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INFINITE SIMAL STUDY OF DIFFERENTIAL POLYNOMIAL

FUNCTIONS

A, Buium

INTRODUCTION

In a series of papers [Bi] (1441 <£4) we initiated a pro-
gfam of gtudy of differential polynomial functions (intuitively of
non-~linear differential oPerators) on projective varieties defined
over a differential field. We shall freely reffer in what follows
to EBl] with which the reader is assumed to be familiar, ~

Thé present paper is part of this program; its aim 1s to dis-
cuss the infinitesimgl counterpart of the theory in Eéi] o More pre-
cisely E. Kolchin, P. Cassidy, J. Johnson ( [K,],[C], [7]) have
defined A -tangent spaces of A -closed subsets of affine spaces
and considered A ~tangent maps between them (these concepts are
an analogue in algebraic geometry of what in the €% case are the
linearisations of non-linear differential operators appearing in
"global non-linear analysig" in the sense of R. Palais EP] K
What we are doing in this paper is to study (and even "compute)
the A -tangent waps of the most remarkable A -polynomial maps
considered in [Bl] '; qu] o To fix ideas note that if
f¢: X—>Y is a A ~-polynomial map [EI] between two smooﬁhvalgem
braic I~ varieties (F a constrainedly cloéed ordinary A -field
of characteristic zero with constant field %7) [Kz] ) then the

/A -tangent map at % is a A -polynomial homomorphism



Txf: TxX“* Tf(x) Y (i.e. a linear differential operator); we shali
review N\ -tangent maps in Section 1.

Our firsf result (cf. Section 2) is an infinitesimal analogué
of oup ® A;ealgebraic analogue of Lang conjectdre" from [Bql ;
Recall that we proved in [B4] the following result: let G be ah
irreductible algebralc & -group, =2 = G a ;ﬁ ~closed subgroup
of A -type zero and X = G a closed subvariety possessing a do-
minant morphism X —>W into & variety W such that Alb(W) does
not descend to € and W satisfies a certain "eurvature condition™
(eege W is smooth, proaectlve, of general type); then Xn> 1is |
not 7eriski dense in X. Recall from [34 that this result implied
a geometrlc analogue of Lanvscongecture ‘clogse to Raynaud's ER]
saying that if A is an ebelian € -variety with C/Q mtrace’ze—
ro, X is a smooth closed subvariety of A, not a translation of a
non=zero abelian subvariety and Me A is a finite rank subgroup
then Xnl” ig not Zariski dense in X; But more important for us
here, our result in [Bq] implied the following " A wgeometric
gtatement", Define for any gmooth projective F ~variety X the

/D -~character map Wr: X‘—~~‘>f1’-“'Mr to be the composition
X«—%‘Alb(X)—~%v??r4r ‘where the components of AIb(X) —» F T are
& basig of the space of A -polynomial characters of order << T
on Alb(X)o Then our result in [BA] jmplied that if }X ié a curve
of genus > 2 not descending 1o %f then the fibres of »kPr
are finite for r >> O. Our main result® in Section 2 cf the present
paper implies for instance that if X 4is a curve as in the lattef
stetement but assumed in addition nonmhyperelliptio then the A
/A =-tangent map T#%} is %njectivevfor all but finitely many
points 3 & X provided r >> 0. By the way this jnfinitesimal sta-
tement implies the "global statement® that the fibres of \{/I, are

finite for r »> O’ this prbviding (under the "pon-~hyperelliptic



sgsumption") a purely algebraic proof of the latter (recall that
the proof of the latter in [34] %nvolved analytic aﬁguments, espe~=
cially a Big-Picard-type theoren!). Note however that the "infinite-
gimal main result™ in the present paper, although reffers to the
higher dimensional case,is far from implying the "global main result®
from [Bql (and convgrsely the "global™ result does not imply the
ninfinitesimal® one!). ﬂ
Next we want to "compute" some Zﬁ tangent maps e Let A be an

abeiian % -variety of dimension g and A -renk g (cf. [Elj
(6+5)) plck a begis of the space of A —polynomial characters of
order £ 2, let %é. A —> & pe the map whose components are
the members of this basis and consider the tangent map T, #)2 s Ty A =

= LieA —>T (2;’8) = ?“g. As T, Y+, 1s 8 /\ =polynomial homomor-
phism it can be viewed ag a "linear dlfferentlal operator® so it
makes sense to congider its "symbo%" (Té(To %J2? which is an F7-
~linesr map from LieA to 28 (of. (3.4) below). We will check
that this wap is invertible so we may congider the map L#A. A';>LieA
compogsition of wU@° A—2 & with 0 5(T, “ s ) 2 F & 5 Lie A.
Then Wb has en invariant meaning (it does not depend on choosing
the basgis of the space of /\~polynomial characters of order < 2
but only on A) and 1ts /\ ~tangent map Tyt = LfJA s Lie A->
Tdie A has symbol the identity and is an important 1Lvarlant of A.
The map Hbﬁ'might remind_one of Kolchin's logarithnic derivative v

but it has nothing to .do with it since the latter ig never defined
if r&nkééx (A) o EL RS o main result here "computes“ Z?A in terns
of the Geuss-lapin connection on HDi(A) es follows. Since F is
congtrainedly closed, HDR(A) has an o =basis €qgeees€p ki Tled
by § ( 5 acting on H%R(A) Via Gauss~Manin conneotion

‘7A ‘ Deﬁggr"_—? End & ( (A))), pick a basis Wl""’wg of



HO(ﬂfl_lA/ e i DR(A) &nd expreas it ag Wy o= . iJ 8. JeJ +
+ 2 » byse,,5 to obtain matrices a = (aij), b = (bij)e; Mat;}¢<5’g)‘

Permuting the ei's we may assume det a 4 0 and put z = a~tp (this z
can be viewed ags a "'(§ »period matrix" for A); Moreover -

rank (A) = g 1mnlles det z' £ O (here z', z*’,;ee stand for

iy é‘gz,..&) Put 3= /EZA = (zt1(a’ )"1) /2 = (z"(z')“l\ P o

& Mat g (g, 8)s we will check that the”qlass of /2 - modulo the
ad joint action of GI;Qz (g) on Matgy (g,g) depends‘only on A
(and not on the choice of the basis (ei) and ( wj) e Our main re-
sult here is that Lie A has a basis such that upon identifying
Iie A with Mat o (g,1) via this basis, T, is given by thé for-
mula fUA(y) = y" + /E’Y for all y & Mat e (gel). Any bagis

of Iie A for which the above holds will be called a digtinguished
bagis; all distinguished bagis afe conjugate under the action of
GLC6>(g) Thig will be proved in Section 5 after a dlgres ion on '
" A -~Hodge structures" and " /\ -Torelli map" (cf. Sections 3,4).
A consequence of Section 4 will be that the matrix z above (which

reflects the "internal" Gausg-lanin connection V”A‘: Der%,QV—o

— BEnd %§>(H DR<A))) can be computed in terms of the Mexternal
Gauss-Manin connection X7 Y: DG? 3§,C§? ¥ —> End o~ (H DR(X/Y))
(where Y is the moduli space of principally polarized abelian P
-varieties with level n structure and X—>7Y is the universal abe=
1ian scheme); here we will use a computaetion made in our moneograph

[35] o Finally note that if A is the elliptic curve defined by

2 L Y T 1 o2 3
¥ = REAHE- A by he T Bhen Pt 'S R T

b 2 . ‘ ~
oo el SN M . So far we discussed the case of abelian
LR

varieties. Let's discuss now the case of curves of genus g > &

+
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(also cf. Section 5). Let X be such & ourve assumed non-hyperellip-
tic of /A -rank g, let A be its Jacobian and %X : X —> Lie A
the composition ¢f X— A and ¥, : A—— Lie A, We will prove
that if h: Lie A —5 % is a /| -generic element of the dual
(Lie A)?_then upon viewing h as defining a hyperplane in (P(Lie#l)
and hence a canonical divisor K on X and . letting ﬁUh = he? 5 ¢
X oeeilidie B P we have

2 it x & XN Supp K

a‘éh(Ker(TX ﬁLJh)) =
1 if x € Supp K
Recall that & A ( X ) denotes as usual the typical A\ -dimen-
gion of > (and we always understand when writing a A (> ) that
> has A -type zero!). One should not be surprized by the fact
that 3 azﬁk(Ker(TX‘4Jh)) is not upper gemicontinuous on X as
one should expect from "usual" algebraic geometry; this is & gene-
ral phenomenon in _[k-nalgebraic geometry due to t§e systematic
presence of "separants'" (in the sense of Kolchin ZjKlj , Chapter 1)«
Putting together the lag? estimation and the finiteness result
from Section 2 we get that there exist finite sets Fy and Fy in X
such that ‘
0 if % € X (Fl Y Fg)

aA(Ker(TXLfJX))= 1 ifg é.Fl

2 if x & F2

Ais a corollary of our computations we are able to characterize
the points in Fij they are precisely the points X < ¥ such that
upon viewing X as canonically embedded in [Eg"l = P{((Lie A)O) and
upon choosing coordinates in Eg"l corresponding to & distinguished

pbasis of Iie A we have that x é‘ng"l and any vector in the line

4

of Lie A defined by x is an eigenvector of Mat f.. o
7 ﬂA — > (g,8) =



= 6.
= Bnd o (Lie A). In particular if /3, hag distinct eigenvalues
then card ¥, < g. And in any case card F, < card (X/«,EP%?l );

Ig Section 6 we push the analogy with "global analysié" [@t]
further. Indeed the A\ -polynomial functions are the analogue in
algebrgic geometry of what in the CC”_case are the "lagrangiang"
[?Pt] o S0 it is tempting to develop in the [\ -algebraic setting
the formalism of_??e calculus of variations (Buler-Lagrange equa-
‘tions, geodesics,ees). This is indeed possible, namely for any
smooth E}’-variety and any A\ -polynomial function f: X —>F we
shall define a " /\ -polynomial section” el(f): X —=> T¥X of the
~cotangent bundle. Its "zero lows" will be called Geo(f) (the geo~
desic locus of £); intuitively =x & X belongs to Geo(f) iff x is
a solut%on of the "Euler-Lagrange system" associated to the "lagran=
gian" f. Then one can hope that choosing "sufficiently general la-
grangiang £" of a_certain.type on a given X (usually £ should be
"quadratic in the top derivatives") Geo(f?‘will have A\ =type zero
and the "expected" typical /\ =-dimension. Morewer for "remarkable"t
pairg (X,f£) one gshould expect that Geo(f) has a "remarkable"_descrié-
tion. It is precisely what we shall do for X an abelian variety (or
a curve) and f = q o0 SL)X where 9 is a quadratic form on Lie X
(regpectively on Lie A whe?e A = Jacobian of X); for the precise re-
sults we send to Section 6. _ _ ,

An Appendix will be included in which we provide a "dictio=
nary" between concepts of g 2\ ~algebraic geometry" & la Ritt-Kol-
chin [:Kl] y EKgl)[jﬁlTJ and concepts of "global non-linear ang-
lysis"™ & la Palails [Pi} .

