Mﬂ)°0>O on (X, R)
: : ()
with V_ bounded for any <> 0 we define inductively (V) _

>0
by
(1)
(m]
Vﬁ = Vd
('\'\.'H) (n)
Vd =
—~ (“)
V“ = inf Vd
n

Theorem 9, The family (V«) is a resolvent family of

x> 0

kernels on (X,) such that
vew ., ot

Moreover, for any resolventﬁyé(w¢)gb>0 of kernels on

(X, ) wiith MgV, for any £50 we have

(n)
Proof. The sequence (V ) is decreasina and for any

vy ,?» 0 d<;? e have from the above considerations

n) () ) (aw) () i) (wid)

(e (pealV  IV52 |+(fa “)Vg Wi 2 Vs (e ()Y, IV

Hence
») =)
(r+(p- a)v )V =lim (1+(P-=)Vy IV 2
tan)  ~ S ay) ntd) ~ ™
lim V= v~>1|m(|+( dfv)v =(1+ (B -V ) Vq

° 3 : °
and therefore the family (\Q)cxy 0 !s a resolvent family of

kernels on X such that




D
(w) ~

V‘,ZVOLZ'\/O& (Yot 0, () neN

\

Inf (wd)dq 0 isra resolvent on (X, R) such that

W Vg (V) =30
“then
v} o}
’ == £
LR M (¥) >0
and therefore
) (W)
WosW, LV, (v) >0,
We el (v) &> 0,

Remark. Theorem 9 is also valid if we suppose that,

for any k> 0, the kernel V_ is proper,

Preposition 10, Let19’=(v¢)%5>0,1} =(Wd){x30 be two re-
solvents fromfR(X) such that for any o(5 0 there exists the

kernel
VAW
%hen there exists ’ﬁ*ﬁ“ﬂi o
glggiﬁ Obviously, the family (VﬁA‘WQ) S i's @ -supers
resolvent on (X,R®). Using Theorem 9 there exists a resolvent

.Q£.=(Ud)°<7 gon (X,R) such that

U eV AW, (9) o0



et
ok R
and such that for any other resolvent21==ﬂh)“for which

/

Ug VAW, (v) >0
A ok
Y
we have
Fas . _
Uo&“Ud (v) o> 0,

Hence, from the above considerations the resolvent WU is the

greatest lower bound of the set{][;uj } in the ordered set

(Rimise )

Proposition 11; Let??é(vﬁ)ccs 0,1J~=(My)d o 0 be two
resolvents fromR(X) such that for any o> 0 there exists the

kernel
Vm~4 wd

and such that there exists UER(X) with Welboaih Gl They
there exists ruy,\/ﬂi?

Proof. Obviously, the family, (Vu\iMu)o(» g is @ subresol-

vent on (X, ). Since1(=(ﬂd)*, o is such that

and sinceuﬁgz\(X)) there exlsts. s& Jy o 53 <es o0 X and s>0

2},— a.S. &hAn we have
o (v, V(s)e s (W) &> 0,

= al Hadiices the existence of‘a resol-

[T oty AP P oo, I B st R S o




=gl

/ 1
vent YU ”Q’a on (X, ) such that

{

VW sl () A>T
: n
and such that for any other resolvent QLU(U ), 54 on (X, R)
for which »
e " it

Vel eu, (W) o>

we have
| W

Uy&Ua  (¥) &A>0,

Hence

/
and therefore the resolvent UL  belongs toR(X) and we have
. ’ :
U Uvw

Proposition 12, If Cun)n’ 1£n=(U:? ) g is an increa-

A >

sing (resp. decreasing) seauence fromR(X) - which is dominated

inR(X) than there exists

i (resp.AQL“).

n
n
Moreover we have

in)
LU e

T e

VU
(resp. /(11“

4
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Proof. If we put, for any 50,

one can see that {{=(U,) s o188 resolvent jon (X, B UelR e
and .

