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Introduction and Statement of Main Results

The aim of our work is a parallel study of the two natural graded Lie algebra objects asso-
ciated to topological spaces S in traditional homotopy theory: gr*m; S (the graded Lie algebra
obtained from the lower central series of the fundamental group of a connected S, with bracket
induced by the group commutator) and 7,09 (the-connected-graded homotopy Lie algebra
of a 1-connected S, with Lie bracket given by the Samelson product); in the second case it
turns out, as suggested by the analysis of the first case, that more accessible, and still valuable
information may be gained on the bigraded homotopy Lie algebra gr*r,QS, associated to the
lower central series of 7,QS. The main problem one immediately faces here is related to the
big difficulties raised by the concrete computation of these invariants, even in rational form.
For example, the complete knowledge of the relevant homological information would not be of
much help: one knows that H*(Sp(5)/SU(5); Q) H*((S°%S5%)#(S%%S$?1); Q) as algebras
[St], while the rational homotopy Lie algebras have a quite contrasting behavior, the first
one being finite dimensional ([St],[GHV]), hence nilpotent and the second one being infinite
dimensional and not even solvable ([HL)); similarly the nilmanifold Ng /Nz (Nk being the

group of upper triangular unipotent 3 x 3 matrices with entries in K) and the connected sum
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(81 x §?)#(S" x S?) have the same rational multiplication table in low dimensions (i.e. the
same p: H' A H' — H?) and still their fundamental groups are strongly different, the first
one being two-stage nilpotent and the other one being free on two generators (see [GM]).
By contrast to these examples we are going to look at some fixed graded-commutative unital
Q-algebra A*, supposed to be connected (A0 2 Q) and finite dimensional in each degree, and
use the deformation-theoretic methods of rational homotopy theory, which provide various
convenient algebraic parametrizations of the spaces S with H *(S;Q) = A* as algebras (see
e.g. [HS],[LS],[MP], and many others), in order to exhibit conditions on A* guaranteeing
that the (bi)graded Lie algebra invariants of S described above are constant within A*.
* Various such so called intrinsic properties of 4* have been considered in the literature. For
example S is called formal if its rational homotopy type is entirely determined by its rational
cohomology algebra and a basic result of the theory says that any (1-connected) algebra (i.e.

A' = 0) is realized by exactly one formal homotopy type [S]; S is called spherically generated

if the image of its rational Hurewicz morphism coincides with the primitives of its rational

homology coalgebra and a formal space is always spherically generated [HS; 8.13]. Accordingly

A* is said to be intrinsically formal (spherically generated) if any S with H*(S;Q) & A* is
formal (spherically generated). Various sufficient conditions for intrinsic formality (spherical
generation) are known (see e.g. [F],[T1],[MP]), via deformation theory.

Let us say that A* is graded (respectively 1-graded) intrinsically formal if the bigraded

(resp. graded) Lie algebra gr*m, QS @ Q (resp. gr*m S @ Q) is constant within A*.

Our first goal is to produce examples (both general and concrete classes of them) of natural
sufficient conditions for the above mentioned intrinsic properties (and at the same time weaker
that those already known for the other two mentioned intrinsic properties, which are generally
very restrictive). Secondly we will give explicit computations of homotopy Lie algebras, in
the presence of these conditions, and also give bounds for the size of homotopy Lie algebras,
some of them quite generally (Propositions 3.3 and 3.4). A unitary frame will be pI‘OVldCd by
what we call “a deformation method for the fundamental group”. As a consequence of our
method the results will be mostly of a rational nature; however, we ought to point out that
in the last section, which is devoted to link groups and represents the main application of our
ideas, we also succeed to obtain honest integral results, as we shall soon see.

Our hypotheses on A* are related to the Hopf algebra Ext%*(Q,Q), where the first degree
is the resolution degree and the second is the total degree, as usual, more precisely to its
indecomposables QExt’™(Q, Q) and to its primitives PExt® (Q,Q). The explicit description
of rational homotopy Lie algebras involves: if A* is l-connected, there is the (minimal) Quillen
model of the formal space S, associated to A*, to be denoted by L4, which is a bigraded
differential Lie algebra ([Q],[T; IIL.3.(1)], see also the next section), and thus HyL 4 becomes
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a bigraded Lie algebra (for an even more precise computation, see Theorem B(i) below); to a
connected A* one may associate the dual of the cup product pairing, u: A* A A — A2, to be
denoted by 0: Y — X A X, and then the graded Lie algebra L%, defined as the quotient of the
free Lie algebra on X, L* X, graded by the bracket length, by the ideal generated by 0Y - under
the obvious identification L?X = X A X (see also Lemma 1.8(i) for a further construction,
related to the explicit computation of the rational nilpotent completion of 7.5 4).

Before stating our first results, let us make one more definition: the cup-genus of A* to
be denoted by cg(A4), is defined to be the maximal dimension of the graded vector subspaces
N C AT, having the property that N-N = 0 and N N (AT-A") = 0; the same definition
obviously applies to a vector valued 2-form, u: A’ AA' — A% where cg(1) equals the maximal
dimension of the vector subspaces N C A?! for which N AN)=0.In the‘classical case of
the cohomology of a closed oriented surface, the two definitions coincide, their common value

being just the genus of the surface, hence the terminology.

THEOREM A. Let A* be a I-connected graded algebra.
(i) If QExtil’*(Q, Q) =0 and if A* is intrinsically spherically generated then A* is graded
intrinsically formal and the constant value of the bigraded homotopy Lie algebra equals H} L 4.
(ii) Suppose A* is graded intrinsically formal. If cg(A) > 1 then, for any l-connected S
with H*(S;Q) & A*, the graded rational homotopy Lie algebra w05 ® Q contains a free

graded Lie algebra on two generators.

THEOREM A’. Let A* be a connected graded algebra, with associated vector-valued 2-form f.
(1) It 'PExti{l(Q, Q) =0 then A* is I-graded intrinsically formal and the constant value of
the rational graded Lie algebra associated to the fundamental group equals LY.
(i) Suppose A* is 1-graded intrinsically formal. If cg(p) > 1 then, for any connected S
with H*(S;Q) = A* and with Hq(S;Z) finitely generated, 7S contains a free group on two

generators. &

We must point out that the condition of intrinsic spherical generation is necessary in The-
orem A(i), see 2.3. As for the vanishing of QExtjl’*(Q, Q), this condition, while not really
necessary (see again 2.3), seems to be a most natural one, as it follows for example from the
proof given in Section 2. On the other hand, it is both a familiar condition, being first consid-
ered in [P] in connection with the cohomology of the Steenrod algebra and then intensively
studied, see [Lo] for the connection with the cohomology of local rings, and there are many
other interesting examples (sce the next theorems, and also [Pa], as explained in 2.3). The-
orem A(ii) should be related to the (yet unsolved) Félix-Avramov conjecture [FT], claiming

that, for a space S of finite rational Lusternik-Schnirelmann category, 7,25 ® Q contains
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a free graded Lie algebra on two generators as soon as it is infinite dimensional. Similarly,
the vanishing of PExt%'(Q,Q) in A’(i) above is not necessary (see 2.3) but again most
natural (see the proof), and there are also many examples, as we shall see below, including
link cohomologies. Theorem A’(ii) should be compared to similar results from [C1],[C2]; the
methods are however entirely different and the hypotheses are rather complementary (see the
- remarks made after the proof of A’(ii) given in 3.2, and Proposition 3.3). Our Theorems A
and A’ emerged from our belief that the main results of [KXS], namely that the cohomology
algebras H*(VS*; Q) and H*((VS!) x S'; Q) are 1-graded intrinsically formal - in our termi-
nology (which were proved there “by hand”), ask for a proper generalization in a deformation
theoretic framework.

Moving to our more concrete classes of examples of (finitely generated) graded algebras A*,
we shall focus here our attention to two parallel types, namely: 2-skeletal algebras defined
by the requirement that A>? = 0 (which are plainly uniquely described by a vector-valued
2-form, p: A' A A1 — A2, and here we first have in mind the cohomology algebras arising
in link theory), and on the other hand 2-stage (1-connected) algebras, defined by the condi-
tion (AT)? = 0 (which correspond, by [FH; Corollary 4.10], to formal spaces with rational
Lusternik-Schnirelmann category < 2, an intensively studied case). The resemblance is quite
clear; to be more precise, there is a one-to-one onto correspondence between 2-skeletal al-
gebras with g = onto and 2-stage algebras generated in dimension 3, given by just tripling
degrees. Given a 2-skeletal algebra A*, we first associate to it by duality, as above, the map 0,
then construct a bigraded connected Lie algebra as follows: E} = LX/ideal(0Y), where the
upper degree comes from bracket length and the lower degree is obtained by assigning to X
the (lower) degree 2; at the same time we may pick bases {z1,...,2,} for X and {y1,...,yn}
for Y and consider the sequence of clements dy; € T?X (T*X = PTPX, TPX = X®
is the tensor algebra). Similarly, a 2-stage A* gives rise to a Quillen model of the form
La=(L(X, oY . a8) where X, =0 aagl Ay, : Yi > (L2X),—1 (see §1 and §4); we may

thus define, exactly as before, a bigraded Lie algebra Ef and elements dy; € T2X, (note that

in the correspondence given by tripling degrees these objects are the same).
In the results below we shall make heavy use of Anick’s notion of strongly free set of

elements in a connected graded associative algebra [A; page 127] and of Halperin and Lemaire’s

natural specialization to inert sequences of elements of a connected graded Lie algebra [HL;

Définition 3.1].

THEOREM B. Let A* be a 2-stage algebra.

(i) The following conditions are equivalent:

- OFxt *(0,9)=0






-gldm B, <2
- {0yj}1<j<n is strongly free in TX
Any of them implies that H;L 4 = E (as bigraded algebras).
(ii) Assume QExtil’*(Q,Q) = 0. If QA* is concentrated in odd degrees or in an interval

of degrees of the form [[—1,3]—1], then A* is also intrinsically spherically generated.