We close the Introduction by noting that in [By],[B,], EBBj
we developed the theory over a universal [X -field U with cons-
N T e (g s but everything which was gaid there holds if one

veplaces U and K by 3 and ¢ where P~ is a constrai-



S e
nedly closed ordinary A =field of characteristiec zero and Qf_ is

its field of constants (as in - [B4] ). We shall assuwme throughout

the paper that F end ¥ are as above.

1. Review of & -tangent maps (after Kolchin, Cassidy,

Johnson)

. In this section we transpose into the setting of EBl] gome
concepts of A\ -differential calculus due to Kolchin, Cassidy and
Johnson (of. ey Tol, 737 |

(1.1) ILet V be a D-gcheme. Then »Iz-v/?,has a natural structu-
re ofMD—module (D = 9?[31 ) such that the universsl derivation

° £ R, ‘] s e 1 P

d.(jv 7Sl‘V/9’ igs a D-module map So TV: = Spec S(ﬂl.v/?) has an |
induced structure of D-scheme. For any D-scheme Z we have a functo-
rial identification of Hom Dusch(z’ V) with the set of pairs (u, 8")

where u & Hom p (Z,V) and 9 ;Cﬂvl~q ugé% is an $<derivation

~gch
such that the following diagram commutes:

/) J
UV > ugﬁg

{

i
4 00

Such a derivation o is called by Kolchin and Cassidy a
A= ‘?1derivation of<¢§ into uﬁiz; call the set of such Jts
Der DCOV N VZ).
(1.2) Let X be a smooth<¢'vwr1ety, We claim that there is a
natural D-scheme isomorphism X))~ (TX)® . Indeed for any D~gche~-

me Z the set Homp(Z, T(X>)) naturally identifies with the set of

s |
pairs (u, 4 ) where u & HDmD gontZs X “? ) = Hon, sopn(Zy X) and

\_?‘..



= 8 -
D & DepD(CQXw, u%ﬁé). Then u together with the composition

J

Y > ,}, (ﬂ JI*D“‘") Tou éﬁ

(where T X" — X is the natural map arrising from adgunctlon) dem—

fine an element in Homj_ ik

got a map Hompy ... (2, (X7 )) - Bonp_gop (Z, (TX)*°). Thig ‘map ig

(Z &y = HomD oo b(Z (TX) e S0 we

injective because W is generated as a A»j-—alg,ebra by (/ Once
we dispo.se of injec}‘glvmy, surjectivity can be checked locally in
the Za_.rislf:i‘ topology; so we may assume X = Spec ¥ [y J/7,
7 = (Jyseees ¥y)s 2 = Spec R, X% = Spec ?’{ v Y/ [3], we may
assume we are given an F-derivation : F[y]/ J->R and we
must 1lift it toa A - Z- derivation' S3: FilyRs [ a1~ R
This problem clearly reduces to the case J = O where it isg triviall
(1.3) Iet f: X — Y be & /A - polynomial map of smooth -
varietieg; recall that by definition‘this is a map induced by a wmor-
phism of D-schemes £7: X7 Y% . The latter induces a morphism
of D-schemes T(£%) : (X)) = ™(X7) = Spec. ‘%(17}\/?) —> Spec S
g i Ym/?’) = T(Y”)xym X% (TY) hence a /\ ~polyno-
‘mial map Tf : TX —> 1Y called the A -tangent map of f. Above each
% € X the induced A -polynomial map T}{f = (T£), ¢ B,X —> Tpry)¥
is a group homomorphism; it corresponds to the morphism of D-group
gcheme s (T }’) s (X ) e Tf(x)(x“') ~ (CLf(}‘)Y, | induced
by T(£%) (here for, any F -scheme V and anyF-point X of V we denote
by T,V the fibre of W—>V at x so T,V = Spec 8 (m/m™>) where u is
the maximz?l ideal of (/O\T,x' We shall denote by TX“V the F-linear spa-

T )o Note also that T.X is in bijection with the gpace of

/\ - F- derivations from (/;';m' to 7 while Tf applied to
; S 3 &

such & /A= F~- derivation J: (? _~ —» % is nothing but the



/\ = F~ derivation (/(700' f——g-» C/O 2;37:’ viewed as an
‘ : X BC) X7 g2
element c?f Tf(x)Y'

(1.4) Let's see how (1,3) looks "in coordinates". Assume X =
= Bpeec F[y ] /3 and Y = at, Then TX = Spec F/[y,dy J /J + (4J)

50 (TX)” = Spec '?fy,dy% / [J, dJ] and the map (TX) 5 ([Al)’”corw

responds to

e T $7ay, moa [7, as]eA(m)™)
i, U 3(5‘))/3)

where f: X — nl is defined by F € ?{y [ K (yl,;;.,yN);
(1.5)‘Le‘c G and H be algebraic vector groups over _?’ and

f¢e G—>H a A ~polynonial bomomorpbism (we spall sometimes say

that £ is a linear differential operator). Identify G and H with

Lie G = TOG and Lie H = TOH in the ceanonical way (if G = Spec S(V)

for gsome F -linear space V then V « Xa(G)(z Ho.m(G,Ga)) 80

G ~ VP~ L(G) where L(G) is the space of left invariant F ~deriva-

tiong on (QG whick} is in an obivous duality with Xa‘( G ) and iden-

tifies with T G !')e Then under this identification T f: Lie G-Lie H

coincides with f. Indeed fix isomorphismgs G =~ 0" 7% ana

assume £ has components £. (y) = 14_____; a . S i .e Then
J i, k Jik 7
s ¢

(n, 2D = 2 5 ¢ tw = 2 ey § TN

L 05t ) i,k

(1;6) Let 2 be a /A ~-closed subset of a smooth F -variety
X and let x ¢ 2. o Then 7( > *) is a closed D-subscheme of T(X (_’0)
hence the fibre T, (Z*) of 7(S*) above (the point of 2%  induced
by % still denoted abusively by) % € Zof is a closed D-subscheme of
TX(X"") = (‘I‘#X)‘” , hence (by [’Bl] (3.9)) corresponds to a A -clo-
- ged subgroup of T X which we call the /\ -tangent space of 2= at
% and which we denote by T,2 o SO sz is in bijection with the
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get of all A - F - derivations of M . dnto F . If 30 18

w’.}:
the image of x € 3%  via the mep 2% — > then we have

Qo Z o lgne . LD Sy e Hom?_mod(Tx*zm, ¥ )=

= Hom?_mod(ggl TXnif* s B g .gi%m Tgnzh s
Assume in addition X ebove is an algebraic F -group and
Fe. g -closed‘subgroup. Denote by Lie Z‘ ~ the space Tez j
(e € G the identity). Then 2 has /A =type zero iff Z* has
finite dimension so in this case each of the spaces T =% and
L S # -isomorphic to the # -dual of the other, This
make s Te‘zw & D-module. Morewer in this case the gtandard F -Lie
algebra isomorphism between LieIZ o s = Tez“’ and the space
L(Z %) of left invariant # -derivations of (}E“
viewed with its obvious "adjdint" D~-module structure5 is a D-module

(the latter

]

isomorphism.

2, Infinitesgimal A ~algebraic Lang conjecture

(2;10) Tet X be a cloged subvariety of a commutative irreduci-
ble algebraic F =-group G. Assume dim X = r; Then we dispose of
the "Gauss map" - 3 Xreg —> Grass(r, Lie G) defined by

£ (x) = (LI (2,%) = TG = Lie G where I,: G—>G ig the
translation with %, Let X be the Zariski closure of ‘)”(ﬁgeg).