('LL =‘:.‘/(U-\. (resn. %in\lth)

Theorem 13

.- Suppose that (X,fB)

is such that &d is counta-
ble generated, Then R(X)

Is a conditionally 0 -complete lattice

Proof. SincefB is

countable generated then for aﬁy two
proper kerne]s v,

W there exists VAW and VvV

in the ordered
set of all kernels on (X,B) . The assertion from fheorem fol-

liows: now wusimg. Propositions 10, 11,42,

In ‘the Sequeljkk will be a finite measure on X

X andﬁ{&k)

denotes the set of all resolventslﬁégz(x) which are absolutely

continuous with respect to S

Theorem 14,

The ordered set (ng),i ie-a conditiona]Ty

e —"‘h
0" - complete lattice, Moreover for any sequence (Qf ) from

'FLQM) dominated inS{(X)

fhere exists. NI {vie hﬁ}
Wlth \/{Ul l“LN} CJ’\O”L d')

Gwh),c
me§ Since§29u) is a solid part of R (X) and using PrOposatxcn
10 and Theorem 13

and it is equal

_-a)
it will be sufficient to shgawlf F= (V.

Y= L{. (‘%4
are two resolvents fronljiya) then there exists

My e S

VoAY (v) 450
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in. the set of all kernels on ). BecauseV(-resp.ﬁ) is a pro-
per resolvent which is absolutely continuéus with respect to the
finite measurey then, for any &> 0, there exists a measurable

function G (resp. l ) on X xX such that

ve§e = o, Gy F ) eny)
(resp. W f(x)= ff;<x,y>f<3><i/««(3>

: b :
for any x¢X and any f € 5: .(See 18] H.Kunita, T.Watanabe,
‘Markov processes and Martin Boundary )

Obviously there exists v“\;wm and Vo:/\“’(x and we have

(Vo) f(x) =Ssup(C—,r;)(y;,y)f(g)d/a(a)
(VAW )F(x)= Sinf(Gd\,f’ (x,y)f (4 /«

o~

foray
for any xeX, f(:;g:‘" .
To finish the proof we remark that if ([737,[7&_(};3(}1) are

such that there exists QLG% (X) with

”U"‘”s% , W < WU

then the element [z,,?ﬂ\,"ﬁ belongs to@,(/u)
(R0X,4)

Definition. ln@\(/t«) we consider the following order rela-~

tion @ given by
B e Z %
(U ),U &= rU ;{;_PLD— and (m_C O s

Definition, Letlﬁ%{r@% (X) be such that ’U"g}f)’ S

b ol /\
denote by QJL ﬁo(bﬁ the resolvent on X aiven by
N -
\f" b Y WE, Bt
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This resolvent is called Meyer-reqularized ofq&’ with respect
to V.

It Is easy to see that we have

.‘27‘74)7’%:570"

/
and that for any resolventwe@(x) we have

VW sW = w' s

Prbposition 15 ! 1 Let'u,'l?/, ?,{76-\?(/") be such that

Us%"T's‘LL
Then we have
V@ = w @l
 Weu

Proof , Suppose that Z}’@?/L . Then If fe ¥ we have

= < <
Uf S;Ipo(\!/y\Uf\sa:Jp ol 2l

and therefore Ufé—% y . Hence
W

b A )

On the other hand

e AU
wvf=su,DP \vlﬂTF W, f< sup F Vd‘*PUU\f = UdA‘L)

< b P
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—~ AN
Wi

From this relation and from the relation

fz/"“@w

we get, using the first part of the proof ,

e

Theorem 16, For any‘y(—,g;?y«) the set

fz::{qf’e@(p) @

is a conditionally complete lattice with respect to the order

relation @ Moreover
[

a) for sy family QF), el fromﬂ which is dominated in

(\’?\'(X);g) there exists </ {77" Hex} and we - have
QRM,E)