THEOREM B’. Let A* be a 2-skeletal algebra.
(i) The following are equivalent:
- PExt%(Q,Q) =0
- PExt%2'(Q,Q) =0
- gl dim E, < 2 and p is onto
- {0y;}1<j<n Is strongly free in TX (automatically p must be onto).

(ii) Any of the above implics the equality of formal power series

o0

o !
H(l —PYmLy — 1 _mz 4 nz®, where m=dimX
p=1

The main source of examples for B(i) and B’(i) is provided by Anick’s combinatorial cri-
terion [A; Theorem 3.2] for strong freeness in tensor algebras (see 4.3, 5.2). We should also
mention that in establishing the formula in B’(ii), where we tackle the difficult problem of
computing the ranks rk gr’n (7 = 7;S5), we are not bound by our methods to restrict ourselves
to 2-skeletal algebras (see the discussion around the Kohno example [KT] in 4.7).

We finally come to our main application. It is devoted to the computation of the graded Lie
algebra gr*m of link groups 7. Unfortunately (as the example of Borromean rings examined in
[GM] shows) in general even the ranks rk grP7 are not a formal consequence of the cohomology
algebra of the link. We find out here a possible explanation of this phenomenon, related to
the richness of the linking numbers structiire.

Consider then ¢ = (I;;)(i j)erxs,» @ symmetric matrix with zero on the diagonal, indexed
by an m-element sct I and with entries in Q (or Z), and construct an associated 2-skeletal
link-algebra A* = A} as follows: set A! = Q-vector space with basis {e1,...,em}, A% =
A' A A, modulo the relations e; A ej+e;j ANep = e; Aeg, A% = 0, and define p(e; A B =
class of l;;(ej Aej) in A% (of course, if ' C S® is an m-component link and £ is the matrix
of its linking numbers, then 47 & H*(S*\ K;Q)). Construct then a finite unoriented graph
Lo, with vertices labeled by v1,..., vy and arrows {v;,v;} introduced if and only if l;; # 0;
for a given prime p we may similarly construct (if all the entries lie in Z) a graph T, where

{vi,v;} is an arrow if and only if /;; # 0 mod p. We may now state our result.






Tneorem C.
(i) For a link algebra A*, the following are equivalent:
- A* is 1-graded intrinsically formal
- PExt%(Q,Q) =0
- T’y is connected
Any of them implies that the value of the graded Lic algebra gr*m; S @ Q is constant as
soon as H*(S; Q) = A* and equal to L&(21,. .., 2m) modulo the relations Dot bzl =0,
1 € I, where dega; = 1; morcover, its Hilbert series Y rk giPm, S - 2P depends only on m,
being equal to ) rl gr’(F,,_y xFy) - 27, where F}, stands for the free group on k generators.
(ii) Given an m-component link group m, the connectedness of all graphs I', (p-prime) is
equi;a,]ent to the fact that the abelian group grn is free of rank (m —1)(m — 2)/2 and in this
case the graded Lie algebra gi* is isomorphic to L% (a1, ..., %, ) modulo the above mentioned

relations, and it Is torsion free as a graded Z-module.

Similar results for link groups were obtained, by using a completely different method, in [H].
Hain’s geometric method used there enables one, in principle, to deal also with links with poor
linking numbers structure. As far as the concrete examples are concerned, he is forced to use
a theorem in combinatorial group theory due to Labute [Lal], which involves the highly
nontrivial verification of a certain independence property for the defining relators of a finitely
presented group; consequently the concrete examples do not abound, and thus our work may
be viewed as complementary to Hain’s. (At this point it is interesting to notice the perfect
resemblance between Labute’s independence property and Halperin-Lemaire’s criterion for
nertia in a free Lie algebra [HL]!) Our method of proof of Theorem C also gives a (partial)
answer to a question in combinatorial group theory raised by Labute in connection with his
independence property ([La2; Problem 5])-see 5.7.

Finally, we ought to mention that in general given a connected algebra A* with associated
graded Lie algebra LY, the vanishing of PE\(EZI (Q, Q) provides one with a very convenient
framework for “the deformation theory of the fundamental group”. In particular, one has the
following (stronger) rigidity result: if moreover H*2!(L%; L*) = 0 (where the first degree
of the above Lie algebra cohomology is the resolution degree and the other comes from the
grading of L* as usual) then the rational nilpotent completion of 7.5 is constant within A*
(for instance Kojima’s [KXS] rigidity result for A* & H*(VS?; Q) immediately follows, since
in this case LY is free). We shall undertake this further step of our theory in a subsequent

paper.

Here 1s the plan of our paper:

1. Algebraic models and deformation theory
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2. Rigidity results (proofs of A(i) and A’(1))
3. Bounds for homotopy Lie algebras (proofs of A(ii) and A’(ii))
4. Rigid examples and inert sequences (proofs of B and B’)

5. Link groups (proof of C).

A preliminary version of our results was announced by the second author in a lecture given

at the Conference OATE 2, September 1989, Craiova, Romania.

1. Algebraic Models and Deformation Theory

In this first section we will purely algebraically reformulate theorems A and A’ and prove
a deformation-theoretic result which will be the key step in the proofs of A(i) and A’(i) to be
given in the next section. :

We shall deal with bigraded Lie algebras (bglie) Ly, L = @ L, n > 0 and p > 0; ig-
noring upper degrees, we are thus considering just an usual graded Lie algebra (glie) L,,
with the standard sign conventions related to the skew-commutativity and the Jacobi iden-
tity [T; 0.4.(1)]; the upper degrees arc only required to be compatible with the bracket, i.e.
[L?, L9 C L**9; we shall also frequently have the occasion to meet bigraded Lie algebras
whose lower degrees are concentrated in dimension zero; by just ignoring them, we shall

speak of a Lie algchra with grading (grlie) L* (no extra signs !). We shall also consider the

lower central series of a (graded) Lie algebra L, the descending chain of (graded) ideals induc-

tively defined by L(Y) = L and L1 = (L, L(”)], and the associated (bi)graded Lie algebra
gr*l = P,5, g7L, &L = LP) /L), the topological examples we have in mind are the
homotopy Lie algebra 7,05 of a 1-connected space S, and its associated graded, gr*m,QS.

Similarly one may consider the lower central series of a group w, denoted by (), p > 1,

and the associated Lic algebra with grading gr*n = €5, gr’r, gr? = 7P ) (P+1) | see e.g.

[Se; I1.2], for example the homotopy grlic algebra of a connected space S, gr*n; S.

We are going to exploit the duality between Lie algebras and (quadratic free) differential
graded commutative algebras (dga’s)-see [T; Proposition 1.1.(5)] (in particular we shall follow
the notation of [T] and constantly denote vector space duals by #). We thus recall that there
is a (categorial) equivalence between bigraded Lie algebras, which are of finite type with
respect to the lower degree, and free dga’s of the form (AZ}, D), where Z = EBZI?, >0
and p > 0, dim Z" < oo for all n and the differential D is quadratic and bihomogeneous, i.e.
DS c (A2Z)*!. The equivalence is described by L — C*(L) = (AZ, D) [T; L1.1], where

p—1"
Zy = #LPT and D: Z — Z A Z is dual to the Lie bracket.

n—1

Let (AV*,D) be a free dga, which is of finite type and with quadratic differential, and let

i






L, be the dual glie. By a nilpotent filtration on (AV, D) we shall mean an ascending filtration
on V5 A B byse, with By = 0.and DE, C AQF},_l, any p > 1, which will be called exhaustive
if V. = |JF,. The canonical filtration {F,V},>¢ is defined by FyV = 0 and, inductively,
F,V = (D|y)™* A? F,_1V, for p > 1. By construction, it is nilpotent.

1.1. LEMMA. For any p > 0, F,V coincides, by duality, with the space orthogonal to Lo,
g
Tilptl)

Proor: Thislemmais both elementary and perhaps well known. For the reader’s convenience
we are going to sketch a proof.

For p = 0,1, this is obvious. For v € V and f,g € L recall the basic duality equation
[T; page 26]:

(1.2) (v, [f,9) = (=1)"87 - (Do, f A g).

The induction step will be based on the equation N+ A Nt = (M A N)t, where M is
a (graded) vector space and N C M a (graded) subspace, which follows from elementary
multilinear algebra.

Suppose thew I,V = B, By definition, v € F,V if and only if Dv € A?F,_;V.
Invoking the above equation (with M = L and N = L)), we have A?F,_,V & A2L)T o
(LA L(”))L. But Dv € (L A L(”))~L means, by (1.2), exactly v € [L,L(p)]“L o L(I’H)J', which

completes the proof. §

We are now going to briefly review the aleebraic models of rational homotopy Lie-algebras.
. () o ] p

Any connected space S has a so-called (Sullivan) minimal model M g: it is a free dga (AZ*, d),

dF, C AF,_; for p > 0, and minimal, that is d|z = da + d3 + ..., where each d; takes values

in A'Z, where ¢ = monomial length; when’S is 1-connected with finite Betti numbers, Z* is
of finite type. In this latter case there is also the Quillen model of S, Lg; this is a free dglie
(LW.,d), which is also minimal, i.e. OW C [LW,LW]. The first basic result reads

TuroreM ([Q),[S],[T). mQS @ Q= C*  (AZ*,dy) = H.Ls as graded algebras.

