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1. INTRODUCTION

The study of linear and nonlinear operator equétions was widly enlarged on.
the variational methods . The classical result of Friedrichs allowed the definition
of the generalized solution of equation Au = f with A a linear, symmetrical and
positive definite bperator . The class of operators for which the generalized

solution of equation Au = f can be defined, was enlarged to the linear operators

with positive definite differentiable L1, 2} , then to nonlinear operators with
positive definite differentiable [3) and to nonlinear operators with K-positive
definite differentiable 4] .
Subsequent generalizations was obtained by considering operator equations
for multivalue operators, equations suggested by practical problems from continuum
" mechanics ., So, in [5) is studied the equation Au + Bcs(u) 5 f with A a linear
operator with symmetrical and positive definite differentiable, in [6] the equation
Pu + @qb(u) 5> f with P a non-linear operator with symmetrical and positive definite
differentiable and in [ 7] the eguation Pu o f with P a nonlinear multivalue operator,
In the framwork of variational theory an important place is played by the
variational inequalities and this is due to the caracterization of a classical

solution for the equation Pu + 9(b(u) 3 f as solution of the variational inequality:

(Pu, v - u) + F)(v) - E>(u> > (£, v -u) .






A class of variational inequalities which can't be set under the form of an
operator equation is the class of so-called quasi-variational inequalities which
have been used by many authors to study nonlinear problems in continuum mechanics
including a wide variety of free - boundary problems ,

In this paper we introduCe.the concept of generalized solution for
nonlinéar quasi-variational inequalities .

In Section 2 of this paper we recall some results concgrning the generalized
solution for nonlinear variational inequalities of second kind . |

In Section 3 we define the generalized solution for a nonlinear
quasi-variational inequality and we justify this definition (Theorem 3.1).

In Section 4 we consider a controled quasi-variational inequality.

Finnaly, in Section 5 we give am example from mechanics of a contact

problem with friction which leads to a nonlinear quasi-variational inequality .

2, PRELIMINARY RESULTS

Let (H, (-,-)) be a'real Hilbert space and D(P)< H a dense linear subspace
in H. Lef us consider P : D(P)—H a nonlinear operator and @ D(P)— (AGD, +°°)
a functional which satisfy the following assumptions : .

(P1) The operator P is a potential operator, i.e. there exists a functional
¢ : D(P)—R such that D@ (u)-v = (Pu, v), Y ue D(P), ¥ ve H (D¢(u) represents
the Gateaux differential of ¢ ) . |

(P2) The operator P is monotone, i.e.
(Pu-Pv,u-v)>0, ¥u,veDdP),

(@1) The functional (b is convex lower semicontinuous and proper ((b # +09)
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Remark 2.1. Using hypothesis (P1) and (P2) cne can prove that
1
¢ (v) = .% (P(t.v), v) dt + cpnst . (see [4] ) .

We recall some results (see, for example, (7] ,\,61 ) concerning to the

following problem :

(P+0p)(w ™ £ (2.1)
with £ € H given .
By definition, a classical solution of (2.1) is an element u & D(P) such
that
(Pu, v - u) + @>(v) - W > (£, v-u), ¥ ve D(P)

i.e. u verifies a variational inequality of second kind .
. We have the following variational caracterization of the classical solution

of the equation (2.1).

Proposition 2.1. An element u e D(P) is a classical solution of (2.1) iff u

minimizes on D(P) the functional F. : H—>(-°, +oo) defined by
Fe() = @v) + @ (V) - (£, V).

In the following we consider a stronger assumption than hypothese (P2),

namely :

(P2') The operator P is a strongly monotone operator i,e. there exists a’z >0

such that for every u, v € D(P) we have :
(Pu-Pv,u-v) 3 fz fu-vll?,
where ||*|| is the morm on H .

Lemma 2.1, (1) For any element f € H, functional Ff is lower bounded .,

(2) Any minimizing sequence for Ff on D(P) is a Cauchy sequence in H,






{3) All the minimizing sequences for Ff have the same limit in H.

Lemma 1.1 suggests the following definition : the limit in H of any
minimizing sequence for the functional Ff will be called the generalized solution

of the equation ( 2.1) .

Proposition 2.2. For any element f e H, the generalized solution of the equation

(P + G(b)(v) > f, exists and is unique .

The name of "generalized solution" is justified by :

Proposition 2.3, (1) The classical solution of the equation (2.1) (if there

exists) is a generalized one.
(2) If the generalized solution of (2.1) beiongs to D(P) then it is the classica

solution .