N gty ICI}—\\/{U"IIU}
(Ri,D) (R(x) ,<)

b} for anyg] E’U'C]g' we have
/’_’)\\\\‘-Uh

rU",/\'U-” - (,-LT/A_.U-H )
EE) . - B0

.
c) for any increasing (resp,decreasing) family Q’r)‘iel inﬂ;

there exists an increasing sequence (,év_.), in.lisuech that

Nz {ﬁ"')tej}:\/{”L7L !mcr\f} \/ﬁ’mwﬁ
®i (D) (R60,€) (Rip @)
. e
p A L0} o) AT men)
(2,0 (200, <

s
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L ‘b / ,/ ‘ ) : [ ey o
a)+c) Letlr,afé.j% be such that there exist?JéS?(X)

with

e BT

( o y ;
From Theorem’1l¥ there exists VU vl and we have
' CR(xY <)

s arl oyt et
ERODED,

,/f”//”\\\\\~ 9

R N
(ROO5< )

1f we put

- we have from Proposition 15

1 e : ﬂLi <§\ ";:l;k'}“ﬂ ¢;3>22;2Ai S WS :
V= & BU V=l 05

and therefore

] Ay G;)QD:
) s Wi =
C}20(>)£;3

Hence
i -/ _ 7]
(z/(l :rzj—/\,fz’ff e D ~ 7)_’
(Rim,@D (ROOD>€ D

;
Let now ('2)'7/)%'l be an increasing family from\fg which is

dominated inSZ(X) by an e]ementQJ’. I f

Qi=(u) Py

s such: that



- b0 -

M m s v;f ) feF
%% ' .

- then (u, is a resolvent on X, 'L{_/ quf/“\ and
. ¢ . ; "’$1)“
o, U

From these relations we deduce

@7“C>Q£ (v} ve]

7 : L. K
and if W@?(x)) ’I/JZ'ﬁ (#)iel then

Sl
and therefore

AL sy el

RGO, <)
I f 747€QQ§29A?) %nga 27-%v) ic] then we have

99 gL cn) U GRLE

and therefore

w @w

Hence

s i lee ]
/url (@(;"‘))@)

C_—
We choose fef,f'>0 such that Wf <2 whereﬁ:(wu)dsgsgfy}

BN e R s ey




e i e

afCgm] @ tel

Since'ﬁyis absolutely continuous with respect ko pe then’

there exists an increasing sequence (L-h)ﬂin I sueh that

; , t

o viflierl =V v e N}
Ty b

From this fact it follows that for any ge";;', 0<qgef we have

also,

~ {vidliety =v {'VL% ImeN §
o v

or equivalently

A e Y w3
(Pet) 52 ) (R0

Suppose now that (?)}). is a decreasing family from /@

el
: lo g :
and let f(f?, f50 be such that V f<¢ee for a fixed (,€ T ouren

any géﬁ:, 3;"51‘ and any «£3»0 we put

: o
Ug= NSVialiel ;o210
%U’

<

There exists an unique kernel UD( on X such that
/ e .
U g=U g (v)ged ,  qsf

: 99 ; G
It is easy to see thatlﬁ=(!Jm)o(70 is a resolvent on X, Z(,VSJ%J

I~

P .
~
4
o
§—i

U

Since




L e

absal 20 ar@ut

it follows from'Proposition 15fthat
‘LL@?)*‘; (v) itel
lfQJCaj@' is sucg that
W@vc () .iel‘
then

w ﬁ,ﬁ% (W) el

and therefore
Since
we deduce

Hence

R
QL = Jarlek |
(2D
Sincel?lis absolutely continuous with respect to ¢ then
4

there exists an increasing secuence (!/h)h in | such that



- el tels A EVS e
v Vv

and therefore

; . « e |
Alvaest =N IN D | N

oS by

for any gé§r, g4t Lf we put

: e e ' =S
’LJ = AN AT [w e N} )%) =wa)..
R -

we have%J}}SR&n),
. y G { gy
, e OF
and therefore
/”\1)"
r -, L'Y\
WRW ¢V (V) reN
Since
S
Ug SWg ¢Wg = Ug (¥) acf
it follows that
AU
W= tF
and therefore

=

/ vl A
b) Let now CU’ ’(2/1" (;‘:«»b’fif . If we put



- LY -

B A
CR(X)><)

we have

"z)”ﬁ__ﬂx\[”s?)“/)*ﬁ“gw s

From Proposition 15 we deduce
- N\ / “TXar /
Veow @V, vOW @V

On the other hand if QURGT;%? is such that

QUF’C:YU—/, ,hrzég),uw/)

then we have

GG AT =D
o o

/
Vi T L TN

Hence : | h
b amadl
R > (E)