For a general connected S one may also consider the 1-minimal model, namely the sub dga
M; C M given by M; = (AV,d) (where we put Z! = V); this will be a 1-minimal algebra,
i.e. a free nilpotent dga generated in degree one. For such a,llgebras, one may still define the
canonical filtration exactly as above: this will be an exhaustive nilpotent filtration on (AV, d),

Felal p>0. If moreover the first Betti number of S is finite, then it easily follows that
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dim F}, V' < oo, for any p, and we may safely dualize. We thus define the associated Lie algebra
with grading of a 1-minimal algebra (AV,d), to be denoted by gr*(AV,d), by
% 4 e ¥ 1
(1.3 gri(AV,d) mgr*C*  (AF,V,d).
P
THEOREM ([S],[CPL,[Q]). gr*m S @ Q = g1*(AV,d) as Lie algebras with grading.

Given a l-minimal (AV,d) and assuming dim H*(AV,d) < oo in order to smoothly dualize,
we may also start with an arbitrary exhaustive nilpotent filtration ' = {F;V}pzo. It readily

follows by induction that F, C F,, for any p, hence we have a natural grlie map

-1

* ~ 12 ek ~ o ~ ok
grip(AV,d) = limpe*Ct  (AF,d) limgr*C*  (AF,,d) = gri(AV, d).
P P
1.4 PROPOSITION. For any exhaustive nilpotent filtration F' the above map gry(AV,d) —

gry(AV,d) is an isomorphism.

PROOF: For a fixed n and an arbitrary exhaustive nilpotent filtration {F3,}, we have to
evaluate the vector space l(im gr"C*_l(/\F];, d). By Lemma 1.1 this is naturally isomorphic
RN 4
to im #(FnL,/Frn F) = #(lim F,F)/lim F,_yF!). 1t plainly suffices to show that the
==p S ! TEerp 1
natural map lin} F,,F]; — F,V is isomorphic (to be more precise epic). For n = 1 this is
S I’ R . . . .
obvious (recall that V = 1_11_1;1 F)) and the induction goes well on, by the very definition of
])
the canonical filtration. §

We move to the algebraic models of formal spaces. Given a connected algebra of finite
type A%, it 1s constructed in [HS; pages 242-243] the bigraded model, B4 = (AZZ, D); it is
a minimal dga, which also carries a second (lower) graduation, with respect to which D is
homogencous of (lower) degree —1 (it is a minimal bdga). Tt is uniquely characterized by
the existence of a bdga map B, — (A4*,0) (where A* is concentrated in lower degree zero,
and is endowed with trivial differential) inducting a cohomology 1somorphism; forgetting the

lower degrees, it represents the minimal model of the formal space S,. If A* is 1-connected,

- there is also a formal Quillen model (see [T; I11.4.(5)]) £4 = (LW, d,), which corresponds
to A* by duality: W = #ts7'4, and the quadratic Lie differential 9, is essentially dual to
the multiplication; this dg Lie model also carries a second (upper) grading, given by bracket
length, and 9, is homogencous of upper degree +1. We have a well-known [T] equality of
bglie :

(1.5) SO D T

Given a bglie L] (of finite type with respect to the lower degree) its dual quadratic bdga,
(AZ}, D) also carries a third grading, coming from monomial length; the induced grading on
cohomology will be denoted by H¥(AZ, D) = B MTHAZ, DY,






1.6. LEMMA. Consider C*(Ly) = (AZ¥, D). The following are equivalent:
(i) LV = L2P any p
@B g =7 anip
(iii) L* is generated by L?
() B (A2, D=1
(v) 'L = Lt
(vi}L* = hm e (LB Y

PrRoOF: By Lemma 1.1, F,Z £ Z, is equivalent to L+ = 1241 Gince L* is strictly
positively graded, we have in general an inclusion L") ¢ L2?, for any p; an easy homogeneity
argument shows that the equality is in fact equivalent to L' - L/[L, L] being onto, hence,
by duality, to the fact that the canonical projection Ker(D|z, ) — Zy is monic; this last
condition precisely says that ' Hy(AZ,, D) = 0. In general, gr*L is always gencrated by gr!L;
conversely, assuming L* is generated by L', it easily follows from (i) that gr*L = L*. Finally,

by an obvious stability argument, one always knows that E__m gr*(L/ L) =2 gr* [,
r

A convenient set-up for the description of formal 1-minimal models is provided by consid-
ering Lie algebras with grading, L*, which are required to be generated by L', dim I! < co.
Given such L*, consider the inverse system --- = L/L®T) s L/L(P) s ... of central ex-
tensions of finite-dimensional grlie algebras (considered as bglie concentrated in lower degree

Zero), Seb

(1) ' (Al e=tim T (TR,
P

It is a l-minimal dga, by the well-known duality between central extensions of Lie algebras
and elementary extensions of dga’s [GM], which is also a bdga. It carries a natural (nilpotent
exhaustive) filtration F given by F, = V,,, for which one has by construction and the
preceding lemma griz(AV,d) & L*. Starting with an algebra A* (connected and of finite
type as usual), first construct a gr Lie algebra L% as in the iﬁtroduction, namely L% =
L% /ideal(0Y), where 0: ¥ — X AX & #(u: A' A A' — A?) (also noticing that L* depends
only on pi: A' AA' — Imyp C A?), and then associate to L% the 1-bigraded model (AV,,d) as
in (1.7). The next lemma seems to be folklore, but we chose to include a proof, being unable
to find a reference (not to speak of the fact that the construction (1.7) will be again useful

later on, see the proof of Proposition 5.3).

1.8. LEMMA. Let A*, L% and (AV,,d) be as above. Then:
(i) (AV4,d) is the 1-bigraded model of the formal space S4

(ii) gr*m S, ®Q = L.

10






Proor: Given the general theory, Proposition 1.4 and the above remarks, (ii) will follow at
once from ().

As far as (i) is concerned, we start by constructing a bdga map f: (AV;,d) — (4*,0). We
set fly, = 0, notice that ¥ = #LL 2 #X =2 A and put f|y; = id; due to the homogeneity
property of d with respect to lower degrees, checking that f commutes with the differentials

: ; 3 o d Inf :
is reduced to showing that fdV; =0, i.e. the composition V; — V5 A Vg —— A1 A Al i A2

(]

equals zero. Taking duals, this amounts to seeing that L% «— LY ALY = X A X ea— ¥
equals zero, which is obvious by the construction of L%. By the uniqueness of 1-minimal
models we must only verify that H'f is an isomorphism and H? f is monic [S]. But we know
that HY(AV4,d) & n_n}pIH(C*“(L;/L‘;)*)) and, by Lemma 1.6, YH(C* (L4 /L2 =
IHO(C*—l(LZ/Li{))*)) = Vj, which takes care of the condition on H!f. On the other hand
HY(AVi,d) = HE(AV.,d) @ HY(AV,,d), and ImHZf = Imy, while InH2f = 0, by the
construction of f. We may thus use a dimension argument: H?2f is monic is equivalent to
dim H2(AV,d) = dimIm pu. We may notice again that H*(AV,d) = ¥*H(AV,d), and this
in turn equals H*(L 4; Q) - classical Lie algebra cohomology with trivial coefficients via the
Koszul resolution, see e.g. [T] - for any k. We are thus led to compute dim Hz(LA;Q),
and we may use for this purpose the description of the second homology group of a Lie
algebra of the form f/r, where fis a free Lie algebra and r an ideal, given in [HIS; page 238,
Exercise 3.2]: Ha(f/r; Q) = [f,f] N r/[f,r]. We infer that Ho(L4; Q) = I/[LX, I}, where I is
the ideal generated by 0. The dimension of the last object plainly equals dimIm 8, and

finally dimIm 0 = dim Im g, by duality.

Next we are going to conveniently rephrase the conditions on the Hopf algebra Ext’;*(Q, @)

stated in the introduction.

1.9. LEMMA. Let A* be a connected algebra, with bigraded model B4 = (AZ},D) and
Quillen model L 4 (in the 1-connccted cas_g). :
(i) QBxt3"*(Q, Q) = 0 if and only if }J*EA is generated (as a Lie algebra) by HL,.
(ii) PExt%'(Q,Q) = 0 if and only if Z2 = 0. o

Proor: (i) The condition QExt7 "

(Q,Q) = 0 simply means that the Yoneda Ext-algebra
of A is generated (as an algebra) by Extl(Q,Q). Consider then the formal space S4 and
its formal Quillen dgrlie model L%, graded by the bracket length. In [Al; Theorem 2] is
established a graded isomorphism ;5 Exti’f > B, HiUL, (where Y = universal en-
veloping algebra functor), which is also compatible with the algebra structures, up to sign.

Since H*UL 4 = Z»/H*ﬁ;x as algebras and QUH*L, = QH*L, = H¥*LA[[H*L A, H*L 4] as

graded vector spaces [Q], our assertion follows.
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(i1) It is proven in [HS; Corollary 7.17] that one has Z7 & 4t ’PExtj{n_l(Q, Q) for any n. B

We describe now the algebraic parametrization of rational homotopy types with fixed co-
homology algebra A* in terms of deformation theory, following [HS] and [LS] (see also [MP]).
In the dga sctting of [HS], one starts_with the bigraded model B4 = (AZ}, D); it is con-
venient to set D = D'. Then any space S with H*(S;Q) & A* has a free dga model of
the form (AZX, D' + p), where the algebraic parameter, the perturbation p, may be written
p = p?4+pd+..., each p' being homogencous of lower degree —i; the trouble comes from
the fact that this (nilpotent) model may fail to be minimal (this is geometrically related to
the collapsing of the Eilenberg-Moore spectral sequence of S, see the next section). If A* is
1-connected, there is the alternative dglic setting of [LS], where one starts with the Quillen
formal model £4 = (L*W,,d); here we set @ = §'. One may represent any S within A* by
a (minimal) dglie model of the form (LW,, ' + p), where, again, p = p? + p® + ..., each p’
being homogeneous of upper degree i. Finally, here comes our basic deformation-theoretic

result.