Corollary 2.1. If D(P) = H, then for any f € H, the problem (2.1) has a unique

classical solution.






3, QUASIVARIATIONAL INEQUALITIES AND GENERALIZED SOLUTIONS

Let CH, (- ,2)): be a real Hilbert space,.D(P)c_ H a linear dense subspace
in H and P : D(P)—H a nonlinear operator which satisfies the hypothesis (P1)
and (P2') of Section 2. |

Let J : HxD(P)— (-0, +os) be a functional which satisfies the following
assumptions :

(31) For every u € H, the funotional jU = Jluy e ), 8 D(P)—é'(—oo, +°3) is convex
lower semicontinuous and proper .
(32) There exists @ < k < {*® .such that for every up, Yy €H, vy, vy € D(P)

we have :
|j(U1aV2) i j(uzavl) = j(UlaVl) = j<U2yV2)I < k “Ul"U2 H HV]_"VQ H ;
We are interested in the following , by the quasivariational inequality :
B, v = uloe 3luy v = 30U w) 302, v - u), Vv e DEP) (3,13

where f € H is given.
A classical solution of (3,1) is an element u e D(P) which satisfies

this inequality.

Remark 3.1. Using hypothese (P2'), it results that the classical solution of
(3.1), if there exists, it is unique ,

We shall introduce the concept of generalized solution for (3,1) and we
shall derive some properties of this.

First, let us remark that the quasi-variational inequality (3,1) éan not
be writen as an operator equation Tu 2 f so that the standard technigque used in
the definition of generalized solution is not applicable ,

The crucial point in the definition of generalized solution for the

quasivariational inequality (3.1) is the approximation of (3,1) by a sequence of
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variational inequalities of second kind as it is precisely shown in the sequel .
Let us denote by S the mapping S : H— H which asscciates to every we¢ H
the generalized solution, that there exists and is unique (cf Proposition 2.2),

of the following variational inequality of second kind :

(Pu,v - u) + jlw, v) - j(w, u) » (£, v - us, ¥ ve D(P)
or, equivalently,

(P +1 jw)(u) > f

where jw(v) = j(w, v), ¥ ve D(P),
Lemma 3.1, The mapping S : H—H is a contraction,

Proof Let w, Wy € H be arbitrarily and let Swl, Sw2 be the corresponding

generalized solutions i.e. Sw, €i =1, 2) is the limit in H of any minimizing

sequence for the functional F% : D(P)—> (~o0 , +o) (i = 1, 2) where :

FL ) = 900 + 3, v) - (£, V).

2

Let us consider the minimizing sequences (wl) (wz) < D(P) for F% and Fes

n‘nnn
respectively,. So, we have w;-——ﬁ-4-8wi (i =1, 2) strongly on H ,
It is'easy to verify that the hypothese (P2') of strongly monotony of P

implies the uniforms convexity of ¢ hence the uniform convexity of F% 1.8,

A.Fjitm + (1->\>F%<u> 5 F%MV +(1-2)w) 22 AL ) v -l ?, 1= 1,2,

MAe(l, 1), ¥ u,.v.e BIPY.
Substituting v = wl and u = w>™1 (i = 1, 2) into the last inequality,

we get :

(A -0 Mg - w2 aFg )+ a-orka? T -

i i 3oiy oo o s o
- Ff (r\wn I W by ¢ /\F%(w;) #.£1 —}\ )F%(wi ) . di L d= (1,2) (3.2)






where we have used :
d. = inf Fl Cv)ig Fi(%\wi peil] =y w3_i),
1 VED(P) £ Gl n n
By adding the inegualities (3.2) for i = 1 and i = 2, we get :
2 1 202 - lsis o 252
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: Vi P :
# (L =AY B ) + By () =y -, ). (3.3)
From the definition of F% we have :

Fl

o e T cr e
¢ (w )= Fz (wn )k J(wi, W ) - J(w3_i, W o= 1,2

hence, by u5ins (32), we obtain :
Lo 2 VT | iy 1 #:l
Feue) o Gyl dy =, (Ff W) - d2\+(Ff (w) - dl) +
T 2
+ K le = W2“ ‘lwn & Wn“ : (3.4)

On the other hand, from the definition of generalized solution we have :

: e o s ,

lim || We - wn\l = \lSwl - SWZI] , (3.5)
N—3oo

. Lt a R

lim Fy (wn) = d: (3.6)
N %

Now, passing to the limit in (3.3) for n—e- and taking into account

(3.4) - (3.6) we get :
2922 -2) \swy - Swll € (1 -AD Allw - w,ll .
Fimally, —taking . A = %— , we obtain :