With notations above our main result here is the following:

(2.,2) THEOREM. Let? 7[ 5. Ay =¥ }"N be a 4\ =polynomial homo=

morphism whose kernel has A —type zero and let f: X = G % » B aaid
be the composed maps. Denote by Cf the set of all points ® ¢ X
such that Ier(T f) is Zariski dense in T X. Agssume Alb( X ) doe

not descent 1o «6 s Dhen Ci" is not Zariski dense in X

® /s
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' We‘shall derivedfrom (2;2) the following:
(2.3) COROLLARY. In notationg of (2:1) let  Z= G beoa
/[y =closed subgrogp of A -type zero and assume Alk( f') does
not descend to ¢ . Then Xs3  is not Zariski dense in X,

315 g1

Recall fronm [Bd] that the A\ =closure of any finite rank
of a commutative algebraic F —group has A ~type zero)this ma=-
king the connection between (2.3) and the original Lang conjecture

[ial] (see L34] for detalls) One would like to dispose of a
statement like (2.2) in which the condition "Alb( X ) does not des-
cend to c@ "da replaced by "Alb(X) does not descend to %f " ag
in ‘[34] . So it is of interest to emphasize situations when the map
X oee> X ig birational. This is the case when X is & non-hyper-
elliptic curve and X = G 1is the embedding into its Jacobian (be-
cause then X —> % is nothing but the canonical embedding): More ge-

nerally we haves

(2.4) LEMMA. Let S be a smooth projective curve over F of
genus g = 5 -embedded into its Jacobian A and let ¥ «— A be the
image of the symmetrlc product S(d) in A where a < g/2 is gsome po=
gitive integer. Assume S is not a covering of lPl w1th d + 1 sheets
or less (by "Brill-Noether" this holds if S is generic). Then

v

S(d)—~> X is an isomorphism and X —> X ig birationals.
Then (2.2), (2.3), (2.4) imply:
(2.5) COROLLARY. Under the hypothesis ofv(2.4)_a$sume in

addition S does not descend to & ., The following hold:
M .
1) Let ?I,: Er=aF r‘ be the /A =character map of X

‘and G, . be the locus of all X & X such that Ker(T, ¥,)  is
r

7ariski dense in X. Then for r > O) C‘Pr is not Zariski dense in

X |
2) For any A -closed subgroup of A ~type zero Z = A

the set X n 2 ig not Zariski dense in X. In particular no fibre

of © . is Zariski dense in X if r->>0s
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In the case of curves we get simply:

(2,6) COROLLARY. Let X be & smooth projective non-hyperelliptic
curve over F which does not descend to G . Then:

1) T %r ig injective for all but finitely many x & X
provided r >> O.

2y X meets any A -closed subgroup of A =type zero of its
Jacobian in finitely many p01nts. In particular %r hag finite fi-
bres for r > O (indeed for r » 2 if X has A -rank g = genus of
X)e : =L |

Remark. Assertion 2) above was proved without the non-~hyper-
elliptic assumption" in [qu ‘using an-analytic method (our proof

here will be purely algebraic).

(2.7) Proof of (2.2). Put = = Ker ] . Then by [Ky] p. 249
(or in this case by a direct verification using [B,7 , section 3)
we have Lie 2. = Ker(Tej{/ Y g0 for %€ Xreg we have Ker(TXf) =
= (I, X)~ (2L YoldesZ  Je

So 1f k. e Cf,q Xreg then Lle'E:/\'z”(x) ig not debenerate in
3°(x), i.e. not contained in a hyperplane. Let V: = /“\ Lie G
and et M V. bs the ¢ -~linear span of the set of elements of V
of the form G“ . e G‘ where G’ ¢ Lie 2 ; Since 2. has
/\ ~type zerosby LC] it is a finite dimensional éf -llnear sub-
space of Lie G hence 7 ig a finite dimensional %? ~linear sub-
space of V in particular [ i a A -closed subgroup of V of A ~ty-
pe zZeIroOe Consgquently 7% 4ig an algebraic D-gubgroup scheme of V7
(cf. [Bl] (5+10), (5.12))e Since M is unlpotent by [Bé] (pg°
98, lOO}(9 G2 da.a split D-module (i.e. it has an ;% -bagisg ki-
1led by & +)e Dot *Z.c V- be the affine cone over X e Grass
(r, Lie G)-——vylP(V ) where p is the Pllcker embedding and
7% _ 7 N ) 0% where O is the vertex of Z. Gongider the closed D-sube

geheme W = (Z < [T &)

o2 2 o)c
il of V .} and the open subscheme

B (e o T of W.

red
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The irreducible components Wy of W are D-subschemes of [

hence their ideals in (/"(F‘f” ) are D-submodules of (J ([ % )
g0 they are split D-modules too, Consequently @(Wi) are split
D-modules, in particular the Wi's descend to ¢ °

o o

Now if x € Cp ™ Xreg then one can choose a bagis 03"?1’," <

of Zb(x) contained in f(x‘)n IideiZ and then TIN eee A i

& i hence we are provided with an element in

.HomD-sch (Speec F , (Zﬁ‘)w ) A~ Homp .., (Spec F , [7*) =

= HomD il (8pec F , WR') which composed w:x.tb the natursal projection
s }\f glves precisely the. -po:mt of X image of x via

3%
Xreg —> X. So the 1mage of W' —s X contains the image of Cfn X reg €
G
o Xreg —> X« Assume now ,Cf ig Zariski dense in ¥ and look for

a contradiction. By what we Just proved there is at least one COMPO=
nent Wi of W such that W W # 9 and the rational map Wi...“>}\{/
is dominant, Ther‘e exists a smooth projective model /v?/ of W whlch
descends to @ « We digpose of a suraectlon Alb(wi) —> Alb( X )
Since Alb(w ) descends to ¢ , by the "rigidity tbeorem" in [Lagj :
Pe 26, Alb( X ) must also descend to ‘6 " oontradlctlon. The theo-
rem 13 proved.

(2.8) Proof of (2.3). Using [B;] (5. 1), G conshebeh

VA -polynomial homomorphism 7C 3 ~>‘}" whogse kernel has

A =type zero and contains 2. o Of course we may agsume ‘

2 =Xep , Now assume XA 2 is Zariski dense in X“ « Then
the D-subscheme Y = (X ¥~ 3% )Nof T e dominantes X. On the
other hand Y being a subscheme gf 2% which is of finite type
over & is itself of finite type over F . By "generic smooth-
ness" for the map 7o : Y —X we get that there exists a Za-

riski open set Yo < Y such that Ty i Ty I — T’r(y) X is sur-



< T

jective for all y & Yo._Note that upon letting £ denote the compo-

sition X & G Y, ¥ we have T, (XnZ) = Ker(T £) for all

X € XnZ . Since (L : = Homp_ ... (8pec F 5 Y,) is Zariski dcnse
in Y, = Hom o oo (8pee F ¥ ) it follows that the image Q' of
(1 in X is Zariski dense in X. Now for y e (2 ,x= T (Ye
eé,ﬁy (At (Xr\Z') is by definition in bijection with Homp scb(Spec =
7 Y) via Tyll o Since Homp ... (Spec F, T Y) ig Zarlskl dense in

o~

T Y = Hom op (Spec ¥, T Y) e S0 Gt Sor % & L y I,(XNZ)

-5
iz Zariskipdense in TXX. Thls implies that Cf is Zarigki dense in X,
thisg contradicting (2.2). The Corollary is proved.

(2.9) Proof of (2 4). The assertlon that M : S(d)-—? X is an
1somorpblsm 1s contained in [CH:] Pe 245, Let’s prove that X — X
is blratlonal. Iet D & S(d) Divd(S) D = P1+ eee + Pd where

1,..., g € S ere distinct points and put % = M (D) & X3 we have
by our hypothe31s dim I D ] O. One easily checks that arkx) &
Gress(d, Lie A) is nothing but the affine cone O(D)c: Lie A over
the linear sgpan D c P(Lie A) of L((Pl),..., @ (Pd)éf (P(Lie A)
where Y : § = {Pg"l = [P(Lie A) is the canonical map of S (assu-
med & closed immersion). We claim that D A~A¥(S) = ¥ (D). Indeed

12 there exists P € S N} Pyyeesy Py § such that ¢ (P) & D then

DB = D. On the other hand by Riemann-Roch ( [GHT] pe 245) we have

4in D +P=d-din|D+P|enddinD=d-1-aim|[D] =d~1
so dinm (D + P l 1. ButlD + Plbas degree d + 1 hence provides a co-
vering of [P with 4 + 1 sheets, oontradlctlon, Now let D' be ano-
ther reduced divisor of degree d and put x' /u (DY),

) (%) = ]k(x‘) then C(D) = G(D ) hence D = D' hence 1ntersect1ng
with £ (8) we get D = D' which proves birationality of X — X.
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Die ZS - Hodge structures

We start a very elementary digression on a ™ A =linear"
gtructure which will appear later in relation with the 4 -tangent
maps of zﬁ -character maps. Recall that a Hodge structure of le-
vel 1 1s & pair of (D - linear spaces W < V of dimensions g
and 2g’respective1y together»wi?h a 7. -submodule /\ of V- of
rank 2g and non-degenerate in V. Roughly speaking in a /\ -Hodge

" gtructure (over F ) the lattice /\ will be replaced by a Qfm

-linear subspace of V. Here is the precise definitions

(G.d) By oa /) -Hodge structure (of level 1 and genus g) we
understand a pair (V, W) consisting of a D-module V of dimensign 28
over '33 and of an F -linear subspace W < V of dimension g. Two
7 ZS -Hodge structures (V, W) and (V', W') will be called isomor-

phic if there is a D-module igomorphism (" : V—V' such that

S

~

G (W) = W' Welletjﬁg'be the set of igomorphism classes of 3

A -Hodge structures (of level 1 and genus g); the ideal situation
would be that in wbichjfg has a natural structﬁre of LX»closed sﬁb~
set in scme éf-variety which would permit to examine the geometry
of I%g as one does for "classifying spaces of Hodge structures™ in
algebraic geometry. Unfortunately there gseemg to be no such structu-
re on j{g; We will give instead several descriptions of }%é (or of
parts of it) as "orbit sets" for several (not so obviously related)
actions; Before starting this we give one more definition, A A - Hod-
ge structure (V, W) has A ~-rank r (write rank A (V, W) = r) if
the F ~linear map WesV —Eza V — V/W has rank r (where