RIS IR

Lemma 17, Lettf,ﬁﬁé;jzyk) be such that

Ve

and let :% the specific order given by %ily .
: {f we denote by ﬂ%wd— the set of a]lﬁ%—measurabls func=

tions f on X such that there exists sé;@ﬁd with i fles

and W{|fl)<x? then we have

a) fé%,;, 0 =% WE-VFf € é@ﬁ'
Af

b) ey HERZO=DWE -VfC éu
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c) there exists a map T=T (@ ;%)

kel Ly

such that T is additive, increasing, continuous in order from

belo
elow )

S1& Sy Tg1 ;,’( Ts?_:)zs2
and such that

fe By, f20 T(Wf)=Wf- VFf,

Z e

d) there exists a _-valued map T = T(V}ﬂ) defined on
. v < )

a naturally solid convex subcone D(T) of %ﬁ' sueh that T ls

additive, increasing, continuous in order from below,

S

e) if Ue R &h) is such that
UV @i W
Then we have

@ =T a0+ (-Tara)T @)

Proof. Using the relationlriuyand simwiilar procedures

as In ( Meyer P A T'57] )} we get



N

fe‘BlJ, Wfz0=> Wf- Vf & fJD.U-
fecgw, f20 =5 Wf -\Vf éffw—

Since for any féC:Fr we have

Tim o« V Wf=Wf
A A p

it follows that

BB Wia0=>  WF- V5 676))— |

feBs f20 =5 Wi-Vf e oy

For any sezw, we put

Ts:=sup{\df-'Vf‘fe€Ba‘; f20, WE<.s }

We remark, using b, that

fésﬁw. 20 ":éaT(Wf)=Wf-"'\7'f & Zw
and

f],fzgﬂ%,, og15f2:,_:~>T(w1):§é T(Wf,)

n

We show now that if (fn)n 'apen sequence_inﬁ%J,FnLO and

sé:%kf is such that the such that the sequence (an)n increases

and

3
=
—h
™
»w

then the sequence (Tan)n is increasing and
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sup Tan 2 TS

(@

Indeed, let f(;q??w— be such that f20, Wfe¢ s and tlet
géﬁahj be such that 0¢gef and such that Wg is universally con=-

tinuous in 226([1’1), If we consider C(DC.CB'U 5 0 < then,

since
sup an z Vg
we deduce that for any &7 0 there exists ne N such that
£

nznz—:b Wag £ an + & Me

and therefore, using the assertion b,
= N\ i = J oo
ngna_-:» Wq giwfn \/fn+g\!cf,
Hence

o N ~
Wg~v955§p@yfn-aner)Jq (W) €50,

Since ¢> 0 any g are arbitrary we get

Wf-Vfi,s:p(an-an)

and therefore, f being arbitrary,

T»Sgsup(an-an)
f

From the above considerations it follows that if

(fn)n is a sequence inﬁ%y, fnZO such that the sequence (an)n

increases to s then



el

(Tan)n T Ty

and thenrefore TSe%h§,'T is additive, increasing continuous in

order from below and
51,526%\), $1£5,=> Ts1 °- Ts2
“treo Wor any f6§3Wﬁ f20 we have

T(WF)=Wf=-Vf 3 WF,

wnaé/

i

Ve deduce using the definition that for any S&@u? Qt\consider
a sequence (fn)éfs5wq fnZO such that the sequence (WFn)n increa-
ses to s,

We have, from the above considerations:

T(an) I WF,

Ts=1im T(an)ﬁ Bim e = isy

o o Y-

d) For any fefaﬁ y f20 we have

VFf = Wf - T(Wf) e Z%: %W-

We put, by definition

b 2
T(VF)=TWf - T7Wf

Using now the properties a), b), c) of T we get that the
o~
map T defined on w(91\§5¢g ) with values in év_is increasing,

additive and positively homogeneous. Using sinmilar argquments
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as above one can show that if fneg?/\@w ¢ fc—?n% are such

that the sequence (Vf_ ) increases and sup Vf_ > Vf then sup T(VFf
e n’n i n ‘ i n
2 TUF),