USwy - Supll < C {lwy - wyll

< 1, Therefore, the lemma is proved , Hence the mapping S has a

withC = K, :
~ {

unique fixed point which will be noted by u

Lemma 3,1 suggests the definition of the following sequence : for uoel4

n-1 n
u

chosen arbitrarily, we put u' =S i.e. u 1is the generalized solution of






the problem :
(P + ﬁjn) (v).o £
where jn(v) = j(un_l, v) ., It is immediatly that the sequence (un)n such defined

is a Cauchy sequence hence it is convergent .

Remark 3.2. The sequence (un)n converges to the unique fixed point of the

mapping S . Indeed, we have :

Hlsilh = llSun-l - Sul| ¢ 51 TN S B &N Bl =}

! {

Definition 3.1. The limit in H of the sequence (un)n of generalized solutions

for the problems (3,7) will be called the generalized solution of the
guasi-variational inequality (3.1).

This definition is justified by the following result .

Theorem 3.1. (1) For any element f € H, the generalized solution of the
quasi-variational inequality (3.1) exists and is unique .

(2) The classical solution of the quasi-variational inequality (3.1) (if thefe
exists) is a generalized one,

(3) If the generalized solution of (3.1) belongs to D(P) then it is a classical

solution .

Proof (1) As it is shown, the generalized solution of (3.1) is the fixed point
of the mapping S which, by lemma 3.1 , there exists and is unique.
(2) If u is the classical solution for (3.1) then u is the classical solution

of the problem :

(P+23) (W) > 1 3.8
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where ju(v) = j(u,v), ¥ ve D(P), Hence, by proposition 2.3(1), u is the
generalized solution for (3,8). On the other side, by the definition of the
..mapping S, the unique generalized solution of (3,8) is Su. Therefore, u = Su i.e,
u is the generalized solution of the guasi-variational inequality (S

(3) Let ue D(P) be the generalized solution of the quasi-variational inequality
(3.1 Bylremark 3,2 , u = Su hence the generalized solution Su of a variational
inequality of second Kind belongs to D(P). By applying Proposition 2.3 (2) we

obtain that Su is also the classical solution 1i.e.
(P(Su), v - Su) + ju(v) - ju(Su) SoClyovw =-8u); Mg DEP).

Bearing in mind that Su = u we find from the last inequality that u is

the classical solution for the quasi-variational inequality (3.1)

Corollary 3.1. If D(P) = H then, for any element f € H, the quasi-variational

inequality (3,1) has a unique (classical) solution .

Remark 3.3. The Corollary 3.1 can be obtained directlly ., Indeed, let
T : H—= H be the mapping which associates to every w &€ D(P) = H the classical
solution (that there exists and is unique by corollary 2,1) of the prcblem :

(P +~'3jw) G0 =

By using (P2') and (j2) it results that the mapping T is a contraction

and the unique fixed point of T is the classical solution of (3.1) (see tal,

Remark 3 4 By taking j(u,v) = (>(v), ¥ ueH, ¥ ve D(P) we refind the results

obtained by Dincsd [6).
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4 . CONTROLED QUASI-VARIATIONAL INEQUALITIES

Let €W, <¢,>) and (H,(-,-)) be a pair of real Hilbert spaces such that H
is a dense subset of W and H ¢ W< H' where H' is the dual of H . We denote by |- |
and-1{| + || the norms on W and H, respectively.

Let B : W->H' be a linear and completely continuous operator 1i.e.
W —= W weakly in W = Bw_ ~—> Bw strongly in H. (4.1)
For every w& W we consider the quasi-variational inequality :

(Pu, v-u) + j(u,v) - jCu,u) > (f + Bw, v-u) , ¥ ve D(P) (4.2)

where P, D(P), j and f are defined as in Section 3.

Definition 4.1.  The parameter w € W will be called the control and the

corresponding generalized solution of (4.,2), denoted by T (that there exists
by theorem 3.1) will be called the generalized state of (4.2),
The, optimal control problem to be studied in this section can be set in

the following form :

min &0 (w, W)
~we\W ;

where & : W+H—> R is defined by
& (W, v) = h(w) + g(v)

where g : H—>R and h : W — R are given functions satisfying the following
assumptions :

(i) g is 1008119 Lipschitz and non-negative on H ;

(ii) h is convex and lower-semicontinuous on W ;

(iii) there exists the constants Cl >0, CZE: R such that :

h(w) > Cllwl +Cyy VYwe Wi.
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Definition 4.2. A pair (w*,u¥) € W = H for which :

FACH GN3 = min 2 (w, W)
welW :

will be called a generelized optimal pair and the corresponding control w*

will be called the generalized optimal control.
Lemma 4.1. The map w +—> u¥ is weakly-strongly continuous from W to H,

Proof Let (wn)n(: W be a weakly convergente sequence in W to w, Let n € N
be arbitrarly.