1.10. ProrosITION. Consider a bigraded Lie algebra L} (of finite type with respect to lower
degrees) and its quadratic bdga dual, (AZ%,D). Suppose that L* is generated by L. Then
for any quadratic dga of the form (AZ*,d), where d = D! +p* 4+ p® +..., D! = D and each

7

p
bigraded Lie algebras:

is homogeneous of degree —i with respect to lower degrees, we have an isomorphism of

gr""'C*‘l (i d )= gr*(,’*_l L)

PROOF: SetC*™ (AZ*, d) = (L., [, ]p). By just dualizing the decomposition of the perturbed
differential, d = D+ p, one infers that the perturbed Lie bracket [ , ], has the following prop-
erty: for any x € L™, y € L™, [z,y], = [2,y] modulo L>™*™ (and of course [fc,?] € Lmtm),
By Lemma 1.6 one may precisely describe the lower central series of the original graded
Lie algebra (L.,[ , ]), in terms of the upper graduation. Our assertion will immediately
follow, as soon as we prove that the lower central series of the perturbed Lie algebra is
the same , or equivalently (by Lemma 1.1) the canonical filtration of (AZ,d), denoted by
PF = {PFnZ},>0 coincides with the canonical filtration of (AZ, D), which is, again by 1.6,
F =7 = Z_.}u>0- By (lower) degree inspection, dZ, C A2Z <n, for any n, and this
inductively implies that F,,Z C PF,,Z, for any n. The remaining inclusion will also be proven
by induction, trivially starting with n = 0. Assume then z € PF, Z and write z = 2o+ - -+ 2y,
where z; € Z; and z,, # 0. By the definition of the canonical filtration and by the induction
hypothesis, we know that dz € A?Z <, —1; writing d = D+p and examining the top component
of dz with respect to lower degree, we infer that Dz,, € A*Z.,_;, hence z,,, € F,Z = Z,,

therefore m < n and z € Z¢, = F,,Z, as desired.
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2. Rigidity results

This section contains the (almost simultaneous) proofs of Theorems A(i) and A’(i), and the

first examples.

2.1. PRroor of THEOREM A(i). Represent any S with H*(S;Q) = A* by the free dga
model (AZ*, D + p), as explained before. We claim that it will be enough to show that the
Eilenberg-Moore spectral sequence of S collapses at the E; term. Indeed, we know from [HS;
Theorem 7.20] that this is equivalent to the minimality of (AZ, D + p), and also equivalent
to dim7S ® Q = dimmSa @ Q, for any k. Once we may assume this, we know that
C*_IW*QS @ Q = (AZ*, Dy + p2) where the subscript 2 indicates that we have taken the
quadratic parts. We may now use the previous proposition, by taking L} = H;L4, with
dual (AZZ,Dy), sce (1.5); our hypothesis on QExt,q guarantees that L* is generated by L'
(Lemma 1.9(i)). We deduce a bglie isomorphism gr*7,Q2S®Q = gr* L, the second bglie being
isomorphic to L*, again due to the above-mentioned hypothesis (see Lemma 1.6(v)).

In order to establish the EMss collapse property, we are going to use the numerical criterion
in terms of ranks of homotopy groups and the dglie approach. Represent then S by a Quillen
minimal model of the form (LW,, 8 + p), as described before. The hypothesis that A* is also
intrinsically spherically generated comes now into play and allows us to suppose moreover
(see [MP; Proposition 1.8]) that p|p = 0, where the primitive subspace P equals Ker(d|w).
Filtering L1V by bracket length, we obtain a well-known [Q] spectral sequence of graded Lie
algebras, converging to H (LW,0 + p) = 7,05 © Q and starting with El! = (LW,,0) and
E? >~ H,L4 = 7,054 ®Q. On the other hand we invoke again our assumption on QExt 4,
recalling that H*L, is generated as a Lie algebra by H'L4 = P, which consists only of
permanent cycles, by the spherical generation property, hence E? 2 E*® and dim 1, 25QQ =
dim 70254 @ Q, as claimed. Our proof is complete. § '

vl

2.2. Proor oF THEOREM A’(i). This is similar but simpler. Use again the perturbed free
dga model (AZ*,D + p) of S and set Z! = V,. Since Z? = 0 (Lemma 1.9(ii)) (AV,D + p)
is a subgda of (AZ,D + p), for trivial degree reasons; it is equally trivial to see that the
above dga inclusion induces an isomorphism at the H' level and is monic at the H 2 level,
hence [S] (AV, D + p) represents the 1-minimal model of § (the nilpotence condition is easily
checked along the lower degree filtration of V,). Set then F,, = Ven. By Proposition 1.4,
orfr S 0 G = 141_1_r_1_” g1‘*C*_1('/\V<.,I, D+ p).

We may apply Proposition 1.10 to the finitely generated quadratic bdga (AVen, D), The
requirement that the dual Lie algebra L* be generated by L' is now automatically satis-

fied. Indeed we may check the equivalent condition given by Lemma 1.6(iv) by noticing that
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obviously
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n?
and that the cohomology of the bigraded model (AZ}, D) is concentrated by definition in lower
degree zero. We infer that gr*C*_1 (VD -+ p) 22 gr*C*~l (AV<n, D), which is independent
of p, for any n. Finally, for the formal space S4 corresponding to p = 0, Lemma 1.8(ii) tells

us that gr*m 54 @ Q = L%, which was the last assertion to be proved. §

2.3. REMARKS AND EXAMPLES. First we ought to notice that intrinsic spherical generation
is a necessary condition for graded intrinsic formality (in the 1-connected case), indeed, if
H*(S5;Q) = A*, the isomorphism gr*m, S ® Q = gr*r, 0S4 ® Q evidently implies that
dim7.S®Q = dimm S4 ®Q, for any k£, hence Fy =2 FEo, in the EMss, and thisin turn forces
S to be spherically generated, as shown in [HS, 8.13]. On the other hand the assumption
on the Yoneda Ext-algebra of A* made in A(i), albeit very natural, is not strictly necessary,
as shows the following very simple example, namely A* = H*P?C. This is an intrinsically
formal (hence graded intrinsically formal) example — this is very easy, sce e.g. [S]. A short
direct computation gives that H}L 4 is a 2-dimensional abelian Lie algebra with basis a € Hj
and b € HZ, therefore (Lemma 1.9(i)) QE.\:til’*(Q; Q) # 0.

As a first natural series of examples where QExtil’*(Q; Q) = 0 we may quote A* = H*MG,
where MG is the universal Thom space associated to an arbitrary orthogonal representation
of the compact connected Lie group G, see [Pa). In the other direction, any homogeneously
generated algebra A* is intrinsically spherically generated ([MP; 2.4], see also §4).

We also have to notice tha the hypotheses of A(i) are independent. We have just seen that
H*P2C is intrinsically spherically generated and still the condition on QExt4 is violated.
Let us now define an algebra 4* by describing its Quillen formal model, as in [T}: L4 =
(L((L‘l;ICQ,Q?g,(E,y),a), where degr; = degrs = degay = 2, degz = 7 and degy = 5, and
the only nontrivial action of 9 is on y, namely Oy = [z1,29]. Anticipating a little (see 4.1
and 4.3), we know that QExtil’*(Q,Q) = 0. Defining a perturbation p by requiring that
the only nontrivial action is px = [v1,[z2,23]], we got a space S with H*(S;Q) = A*,
‘whose minimal Quillen model is (L, 9 4 p) [LS]. Finally, due to the fact that, in L(z1,zq,23),
pz ¢ ideal(9Y"), a simple computation with the algebraic rational Hurewicz homomorphism
as in [T; [I1.3.(5)] shows that the primitive element of H,(S;Q) corresponding to z is not
spherical, hence A* is not intrinsically spherically generated.

The first nontrivial examples of 1-graded intrinsically formal algebras are those of [IKS],
namely A% = H*((V;,-1S!) x S), for m > 2; these fit into our theory and satisfy

m

'PExtj{l(Q, Q) = 0 (see the remarks made in 5.4).
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Finally consider A* = the cohomology algebra of the 2-skeleton of the m-torus, m > 2.
Concerning the bigraded model B4 of [HS], it may be easily seen that the 1-bigraded model is
(AZE, D = 0), with dim Z}! =m, Z§ = 0 and dim Z] = m(m—1)(m—2)/6. Using deformation
theory exactly as in the proof of A’(i), it immediately follows that even m; “®”Q is constant
within A*, hence A* is 1-graded intrinsically formal, though ’PExtj{l (Q,Q) # 0. However it
seems that this is the right kind of condition for having a reasonable “deformation theory”

for the fundamental group.

3. Bounds for Homotopy Lie Algebras

Here we give the proofs of A(ii) and A’(ii) and also exhibit two quite general types of

bounds for homotopy Lic algebras directly related to the main ideas of the paper.