If for any sezv; we put

,:I'ls i=sup {.}/(Vf)/f 6@!\3"’,1\; o XE L s }'

then the mép

T 522;-:) %zr ; (?U;{ fe%arl uv, L)

is additive, increasing, continuous in order from below and mo-
reover

~

svs'ze% y $1£5,7> TS, 4 T8y
Vv

T ¢

Ts=Ts for any s € O 7

If we denote by D(T) the set of all elements Sééif for

which Tse b then the restriction of T to D(T) satisfies the

‘ rz/a,
required condﬁff&vms\

e) For‘f(,.%%

B fZ.D we have

T() @f)=uf-vf
TR (WF)=Wf-Uf
(L=-T@ 1)) (T @sn) (W)=

=(1-T(50) ) (WE-UF)=WF-UF-T (:3) (M) +UF-VF
and theFefdre

TOY ) (WEY+ =T () )T Qua) (W) =WF-VE=TGT3) (WF) .
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Theorem 18, LethﬂMe:gzyA) be such that there exists an

exact 2}'-compression Q? which is.F-absolutely continuous,
Y
2)563 qzsk) and

VEU <V

. <
Then, there exists an exact’Lr-compression Q such that?{==7fc€

and such that
o~ ~ns
es=Tm)ts) (v} s& DiT)
Moreovér we have
af 2 PFf  (v)fed , Pf < o0
where P is the initial kernel associated with QP 7

Prdof. Let S%? be the set of all B-measurable real func-

tions f on X such that
Rl
W ) e

=y 7 \yﬁ"
Since (ﬁ%C§/Lr' and ’1£(§92/ we consider as in the prece-

ding lemma

We remember that S is defined on a solid convexe subcone
5 b a £y e . P e t
D(S) of 2?? which is dense in order from below in é%f, Wi h

values in

61r .




< 0] -

We have, using the preceding lemma

PV A=+ (1-5). 007 1) (W) Fe B,
and

f@‘*%,, V f2e=> s(\jyf);?- P(\?’f)'

where 2 means the specific order generated by (zzf— énd where
P 1is the initial kernel associated with §?.

We denote by E the set of allfﬁ -measurable real function

f on X such that

P(1f)) < oo

%5
E =V (K%P).

(o]

Obviously E is a solid subspace of the space of all B-mea-
surable real functions on X and EO is a subspace of E,

Further we denote by P the map

P : E -3 ELLF
defined by

POFN = pLF )
Obviously we have

PLEgafa ) PRydPF,

Ploaf)=tPFf (¥) ot>0

and



= oo :
feE = S(f) 3 P(vf)
Using the fact that % —% is avconditlonally coﬁolete
Ay :

vector lattice with respect to the specific order and Hahn-Ba-

nach extension fheorem we deduce that there exists a liniar map
o~/ e
suich “that
N wrnnas
S/= =8, ole)dplr) (vise E.
Particularly
feE, f<0=> S(f)3P(f) = 0

and therefore

‘ cod 2
feE, f20 == s(f)e by

ol -
fcE, f20 S(f) 2 P(f)=Pf,

~
Hence S is the restriction to E of a kernel on X, dencoted

by Q, such that
0(f)2P(f) WfeS .
From the relation
Wf = VFf+OWfF . (V)fgfﬁj_j, B0

we deduce
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fo,®]
we =(S a")ve + 1im o"wr
n=0 R g
Slnce.
s
o"wre pPuwecp v ot
and since
P
Py £ g
it follows that

oo
Wil - oM e
n=0

and therefore the 25 -compression

where
Q_f=(1- «V,)of, Fay
satisfies the required conditions.

Notation, If 1%;52(ﬁ) we denote by qav,the cet of all
@S -measurable function f for which there exists sggzzy, s <c@ such

that

il e viiig 1) €o,
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w bl s
We denote also by = the specific order generated by

the convex cone Z 5
e

Theorem 19, Let VefR (/«) and let @:(l)a>0 and

/" i (3)/ > X4 “"j
637 -_-(Pd)“’O be two exact JJ -compressions such that )/ ,'U“eq?.g,u). !

