INFINITESIMAL STUDY OF DIFFERENTIAL POLYNOMIAL FUNCTIONS

by

A. BUIUM

October, 1990

Institute of Mathematics, Bd. Păcii 200,79622, Bucharest, Romania

INFINITESIMAL STUDY OF DIFFERENTIAL POLYNOMIAL

FUNCTIONS

A. Buium

INTRODUCTION

In a series of papers $\left[B_i\right]$ ($1 \le i \le 4$) we initiated a program of study of differential polynomial functions (intuitively of non-linear differential operators) on projective varieties defined over a differential field. We shall freely reffer in what follows to $\left[B_1\right]$ with which the reader is assumed to be familiar.

The present paper is part of this program; its aim is to discuss the infinitesimal counterpart of the theory in $[B_1]$. More precisely E. Kolchin, P. Cassidy, J. Johnson ($[K_2],[C],[J]$) have defined Δ -tangent spaces of Δ -closed subsets of affine spaces and considered Δ -tangent maps between them (these concepts are an analogue in algebraic geometry of what in the C^∞ case are the linearisations of non-linear differential operators appearing in "global non-linear analysis" in the sense of R. Palais [P]). What we are doing in this paper is to study (and even "compute") the Δ -tangent maps of the most remarkable Δ -polynomial maps considered in $[B_1]$, $[B_4]$. To fix ideas note that if $f\colon X\longrightarrow Y$ is a Δ -polynomial map $[B_1]$ between two smooth algebraic \mathcal{F} - varieties (\mathcal{F} a constrainedly closed ordinary Δ -field of characteristic zero with constant field \mathcal{C} , $[K_2]$) then the Δ -tangent map at X is a Δ -polynomial homomorphism

 $T_x f \colon T_x X \to T_{f(x)} Y$ (i.e. a linear differential operator); we shall review Δ -tangent maps in Section 1.

Our first result (cf. Section 2) is an infinitesimal analogue of our " Δ -algebraic analogue of Lang conjecture" from $\begin{bmatrix} B_4 \end{bmatrix}$ Recall that we proved in $[B_4]$ the following result: let G be an irreductible algebraic \mathcal{F} -group, $\Sigma \subset G$ a Δ -closed subgroup of \triangle -type zero and X = G a closed subvariety possessing a dominant morphism $X \longrightarrow W$ into a variety W such that Alb(W) does not descend to $\mathscr C$ and $\mathsf W$ satisfies a certain "curvature condition" (e.g. W is smooth, projective, of general type); then X∩∑ not Zariski dense in X. Recall from [B4] that this result implied a geometric analogue of "Lang' conjecture "close to Raynaud's [R] saying that if A is an abelian $\mathbb C$ -variety with $\mathbb C/\overline{\mathbb Q}$ -trace zero, X is a smooth closed subvariety of A, not a translation of a non-zero abelian subvariety and \(\subseteq A is a finite rank subgroup then Xor is not Zariski dense in X. But more important for us here, our result in $\left[\mathbb{B}_{4} \right]$ implied the following " Δ -geometric statement". Define for any smooth projective \mathcal{F} -variety X the \triangle -character map $\forall_r : X \longrightarrow \mathcal{F}^{M_r}$ to be the composition $X \longrightarrow Alb(X) \longrightarrow \mathcal{F}^{M_r}$ where the components of $Alb(X) \longrightarrow \mathcal{F}^{M_r}$ are a basis of the space of Δ -polynomial characters of order \leq r on Alb(X). Then our result in $\left[B_4\right]$ implied that if X is a curve \geqslant 2 not descending to $\mathscr C$ then the fibres of $\mathscr V_{\mathtt p}$ are finite for r >> 0. Our main result in Section 2 of the present paper implies for instance that if X is a curve as in the latter statement but assumed in addition non-hyperelliptic then the

 \triangle -tangent map $T_X \psi_r$ is injective for all but finitely many points $x \in X$ provided $r \gg 0.$ By the way this infinitesimal statement implies the "global statement" that the fibres of ψ_r are finite for $r \gg 0$ this providing (under the "non-hyperelliptic

assumption") a purely algebraic proof of the latter (recall that the proof of the latter in $\begin{bmatrix} B_4 \end{bmatrix}$ involved analytic arguments, especially a Big-Picard-type theorem!). Note however that the "infinite-simal main result" in the present paper, although reffers to the higher dimensional case, is far from implying the "global main result" from $\begin{bmatrix} B_4 \end{bmatrix}$ (and conversely the "global" result does not imply the "infinitesimal" one!).