3.1. Proor orF THEOREM A(ii). Assuming H*(S;Q) = A%, we know that gr*7, 05 ® Q =
gr*H, L 4, by the graded intrinsic formality of A*. We claim that from cg(4) > n it follows

*

that there exists a bglie onto map f: gr*H, L4 — L7,

where L} is a free graded Lie algebra
on n homogencous generators of strictly positive degrees, which is bigraded by using the
bracket length as upper degree. Postponing for the moment the proof of the claim, we finish
by observing that a bglie onto map f: gr*m. QS5 ® Q — L*(z,y) gives rise to a bglie monic
section s: L*(2,y) — gr'm.0S @ Q, which, by freeness of L(z,y) and by lifting in upper
degree one, finally provides a glie map h: L(z,y) — 7025 @ Q. Since the free Lie algebra is
generated in upper degree one, we know that gr*l. = L* and thus gr*h = s, therefore h is
also monic. .
Coming back to our claim, we recall that we have an n-dimensional graded vector subspace
N C At with N-N =0 and N C AT -» QA monic. We therefore have a graded algebra map
Q1N 2 A*, where the multiplication in the first algebra is defined by (¢@n)-(¢' @n') =
q¢ @ (gn’' 4+ ¢'n). This gives rise by duality.to a bdglie map g: L4 — Lgion = (L*V5. 0=,
where V, = #s7'N* [T]. We may take then f = gr*H,g, and it will be plainly enough to show
that H,g is onto; since ¢ is bihomogeneous and L is generated by L, this is equivalent to H'g
being onto or, by duality, to Q(j) being monic, which 1s precisely the injectivity condition for
NcAT 04 ) :

3.2. PROOF oF THEOREM A’'(ii). Here we know that gr*mS ® Q = gr*mS4 @ Q@ = Lj
(see 1.8.(ii)). We now claim that cg(y) = maximal n for which there is a grlie onto map
f: L% — LY. Temporarily taking this for granted, we are going to complete the proof, in a

way similar with the preceding one, by first taking a grlie section of Fosslbtmy)— LY =

gr*m S ® Q. Due to the finite generation property of H 1(S;7) we may also suppose (possibly
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after replacing ¢ and y by suitable nonzero multiples) that sz and sy lift to grlm S, hence to
71S. We have thus obtained a group homomorphism from the free group on two generators,
h: Fy = F(z,y) — m.S, with the property that gr*h ® Q = s (gr*F(z,y) = Li(z,1), [Se;
IV.6, Theorem 1]). Consequently gr*h is monic. A rather standard argument shows then h
to be monic, by working with the nilpotent quotients: for any n consider the induced map
B Fg/an) — 9098 e, S which will also have the property that gr*h, is monic; use this,
and the natural short exact sequences gr™G — G/G™+) — G/G™ associated to a group
G, together with the nilpotence of cach G/G{™, to establish inductively the injectivity of hn;
finally infer that Ker h C ), Fg") = {11

 The truth of the claim may be easily seen, by observing first that the graded Lie maps
f:L*X/ideal(0Y) — L*V are in a bijective correspondencé, by duality, with the linear maps
g: N — A' with the property that yo (g A ¢) = 0, and next that f is onto if and only if ¢ is

monic. B

REMARKS. Chen’s method of iterated integrals ([C1],[C2]) allows one to obtain results which
are of a similar nature with the above A’(i1), but it requires the presence of conditions imposed
at the level of differential forms, and not just at the level of the de Rham cohomology; for
example our condition cg(y) > 1 is replaced by: there exist closed 1-forms w; and wy on the
manifold M, representing independent cohomology classes, and such that w; Aw, = 0 as a
form. From this point of view the two approaches are to be considered as complementary:
the manifolds Ng/Nz and (S! x $?)#(S! x S?) mentioned in the introduction have the same
cohomology algebra and cg(x) = 2, but in the case of the first (nil)manifold it is impossible
to find representatives with wy A ws = 0 (this would imply by [C2] that its fundamental -
nilpotent - group contains an Fq!), while in the other case this is easily done geometrically (by
taking the two closed 1-forms dual to two disjointly embedded 2-spheres, one in each term of
the connected sum), but A’(ii) cannot be used since ZZ # 0.

The next result is also complementary to Chen’s [C1], but this time concerning its conclu-
sion. It should be noted that there is also an integral version of the result below, claiming,
for any connected complex S with H;(S;Z) = free, the existence of a natural onto grlie map
L3 - gr*m S, induced by the isomorphism Hi(S;Z) = gr'm S, where L} is the quotient of
the free integral grlie algebra generated by H;(S;Z), graded by bracket 1ehgth, modulo the
ideal generated by the image of the reduced diagonal A: Hy(S;7) — Hi(S;2) A Hi(S;Z).
Since we are not going to use this more precise version here, except in the case of links (where

it was established by Chen [C3]), see 5.5, we omit its proof.

3.3. PROPOSITION. Let A* be given, with vector-valued 2-form p and associated grlie algebra

L%. If S is any connected space whose cohomology algebra has  as associated vector-valued
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two-form then there exists a grlie epimorphism L% —» gr*m S ® Q.

PRroOTF: Take the 1-minimal model of S, (AV, d), consider the canonical filtration {F,,V} and
set L, = gr (AF,V,d); we know that gr*m § @ Q = 1(i1_nn gr*L,. Fixing the l-minimal dga
(AF,V,d), we obviously have, by naturality, F.(F,V) C F,V, for any m; a straightforward
induction, which only uses the definition of the canonical filtration, shows that we have in fact
Bl BV 2 BV loem < ngthe general equality #gr? =2 F,/F,_4 following from Lemma 1.1
and the preceding remark show that the inverse limit hm gl’ L, stabilizes for n > p, for any p.
For p =1, L is just the abelian Lie algebra on #F) V #H](/\V d) = #HIS = #A =2 X.
By stability we have a tower of grlie maps gn: L*X — gr*L,, given by g»|x = id (whence
they are all onto). In order to check that they all factor through L% giving thus rise to a
tower frn: L% — gr*L, (consisting of epic grlie maps), hence to a grlie epimorphism ol
l(jr_nn gr*L, = gr*m S © Q as desired, it would suffice to check that ¢20Y = 0 in gr?L,, again

B g Loy ]
by stability, i.e. that the composition ¥ — X A X £ g11L2 A grlLq — gr?Ly equals

: i n
zero. By duality, this is equivalent to seeing that Fy/Fy — Fy A F1 = AV A A1 — A% equals
zero. Denoting by D the decomposable elements of a graded algebra, plainly dfy = 0 in
DH2(AV,d) = DH?S = DA?, the last equality coming from our assumption on the vector-
valued 2-form associated to H*S. The proof is now complete. §
The following interesting numerical test for 1-graded intrinsic formality may be immediately

deduced.

COROLLARY. A* is 1-graded intrinsically formal if and only if rk grPmyS is constant within

A* (and equal to dim L"), for any p.

Our last result in this direction is somewhat surprising, since the other known qualitative
numerical results indicate (see [F; Chapitre 7]) that the numerical invariants of the formal
space S4 would represent an upper bound for the corresponding numerical invariants of S if

¢

H*(5;Q) = A"

3.4. PROPOSITION. Let S be a l-connected space of finite type, with rational cohomology
algebra A*. If the Eilenberg-Moore spectral sequence of S collapses at the E, term, then we

have inequalities 11\(“*95)&” > dim(H,.L \)(') for any n, p.

PROOF: Represent S by a (minimal !) model of the form (AZ*, D + p), as in 2.1, and note
that .05 80 = ’*—1(/\7* Dy +ps),and HiL g & 7*—1(/\Z:, D,). We thus have a bigraded
vector space L* = #Z:F] and two graded Lie brackets, [ , ], and [ . the second is
actually bihomogeneous and the conditions on the perturbation p translate, as in the proof

of 1.10, to the fact that, for any @ € L™, y € L™, [2,y], = [z,y] modulo L>™*". We may
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also suppose that dim L < co. This can be seen as follows: for any fixed lower degree n, as in
our statement, the vector space Lg{’) remains unchanged (for any ¢) after taking the quotient
of L by the graded Lie ideal Ly ,.

Having established this framework, let us denote by {F}" }myo respectively by {F™}m>o0,
the lower central series corresponding to [ , |, respectively to [ , ]. We have to show
that dim (F;") > dim F}}*, for any m, n. Consider then the (decreasing and finite) filtration
on F7* defined by GFFJ" = vector subspace spanned by [z1, [« [Tm-1,Zm]p. .]plp, Where
z; € L} and ) r; 2 k (and similarly for GFF™). In the bihomogeneous case we evidently
have GEF™ & F™ 0 L2F, ' '

For fixed m and k, define f: GkF;”/Gk“F]f”’ S GERT G P by fE ) =2 where 2
is a sum of terms of the form [z1,[...,[@m=1,Zm]p..-]plp in G*F* (modulo GF!F;*) and
¥ is the sum (in GFF™ /G*1F™) which is obtained by replacing the above monomials by
[z1,].. ., [®m—1>Tm])...]]. The map f obviously being onto (if well-defined !) and compatible
with lower degrees, the desired inequalities will follow (both filtrations being finite).

It remains to be shown that ¥, = 0 in G"'F]’," implies T = 0 in G*F™/GFIF™. By
expanding the brackets in ¥, and replacing them by unperturbed brackets we find out that
Yo=Yz with 26 ety = e Bi= g6 T NL>*F =~ G¥1F™ and we are done.

4. Rigid examples and inert sequences

We prove Theorems B and B’ and we explain our main source of examples, based on Anick’s

[A; page 133] notion of combinatorial freeness.

4.1. Proor orF Tneorem B(i). By duality (see [T; IIL4.(5) and 1.1.(7)]) the condition
(A*)® = 0 may be rephrased as follows: L4 = (L(X« ®Y,),0), where X, Y, = #3_12*,
axX, = 0 aud Oy is monic and takes values in (L2X),_;. The fact that the ideal generated
by Y in LX is inert (in the sense of [I~I]f?rD<3ﬁ11it,ic>11 3.1]) is equivalent to the fact that the
sequence Jyi, ..., 0y, is inert in LX (which means by definition that the sequence is strongly
free - in the sense of [A; page 127] - when viewed in TX), and this is also equivalent to H*L 4
being generated as a Lic algebra by H'L4 (i.e. QExtil’*(Q,Q) = 0, see Lemma 1.9(1)),
and further equivalent to the fact that the natural projection LX, — Ey = LX*/ideal(aY*')
induces a monomorphism on Torg{(')(Q, Q) and an isomorphism on Torz;g')(Q, Q); all these
are to be found in [HL; Proposition 3.2, Théoreme 1.1]. It is also pl’OVCl_l there that if they
are fulfilled then HXL 4 = E}. In our case TorZ;RQ—X(Q, Q) = 0, due to the freeness of LX, and
thus the above conditions on Tory and Torys ;imply reduce to gl dim E, < 2. This remark

completes our proof.
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4.2. PRroofF oF THuEOREM B’(i). Consider the bigraded model of A*, By = (BZr, D).