Klr %= 513, % & V is the multiplication by Jv in V). Denote

by 3{g(r) the subset of p 4 corresponding to A ~Hodge struc-

)
tures of /) -rank r. A special role will be played by (ﬁ?g(g)_which

(for geveral reasons) should be viewed as a "big cell™ in ;ﬁyg.
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(362) The most obvious description of 'jfg as an orbit set

is the following "double cdset" -representation:
X)g = GLgLy (g) \ Mat o~ (g» 28) / GL @ (2g)

<@bere Mat s (Be:2B) are the matrices in Mat i~ (g, Eg)‘of rank
g)which errises as follows. Since " is constrainedly closed,V

8
4 £ )
W and write wy; = = By485 * _ bijeg+j’ a = (aij), b = (bij);
: J=l Jeel
then (V, W) is represBnted by the double cawt of (a, b) € Mat (g,Eg)
F

Note that rankléx(v, W) = g iff det ( a' b! ) 'f O.

has a bagis el,.;é, e2g killed by Aﬁ « Pick a basis WygeooyW of

(3.3)‘Eacb double coset in (3.2) contains a representative_qf
the form (l,z) where 1 é;GLE?,(g) is the identity matrix. The /\ -rank
is g iff det z' # O. Two matrices (1,'21) and (1, z2) belong to the
game double coset iff tgere exist Cq1s Cqps Cpys Cop & Mat & (g,8)
such that det < 11 12')# Q. 4 det(cl1 + zlcdl) £ O and
¢ c

Bl e
Zy = (c11 + 21021)"1(012 + zlczg); if this heppens write z; ~ Z,e

Then we get the representation:

’%g = Hat o (g g /e

(which reminds of the picture:"Siegel upper half sgpace modulo sim-
plectlc group™)e If (V, W) is represented by (1, z) € Mat,«,(8,2g)
i.e. by z (mod o~ ) ‘we say that z is ajperiod matriz for (v, W). Of

course if Mat o (g,g) ig the set of all z € Mat 9,(g,g) such that

ol
det z' # O then Jf (g) M (?,g) /4/ .

(3.4) To get less obvious descriptions of ]? we make a pre-

n : -
paration. Put D, = L At = D = Q?ZHA] . Note that D is
1=0

an .?Y -submodule of D for both the right and the left gk'—modulD

structures of D. We define the™SYMmbOl map Ujj B T
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B v . - n ‘ e
the formla 0 (=2 Dy S Yy = A5 it 1 F -linear
1= :

for both the right end left F -module structurves of D . Next let
G, G' be two algebraic vector F -groups and £ : G —> G' a
/\ -polynomial homomorphism. If G = Spec S(W), G' = Spec S(wt)

o]

then giving f is eguivalent to giving an F  -linear map (still de-
noted by) £: W! e D @ We(Indeed for any G as above,the»natural
D-module map D é@z?,_Xa(G)-—q Xa(G<” ) is an isomorphism!). We say

£ hag order £ o df (W) < Dn e@?,w; it is called of order n if
it is of order < n but not of order < n-1l, If £ has order < n,
define the h-symbol of f to be the composition:

£ 0T » 1
>0y @ oo W

U;(f): we

identified with an algebraic group homomorphism (still denoted by)

0=, (£): G —>G's In coordinates, if G = gl st (N, 1),
G! = ?M = Mat o (M, 1) and

T (n-1) , |
£(y) = &,y + a, 17 * ees +8F 4 Y E Matgr'(N? 1)

where a; € Matlg,(m, N) then O“n(f)(y) = 8,7 Note that if
o G —a Gl and gz Gl—> 6" ave L -polynomial homomorphisms-of alge—-
braic vector groups of order < I and £ m vrespectively then gef
hag order £ n+m and 0;+m(gof)_= 0,(8) o T (£ Moreover
if £ hag order O then O“b(f) = £,
(3.5) By a /\ ~Picard-Fuchs equation we will mean a pair

(G, £) consisting of an algebraic vector F =-group G of dimension
g and of a /\ -polynomial homomorphism £: G —> G of order 2 who-
ée_Z-symbol _O’Z(f) 2. G —> G la the identity; (G, £) and (G', £1)
are called isomorphic if there exists an algebraic group isomorphism

O—: G —> G' such that G of' = £007 . We denote by E  the

g
get of igomorphism classes of /\ -Picard-Fuchs equations. Note that
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for any (G, £) as abovg’f'is surjective!

(3.6) By a A\ ~lattice we will mean a pair (W Z ) where
W ig an F =linear space of dimension g and Z <= W is a Cé«li-—
near subspace of CZ ~dimension 2g. Once again we have an obvious
notion of isomorphism and we denote by °/g the set of isomorphism

classes of /\ =lattices.

(3.7) PROPOSITION, We have a natural bijection J{g(z%’) il E’g

and a natural injection Eg - o(pg.

: Proof. Let's start by constructing a map ;Z?g(g) sl é?g. If
(V, W) is a D ~Hodge structure of /\ -rank g then the natural
D-module  map D& o W —> V 1induces an A7 ~linear isomorphism
Mo Dy @ W —V (everything with the left F -module structu-
re). N9te that M —l(x) = 1® x and M 1(53{) J’® x for all
% & W. Define the map f: W-—> D& ¢ W by the formula
Blx) = 52 s R /u —1(52};), % € Wy in fact £(W) « D, @W. One
checks easily that f is 3? ~linear (for the left wodule structu-
reg) so it defines a A -polynomial homomorphism (still denoted :
by) £: G — G (where G = W’ = Spec S(W)) of order 2 with oA r) =l
It will be useful later to "see'" the map 7fg(g) -o<?g in‘?g9ordi~ ,
nates"e If ‘”i,.o., w . igs an F -basig of W then vvl,o.., w

g?

§7w'l,..., Shfg form & bagis of V so if 532 i = JZM 3

*'jif%ij wig in V (& 10 /313 & F ) then upon 1dent1fy1ng G .

with mgt g?(g, 1) using W jseeey W g
we have that

(5;7;1) f(:f) =yt - Xy =BT s+ TE Mat o (g,1)
where X = (o(ij), /{, = (/;’ij) & Matg\, (g,8)e

Tet's construct a map éfg — ;%9g(g) (and leave to the reader

the task of checking this is an inverse for the map defined above).



e 19 o
Asgume we are given & A =~Picard-Fuchs equation (G, f£), put
G = Spec S(W) and still denote by f£f: W — D2<$9,W the 2 =liniar
map defined by f£. Then put V = Dy, W (viewed as a left 7 -module

in which W embeds via % +—> l®x) and define on V a structure of

left D-module by the formulee

fum):(é’))@m P

T T T L W - SO

for Xe_gr’ X € We We get a A -Hodge structure (V, W) of
Aﬁ -rank ge | _
Finally let's define the map é?g *‘%x/é by just sending a
A -Picard-Fuchs equation (G, £) where G =~ We ~ Spec S(W) into

the /) =lattice (WO, Ker £) (one easily checks that aég(Ker f) =

-= 2g! )o To check injectivity of é?é — a/; let (G, £) and (G',f'")

be such that tberé exists an algebraic group isomorphism G = G-4>Gf
t§king Ker f into Ker £'. Since f and f£' are surjective, by [b“1

Pe 910 there ig a bijective Z\ ~polynomial homomorphism T : G—> G
guch that T o £ = £' = T o Taking n - gymbols and gsiné (3.4) we

immediately conclude that T = 07 and we are done.

(3.8) In what follows let's give an '"orbit set description”

for & o We claim that

fg ~  Mat - (g,8) / Ad CL g (8)

(by which we mean of course the set of orbits of the action of
. i :
GL<% (g) on Mat gr(g,g) via conjugation). In particular 5:153 5.
To check our claim note that é?g is 1in bijection with the
set of egquivalence classes of maps it Max,g?(g,l) — Mat 9,(g,l) of

the Eoum 8(y) =yt b ot +(3 Ve 7 € Mat 9~(8;1), o/,lﬁgé‘Matg%(gﬁg

where £ and £ are equivalent iff there exists u & GL(}f(g) such
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that £ =@ "0,
We have
1

i u"l(u'ﬂy + 2uty' + uy'' + X uty + < uy' +-/?>uy)

A}

o Mat ; :
50 E?g a 33(8,8)‘x Matgf(g,g) 4 Gng(g) where GLgr(g) acts on
the right on pairs of g X g matrices by the formula

1 1 1 1

(o(,/g)u = (2™t F Tt uy uTtat 4w n u"lfg u)

We have a map

(g, - Mat__(g, G
(gy8) x Mat__(g,8) / Lg,(g)

Mat , (g,8) / Ad GL(é(g) —> Mat 7

& &
given by /% k~5'(0, ﬁ}) which ig clearly injective. We claim it is
algso surjective. Indeed given (« ,/3) mod GLSE(E)S wve may find (by
Kolchin's surjectivity theorem for the logarithmic derivative [Klﬁ

p. 420) a matrix u € G ,.(g) such that u'u™h = - /2. Then

(Fabiel) oy U = (O, u‘l</£. - X2/ = ort/2)0)
which proves our claim. |

(3.9) In (3.3) we got two representations as "quotient sets"

of j%’g(g) and é?g regpectively. Since on the other hand there

‘49 a natural identification ‘j{g(g) £ E\ (3,7) one would like

&

to "see' what is the corresponding identification between the quo-

tient sets:

V(g)'

. » el Mat : Ad GL
Mat?(g,g)g/m > Ma y(g,g) / ¢

We cleim that it is given by

. R 2
Gy > p =@ /2 - 2 E)T /s

indeed if z is viewed as a period matrix for some /\ ~Hodge struc-
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ture (V,‘W) we may chooge a basis v/i,..., w'g of W and a basis

Iowsk & —
Epseecey e2g of V with §1e? = 0 such that \Mi = ey + Z Zijeg+j°

! i -k 2 '
Then Su/i = 7 Z'ijeg+j’ S W= 2 Z"ijeg+j 0

ij

512 woy o= 0 %y 4 éjwj - where (%5.) = 211 (z")"L, By (5;7;1)
(¥, W) is represented in E, by £(y) = y'' - (z"(z')_l)y' hence
by (3.8.1) the image of z in Matg,(g,g) / Ad GL (g) is
(1/4)u l(Z(z"(zL)“l)‘ - (z"(z’)"l)a)u where ulu™ wk o z"(z ¥ /2.