Next we want to "compute" some \(\sum_{\text{-tangent maps.}} \) Let A be an abelian \mathcal{F} -variety of dimension g and \triangle -rank g (cf. $\lfloor B_1 \rfloor$ (6.5)), pick a basis of the space of \triangle -polynomial characters of order \leq 2, let ψ_2 : A \longrightarrow \mathcal{F}^g be the map whose components are the members of this basis and consider the tangent map $T_0 + 2$: $T_0 A =$ = LieA \rightarrow T₀(\mathcal{F}^g) = \mathcal{F}^g . As T₀ \mathcal{F}_2 is a Δ -polynomial homomorphism it can be viewed as a "linear differential operator" so it makes sense to consider its "symbol" $\sigma_2(T_0 + 2)$ which is an \mathcal{F}_- -linear map from LieA to $\mathcal{F}^{\rm g}$ (cf. (3.4) below). We will check that this map is invertible so we may consider the map $\psi_A = A \rightarrow \text{Lie}A$ composition of $\psi_2: A \to \mathcal{F}^g$ with $\sigma_2(T_0 \psi_2)^{-1}: \mathcal{F}^g \to \text{Lie } A.$ The has an invariant meaning (it does not depend on choosing the basis of the space of \triangle -polynomial characters of order ≤ 2 but only on A) and its \triangle -tangent map T_A : = $T_O + A$: Lie A -> Lie A has symbol the identity and is an important invariant of A. The map ψ_{A} might remind one of Kolchin's logarithmic derivative but it has nothing to do with it since the latter is never defined if rank \triangle (A) \geqslant 1! Our main result here "computes" \mathcal{T}_{A} in terms of the Gauss-Manin connection on $H^1_{
m DR}(A)$ as follows. Since ${\mathcal F}$ is constrainedly closed, $H_{DR}^{1}(A)$ has an \mathcal{F} -basis e_1, \dots, e_2 by S (S acting on $H^1_{DR}(A)$ via Gauss-Manin connection ∇^{A} : Der $\mathcal{F} \longrightarrow \text{End} \mathcal{C}(H_{DR}^{1}(A))$; pick a basis w_{1}, \dots, w_{g} of

 $H^{0}(\Omega^{1}_{g}) \subset H^{1}_{DR}(A)$ and express it as $w_{i} = \sum_{j=1}^{\infty} a_{ij}e_{j} + \cdots$ $+\sum_{i=1}^{\infty} b_{ij} e_{g+j}$ to obtain matrices $a = (a_{ij}), b = (b_{ij}) \in Mat_{\mathcal{F}}(g,g).$ Permuting the e_i 's we may assume det $a \neq 0$ and put $z = a^{-1}b$ (this z can be viewed as a " \(\times -period matrix" for A). Moreover rank (A) = g implies det z' ≠ 0 (here z', z'', ... stand for Sz, S^2z ,...). Put $\beta = \beta_A = (z^{(i)}(z^{(i)})^2/2 - (z^{(i)}(z^{(i)})^2/4)$ \in Mat $_{\mathcal{I}}$ (g, g); we will check that the class of /3 modulo the adjoint action of $GL_{\varphi}(g)$ on $Mat_{\varphi}(g,g)$ depends only on A (and not on the choice of the basis (e_i) and (w_j)). Our main result here is that Lie A has a basis such that upon identifying Lie A with Mat φ (g,1) via this basis, $\tau_{\rm A}$ is given by the formula $\tau_{\Lambda}(y) = y'' + \beta y$ for all $y \in \text{Mat }_{\mathcal{F}}(g,1)$. Any basis of Lie A for which the above holds will be called a distinguished basis; all distinguished basis are conjugate under the action of $\operatorname{GL}_{\mathscr{Q}}(g)$. This will be proved in Section 5 after a digression on " \triangle -Hodge structures" and " \triangle -Torelli map" (cf. Sections 3,4). A consequence of Section 4 will be that the matrix z above (which reflects the "internal" Gauss-Manin connection ∇^A : Der \mathscr{F} \rightarrow End $(H^1_{DR}(A))$ can be computed in terms of the "external" Gauss-Manin connection $\nabla^{X/Y}$: Der $\mathcal{L} \mathcal{O}_{Y} \Rightarrow \text{End}_{\mathcal{L}} \mathcal{C}(X/Y)$ (where Y is the moduli space of principally polarized abelian ${\mathcal F}-$ -varieties with level n structure and $X \rightarrow Y$ is the universal abelian scheme); here we will use a computation made in our monograph $\begin{bmatrix} B_5 \end{bmatrix}$. Finally note that if A is the elliptic curve defined by $Y^2 = X(X-1)(X-\lambda), \lambda \in \mathcal{F}$, then $\beta_A = \frac{1}{4}(\lambda^1) \frac{\lambda^2 - \lambda^2 + 1}{\lambda^2 (\lambda^2 - 1)^2} +$ + $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ So far we discussed the case of abelian