As remarked in the proof of Lemma 1.9(ii) PExtj{I(Q,Q) = 0 if and only if Z% = 0 and

'PExtj{Zl = 0 if and only if Z2? = 0. By the general uniqueness results for k-stage minimal
models (i.e. minimal algebras generated in degree < k together with modelling dga maps

inducing a cohomology isomorphism up to degree k and a cohomology monomorphism in

degree k + 1) Z% = 0 is equivalent to the fact that the (b)dga 1-modelling canonical map of

[HS], f: (AZ},D) — (A*,0)is isomorphic in cohomology in degrees 1 and 2 and monomorphic

in degree 3; similarly Z2?% = 0 is equivalent to H* f being an isomorphism.

Since f is a 1-modelling map, H! f is isomorphic and H?f is a monomorphism onto the
decomposables DA?; on the other hand A* = 0, the algebra A* being 2-skeletal. These
remarks show that Z? = 0 is equivalent to the surjectivity of u plus Az, D)=0: As
we have already noticed in the proof of Lemma 1.8, H*(AZ!, D) & H¥(L*%;Q), for any k.
Now use an mmnocuous but very useful trick (which will enable us to use freely the results

obtained in [A] and [HL] for conected graded algebras): we replace the grlie algebra L* by

the connected glie algebra E, constructed in the introduction. We have changed nothing
except doubling upper degrees and then transforming them into lower degrees; consequently
H*(AZ',D) = #Tori_w‘(Q, Q), any k; since the Torlkl(') test of [HL] is enough to be checked
only for £ = 2 and 3 (Proposition 3.2 of [HL]), we conclude that PExt%'(Q,Q) = 0 is
equivalent to p being onto and gl dimE, < 2 (which implies H23(AZ!, D) = 0, therefore
H* f is an isomorphism and ’PExtf\’Zl(Q, Q) = 0) and also equivalent to @ being monic and
the sequence dy;,..., 0y, being inert in LX (or strongly free in TX), as before. Noting
that the strong freeness of a sequence implies the linear independence of its elements, the

surjectivity of u follows, and our proof is complete.

We point out that we have a characterization of the vanishing property for ’PEth’l(Q, Q)
valid for general algebras A* (as usual, connected and of finite type), similar to the one given

in Theorem B’(i). We chose not to give it here, because we are not going to use it here.
O

4.3. COMBINATORIAL CONDITIONS FOR STRONG FREENESS. We shall describe now, following
Anick [A], a very useful combinatorial test for the strong freeness of sequences of elements
in graded tensor algebras. Let then TX be the (connected graded) tensor algebra on a
positively graded vector space X, dim X = m. Pick an ordered homogeneous basis of X, sziy
{z1,...,2m}, and then extend this order to a total order on the monomials u = z;, ® - Q@ z;,
of TX, having the properties: degu < degv => u < v and u < v = zut < zvt, for any 2
and t (we shall explicitely use, on the monomials of the same degree, the lexicographic order

from the right). Given any nonzero element y € TX, write y = cjuy + - - + ¢,u,, where ¢;

are constants and u; are monomials, and define the highest term of y, to be denoted by ¥, by
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¥ = ui, where u; = the largest u; for which ¢; # 0. For a given monomial u = z;, @ --- @ z;_,
define its origin by o(u) = 7; and its end by e(u) = i,. To simplify matters (having in
mind our applications via B(i) and B’(i)) we shall only consider sequences 1, ..., y, of tensor

degree two, i.e. y; € T2X, for any i. Anick’s beautiful result reads then:

THEOREM (sec [A; theorems 3.2 and 3.1]). The sequence yy,...,y, is strongly free in TX if

the monomial sequence of its highest terms ¥y, ...,7,, is combinatorially free, i.e.

(*) the monomials y,,...,¥, are distinct, and

(3*) the sets of indices {o(¥,),...,0(y,)} and {e(y;),...,e(y,)} are disjoint.

As a first example, both simple and instructive, we shall again follow Anick and take
{z},...,2.} U {a¥,...,2%} as basis for X (concentrated in lower degree 2) — in this order
~ and consider the sequence of Lie elements {y;; = [2},2]] € L’X C T?X}, i =1,...,r
and j = 1,...,s. Then any subsequence is strongly free, being combinatorially free (since

Y;; = 2; @2, and the combinatorial conditions, () and (+*), are obviously satisfied).

4.4. Proor or Turorem B(ii). A general sufficient condition for the intrinsic spheri-
cal generation of a l-connected algebra A*, with Quillen model £4 = (L*W,,d), may be
found in [MP; 1.9. and 1.10]; it only requires the vanishing of Hom_y (HY L4, H2?L 4), where
Hom_;( , ) denotes linear maps which are homogeneous of lower degree -1. Recall next
that we know, by assumption, that H*L4 is generated by H'L,4 (cf. Lemma 1.9(1)). On
the other hand H} L,y = Ker(9)w,) & #QA*H. A simple degree argument (based on our
hypotheses on the degrees of QA*) shows that Hom_y(H!L4, HZ2L4) = 0 and finishes the

proof.
Here is a slightly more general version of B'(ii):

4.5. LEMMA. Let A* be any algebra (connected and of finite type), with associated grlie L*.

If PExt2Y( ,Q) = 0 then we have an cguality of formal power series
A\ u ; 1

H(l T zp)dim L’/’\ o ‘4*(__2,)’

p=1

where A*(z) is the Hilbert series of A*, 3 o, dim A™ - 2™,

Proor: Asindicated in the proof of B’(i), the assumption PExtj"Zl(Q, Q) = 0 simply means
that the bigraded model B, coincides with the 1-bigraded model, (AZ}, D). By a general
formula of [HS; Proposition 3.10] we know that 4*(—z) = [[oe (1 — 2" F1)dim Zn. On the

other hand, Lemma 1.8 tells us that Z! = # L% (see (1.7)), which completes the proof.
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REMARKS. The above formula is in fact quite effective: one may uniquely express dim L
for any p, with the aid of the Mébius function and of certain universal polynomials in the
coefficients of A*(2), if dim A* < oo, see [B].

4.6. PROPOSITION. Given an arbitrary algebra A* (connected and of finite type), the condi-
tion PExti{Z] (Q,Q) = 0 is equivalent to the fact that A* is generated (as a graded algebra)
by A, plus the equality of Hilbert series: Tor¥La(Q, Q)(z) = A*(2).

PROOF: Recall the 1-modelling (b)dga map f: (AZl,D) — (4%,0), where (AZL,D) —
(A*,0) is constructed out of L% as explained in (1.7), see Lemma 1.8. The vanishing
of PExti{ZI(Q,Q) is then equivalent to the fact that H*f is an isomorphism. But we
know that H*(AZ},D) = H{(AZ., D) @ He(nz), D), where Hy & A*Z} [ideal(DZ1), and
H*f(H%) = 0, by construction. Recalling from the proof of 1.8 that (V, 2 21 1) Z} = A!
and DZ! = Ker p, H{f being the canonical map, it follows, if H*f is an isomorphism,
that then A* is generated by A', and we have an equality between the Hilbert series of A*
and of H*(AZ!,D). On the other hand we already have remarked (again in the proof of
Lemma 1.8) that this last Hilbert series equals H*(L4; Q)(z), hence also Torl'l4(Q, Q)(z),
which completes half of our proof, the other implication being immediate, with a dimension

argument. §

4.7. EXAMPLE [KT). Denote by P, the n-th pure braid group and consider A% = H*(Pp; Q).
Then PExt \>1(Q Q) = 0, for any n. This may be seen as follows: it is known that A} is
generated by AL, for any n; the Hilbert series A (2 ) equals (1 4 2)(1 + 2z)...(1 + nz)

(hence A% is not 2-skeletal for n > 2). The main result of [IKT] also gives the equality

Tori“m"(Q,Q)(/,) = A (z), forany n.

5. Link groups
o

We may now start the proof of ‘Theorem C. Recall from the introduction that we have
associated to an m x m symmetric matrix of rational numbers £ two objects: a 2-skeletal
algebra A* (with vector-valued 2-form fi: Al A A — A?) and a finite unoriented graph L.
If the entries of ¢ are integers we may do the same for any prime p. We just take A1 = flhe
Z,-vector space with basis {e1,.-:sem}s i‘ — »l‘ A 41 modulo the same relations, and define
g Al AL — A2 by the same formula as before, taking of course the mod p residues of
the linking cocfficients I;;. We also have an associated graph T',, with the same vertices as

I’y (which is a subgraph of I'g and in fact coincides with Ty for all but a finite number of

~ primes p); obviously the conectedness of T'p implies that of T'y. First we add to the conditions
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listed in the statement of C(i) one more convenient reformulation:
5.1. LEMMA. T, is connected if and only if p, is onto (p is a given prime, or zero).

Proor: Write I'), = I‘; U---UT} (connected components). This gives a partition of the
index set of ¢, I = I' U---UI", and, for each k = 1,...,r, a submatrix of ¢, namely
£ = (lis ), yers Obviously the corresponding algebra A} := A}, (with associated two-
form ,u;‘; ) is a subalgebra of A*. It follows from these constructions that Tmr, =Y %, Im ,u;";,
hence dimIm g, < 57—, dimIm e T (card(I*) — 1) = m — r (the second inequality is
due to the easily scen fact that we always have dim A2 = card(I) — 1). Assuming that p, is
onto, we infer that r = 1 and I',, must be connected. Conversely, the conectedness of I' gives,
for any (7,7) € I x I, the existence of a sequence of elements of I, ig,...,1, (with ¢p =1 and
iy = j), with the property that (i, L Ot =0,...,5~1;and consequently e;, Ae;,,, € Im pip.
The defining relations for A';’, give the equality e; Aej = ej, Aej, + -+ ei,_, Aei,, hence

e; Aej € Im p, for any (1, 7), therefore ji, is onto and the proof is complete.