Then the following assertionssare equivalent

5377/ ’
a) VEV
b) for any f e%?}'?’ :’\@2’39:; such that Vf 0 we have

/ ]
B (UE)=R p UF)

% il
c) for any s,tef , sxt, P, (S)<ee we have

/ .
B (s=t)dp, (seit)

’

/ 4
Moreover if[g\fg) are absolutely continuous with res-

pect to ”ﬁ and D is generated by ‘(EU' then each of the assertions
a), b), c) is equivalent with the following ane

& : n
d) for any fe& S such that P_(f)< e . we have

f
s pRLE),

& i :33/ s q’/i
Proof. a)=> b) Let us denote Y = JIF =0 . Ns o the

I S

preceding Lemma we may consider the maps ;
/ : 1 7 §,
Tah I T(Z*,U") and T ,2,",) which are

defined on D(T@&r,y?*)), D(TH,W")) and D(T('Z/‘k",?}'")) respectively,

We know by the same Lemma that)for any Fec%}_, ~ @V" such that

W
N f‘;G?we have
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T(rv-’?}.,,)(V'lf)=T(,.9_’v,’)\qu-i-(l"T(V’V,))T(Vj’?j_,,)vuf.

If we dencte by 5’ the specific order generated by 2 we
: W

hav;e

Tl ) A Ty W

P;(Vllf)é P”(V”f),

P (u-v) P"(u=v) (W) ,u,ved , u-vy0,

?/"I:

Pt(b’f)%{pn(\/f") (v) fé’@v"‘ﬁg‘v*” y NS O

Conversely, if for any fefB?f_i AB'U"" with 'Vfy0 we
have

Pr(VFf) P;'(Vf)

g - : ¢ v e
then if we put, for any f & BV, mB’U“”“ ‘:,S',
Qf = PUF-P’f

then 0 may be naturally extended to a kernel, denoted also by 0,
on X for which QT"’@»%}/_ whenever fé(B’V‘iﬁBv‘" ',\g: . Obviously

the family Q=(Od) b defined by
Q f=(1-aV,)0f (¥ fe Burtn Bowe T

is an exact‘)}&mcompression\and therefore, from the relation

(g.,llﬂ?{ -

we deduce, using Theorem 3,



W»” ;Q(I""

e/
R e
v
v @V
Obviously c)=>b).
b)=pc) Let s,téiéu_ be such that spt and P's <e0 , Ve
consider two sequence (fn)h’ (gi Y P, | . We consider two

nn

sequences (fn)n’ (g )

b in ‘F such that Vf g s, Vg Tt and such

that Vg, is universally continuous in % . Let now heF be such
e
that h>0 and P"(Vh)<es . Then for ¢~ 0 any neN there exists

7’

mg> N such that
Vf +g,Vh2.Vgn
Hence
p? (me+£,\lh-V_qn);< BEUE g.;\/h-Vgn)
for any mym_. We deduce

"
Prds+ g Vh=Vg )t P (s+gVh=Vg ),

P*(s+gVh-t) 3 P (s+gVh-t),
and since ¢ is arbitrary we get
Pt )al Pitls=t)y
Suppose now that‘?,and‘f},are absolutely continuous with

respect to 97" . Obviously d)=» c).

c¢)=> d). follows using standard arguments of monotone

classes and the fact that for any J,té‘f s=t20, PU(5)<eo
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where

~ b

s =imup o V.. 8
we have

P?(s=t)=P?(S-t)3P"($=t)=P"(s-1t).