Our claim will be proved if we prove the following:

| (3.,10) LEMMA, Let m & Matgy(g,g) Then there exists u & GT (g)
guch that utu—l = m and u_commutes with m and m'.
Proof. Let H be the connected component of the centralizer Cm)
of m( glm) = §h & GL?(g) ¥rh o it = ?;)hence Lie H =
= % X € Matgr(g,g) 3 Xm o= mx § . By Kolchin's surjectivity theorem
the logarithmic derivative . &r:’H - Lie H, @f(h) = h‘b“l.is

surjective so we mey find u &€ H such thet wat = m. Now ulur =

- u oy = o= u'u“l go u'u = uu' so applying jﬁ we get u''u = un''.
Since m' is a polynomial in u'l, u', u'' we get that u commutes also

with m' and we are dones

(3;11) We close this section with the remark (not to be used
in the seguel) that the set Matg,(g,g) / Ad GL%y(g) identifies with
Mat o (g ) 5 where if %, y € Iﬁatgy(g,g) we write » = y iff
th°re exists u € Gbgr(g) such that y = uxd"l apd ¥t = ux'u"l, in
other words iff the pairs (x,x'), (F,7') € matnv(g,g)‘x liat o (g, g)
are conjugate under the adjoint action of GLQ,(g) on "pairg of ma-
trices". The "only if" part 6f this is clear. To c?eck the "if" part
agssume y = uxu 1, P ux 'yt for some u € GL 4 (g)e Then ¥ = u'xu“1+

- - - - - - - -1
+ ux'a 1. uxu 1u'u L hence u'zu 1 = uxu 1u'u 1 hence xuL 1u' =1 “u'x



- 22 -

hence u—lu' belongs to the Iie algebra of the centralizer C(x) of x.

As in (3.10) we can find b € G(x) such that b'lb' = u"lu' g0 u = ¢cb

i -
c 7 = cXc - and we are

for some clé-(ﬂyg(g)uhence . uxunl = cbxb
done. The remark above may give a clve on finding a "™ A -alge-
braic structure" on a "big" subset of Matp (g,8) / Ad GLev(g) by

using the invariants of the adjoint action on pairs of matrices., The
coofficrenls of the chamacleristic Fﬂl)’ﬁom/a/g of any (non~ commytative ) A ~
Poyymm;al ik o Mfdy (g’g') /.,;aaw‘cle invariants of x anedv o Ad G/_g7 (g ).

4, O -Torelli map

(4.1) Let ‘jig be the moduli  F -variety of g-dimensional
principally polarized abelian # -varieties. We define the iy

~Torelli map

b .54 =) ;%7

) &

by agsociating to each principally polarized abelian F -variety

A the /\ ~Hodge structure hy = (HlDR (1), o (2 lA/S* )) where

HE

DR(A) ig viewed as a D-module via the Gauss-Manin connection

sy Der, ¥ —» Bnd g(H]‘DR(A)), [ka] . Note that ranmk,(4) = T

(in the sense of [Bl] (6.5)) iff rankll(hA) - r in the sense of Sec-

tion % of this paper because by [Ka] the composition

V .
d > HlDR(A) iy H]‘DR(A)/HO(_QJ'A/?)

HO(_Q- lA/? ) > HlDR(A)

coincides with the "eup ppoduct with the Kodaira-Spencer classg"
f(g) : (where ¢ Dezug ¥ — Hl(TA) ig the Kodaira-Spencer
map). One easily checks also that h is constant on isogeny classes.
On the other hand h clearly forgets polarisations and sends

o =S ,- =points of = _.) into a point;
£ d&g)ﬁ ( get of ¢ points o Vig (LA g)OL ) )
in any case h ig far from being injective! The aim of this sectlon

will be to "compute'"™ h ag explicitely ags pogsible. In the next sec-
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tion we shell relate it to /A -tangent meps of A ~charaotef
maps. For any abelian variety A of A -rank g we shall denote by
z, € Matg,(g,g)g and /3A < Matzr(g,g) representatives of the
classes corrgsponding to h, via the identifications (343) and (3.8)
regpectivelys. One(can choose z, and /QA.sucb that they are related
by the formula (3.9.1). The most explicit result we are able to ob-
tain is (ag expected) in case g = 1; Here 041 is the "j-line"

al = ¥  while by (3.7), (3.8) we have }Zl(1> ~E 2 F
Sigce the restriction of h: LJ 1 = r o H 1 to (A 1lg :_%?

ig constant we may restrict our attention to the regtriction of h to

Qe NG - smines WFAE ) o %1(1) «F , h induces a map

b sl e B « Recall also that.ﬁe dispose of the J - map
. : 5 5 ;
P G %O,llf“"?' i30A) —_-28()& = “%) and clearly
A . AS(A=1)
J(CFRNE) = F> ¢ go after all we dispose of a map F\& L

0 ‘ ’ h .
1,5 @ > % givenby X+ />,  where A, is defined by
D)

y2 = x(x=1)(x= 2 ). Our first result is

p)

(4.2) PROPOSITION. For any e #\ % we have

2 )2...)4.1 +2)rgnt_'5(gm

= (3NN =& (M)
ﬁA) 4[ 22() -1)2 .(A'Y

(4,3) COROLLARY, The fibres of the A\ -Torelli map
he u& ~p JZ are constructible in the Z\ -topology and their
ik I8 ) :
/\ ~cleosures have 25 ~-type zero and typical A -dimension £ 3.

In particular the /) -closure of any isogeny class in L# 1 hag
A -type zero and typical A -dimension £ 3.

(4.4) Proof of (4.2)s Let A = A~ be given by.ygrx ¥(x=1)(x= )

By [Ké] the D-module HlDR(A) ig isomorphic to the space H/4L where

1, is the function field of A and H C:~QZL/§y ig the space of diffe-
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rentials of the secont kind on A viewed as a D-module by ‘letting

_5\ act on % and ‘JQ'L/?‘ by putting qu = 0 and 'cr(dx) =

regpectively. Then if W= e computation similar to the cla-
y oo | s
ggical one (cfe €480 Eké] p. 99) gives the following equality in
_._Q L/g:’ H
g T, ) o2 (220 MNOLIL, 2O DY,
3 G Y by (2"’ R

So the image W of wodn HlDR(A) satisfies the equality

e I 302023 s1)= N1 D) N, L g o

W) X =13 420D

By (3.7.1) and (3.841) we get

Bl 3C D)) = _L;llli_ ; i ( (AN (2A 1) DA -1) )
4 )()-1) % MWCA-1)

50 (k')(2h~d) )%"(3—1))
2 A) () -

4 direct computation vealds then the formula from the statement of

the Proposition.

(4¢5) In what follows we consider the case g > 2 and seek to
describe the ooaD051ulon af s c% J(g, with the projection

U& g(n) e U4g where % (n) ig the woduli space of pr1n01pally

: (h23
polarized abelian varieties with level n structure’s ilore genara]ly

given an abelian scheme f X —> Y we seek 1o dﬁscrlbe the composi-
tion. Y = LA & — ]%?g We make the assumption (which holds for
|

the universal abelian scheme over LD g(n)) that L: X —> Y is de~

duced via base change from a morphism £ : X, ——4>Y0 of smooth



=0

: , R
%3 ~varieties. Next we agssume (which is possible by taking a cove~-

oA (n)

ring of

that botb H (_D.lX /X ) and H (Cj)X ) are free C?(Y’)—moduless

that Y 15 affine with trivial tangent bundle and

Then we shall express the map Y *>778 ag 8 comp051tlon

Y ——Y—a Y

127 Matg,(Eg,Eg) ;Zﬁ jfg where V is the‘natural
/\ =polynomial section of TY ,_‘"Y defined in [BI] (3.8) ( so Vy}g
& TyY for8ll ¥ é{'@, (2 will be a morphism of F ~varieties
(which descends toAC@ 1) constructed with the help of the Gauss-
-Manin connectionaof X/Y while 4 is map which does not depend on
the geometry (i?e. of X/Y) being defined only in terms of " A -
linear algebra's

s b

Let's define (2 . One can pick & basis & j,eeey W o,

of HlDR(Xo/Yo) as an d)(YO)~module such that W qgeeey W g is

; 0 1 X/ Yo 1
a bagis of H (L XO/YO), let : Hpp(X /Y,) S
HlDR(Xo/Yo) ® BN lY /@ ) be the Gausg-Manin connection and
0
write
Y '
VO Ouui.-_: Zw.epwi,’ lgié2g
. j:l J J '
e | ' :
fbdipe H-(—fzy/g) . The matrix of - /d“mg
) J :
--Q- == [("}j) on Yo l’alﬂ’)-tf]'{,z’e S M/l‘f% 3 /7761,”73/7/5/77
of varieties JQ.O T = Mat CéZ(2g, 2g) and let
ALl @ UK = Matgy(Eg, 2g) be the morphism deduced
form L2
Let's define 7 . LN & Matgy(zg, 2g) pick any matrix

a \ | -
Lol Gl (?g) where a, by, ¢, 4 & r:iat?,(é’;si’;)
c a/

such that
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(g b ) ¥ " a b )
c! at ¢ d
end then the image of (a, b) & at,_ (g, 2g)” in Mat?(g,zg)o /
/ GL, (Zg) is well defined (i.es it depends only on M and not of the

ch01ce of a, b, ¢, d); we letl WL(MJ be the image of (a, b) in the
double coset space GLg,(g)\ Mat (B 2g) /GL% (2g) =~ %g (cf.