varieties. Let's discuss now the case of curves of genus g \geqslant 2

(also cf. Section 5). Let X be such a curve assumed non-hyperelliptic of \triangle -rank g, let A be its Jacobian and $\psi_X: X \longrightarrow \text{Lie A}$ the composition of $X \to A$ and $\psi_A: A \longrightarrow \text{Lie A}$. We will prove that if h: Lie A $\longrightarrow \mathcal{F}$ is a \triangle -generic element of the dual (Lie A) $^{\circ}$ then upon viewing h as defining a hyperplane in $\mathbb{P}(\text{Lie A})$ and hence a canonical divisor K on X Ind. letting $\psi_h = h \circ \psi_X: X \longrightarrow \text{Lie A} \longrightarrow \mathcal{F}$ we have

$$a \wedge (Ker(T_x + h)) = \begin{cases} 2 & \text{if } x \in X \setminus Supp K \\ 1 & \text{if } x \in Supp K \end{cases}$$

Recall that a \triangle (Σ) denotes as usual the typical \triangle -dimension of Σ (and we always understand when writing a \triangle (Σ) that Σ has \triangle -type zero!). One should not be surprized by the fact that $x \mapsto a_{\triangle}(\text{Ker}(T_x \, \Psi_h))$ is not upper semicontinuous on X as one should expect from "usual" algebraic geometry; this is a general phenomenon in \triangle -algebraic geometry due to the systematic presence of "separants" (in the sense of Kolchin $[K_1]$, Chapter 1).

Putting together the last estimation and the finiteness result from Section 2 we get that there exist finite sets F_1 and F_2 in X such that

that
$$a = \begin{cases} 0 & \text{if } x \in X \setminus (F_1 \cup F_2) \\ 1 & \text{if } x \in F_1 \\ 2 & \text{if } x \in F_2 \end{cases}$$

As a corollary of our computations we are able to characterize the points in F_2 ; they are precisely the points $x \in X$ such that upon viewing X as canonically embedded in $\mathbb{P}^{g-1} = \mathbb{P}((\text{Lie A})^0)$ and upon choosing coordinates in \mathbb{P}^{g-1} corresponding to a distinguished basis of Lie A we have that $x \in \mathbb{P}^{g-1}_{\mathcal{U}}$ and any vector in the line of Lie A defined by x is an eigenvector of $\beta_A \in \mathbb{N}$ at γ (g,g) =

= End φ (Lie A). In particular if β_A has distinct eigenvalues then card $F_2 \leq$ g. And in any case card $F_2 \leq$ card (X \cap \mathbb{P}_Q^{g-1}).

In Section 6 we push the analogy with "global analysis" /P] further. Indeed the A -polynomial functions are the analogue in algebraic geometry of what in the C case are the "lagrangians" $\lceil \mathtt{P} \rceil$. So it is tempting to develop in the \triangle -algebraic setting the formalism of the calculus of variations (Euler-Lagrange equations, geodesics, ...). This is indeed possible, namely for any smooth ${\mathcal F}$ -variety and any ${\triangle}$ -polynomial function $f\colon X\to {\mathcal F}$ we shall define a " \triangle -polynomial section" el(f): X \longrightarrow T*X of the cotangent bundle. Its "zero locus" will be called Geo(f) (the geodesic locus of f); intuitively $x \in X$ belongs to Geo(f) iff x is a solution of the "Euler-Lagrange system" associated to the "lagrangian" f. Then one can hope that choosing "sufficiently general lagrangians f" of a certain type on a given X (usually f should be "quadratic in the top derivatives") Geo(f) will have \triangle -type zero and the "expected" typical A -dimension. Morewer for "remarkable" pairs (X,f) one should expect that Geo(f) has a "remarkable" description. It is precisely what we shall do for X an abelian variety (or a curve) and f = q o ψ_X where q is a quadratic form on Lie X (respectively on Lie A where A = Jacobian of X); for the precise results we send to Section 6.