-~

Theorem 20, Let?kéGng) be such that@® is generated by :gj’

i

and let F, ®” be two exactP -compressions which are absolutely
; b e
continuous with respect to?) and such that V~ , ”U'eﬁ%z(fd.
gl TR - : ;
‘Then there exists exacgiég)lf-compresston % which is absolutely

continuous with respect toij’such that

/ i -
e )

C@I,Ma@))
. : . ' . r )
Moreover if P*, P'" and VP ave ¢ hiﬁﬂdfgiermegg i
@’ )(S’" and T \"&’-SPE’C"‘ a"w(—:‘(’j ; wWe ?—mve;
= " : = el e
Bl A SRUEuPEL ki f LR e s
74 1,_
forcany - fe% ~for which PYE 4+ PUE £ oo -

P
Proof, We denote by %yo the set

o

%kfeﬂ;\ P*f+P"f < po }

Obviously ‘;; is a solid convexe subcone of B and since
(§>/
(A

3 4}
5 QTK) are proper there exists foé?o’ FO'> 0. We consider now

the map

Pf?om%‘zmr



S rf
defined by
Pf=;‘sf prE HPUE A F, ,T,e5, Epf= g

Oy

It is easy to set that P is additive and
P sty GEE S

Since P’, P" are kernels then P is the restriction to ?b
of a unique kernel, denoted also by P, Obviously for any fc¢

we have

Let us denote by @? the exact i%ncombressicn on X such
that P is its initial kernel, From the procedfww% considerations

and from Theorem 19 it follows
T? _ﬁ?'/ o Y
VeI Y

and therefore

@ @’ -
e v Aav =W
Ry, )

Further using Theorem 18 and the relations
5 /
e
Vv @W U

_— g- %
we deduce that there exists an exact UV -compression 0 such that

VARG and



e o by e e N AR et e

Since we have
(Sal

7

W 2 @V

-

W =w~?‘ eV
it follows from Theorem 19 d) that
QR GRIERE )r e
and therefore
0f 2R f (w)f  feT,,

where Q is the initial kernel associated with 0, Hence, using
again Theorem 19, we get
<
ATTa
W BV
/
fU«T e q}:? NV
C@(ﬁ))@))

Theorem 21, Let LTe;ﬁzgﬁJ be such that §% is generated

Dy

by if and let:?ﬁ i?" ¢ be three exact vylpomnressions which
“0 7/
.j)

are absolutely continuods with respect tc 2%~ such that 2~ ,
~Cg /G il o
i) e ® S/b\) and such that P ¥e U ?‘, "u’"l e

|
Then there exists an exact VJ ~-compression P which is ab-

391

QFJ

solutely continuous with respect to V™ such that

,2/\(57 e 'Q’]—T/’ ~ 7)_(3'?
R,

b oo 7 ' .‘.. N
Moreover iff?, P 5 TE are the initial kernels associa-

= > ;
ted i thatS> q?” and §7 respectively, then we have




for any fe¥F for which P*f+P!'f < o2 ,

Proof. We consider the set EE) of allifeS; for which

B! f+p! i 00 . We denote by P the map
P:‘?om-a 2})-

defined by

P fPof epie £y, fo T, ffpaf v

s

From the definition it is easy to see that P is additive and
—
Pf 3 Of (B fed .

Since S;o is.a solide convex.e subcone of 37 abdios bnce PPl i
a kernel, it follows, that P is the restriction to %Fo of & uni=
que kernel on X which will be denoted also by P, Obiously we ha-

ve

FeF = rfcee PFeE Q-

Let us denote by'%? the exact f}—compreséion such that
P.is Its Initial kernel, Obviously<§3 is absolutely continuous
: ¥ T
with respect toQ/ and 7P E Rem) . From Theorem 19 we

Y

have




’j

e )
a0 e

‘ ﬁ?/ Y -
"HT:?: 77“ v DP) Cg)%]fx?
@p5(D)

Since

U Ow @V

we deduce using Theorem 18)that there exists an exact L?’~comw

5, & .
pression | such that 1?{;329A), and such that
T

From Theorem 19 aﬁd from the relations
e V)
TRV @Y’
/2)' C‘:é:) /LT C\?i @/7)..“]
(_ i 5.39'2- rj'*
V@V Gy

Tf 2 PFf (v) feds

where T is the Initial kernel associated with "i . Hence

Tf

Pf (¥) fegyo ,
T = P, vf:? =’L)'(?7 i Ly-f:P.L
Rery, @)

)
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