(3.3)). In notations above we have'

(4 .6) THEOREM. The map Y ——v‘;{é ,,E—q ;ﬁ?g coincides with

the map Y ——V——> L4 =, Mat?‘(2g, 2g) s, ﬁg’

(4.7) To prove the above statement let's make some notationse.

Let

/Y X/Y

° ?- l D, -
\V t Der o E9AT) — Lnd?’(H pr(F/X))y € Yg

be the nexternal” Gaugs-Manin connection and for each vy € Y,
l(y) convlder the "internal" Gauss-Manin connection

X
s Der(gz-r ——> Bnd ¢ (Hpp(ig))s P V7

letti =
etting Xy

O ot soiihinss- and dske7 ™ and § #* po the canonical 1iftings
of S %o ¥ = Y0@73? and ¥ = Xo®79’; then ,J’H* induces &

@ -linear map Y}E* & ﬂEnqu(HlDR(X/Y)) vanishing on

1 IR, | ~ 1 s
H DR(XO/YO) ( &= il DR(XO/Y()) & & = H DR(X/Y))°

Recall that we proved in [BIT a formula relating the "exter-
nal® and internal® Kodaira—Spencer mapg. Using an analogue reaso-
ning one can prove the formula (4.8) below relating the "external“

and "internal Gauss-iManin connections (Lor details see our monoO=



graph [BLJ , Chapter 5). Before writing down the formula we need
more nhotations. For any @'(Y)wmodule B and any ¥ € E denote by
Y (y) the image of S u/m E where y € Y and m ig the maxi-

mal ideal of CS) « For 1nstance if L?éH (X/Y) then
Ly DR

k?(y) & DR<X ) wh:Lle it Y H (ﬁjy/m) then Y(y) € T‘*

and if M€ 7° (Ty) then Y (y) € g

We have:

.8 1EmA [B] . Tety €Y, wé L (2/1) and @€ BO(Ty)
such that & (y) = Vy o Then '

X .
VT (@) = (Vo %X/Ywnw

(4.9) Proof of (4.6)s Put w = by, v) where.n = '(w Lreresth )

v = (W SRRy w Eg)" By definition of the D-module structure on

(X) we have 5‘0"— VXY(T’ for all (¢~ € Hl 4 )’ Assume‘c
DR i i pr(¥y)e A

Y X/YUU - Qw‘ as in (4.5) where we view & 4 &s elements
of HL o (X/1) and (L as a matrix of 1-forns on Y. Then by (4.8)

we haves .

S(u(y)) ' ' u(y)
i, w | -
I9¢162) v(y)

a b
i if (c d) e GLSLV(Zg) ig steh that

(,\ﬂa cvb

o b
f& éd) <_Q(y> Yy, < . 5 )



- 28 =
and 1f & (y) and v (y) are defined by

u(y) a b\ /W

]

: y | o
v(y) ¢ d v (¥)
then applying Jﬂ to the above equality we get that cf(ﬁ(y)) =

= 5‘(§J(y)) = O; S0 <'§E§§), is a basis of HlDR(Xy) killed by Jﬁ

and u(y) = a a(y) + b’;(y) is a basis of Hp(_lzx-/-@,). By (3.2),

(a, b) represents the image of X

5 in j\; via the A -Torelli map

which proves the Theorem.

(4.10) Remark. Although (4.6)_gives an "explicit" way of com-
puting the /Z& ~Torelli map it seems rather hard to evaluate the
/A ~type and typicel (\ =-dimension of the fibres of the A\ =To-
relli map and hence to get dimensional upper bounds for the A =C10-
gures of isogeny classes as in case g = l.

In any case we have:

(4.11) COROLLARY. The fibres of the A\ -Torelli map
hs LA & —> j?g are constructible for the A ~topology of U4’g°

Proof. One easily checks that the fibres of 7 are construc=-
tible in the A =-topology of Mat 5 (28, 2g) and use (4.6) and
L ~Chevalley constructibility" Eé?] .

B /N —teneent maps of A «character maps

(5.1) start with ¢\ ~-character maps of abelian varieties
M :

\Ibr:A—‘)?r’

. By [Bl] there are two ceses which are better understood name-

ly when rankZ&(A) = 0 (i.e« A descends to Qg ) and rankéS(A) = g
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(where‘g = dim A as usual). We shall be concerned here with the

Ve mtangent map To ¥)r in the second cage (which is more inte=-
resting)e By [By] (6.1) if renk A(A) = g then ¥, ¢ A — 7€ 1a
surjective‘(with kernel Aﬁ¥ of Z\ -type zero and typical ) -di-
mension 2g, equal to the A -clogure of the torsion subgroup of A)
and any ¥, factors through  ¥,e So it is sufficient to look
at 1, V 5. Note that the map _)52 is not an "invariant of A" since
it depends upon choosing a basis in the space of Z\ -polynoumial
characters of order < 2. But if one is able to prove that the 2-
-gymbol O = O‘z(To kf‘z): Lie A — 5 & is invertible then the
composed map ¥, : A Y5, o8 270 Tje A is en “invariant of A"

s e Ty ¢, + Iie A — Lie A then by (3e8) T ,(T ) =1

A Lie

go (Lie A, T,) is a /\ ~Picard-Fuchs equation (3.5). (gee also
the Introduction). Our main result is:
(5.,2) THEOREM. Let A be a principally polarized ebelian
F -variety of dimension g and A ~rank g and let by, eé(%fg(g>
be its image under the (\ -Torelli mep. Then:
1) 0 ,(T, ¥,) is inverbible (so by (5.1) we may define ¥,
and . T = 0 9243 |
2) The class of the A\ ~Picard Fuchs eguation (Lie A,”Yj"A)
in & g coincides with the inage of h, in Eg via the isomorphisn
L @ & ah 5.
g i | | .
3) The class of the /\ -lattice (Lie A, Lie A—ﬁ:) in 0égg
coincides with the image of h, in o(ﬂg via the embedding
h. e —v{g in (3.7). |
Remark. Assertion 2) implies that if z, & Matav(g,g) is a
Zﬁ ~period matrix for A (¢f. (4.1)) then Lie A has a bagis (called



in what follows a distinguished basis) such that upon identifying
Lie A with Matg,(g,l) via thig basis we have T,(y) = y'' + /BAy
for all y € Mat (g,l) whe re /OA & Maté?,(g g) is given by

£ = ety >"‘1> /2 - (a1 ()",

By (3. 8) all distinguished basis of Lie A are GLtg(g) -conaugateo

Proof of the Theorem. Assertion 3) follows directly from 2).
SQ we concentrate ourselves on 1) and 2): Recall from (Blj'the
"standard picture" giving ¢ ,. Let --— AR, a1l ;.; —> A°
be(the infinite prolongation sequence associated to @ (cf: [Bl 7]
(3@ ) )y let'Ln = Spec > (A%) and O = Ker(AQ—a ), By the proof
of [Blj (6:1) Ln are algebraic vector groups, g = A° = A, Cl e

n-1

and ¢" — C are isomorphisms for n 2 2. S0 C s = linm c? is
<_.-—--—

a D-group scheme whose underlying group scheme is isomorphic to Al
and C < A% is the Dwscheme closed immersion corresponding to the
inclusion A*LC‘A so after all ¢ <= (A%:)og, Ehl] (3+9). Moreover
the  components of ‘?2 viewed as elements of gQ(A?) form & ba-
sig of Xa(LQ) - Xa(Aa) (see the proof of [Bl:] (6.1))e

~ Now it follows from [353 , Chapter III, (2.14) that the

: 1 1 ; .
/\ ~Hodge structure h, = (H DR(A)? (2 A/.?“)) is isomorphic to

the VA ~Hodge structure (T§ gee i Oo) where T& ¢ °° hasg the
structure of D-module induced from the D-module structure of the

maximal ideal of C9 (see (1.6)); to be able to apply [E })
G e

loc. cit., we have to use the D-module 1somorph1sm T 87 TE®Y {efs
(1.6)) and the fact implicitely noted in [qu (6 6) that Al is the
universal extension E(A) of A by a vector group (Instead of [ﬁ

one could probably invoke the characteristic zero version of tl
main result from [Hdi} plus the "duality theorem" from [BBM-]>

Fix an Sffb831s g (yl,?..,yg) of T*OA and pick any basis

geid (zl,...,zg)'of Xa(Lg). Then the map ‘lei A=~=383 = g?'g co-

o s oA S
rresponds to a D-map A~ 87 = Spec §V?A21#'°'92y-§ sor fihe map
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TO #JQ : (TOA)‘ =‘Spec 3’%yl,§.o,yg'}__> (TOS) =

= Spee Q‘f zl,o.,,zg } is given precisely by the inclusion
; 9’ 3 zl,.oﬁ,zg ﬁ-»kf?yl,.e.,yg'ﬁ taking each Zy into the correg-
ponding element of 2 (Lz) = T §L2 Coits HwA2 <> 7 B'(A“’) =

&

:E%Z Dy « S0 to compute T, #’a we must choose a basis Zl"”’zg
a2s

-and express its elements as linear A\ ~—polynom1als in yl,...,yg

We have a commutative diagram

A, AT
1 !
02 T > AZ S — Ld
2 L
Cl S Al
| !
o Al S Rl
inducing & commutative diasgran
O
st oo
TﬂoC < TﬁoA
e o i ‘
Ee 2 2 ¥l 2
T g ™A% e = 1M = X (T°)
f 7 -t
To’*cle—————— To*Al
. 0; .
B0 ., 0 %,0
TO C" «——— TO A

where the vertlcal arrows are thought of as inclusions in par-
ticular Togcl = ¢ ¥0% . Clearlky z, g\? "l é? T 73 €
o
& m Hr2 2 : . :
= TO*A belong to T *L° = X (L°) and form a basis of 11:. Write

j J

with O(ij' pia &
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in the D-module T, 2~C ™ . Since «5 ( U"Oyi) = Q;7( 5? yi) we get
e : - : 5; ) :
## A g . e eC . - i o n
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/g = (/Qij), in particular O~2(TO‘%/2)‘is 1nvert1ble)tbis proving

So To‘%)g is given by y > y'"' = X y' - /3 y where o/ = (o4

assertion 1 ). On the other hand by (3.7.1) the A -Picard-Fuchs
equation assoclated to the /\ -Hodge structure (TO*C'OO, TORGO)
is'also glven by y =2 y'% - Xyt - /% y this proving assertion

2). Our Theorem is proved.