An Appendix will be included in which we provide a "dictionary" between concepts of " \triangle -algebraic geometry" à la Ritt-Kolchin $\begin{bmatrix} K_1 \end{bmatrix}$, $\begin{bmatrix} K_2 \end{bmatrix}$, $\begin{bmatrix} B_1 \end{bmatrix}$ and concepts of "global non-linear analysis" à la Palais $\begin{bmatrix} P \end{bmatrix}$.

We close the Introduction by noting that in $[B_1]$, $[B_2]$, $[B_3]$ we developed the theory over a universal \triangle -field $\mathcal U$ with constant field $\mathcal K$; but everything which was said there holds if one replaces $\mathcal U$ and $\mathcal K$ by $\mathcal F$ and $\mathcal C$ where $\mathcal F$ is a constrainable.

nedly closed ordinary \triangle -field of characteristic zero and $\mathscr C$ is its field of constants (as in $\left[B_4 \right]$). We shall assume throughout the paper that $\mathcal F$ and $\mathscr C$ are as above.

Review of △ -tangent maps (after Kolchin, Cassidy, Johnson)

In this section we transpose into the setting of $\begin{bmatrix} B_1 \end{bmatrix}$ some concepts of \triangle -differential calculus due to Kolchin, Cassidy and Johnson (cf. $\begin{bmatrix} K_2 \end{bmatrix}$, $\begin{bmatrix} C \end{bmatrix}$, $\begin{bmatrix} J \end{bmatrix}$).

(1.1) Let V be a D-scheme. Then $\Omega_{V/\mathcal{F}}$ has a natural structure of D-module (D = $\mathcal{F}[\mathcal{S}]$) such that the universal derivation $d:\mathcal{O}_V \to \Omega_{V/\mathcal{F}}$ is a D-module map. So $TV:=\operatorname{Spec S}(\Omega_{V/\mathcal{F}})$ has an induced structure of D-scheme. For any D-scheme Z we have a functorial identification of $\operatorname{Hom}_{D-\operatorname{sch}}(Z,TV)$ with the set of pairs (u,∂) where $u\in \operatorname{Hom}_{D-\operatorname{sch}}(Z,V)$ and $\partial:\mathcal{O}_V \to u_{\frac{1}{2}}\mathcal{O}_Z$ is an \mathcal{F} -derivation such that the following diagram commutes:

$$\begin{array}{ccc}
\mathcal{O}_{V} & \xrightarrow{\partial} & u_{\mathcal{H}} \mathcal{O}_{Z} \\
S \downarrow & & \downarrow S \\
\mathcal{O}_{V} & \xrightarrow{\partial} & u_{\mathcal{H}} \mathcal{O}_{Z}
\end{array}$$

Such a derivation ∂ is called by Kolchin and Cassidy a Δ - \mathcal{F} -derivation of \mathcal{O}_V into $u_{\mathbb{R}}\mathcal{O}_Z$; call the set of such ∂ 's Der $_D(\mathcal{O}_V,\,u_{\mathbb{R}}\mathcal{O}_Z)$.

(1.2) Let X be a smooth \mathcal{F} -variety. We claim that there is a natural D-scheme isomorphism $T(X^{\infty}) \simeq (TX)^{\infty}$. Indeed for any D-scheme Z the set $\text{Hom}_D(Z, T(X^{\infty}))$ naturally identifies with the set of pairs (u, ∂) where $u \in \text{Hom}_{D-\text{sch}}(Z, X^{\infty}) = \text{Hom}_{\mathcal{F}}(Z, X)$ and

 $\partial \in \operatorname{Der}_{\operatorname{D}}(\mathcal{O}_{\operatorname{X}^{\omega}},\ \operatorname{u}_{\operatorname{H}}\mathcal{O}_{\operatorname{Z}})$. Then u together with the composition

$$\mathcal{O}_{\mathbf{X}} \longrightarrow \pi_{\mathbf{Z}} \mathcal{O}_{\mathbf{X}^{\infty}} \xrightarrow{\mathfrak{I}_{\mathbf{X}} \partial} \pi_{\mathbf{Z}} \mathcal{O}_{\mathbf{Z}}$$