Let (WD

s (u;)m < D(P) be two minimizing sequences for the functional

Fw and Fw , respectively, on D(P) where :

n
FS(V) =Q(v) + S0 G 9 iBs,. ) ’ VYouve DIP)Vos e W (4._4)

W W _
W W n W W
By the remark 3.2 we have u” = Su” and u =5y hence u, —> u

W
n :
and u; —> u strongly in H when m — o=

The hypothese (P2') of P implies the uniform convexity of the
functional FS defined by (4.4) 1i.e.
%'zk(lr-A)\lu—vl\z < A~FS(U) + (1-% )FS(V) - FS(>\u+(l~h W), ¥ uned@),
Vae(0,1), ¥ seW,
Substituting u = ux, Vo ug B =-% and u = u; s Vo= ux ;

S5 Wy A= %- onto the last inequality and adding these two inequalities,

we obtain :

n W y
\{'Z“U% - Urnll || 2 \<(Fw£um) = dwn\ + (Fw(u;) + Fwn(um) = dwn)+ (4.5)

HE A A L),
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where we have used :

n
U+Uw

d=inf  ElieF =0 1) vse W,
gy 5 82 :

On the other side, by usiﬁg (32), we have :

n W ]
Fw(um) R (um) =

n Wn\
slFail - d yelr @y -4 o Al e
\QW e - w\+ “ i = Wn\ + kilu -u i \um S I\ +
+\!Bwn - Bwl| Hu; - uxlI‘ (4 6)

Bearing in the mind that :
1im\\u2 - ux T TG o S
Mm->o= ;

: Wy : Ny _
‘ lim Fw(um) =y LimeE (um) Sl
. Moyoe m->00 N n

and using (4.6) we obtain, by passing to the limit with m—oein (4.5) :

e el < CliBw, - Bull

where C =

ok

Passing to the limit with n—o in the last inequality and using (4.1),

the lemma follows.

Theorenm 41, The optimal control problem (4,3) has at least one generalized
optimal pair, |

The proof of theorem 4,1 follows by using lemma 4.1, the hypothesis
(i) - (iii) and the same techniques as.in [ 9].

In the following we consider the case D(P) = H , From corollary 3,1 it
results that, for every w € W, the inequality (4.2) has a unigue classical

solution which will be noted by U,
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In the following we consider the case D(P) = H , From corollary 3.1 it

results that, for every we W, the inequality (4,2) has a unigue classical

W

solution which will be asted by 0

We can set the following optimal control problem :

min & (w, ug) ‘ 47

welW -

and a pair (Wf’ug ) € WxH which realizes the minimum in (4.7) will be called an
optimal pair.
By theorem 3.1 we obtain :

min 4 (w, u") = ming (w, u")
c
we W welW

from which, by using theorem 4.1 , we conclude :

Proposition 4.1. Let D(P) = H , Then

(1) A pair (W<, u? ) is a generalized optimal pair iff it is an optimal one

(2) The optimal problem (4,7) has at least an optimal pair ,

Remark 4.1. By taking D(P) = H, P a linear continuous and symmetrical operator
and j(u,v) =@(v), ¥ u,v e H with (@ as in Section 2, we refind some results

obtained in {9] about controled variational inequalities.
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5, ~APPLICATION TO A CONTACT PROBLEM WITH FRICTION

We shall consider a contact problem with friction in the theory of small
elastic-plastic deformation whose variational formulation is a nonlinear»
quasi-variational inequality as formulated in Section 3,

Let {). be an open bounded Lipschitz domain in RP (p =2, 3) , occupied
by the interior of an elastic-plastic quy in the initial unstressed state ,

Let @€l = FOkJ FlLJ r2 be a descomposition of the boundary of the domain )

where ro’ rl’ Fz are open, disjoint and non-empty parts of 91, VZ beying

the part of the boundafy which 1is in contact with a rigid fix support, The
body Q) is subject to body forces f = (f,) and to surface tractions t = (ti) on

f‘l -0 ro we consider the dispacements given, We also suppose that the -
support don't permit a detachment of (L on (-2 so that the normal component of
the displacement is zero, while the tangential component on r'z is a displacement
with friction,

This mechanical problem can be formulated as : find the field of

displacements u = (ui) which satisfies the equilibrum equations :

G = i
11,3 G =+ f. =0 ‘ in Gy (5 1)

and the boundary conditions :

= - . 7.