(5.3) Next we pass to computing /\ -tangent maps of [\ -cha-
racter maps of cqrves} So let X be a smooth projective non-hype r-
elliptic curve over F of genus g and A -rank g and denote by

\,U
As Tie A where A is the Jacobian

?’X the composition X i, '
of X. For any functional O £ h & (Lie 4)° denote by %/h the com-
position g X, lie n _ B, 3  (cf. the Introduction); clearly
the space of the maps 7bh (as h varles) c01ncide with the image
of the restriction map CL(A) — 69 (X) Now fix a distinguished
basis in Lie 4 (cf. the remark after (5.2)) and identify as there
Tdeh o Mat (g,1) via this basis so that T, = yir o+ /ﬂ% Ty

/% /3 e Matrv(g g)y 'Y & Mat (g,l). Then (Lle A)° identi-
fies with Mat,y(l,g) so we may speak about the derivatives h, h',
h", i 'S Matér(l,g). Moreover view X ag canonically embedded
into PS5 = . P (Lis A) Y and note that the dlstlngulsbed basis of
Lie A provides dlstlnguished coordinates on ng 1. In particular it
mekes sense to speak about the set E%ﬁl of %’~points of P87 l

these are the points which can be rep¢esented with respect to the

distinguished coordinates as (cl""‘°g> with ¢4 € F o Now define
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‘some canonical divisors on X ag follows. First let K &€ Div(X) be
the canonical divisor pull-back of h, next we let K' & Div(X) be
the pull-—back of h' if h' £ O and write Supp K' = X if h' = O and
finally let E E Div(X) be the pull back of h'' + hf3 if |
h' & h[% # 0 and write Supp K =X if h'' + h/’ = O; It will
be also convenient to con31der e certain union of linear subspaces
of & L as follows. let Vl,...,V c Lie A be the eigenspaces of
[’3‘ and let Liygeeey Lg be the linear subspaces of P&~ =1 gefined by

Vl,...,VSo Then the union U Ly will play a role below; of course

w Ly £ (Pg'l iff /3 ig not a gcaelar matrix while dim(u/Li) =
if /% has distinct eigenvalues. With the notations above our re-

sult is:

(5.4) THEOREM. The following hold:

2  iff x & Supp K
L iff ¥ & Supp K and X eﬁ Supp K'

il

1) aél(Ker(TX'4/h))
! 2) azﬁ(Ker(Tx %zh))
5w plEer (. S )

iff x € Supp K ~ Supp K' and % & Supp K.

0 (eguivalently Tx\f/b ig injective)

4) Tx\yh = 0 iff x & Supp K ~ Supp K' ~ Supp '

5) If h is  /\ -generic in (Lie A)° then Supp K ~ Supp K' =
= § so only cases 1) and 2) sbove may occlr.

6) azS(Ker(TX*f/X)) i g for all = € X |

7) a‘ﬁ(Ker(Tx*+/X)) = A for-only finitely many X é’X‘

8) a5 (Ken(Ty Wy)) = 2 1ff X € X P&t A (o Iy

Remarks. 1) Since T, ¢ T X=> ~F — F  is a linear diffe~-
rentlal operator it followg that aééSKer(T ﬁ/h)) coincides with the
order of Tx\+/h (with the convention that the '"zero operator" has

order, Say, = co Je Of course this interpretation fails for

'aA(}{er(‘l‘}% P 2) )
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_ 2) A heuristic principle in algebraic geometry says that "any
dimensional 1nvar1ant depending algebraically on a parameter is uper
gemicontinuous™. ?hls prineiple is violated here (as noted also in
the Introduction)s But there is nothing misterious here for one can
givelvery'down-tquearth examples when this principle is violated in

Z& -algebraic geometry. For instance let £: §ﬂ~v # be the /\ ~poly-

i

nomial map £(y) = y + yy'. Then for y & F (Tyf)(t)
= (1 + y')t + yt' hence .

Ker(T_£ :j
2 G T80 N it y £ 0O

Proof of (5.4). Let X & X and let s éECf%' . be a local
! ) 9 0

parameter. Then the tengent map Q/U : TX — TA = A X Lie A hasg the
form (%, t é?g Y= Q/u(x), t v(x)) for x in a neighbourbrood of

rad

x4 te F and v(z) & Lie A = Matgy(g,l); note that the image

09
[V(X)i] & P81 of v(x) is precisely the image of x under the
canonical mape. Consequently for x around X, and writing v lnstead

of v(x) we have the following formulae for Txﬁkx : TXX-*>M3%3,(891)
and T, \f/h AT -2 F e

2

(TX~+/X) (% 3 ) = (tv)'t + t/3 v = t''v + 2t'v' + t(v"+/3v)

S

(Tx\fh)(t 53‘ ) = hvt'? + 2hv't' + h(v'' + /3 v)t

S

Now T \}-, has order 2 iff hv # O which proves 1). T4~y bas
order 1 iff hv = O and hv' # O; since h'v + hv! = O this is equiva=-
lent to hv = 0 and h'v # O which proves 2). Similarily one proves
%) and 4). To prove 5) start with the /\ ~polynomial map

Sy Mat o (1s8) = Mat (1,8) x Mat 4 (1,8), ‘Y(n) = (h,h') which
clearly has a Zeriski dense image and let U < Matgv(l,g) X
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X Matg,(l,g)éethe Zarislii open sét of all pairs (hl, h2) such that
Supp‘Dl 7 Supp D = @ where D @Z Div(X) is the pull-back of hi
on X« Then Y ~ (U) is a gﬁ -open subset of Maﬁgv(l,g) such that
for any h & ¥ “l(U), supp K ,~ Supp K' = Q. Agsertion 6) is clear
from the formula of Tz \,’JX. Agsertion 7) follows from (2;6); Letts
check the "only if" part of assertion 8) (the "if" part follows si-
pilarily). We must have vt & 3—’ v becauge otherwise there exists
h € Hat p(1,g) with hv = O and hv' £ O hence aA(Kex(T, Fe)) £
aZB(Ker(TX #Jh)) = 1, contradiction. So v' = AV ( JeF); taking

=fvwberef6j ,f/fz% we get w' = Osoxéﬂ?[gg"o

Finally we get v'' = (2 + 2_2)v; if v was nqt an eigenvector of
/3 we would get that v'' + [gv e§ 7 v hence one could choose
h & Mat9+(1gg) sueh that hv = hv' = O and h(v'!' +_{3 v) # O hence

onée again a[X(Ker(Tx(+/X>) < aA(Ker(TX %/b)) = 0, contradiction,

6. Calculus of variations

(Bed) We define the '"adjoint map" ad: D—>% where D
means as usual the ring j-[{j ;> O S‘l; this map will replace
i7

nintegration by parts® from nysualt calculus of variations. First,
gome notations: if py, P, € D we let Py 0 Pp € D be their product.
If Py & tben we simply write PyP, instead of p; O Ppe But 1f
P, € F  then we keep the notation pyPs to denote Pl(PE)é’ I
(Pl(Pg) = pesult of applying the operator pq 10O the scalar pg),
therefore we have 50 N = Ac? D) for all A€ F . Define
sfs D by ed( :Ei:g: P a % 1y = ZE:(~1)i g\i :>’i'

1
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(6.2) LEMMA. The map ad: D — 3\' is }\'-linear where D is

viewed with its right ?’ -nodule Structuwe.

Proof First note that if p € D then ad(pog Y m ?(ad(p));
Then prove that ad(po);)) = A (ed(p) by induction on ord(p) = mini-
mum n such that p € D, - |

(6.3) Let G be an algebraic vector ?-—group; To any / ~poly-
nomial charscter f: G— F  we will associate an algebraic group
character ad(£): G > F as follows; Assume G = Spec S(W), W =
= Xa(G). Then £ corresponds to an element of DQQ? W and we let
ad(f) €& W be the image of f under the map

D ® > Wi e 3’@(7‘ w = W

which makes sense by (6.2) Jn coordlnates, if 6= 78 and

f: Ng—‘)?’ is ivenb f ceo
3 g Y E(FpeeeeVy) = fjg—‘aia § yj Uhen

ad(£): ¥#8— 2 1is given as expected by ad(f)(yl,.c.,yg) -
wie . el (§3ai.)y.;

ied L8

(6.4) Let X be a smooth Z -variety and 7~ : G —>X be a

vector bundle on X (viewed as a group scheme Gz Spec S(W), W loca-
11y free on X). By a A\ -polynomial section of G/X (or of W) we
mean & /) ~polynomial map s: X — G such that Mos = lye To glve
a A -polynomial section of G/X is equivalent to giving a map |
gy X =l with Tes = lX such that for eac;h,xtc & X there exists:
e neighbourhood U of x, in X and a frame WygeossWg e 15°(u, W) such
thad ol = Z il (:x)w for x & U where £, éCOA(U), So the sgpace
of A\ -polynomlal sections of G/X eguals u° (X, W A Y where V\J/A $=

v
] 6?@ 69 x° Note also that to give a A\ -polynomial section

! . Ir
of G/X is equ1Valent to giving a /A -polynomial map G — F
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where G : = Spec S(W) such that for each x &€ X the induced map
v \%
Gx = (f' 13 an algebraic group character (where G:x = preimage

of.x an G)

(6.5) Let G—>X be ag in (6;4),13;;: a relative A =polyno-
mial character of G/X we mean a A -polynomial map f: G— F
such that for each x & ‘X the induced map fxz.Gx —F is a Am
polynomial homomorphisme To any relative A\ -polynomial character
Lyl F ~we can associate a A -polynomial map ad(f): G- F
by the formula ad(f ) = aa(f ) for ¥ & X (one checks that ad(f)
if /\ =polynomial by & local computation: we may assume G=Xx 36
and using the fact that (})A(x x ¥75 =0 ‘e 0T 8 LB 3
section 1, £ has the form By yl,...'y ) = . £y (x) gg’yi with
0L (x) s0 by (6.3) 8d(E)(F, TyseeesTy) _Z( 1>3<53f RCOPFARE

ij
Slnce each ad(i‘) _> 3 ig an algebraic group charactex by
(6.4) ad(f) oorrespond_.s to a /) -polynomial section of G/X i.eq
to an element in HO(X, WA) which we still denote by ad(f).