Our plan of proving C(i) goes as follows: the first (and most serious) step will be the
proof of the fact that the conectedness of T'g implies that ”PExt*A’l(Q,Q) = 0; here we
shall rely upon the strongly freeness criterion for the vanishing of ’PEth’l (Q,Q) provided

by B’(i), together with the result of Anick, relating combinatorial and strong freeness, that we

‘have quoted in the preceding section, and finally upon a basic combinatorial argument (see

Proposition 5.2 below). The vanishing of PExtt{l (Q,Q) will then imply that A* is 1-graded
intrinsically formal, by A’(i). We shall next prove a result concerning the implications of .
the property of being 1-graded intrinsically formal, for a general class of 2-skeletal algebras
A* (in Proposition 5.3), and deduce as a corollary that in the case of a link algebra this
implies that jio is onto, hence Ty is connected, by the above lemma. After thus completing
the chain of equivalences stated in C(i), the remaining assertions may be proved as follows:
the equality of Lie algebras with grading, gr*m 5 ® Q =~ L%, where H*(5;Q) 2 A%, is
provided again by A’(i); the equality L} = Lg(z1,..-,2m) modulo the stated relations is
just the explicit formulation of the construction defining L%, L% = L*(X)/ideal(9Y') where
(0:Y - X AX) = F(po: Al A A' — A?); here we only have to take {1,...,Zm} as the
basis of X dual to the given basis {e;, ... ,em } of A! (we may also notice that the m relations
2 jerlij lesei] =0 fori e F arc not independent, any of them being a consequence of the
m — 1 remaining ones). The Hilbert series L*(z) may be computed with the aid of B’(ii);
since in our case A*(—z) = (1—(m—1)z)(1—z) (yt0 is onto !), the last stated equality, namely
grim S @0(z)= gr*(Fm_i xF1) ® Q(z) follows from the unique determination of the Hilbert
series L% (2) by the exponential formula given in B’(ii) and the fact that gr*(Fm-1 xF1)®Q(z)
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satisfies the same equality, which is an immediate consequence of a classical equality (sce [Se])
@ g Fo) =1 - kz, valid for any free group Fy.

Let us establish now our combinatorial setting: start with a finite unoriented graph I', with
vertex set V, card(V) = m, and arrow set A, and fix a total ordering on V. In all that follows
one should bear in mind that we are just reformulating, in a more combinatorial form, Anick’s
test for combinatorial freeness explained in §4, where X has {z,;v € V} as basis, and the
sequence we are considering consists of the m — 1 elements (¥, )v<w, Where w is the highest
element of V in the given order, and y, = Y iy bl By Ty, any v.

Given u,v € V, we shall say that v and v are neighbours if {u,v} € A, and we shall write
this as u «~ v. Given the ordering on V, we may also speak of the oriented arrows, A: any
a € A gives rise to an oriented arrow @ € A:if @ = {u,v} then we write @ = v, where u < v.
On V x V (and therefore on A) we shall consider the right lexicographic order ((u,v) < (u',v’)
if either v < v’ or v = v’ and u < u'). Each oriented arrow @ = uv has an origin, o(a) = v,
and an end, e(@) = v. To any vertex u € V we shall associate an oriented arrow @, defined as
the highest oriented arrow having u either as an origin or as an end. Recalling how the graph
was constructed from the matrix € of linking cocfficients, and also that [z,2'] = 2@z’ —2' ®=z
in T2X, for any z,2' € X, it follows that in our case of interest the highest terms are given
by ¥, = @,, for each v € V where we have identified an oriented arrow @ = st and the tensor
Ty ® xy.

Given a fixed vertex w € V we shall look for total orderings (V, <) with the following prop-

erties, which we shall call (P,)-orderings:

(P,0) w is the maximal element of V with respect to <5
(P,1) the m — 1 oriented arrows {@,;u < w} are distinct;
(P,2) the scts {o(dy);u < w} and {e(@,);u < w} are disjoint;
(P,3) for any v € V such that u < o(@,), there exists v € ¥ such
that v &~ v and v > o(ﬁu).‘?f
Let us notice that (P,1), respectively (P,2), are equivalent to the properties (%), respec-
tively (%*), which represent the test for combinatorial freeness we are interested in. The
proposition below will plainly help us to conclude that if a link algebra A* has a connected
associated graph Ty then necessarily ?Ext(f\’l (Q,Q) = 0. This is our key combinatorial argu-
ment. The condition (P,0) above just helps one to make a canonical choice of m — 1 linearly
independent relations for L%, while (P,3) is a technical property which enables one to argue

by induction.

5.9. PROPOSITION. If I' is a connected graph then for any choice of vertex w € V, there






exists a (P, )-ordering on V.

Proor: We shall use induction on m = card(V). If m = 2, there is only one possibility,
forced by (P,0), and this choice evidently satisfies all our requirements. Let us describe the
induction step. Since T' is connected, the given vertex w has neighbours. Let us pick such a
neighbour of w, say v, and also fix it. Define now a graph I by just deleting.the vertex v from
T, and write the connected components of I, I' = T'y U- - -UT;. (and similarly for the vertices:
V' =V U---UV.). Remember that w € V' and order the components such that w € V;. Due
to the connectedness of I again, we may pick, in each component T'j, a neighbour of v, say
wh € V! (we shall take w;. = w). By the induction hypothesis, there exists a (Pw:_)aordering on
each T, i = 1,...,7. We shall now extend these orderings to a total order on I', as follows:
denote by o} € Vi, for each i, the vertex o(@,), and split Vi as V; = OV! U £V}, where
OV! = {u € Vi; u <o} and EV] = {u € Vj; u > o;} (if I'; happens to have only one vertex,
w!, set OV! = and V) = V). The order on V is obtained by arranging first the vertices of
OV (if any), in the chosen (P, )-order, then those of OV, ..., up to those of OV}; put next
the vertex v, and continue with the vertices of £V}, arranged in the chosen (Pu,'1 )—order, then
those belonging to EV4,..., ending with EV]. Property (P,0) is obviously satisfied.

In order to check (P,3), notice first that, in general, o(@,,) (where w is the highest vertex
of a graph) equals the highest neighbour of w. In our case, one such a neighbour is v, by
construction; any other neighbour must belong to V. (which is the connected component of
" = '\ {v} which contains w!), more precisely to OV;, being therefore smaller than v. Hence
o(@,) = v. The property (P.,3) is immediately checked for u = v, by considering the vertex w
itself. If w € V and u < v, then u must lie in some OV}, hence, by the inductively established
property (Pw§3) there exists v; € V! such that v; e u and v; > o!; this means that v; € V],
hence, by construction, v; > v = 0(@,), as desired.

Passing to the key properties, namely (P,1) and (FP,2), let us begin by making some pre-
liminary observations on the constructioncof the highest arrows @, where u is a vertex of an
arbitrary (connected) graph I', with highest vertex w. It turns out that we must consider the

following partition of its vertex set, V = MU N, where:

M ={u€eV;vewru=v<u},and

N = {u € V; there exists v € V such that v e~ u and v > u}.
If u € M, then @, = vu, for some v € V (by construction), and u = e(a,). fu € N, then
@, = uv, for some v € V, again by construction, hence u = o(@y). For example, denoting

by o the origin of @, we have: o € N, we M and @, = @, = ow. Let us also notice the
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equality {0(@y); © < w} = N. Indeed, we clearly have o(a@) € N, for any @ € A; conversely,
if w € A then u = o(ay,), as already noticed, while o(d,) = 0o(do). We also have an inclusion
{e(@,); v < w} D M, due to the fact that e(d,) = u for any u € M, as remarked before,

plus the observation that e(dy) = e(do). We may thus equivalently reformulate (P,2) as

(P,4) {e(@,); u€V, u# o} C M, or
(P.5) {e(@u); wEV}C M.

In our case (P,2) will be checked by proving that e(d,;) € M for any u; € Vol
We must first understand the difference between @,; and Ef“, where the second oriented arrow
is computed in the subgraph I';. If u; € OV! then, by the inductively established property
(P 3) there exists v; € VI such that v; e uy, and moreover v; € EV!, hence v; > v, by
construction; the only possible difference between @y, and a . might be caused, in general,
by the fact that u; e~ v; in our case that would imply the e,\lstence of an additional arrow
(in T') w;v which might contribute to the computation of @y, — but we know that ww; > u;v,
hence a (L = Qy,. fu; € EVIN N, a similar alnumcnt shows that @ 0: = @y, in this case too.
If u; € EV’ N M! but u; ¢ v, then plainly again (1 = .. Einally 1f eV M = M.
(use (P 3)! ) w; e v but there exists v; € £V; such tlmt v; «~ u;j, the same argument shows
again that at = d,;. The only exceptions appear when u; € M’ u; ¢~ v and all the other
neighbours of u; lie in OV! (in short when u; € Bj); in this case the arrows containing u; in
I’ are {77}, \\hcxo {v;} are the neighbours of w; in I'j, plus vu3; clearly @,, = v4;, and it is
different from @, . On the other hand, since M C €V} and v < v; for any v; € EV!, we know
that M; C M, fm any 7. Finally, if u; ¢ B} then e(@y,) = e(@,) € Mi C M, by (Pur5)
and the induction; if u; € B! then e(@,;) = e(?w;) = u; € ML C M (where u; € M follows
directly from u; € B}).
As far as (P,1) is concerned, it may be equivalently reformulated as

o
(P,6) card{@,; u # o} = card(V) — 1

First of all, the above discussion implies that e(@y,) = e(d@,,) € Vi for any u; € Vi =1,

With this remark (P,6) will follow from the equalities card{@,,; u; € Vi} = card(V; ) to be
proven for any i. The above arrow set splits as {Gu,s i € BiYU{@u;; us € Vi\ B;}. The first
set equals {Tu;; u; € B} and the second equals {@ ; u; € Vi \ Bi}. The two above sets are
clearly disjoint, the first contains car d(B}) elements and the second contains card(V})-card(B})
elements (due to the inductive hypothesis (P 1) and the remark that w! € B}). Our inductive

proof is thus completed. E
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5.3. PROPOSITION. Let A* be a 2-skeletal algebra, with associated 2-form p: A' A AY — A?
and Lie algebra with grading L%. If A* is 1-graded intrinsically formal and p is not onto,
then LZ® = 0. '

COROLLARY. A Il-graded intrinsically formal link algebra A* has a connected associated graph
To.