(where $\Re: \mathbb{X} \to \mathbb{X}$ is the natural map arrising from adjunction) define an element in $\operatorname{Hom}_{\mathcal{F}-\operatorname{Sch}}(\mathbb{Z}; \operatorname{TX}) \simeq \operatorname{Hom}_{\mathbb{D}-\operatorname{Sch}}(\mathbb{Z}, (\operatorname{TX})^{\infty})$. So we got a map $\operatorname{Hom}_{\mathbb{D}-\operatorname{Sch}}(\mathbb{Z}, \operatorname{T}(\mathbb{X}^{\infty})) \to \operatorname{Hom}_{\mathbb{D}-\operatorname{Sch}}(\mathbb{Z}, (\operatorname{TX})^{\infty})$. This map is injective because $\mathscr{O}_{\mathbb{X}}$ is generated as a $\triangle -\widehat{\mathcal{F}}$ -algebra by $\mathscr{O}_{\mathbb{X}}$. Once we dispose of injectivity, surjectivity can be checked locally in the Zariski topology; so we may assume $\mathbb{X} = \operatorname{Spec} \mathscr{F}[y]/J$, $y = (y_1, \dots, y_N)$, $\mathbb{Z} = \operatorname{Spec} \mathbb{R}$, $\mathbb{X}^{\infty} = \operatorname{Spec} \mathscr{F}\{y^3/[J]\}$, we may assume we are given an \mathscr{F} -derivation $\mathbb{Z} : \mathscr{F}[y]/J \to \mathbb{R}$ and we must lift it to a $\triangle -\mathscr{F}$ - derivation $\mathbb{Z} : \mathscr{F}[y]/J \to \mathbb{R}$. This problem clearly reduces to the case J = 0 where it is trivial.

varieties; recall that by definition this is a map induced by a morphism of D-schemes $f^{\infty}\colon X^{\infty}\to Y^{\infty}$. The latter induces a morphism of D-schemes $f^{\infty}\colon X^{\infty}\to Y^{\infty}$. The latter induces a morphism of D-schemes $f^{\infty}\colon (TX)^{\infty}=T(X^{\infty})=\operatorname{Spec} S(\mathcal{L}_{X/\mathcal{F}})\to\operatorname{Spec} S$ $(f^{\infty}*\mathcal{L}_{Y/\mathcal{F}})=T(Y^{\infty})\times_{X^{\infty}}X^{\infty}\to (TY)^{\infty}$ hence a $\mathcal{L}_{Y/\mathcal{F}}\to TY$ called the $\mathcal{L}_{Y/\mathcal{F}}\to TY$ hence a $\mathcal{L}_{Y/\mathcal{F}}\to TY$ is a group homomorphism; it corresponds to the morphism of D-group schemes $(T_XX)^{\infty}\simeq T_X(X^{\infty})\to T_{f(X)}(Y^{\infty})\simeq (T_{f(X)}Y)^{\infty}$ induced by $T(f^{\infty})$ (here for any \mathcal{F} -scheme V and any \mathcal{F} -point x of V we denote by T_X V the fibre of $TV\to V$ at x so $T_XV=\operatorname{Spec} S(m/m^2)$ where m is the maximal ideal of $\mathcal{L}_{V,X}$. We shall denote by $T_X^{\infty}V$ the \mathcal{F} -linear space m/m^2). Note also that T_XX is in bijection with the space of $\mathcal{L}_{Y/\mathcal{F}}\to T_{Y/\mathcal{F}}$ derivations from $\mathcal{L}_{X/\mathcal{F}}\to T_{Y/\mathcal{F}}$ while T_X f applied to

 \triangle - \mathcal{F} - derivations from $\mathcal{O}_{\mathbf{X}^{\infty}, \mathbf{X}}$ to \mathcal{F} while $\mathbf{T}_{\mathbf{x}}$ f applied to such a \triangle - \mathcal{F} - derivation $\partial: \mathcal{O}_{\mathbf{X}^{\infty}, \mathbf{X}} \to \mathcal{F}$ is nothing but the

 \triangle - \mathcal{F} - derivation $\mathcal{O}_{Y^{\infty},f(x)} \xrightarrow{f} \mathcal{O}_{X^{\infty},x} \xrightarrow{g} \mathcal{F}$ viewed as an element of $T_{f(x)}Y$.