(6.6) Let X be a smootb F -variety and Ly B F a
polynomial map, i.e. £ e (O (X). Then the /) ~tangent map
LS S 2= o Oa §. composed witbAthe gsecond projection
Pyt Tx F — F  yelds a relative A\ -polynomial character
pzo'l‘f: IPE == 3’:" hence we may consider the asgociated L\-polync;-—
nial section ad(p,0Tf) of the cotengent bundle TFX —> X ; write
ellf) = ad(p on) and call it the Du]eruLagrange section (it lies
in uecr,; .Q ))e. Its zero locus in X (i.e. the inverse image via
el(f)s X ——> P the_ ZEeT0 sectlon of T™¥¥ — X) will be called
Geo(f) and is / -cloged in X. i

In coordinates, if X < a¥ x - spec ?’[yl,...,yN']/J and
¢ 0%y = :f%yl,.e.,ymﬁ/[ﬂ - P mod [J],

P& j gyl,...,yN 5 then el(f): TX - F is induced by el(F)
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A = e ; el(F) (ylH“sYNs dylnusd:)’N) =

=Z_(1)353(

dy;
143 o (£‘3 >

which is precisely the expression which vanishes in the classical
Euler»ngrange equations corresponding to the "lagrangian® F (see
[Pj] Yo In what follows we examine Geo(f) in two particular situa-
tiéns which we were very fond of in this paper namely when f is a
"gquadratic form in the A -polynomial characters of order 2" on
an abelian variety of maximum 43 frank respectively on & curve

of maximum /\ -rank. We need a preparation.

(6.7) Let G be an algebraic vector 5?f-group, viewed as on
é?’ ~linear gpace and let q: G — F~ be a non-degenerate gquedra-
tic form. Then for any A\ -Picard-Fuchs equation (G, f) we can de-
fine "the adjoint" /A -Picard-Fuchs equation (G, £#) with respect
to q as follows. Plck any basis of G which is orthonormal with res-

pect to q, identify (using this basis) G with Matgy(g;l), write
el s B AR

whe re o<;[5 65. Matgy(g,g) and define
ey -(o<y)'+ (by

where(xt s t[% are the transposed of o /3 . One eagily che-
cks that the definition of #* does not depend upon choosing our

orthonormal basis.

(6 8) THEOREM. Let A be a principally polarized abelian 5*—va—

riety of dimension g and /\ -rank g, let q: Lie A — F be a
non-degene rate gquadratic form, let T g 16 VQA ¢ A —>TLie A — F
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and let (Lie &, T ,*) be the sdjoint of (Lie 4, T,) with respect
to g (where \/’A and “CA are as in (5.1)). Then Geo(f) = Ker( 'CAE’O %A)

hence Geo(f) is an irreducible A -closed subgroup of A of A ~type
zero and typical /A -~dimension 4g with Lie algebra Lie(Geo(f)) =
:Ker('CAﬂ'ofA). '

Proof. Under the identifications TA = A X Lie A, TLieA =

Lie A X Lie 4 ) TF = Fx F° the map T |-, identifies with

“I’A X T, while the map p, O TL'I identifies with the bilinear
map b: Lie A X Lie A — F  where 2b(y,y) = a(y), ¥ & Ide A. So
the map p, o Tf: TA — F in (6.6) is given by (x,y)F> b( ¥ ,(x),

"CA(y)). Hence the map el(£): TA —» F  1is given by (2,y) I—>

ad(b( \PA(X), i 54 A(:{))). Now choose an orthonormal .basis of Lie A
with respect to g 'and' identify as gsual Lie A with Mat?(g,l) S0
bly,z) = tyz. for y,2 & Matg,(g,l). Then if "CA(y) =y Xy Ay
1) (1,30 = ad(P W, + Xyt + B ) = (G - "

- (Pt + )y = TP ED - Poc P, N +
tﬂ ) |

So Geolf) = \FA”l( > ) where > = Ker T AE' and we are done.

(6.9) THEOREM. Let X be a smooth projective non-hyperelliptic
curve over 3} of genus g and /\ -rank g embedded into its Jaco-
bian A and also viewed as embedded in p81 - p((Lie 4)%), let
CRE F ' be -3 non-degenevate suadratic Jorm and et .7L; 2 ¥ ey
be the (om,Poged map x £ ’51—'@14 i >3V Then Geo({ ) has
A«ty'(ae ey ahd (c\ﬂ any xe X nel belong:‘hj lo  the guadliri ,
o « @5 defined by g, T,Geo(f) has typical A -dimension 4.

proof. Let's borrow the notations from the proof of (6.8) and
' i

; /U\ .
exactly as in the proof of (5.4) express the map X —> TA = A X Lie /£
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ag (x, ¢ ﬁ§“§“)kq S/M(X)g tv(z)), t &€ F 4, v(x)éE Matjg(g,l). Then

we gets

(I L) (t---) b GG+ X (Bv())T + 3 v(x))

For a fixed x write v = v(x) , ¥ = ¥y(x) and ¢ = 'y € Mat__(1,8).

Then

'}"

ad (T, £y *EL“)

H

ad( @ (t''v + 2t'vt + tv'! + otV + < tv! +/3 tv))

1

(et = (‘(’o()' + ‘F/3 v

i

UG CT 4 <7bx(")))

igs & basis of T_. Then
2 s X

Geo(£) M Xy = E"l(o) where E : Xl 3G 18 the ) ~polynomial

Let Xl be the Zariski open set where

map E(x) = tv(x) ( T'A” jbx(x)) Let's compute the A ~tangent
map TLE : TX — 2. it will be sufficient to check that T, E has
order < 4 and X é£ Q iff T x has order 4 (Because T, Geo(f) =

i Ker(TXE)).

We have:

(T EY(B) = Pu(x) (T,(T¥ ¥ O + SUCRNCHEG N ICI

% # = et
.where we put T T Al Y’: %/X , T = Z’A. Since

£

i

il

p= T *ﬂ 0 ?/k T 0 ?/4 we get by (1.5):

(TXE)(t) = tv(:x) ((Y:” o T) (tv(x))) + (a term of order O in 1)

since T¥ o T : DLie A —» Lie A hes order 4 and (7‘4(7:3" o T ) =

= lLie 4 We get that O“q(TXE) = tv(x)v(x) and the Theorem is proved.



APPENDIX, A HREURISTIC DICTIONARY

We already noted several times that there is an analogy bet-

ween "Ritt-Kolchin Theory" and "global non-linear analysis" as pre-

sented in Palais'book [?] . We would like to present here a short

ngictionary" between the two theories. Thig "dictionary' motivated

(and on the other hand suggested) some of our results and might be

gignificant for further developmentse.
Ritt-Kolohin [KyJ[K,][B;]

_ offine line AT (identified o o o

with & s Where ¥ is an or-

dinary A =field)

- derivation g\: 3}‘>3}

- O —varieties X (identified « . .

with_theiszets XSf of
F -pointa)

- [\ =polynomial maps of /R

varieties Xl — X2

- /\ -polynomial functions o o o

R iy

®
L]
®

- algebraic vector F =-groups

(identified with Z )

Palais EP]

unit circle ST = Z)eiaf e R
("identified" with the
algebra =8}

derivation operator
8/a6 ¢+ ¢=(s) - 628

& fibre-bundles E over

c
st (videntified" with
their ¢* manifolds of

sections C(E))

non-Llinear differential

operators C% (&) - C¥(E,)

lagrangians C P(E)— € Sl)

vector bundleé m over 81

(identified with their

manifolds of sectiong

_o“(@))



- éﬁ_mpolynomial homomorphism o« ¢ ¢ ¢ o Jlinear differential ope-

between algebralc vector rators C“('Z 1) C ‘”(? 5)
groups

- gymbols of the above: s o o o o oymbols of the above

- A -tengent maps of W o o o o linearizations of non-li-
/\ -polynomial maps pnear differential opera-

tors

- & -varieties X which e o o o o trivial bundles M X gt

gescend to &  midentified" with the

loop spaces Map(sl, M)

- gubset XY@ of X for X . o o o o embedding of M into
descending to /4 Map(sl, M) as constant
loopsf

The list can be continued but should also be taken with a grain
of salt since these analogies cannot be wperfect" and don't go too

far (as this is the cage with the analogies between "algebraic ge o=

netry" and npinite dimensional differential topology“),
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