=0 on ‘—o , | (5.72)
= e : :

G;ij ny t; on 1 (5.3

lioeg 0,

|§.W] < (&) | S W] and
if | s (W) < 7 0 ICSE(U)| then u, = 0, on Ty (5,4)

if |G.t(U)| =7(x) |G§;(U)| then there exists A> 0

= = L ANGE
such that uy A ¢






where &= (C?ij) is the stress tensor related to the strain tensor & = (¢ iﬁ>

by means of generalized nonlinear Hooke's law :

S 3 = 2 90f W) 5w (k- Zafwn) g, w & (5,5)

where k = A+ %VA ik and/m being the Lame's coefficients of the body, g is a

given function and

Fw = Y, w
Tw =28, 8,00 - % £, 6,W.

In (5,4)«? is the coefficient of friction and <S; u represents a
regularized stress , We also have denote by U, Ui, G, G the normal and

tangential components of the displacements and of the stress vector, respectively,

\ = NGRS V = .- 7 == ¥ i . 1 "
- iMyo ti Vg o= Wi, where n (nl) is the outward norma: 1 unit vector to

the boundary of Q). Throughout the paper, summation convention is used .

Remark 5 1. The problem (5,1) - (5.4) differs from the Signorini problem with
non-local friction (see, e.g.(10)) only by the nonlinear constitutive eqdation

(5:5),
In order to give a variational formulation of this problem let us consider

the following assumptions and notations :
H:=\ve[H1QDJ}P; v-=:0 oh VO, Y = 0 on YZ}

0P) = Hac?a))" o [ea)’

& e Gl ) ¥ ueH, (5.6)
9 € L°°<V2) such that « > 0 on s (5.7
g €200, o) (581

= s / ; = H
(Pu,v) J Gij(u) ij(x) dx, - Y¥ue BP), ¥Yve

£
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{ now ek Bukode 4 $ouel v ede),

'3(\&,\/) = 2
o0 : 1% ve Y |
Sidlep e é-\tLZ(V1>’lP (5,9
LCw) = S‘fivi dx + 5 tiv; ds, V v¢ H
4% Fq

Arguiying as in [10] it is easy to prove that a variational !formulation
of the problem (5. 1) - (5 4) is the following nonlinear quasi-variational
- ineguality :

find u e B(P) such that

CBlE, v-0) R 90w) = Jlu,u )y Llv=u), ¥ ve BP), (5.10)

Theorem 5.1.  Suppose that the conditions (5, 6) - (5,9) hold and that

(3) g, = const, ie,0<g g g(s)s%k, g

Vv

(3) g; = const, i,e, g(s) + 259'(s) 29, >0, ¥s30,

Then there exists a constant 7:1 > 0 such that for every 7 with

“V)” vafé) 5 v?l’ the problem (5,10) has a unique generalized solution ueH.

Moreover, if the generalized solution u of (5.10) belongs to D(P) then u is

the classical solution of the mechanical problem (5.1) - (5. 4),

Proof, The hypothesis of theorem 3,1 are fullfielled , Indeed, if we denote

by & H— R the functional defined by :
1582

Fl
¢ (v) :iLé-k S +%

we obtain that the operator P is a potential (see, e, g lex SR

g(s) dG]tM :

oL —

(Pu, v) = DO(u - v o oM DPY o ¥y el
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Also, we have :

3 2
(PCu+v) - Pu,v) > 2914~ éij (v) dx, ¥ u, ve D(P),
)
from which, by Korn's inequality , we obtain (P2') with {2 = 2g;.

On the other side it is easy to verify that the mapping J satisfies
(31) and that :

lj(ul,vz) + j(uz,vl) - j(ul,vl) - j(UZ’V2>| SVC\IVUIU»(V-zjlul—UZ\i\lvl—vz\}

Y u e H, ¥vy, v, &0,

1%ty
29 ,
Taking 7 e CL then, for every 7 with | q\ﬂup( ) <']l , we
2
obtain the hypothese (j2) holds with k = C |\Q\|BO(Y. )
2

Now, the theorem follows by applyiﬁg the theorem 3.1,
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