(1.4) Let's see how (1.3) looks "in coordinates". Assume X = $\operatorname{Spec} \mathcal{F}[y]/J$ and Y = Al . Then TX = $\operatorname{Spec} \mathcal{F}[y, \operatorname{dy}]/J + (\operatorname{dJ})$ so $(\operatorname{TX})^{\infty} = \operatorname{Spec} \mathcal{F}\{y, \operatorname{dy}\}/[J, \operatorname{dJ}]$ and the map $(\operatorname{TX})^{\infty} \to (\operatorname{Al})^{\infty} \operatorname{cor-}$ responds to

$$df = \sum_{i, j} \frac{\partial F}{\partial (S^{j} y_{i})} S^{j} dy_{i} \mod [J, dJ] \in \mathcal{O}(TX)^{\infty})$$

where f: $X \to A^1$ is defined by $F \in \mathcal{F}\{y \$ 3 , $y = (y_1, \dots, y_N)$.

(1.5) Let G and H be algebraic vector groups over $\widehat{\mathcal{F}}$ and f: $G \longrightarrow H$ a \triangle -polynomial homomorphism (we shall sometimes say that f is a linear differential operator). Identify G and H with Lie $G = T_0G$ and Lie $H = T_0H$ in the canonical way (if $G = \operatorname{Spec} S(V)$ for some \mathcal{F} -linear space V then $V \cong X_a(G)(= \operatorname{Hom}(G,G_a))$ so $G \cong V^0 \cong L(G)$ where L(G) is the space of left invariant \mathcal{F} -derivations on \mathcal{O}_G which is in an obivous duality with $X_a(G)$ and identifies with T_0G !). Then under this identification T_0f : Lie $G \to L$ ie H coincides with f. Indeed fix isomorphisms $G \cong \mathcal{F}^n$, $H \cong \mathcal{F}^m$ and assume f has components $f_j(y) = \sum_{i \in K} a_{jik} S^i y$. Then

$$(T_0f)(y) = \sum_{i,k} \frac{\partial f_i}{\partial (S^i y_k)} S^i y_k = \sum_{i,k} a_{jik} S^i y_k$$

(1.6) Let Σ be a Δ -closed subset of a smooth \mathcal{F} -variety X and let $x \in \Sigma$. Then $T(\Sigma^{\infty})$ is a closed D-subscheme of $T(X^{\infty})$ hence the fibre $T_x(\Sigma^{\infty})$ of $T(\Sigma^{\infty})$ above (the point of Σ^{∞} induced by x still denoted abusively by) $x \in \Sigma^{\infty}$ is a closed D-subscheme of $T_x(X^{\infty}) = (T_xX)^{\infty}$, hence (by $\begin{bmatrix} B_1 \end{bmatrix}$ (3.9)) corresponds to a Δ -closed subgroup of T_xX which we call the Δ -tangent space of Σ at x and which we denote by $T_x\Sigma$. So $T_x\Sigma$ is in bijection with the

set of all $\Delta - \mathcal{F}$ - derivations of $\mathcal{O}_{\Sigma^{\infty},x}$ into \mathcal{F} . If x^n is the image of $x \in \Sigma^{\infty}$ via the map $\Sigma^{\infty} \to \Sigma^n$ then we have

 $T_{x} \geq \simeq Hom_{D-mod}(T_{x}^{*} \geq \infty, \mathcal{F}) \subset Hom_{\mathcal{F}-mod}(T_{x}^{*} \geq \infty, \mathcal{F}) =$

= Hom \mathcal{F} -mod (lim $T_{x_n} \neq \sum_{n} T_{n} \geq \sum_{n} T_{$

Assume in addition X above is an algebraic \mathcal{F} -group and Σ is a Δ -closed subgroup. Denote by Lie Σ the space $T_e\Sigma$ (e ϵ G the identity). Then Σ has Δ -type zero iff Σ^∞ has finite dimension so in this case each of the spaces $T_e\Sigma^\infty$ and $T_e^{\mathcal{H}}\Sigma^\infty$ is \mathcal{F} -isomorphic to the \mathcal{F} -dual of the other. This makes $T_e\Sigma^\infty$ a D-module. Moreover in this case the standard \mathcal{F} -Lie algebra isomorphism between Lie Σ^∞ : = $T_e\Sigma^\infty$ and the space $L(\Sigma^\infty)$ of left invariant \mathcal{F} -derivations of $\mathcal{O}_{\Sigma^\infty}$ (the latter viewed with its obvious "adjoint" D-module structure) is a D-module isomorphism.