Proor oF THE COROLLARY: We must show that y is onto (Lemma 5.1). If not, the above
proposition tells us that L% = 0, i.e. the linear map f: X @ Y — L3X given by f(z ®y) =
[z, By] is onto. Counting dimensions, this gives the inequalities (m* —m)/3 < m - dim(8Y) =
m - dim(Im p) < m(m — 1), hence m =1 and A* =0, a contradiction.
PROOF OF THE PROPOSITION: Assuming that p is not onto, one has a decomposition ¥ =
Y' @ C, where 9|y is monic, C = 0 and C # 0, say C has {z1,..., 2.} as basis. We must
see that L3 = 0. Pick then an arbitrary element p € L3X; we have to prove that p € I =
the ideal generated by Y = 9Y". Suppose on the contrary that p ¢ I and consider then the
(larger) perturbed ideal I), = ideal generated by 9Y and p and the natural grlie surjection 7
f: LY =L*X/I - L*X/I, =: L;. Perform then on L the construction described in (1.7
to obtain a l-minimal (b)dga (AVi,d), with the property that gr*(AV,d) = L} (see also
Proposition 1.4). If we are able to exhibit a dga M with the property that H*M = A* and
having (AV,d) as 1-minimal model, then the property of A* of being 1-graded intrinsically
formal may be eventually exploited, giving a grlie isomorphism between L} and L%; by a
dimension argument f must be an isomorphism and consequently p € I, a contradiction.
Construct M by starting with (AV,d) @ (A(z2,. .., 2),0), where deg z; = 2 and the second
differential is trivial. Consider then H>2((AV,d) @ (A(za,. .., 2),0) and add new generators,
Ul =S Uk, so as to kill H2%: Jook next at H>2(AV @A(z)®AU;) and kill it by adding new
gencrators Uy, iterate and obtain M as the inductive limit of this process. By construction
H*M will be a 2-skeletal algebra. It is equally casy to see that when killing HZ8 M as
above one does not change H<2 M, hencé (AV,d) is indeed the 1-minimal model of M and
H*M = HS2((AV,d) @ (A(22, ... ,2.),0) £ Q- 1@ H (AV,d)® H*(AV,d) ®spang{z2,. . -, zc}-
Recalling the construction (1.7), Lemma 1.6(iv) tells that H'(AVi,d) & HY (Ve d) & V=
#L, = #X = Al Likewise HY(AVs,d) = HZ(AVi,d) ® HE(AVi,d), where HF(AVy,d) &

Vo A Vy/dVy and the multiplication H'(AV,d) A HY(AV,d) » H(AV,d) is by construction

the dual of the inclusion K »— L;, A L;,, where I = Ker(L}, ALy {—’—]—> L?,) Because f
is an isomorphism in degrees 1 and 2, we may safely replace L;Q by L;<52 and thus identify
#(K — L A Ly) with #(0: V' —» X A X) = p: A'AAY » Im p. In order to show that
H*M =~ A* and thus finish our proof, we only have to see that dim Hi(/\V*,d) = 1. .or

equivalently that dim H2(AV,d) =14 dim ¥l
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This will be accomplished by remarking that in general one has H*(AV,d) = H¥(L,; Q) =
#H;(Lp; Q), for any k, and the same reasoning as in 1.8 indicates that dim Ho(Ly;Q) =
dim I,/[LX, I,,], and our assumption p ¢ I helps to conclude that this last dimension equals

dimY' 4+ 1, as claimed.
9

5.4. REMARKS. Theorem C(i) considerably enlarges the class of 1-graded intrinsically formal
link algebras, whose first examples appeared in [KKS], namely the series H*(S* X (Vin—15"); Q)
corresponding to m-component links consisting of m — 1 unlinked circles stringed with simple
linking on another circle. Let us look at a simple example, by taking m = 4 and [;; = 0
except ljs = ly; = loyg = I35 = l34 = ly3 = 1 (a chain of four simply linked circles). This may
be handled by our methods (one even knows that ', is connected, for any p, see C(ii)), while
the corresponding link algebra A* is not isomorphic to H*(S* x (V3S'); Q). It is not difficult
to see this, by observing that cg(H*(S! x (V35);Q)) = 3, while cg(4*) = 2.

The newt two lemmas will finally give the proof of C(ii).

5.5. LEMMA. If the graphs T, are connected, for any prime p, then gr*z = Lj(z1,...,%m)
modulo the ideal generated by r; = 3. Lilasal i = 15 .. i, end it s forsion free as @

graded abelian group.

5.6. LEMMA. The graphs T, are connected, for any prime p, if and only if gr’n is a free

abelian group of rank (m — 1)(m — 2)/2.

Proor oF LEMMA 5.5: Denote by L3 the Lie algebra with grading constructed out of the
matrix € of linking coefficients, as in our statement. It is well-known that Ly is torsion free if
and only if Lz(p,z) = Lz(0, z), for any prime p, where Lz(p, z) stands for the Hilbert series
of the graded Z,-vector space Ly ® Z,, and likewise Lz(0, 2) denotes the Hilbert series of the
graded Q-vector space Ly ® Q = L* (and of course Ly @ Z, = L;p(wl, v 3T ) module the
relations r; taken mod p). For p = prime and for p = 0, we may double the upper degrees and
convert them into lower degrees, as we have already done before (see 4.2), replacing the above
power series equality by Lz(p, z) = Lz(0,z). Thanks to the (version for connected glie) PBW
theorem (see [Se; I11.4, Theorem 3]) we may check instead the equality ULz(p,z) = ULz(0, 2).
Since U(fz ®Q) = Tg(z1,...,zn) modulo the relations r; (where deg z; = 2!) — and similarly
for U(Lz ® Z,) - we may again appeal to Anick’s result [A; Theorem 2.6}, which is valid for
any field coefficients and says that the Hilbert series of a connected graded algebra, together
with the number and the degrees of a strongly free set of its elements, uniquely determine
the Hilbert series of the quotient algebra. It only remains to notice that our proof of the fact
that the connectedness of Ty implies the combinatorial freeness of {ry,... ,Tm—1} given in

Proposition 5.2 applies verbatim to ', (which is known to be connected, by assumption) and
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to the sequence {r; mod p, ..., m—1 mod p}, for any prime p. It follows that {ry,...,rm-1}
is strongly free, viewed either with Q or with Z, coefficients, for any p, hence the ¢/-Hilbert
series are equal and L3 is torsion free. It is now casy to prove that gr*m = L7, as grlie,
by making use of an old result of Chen [C3], who established the existence of a grlie map
f: L% — gr*m, which is isomorphic in degree one, hence epimorphic. Knowing that f®Qis
epimorphic and also that gr*r @ Q(z) 2 Ly ® Q(z) (cf. C(i)) we infer that f ® Q is also monic,
hence, due to the torsion freeness of L%, f itself must be monic, giving thus the asserted

isomorphism.

PROOF OF LEMMA 5.6: At the beginning we shall prove that gr’r is free if and only if
dim Im g, = dim Im g, for any prime p. The torsion freeness of the finitely generated
abelian group gr?r is equivalent, as before, to the fact that dimz, gr’r®Z, = dimg er’nt®Q,
for any p. By Chen’s work [C3], gr’r is isomorphic to the quotient group of the second
exterior power of the free abelian group with Z-basis {z;,. .. ,Zm } by the relations rq,...,7mp
(and evidently grim ® K may be similarly presented, K = Q or Z,). By elementary duality
we infer that gr’z ® Z, = #(Ker p,) and grin @ @ = #(Ker po), whence our assertion.
Assuming that T, is connected, for any prime p, we deduce from Lemma 5.1 that dim Im g,
= dim Im po = m — 1, for any p, gr?x being therefore free; its stated rank is immediately
obtained from gr’r © Q = #(Ker pg). Conversely assume gr’m free, therefore dim Im p, =
dim Im pig, for any p, by the previous discussion. If moreover vk griw = (m — 1)(m — 2)/2,
we deduce that this common value must be equal to m — 1, hence g, must be onto and T',

must be connected, for any p, again by 5.1. B

5.7. REMARKS. An alternative way to prove that if I’ is connected, for any p, then grm =
L% = torsion free, as stated in C(ii), would be to start with Hain’s geometric presentation for
7 [H] and then try to apply Labute’s independence criterion [Lal]. This raises the following
(difficult) task: given a sequence 71,...,7y, of homogeneous elements in a free grlie L =
L%(zi,...,%m), decide, for a given primerp, whether the following condition is satisfied or
not:
(x,) r(p)/[x(p), x(p)] is a frec U(L(p)/r(p))-module with basis given
by the images of ry,...,7mp

(where r is the ideal generated by r1,...,7, in L, r/[r,r]isan L /r-module in a natural way,
via the adjoint action, and ()(p) stands for taking mod p residues). '

In our situation, n = m —1 and r; = > ; lijlvi, 2], and everything would follow if the
conditions (*,) were satisfied for any p. For a fixed p, (*;) holds as soon as (0 I NG
is strongly free in Tz, (x1,... B ) 8L - Theoreme 3.3]. Here we meet the really delicate

point: the argument of 3.2, establishing that if I’y 1s connected then T1(p),...,Tm-1(p) is

28
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