2. Infinitesimal A -algebraic Lang conjecture

- (2.1.) Let X be a closed subvariety of a commutative irreducible algebraic \mathcal{F} -group G. Assume dim X = r. Then we dispose of the "Gauss map" $\mathcal{F}: X_{\text{reg}} \longrightarrow \text{Grass}(r, \text{Lie G})$ defined by $\mathcal{F}(x) = (T_e L_x)^{-1} (T_x X) = T_e G = \text{Lie G where } L_x : G \longrightarrow G \text{ is the translation with x. Let } X$ be the Zariski closure of $\mathcal{F}(X_{\text{reg}})$. With notations above our main result here is the following:
- (2.2) THEOREM. Let $\mathcal{I}: G \to \mathcal{F}^N$ be a Δ -polynomial homomorphism whose kernel has Δ -type zero and let $f\colon X = G \xrightarrow{\chi} \mathcal{F}^N$ be the composed map. Denote by C_f the set of all points $\chi \in X$ such that $\ker(T_\chi f)$ is Zariski dense in $T_\chi X$. Assume Alb(χ) does not descent to \mathcal{C} . Then C_f is not Zariski dense in χ .

0 /1

We shall derive from (2.2) the following:

(2.3) COROLLARY. In notations of (2.1) let $\Sigma = G$ be a \triangle -closed subgroup of \triangle -type zero and assume Alb(X) does not descend to $\mathcal C$. Then $X \cap \Sigma$ is not Zariski dense in X.

Recall from $[B_4]$ that the \triangle -closure of any finite rank of a commutative algebraic \mathcal{F} -group has \triangle -type zero, this making the connection between (2.3) and the original Lang conjecture $[La_1]$ (see $[B_4]$ for details). One would like to dispose of a statement like (2.2) in which the condition "Alb(\mathring{X}) does not descend to \mathscr{C} " is replaced by "Alb(X) does not descend to \mathscr{C} " as in $[B_4]$. So it is of interest to emphasize situations when the map $X \dots \mathring{X}$ is birational. This is the case when X is a non-hyperelliptic curve and $X \subseteq G$ is the embedding into its Jacobian (because then $X \longrightarrow \mathring{X}$ is nothing but the canonical embedding). More generally we have:

(2.4) LEMMA. Let S be a smooth projective curve over \mathcal{F} of genus $g \geqslant 3$ embedded into its Jacobian A and let $X \subset A$ be the image of the symmetric product $S^{(d)}$ in A where d < g/2 is some positive integer. Assume S is not a covering of \mathbb{P}^1 with d+1 sheets or less (by "Brill-Noether" this holds if S is generic). Then $S^{(d)} \longrightarrow X$ is an isomorphism and $X \longrightarrow X$ is birational.

Then (2.2), (2.3), (2.4) imply:

of ψ_r is Zariski dense in X if $r \gg 0$.

- (2.5) COROLLARY. Under the hypothesis of (2.4) assume in addition S does not descend to $\mathscr C$. The following hold:
- 1) Let $\psi_r: X \longrightarrow \mathcal{F}^{Mr}$ be the \triangle -character map of X and C_{ψ_r} be the locus of all $x \in X$ such that $\operatorname{Ker}(T_x \psi_r)$ is Zariski dense in X. Then for $r \gg 0$, C_{ψ_r} is not Zariski dense in X.
- 2) For any Δ -closed subgroup of Δ -type zero $\Sigma = A$ the set $X \cap \Sigma$ is not Zariski dense in X. In particular no fibre

In the case of curves we get simply:

- (2.6) COROLLARY. Let X be a smooth projective non-hyperelliptic curve over ${\mathcal F}$ which does not descend to ${\mathscr C}$. Then:
- 1) $T_x \psi_r$ is injective for all but finitely many $x \in X$ provided $r \gg 0$.
- 2) X meets any Δ -closed subgroup of Δ -type zero of its Jacobian in finitely many points. In particular ψ_r has finite fibres for $r\gg 0$ (indeed for $r\geqslant 2$ if X has Δ -rank g = genus of X).

Remark. Assertion 2) above was proved without the "non-hyperelliptic assumption" in $\begin{bmatrix} B_4 \end{bmatrix}$ using an analytic method (our proof here will be purely algebraic).

(2.7) Proof of (2.2). Put $\Sigma = \operatorname{Ker} \chi$. Then by $[K_2]$ p. 249 (or in this case by a direct verification using $[B_1]$, Section 3) we have $\operatorname{Lie} \Sigma = \operatorname{Ker}(T_e \chi)$ so for $x \in X_{\operatorname{reg}}$ we have $\operatorname{Ker}(T_x f) = (T_x X) \cap (T_e L_x)$ (Lie Σ).

So if $x \in C_f \cap X_{reg}$ then Lie $\sum y \in X$ (x) is not degenerate in $y \in X$ (x), i.e. not contained in a hyperplane. Let Y := X Lie $Y \in X$ and let $Y \in Y$ be the $Y \in X$ -linear span of the set of elements of $Y \in X$ of the form $Y \in X$ where $Y \in X$ is a finite dimensional $Y \in X$ -linear subspace of Lie $Y \in X$ has a finite dimensional $Y \in X$ -linear subspace of $Y \in X$ is a finite dimensional $Y \in X$ -linear subspace of $Y \in X$ is an algebraic $Y \in X$ -subgroup of $Y \in X$ of $X \in X$ -closed subgroup of $Y \in X$ -type zero. Consequently $Y \in X$ is an algebraic $Y \in X$ -subgroup scheme of $Y \in X$ -subgroup scheme of $Y \in X$ -subgroup $Y \in X$ -subgroup scheme of $Y \in X$ -subgroup of $Y \in X$ -subgroup $Y \in X$ -subgroup scheme of $Y \in X$ -subgroup of $Y \in X$ -subgroup scheme scheme of $Y \in X$ -subgroup scheme sch

 $W^* = ((Z^*)^{\infty} \cap \Gamma^{\infty})$ red of W.

The irreducible components W_i of W are D-subschemes of Γ^{∞} hence their ideals in $\mathcal{O}(\cap^{\infty})$ are D-submodules of $\mathcal{O}(\cap^{\infty})$ so they are split D-modules too. Consequently $\mathcal{O}(\mathtt{W_i})$ are split D-modules, in particular the W_i 's descend to $\mathscr C$. Now if $x \in C_f \cap X_{reg}$ then one can choose a basis C_1, \dots, C_r of f(x) contained in $f(x) \wedge \text{Lie} \geq \text{ and then } \sigma_1 \wedge \cdots \wedge \sigma_r \in$ \in Z* \cap Γ hence we are provided with an element in $\operatorname{Hom}_{\mathrm{D-sch}} (\operatorname{Spec} \mathcal{F}, (\mathbf{Z}^{*})^{\infty}) \wedge \operatorname{Hom}_{\mathrm{D-sch}} (\operatorname{Spec} \mathcal{F}, \Gamma^{\infty}) =$ = $\operatorname{Hom}_{\operatorname{D-sch}}$ (Spec \mathcal{F} , $\operatorname{W}^{\mathbb{H}}$) which composed with the natural projection $W^{*} \longrightarrow X$ gives precisely the \mathcal{F} -point of X, image of x via $X_{reg} \rightarrow X$. So the image of $W^{3} \longrightarrow X$ contains the image of $C_f \cap X_{reg} \subset X_{reg}$ \subset $X_{reg} \longrightarrow X$. Assume now C_f is Zariski dense in X and look for a contradiction. By what we just proved there is at least one component W_i of W such that $W_i \cap W^* \neq \emptyset$ and the rational map $W_i \cdot \cdot \cdot \cdot > X$ is dominant. There exists a smooth projective model $\widetilde{\mathbf{W}_{\mathbf{i}}}$ of $\mathbf{W}_{\mathbf{i}}$ which descends to \mathscr{C} . We dispose of a surjection $\mathrm{Alb}(\widetilde{\mathbb{W}}_{\mathtt{i}}) \longrightarrow \mathrm{Alb}(\widetilde{\mathbb{X}})$. Since $\mathrm{Alb}(\mathbb{W}_{\mathbf{i}})$ descends to \mathscr{C} , by the "rigidity theorem" in $\lceil \mathrm{La}_2 \rceil$. p. 26, Alb(\check{X}) must also descend to \mathscr{C} , contradiction. The theorem is proved.

 jective for all y \in Y_o. Note that upon letting f denote the composition $X \subset G \xrightarrow{\mathcal{X}} \mathcal{F}^N$ we have $T_{\chi}(X \cap \Sigma) \subset \operatorname{Ker}(T_{\chi}f)$ for all $x \in X \cap \Sigma$. Since $\Omega := \operatorname{Hom}_{D-\operatorname{sch}}$ (Spec \mathcal{F} , Y_o) is Zariski dense in Y_o = $\operatorname{Hom}_{\mathcal{F}}$ -sch (Spec \mathcal{F} , Y_o) it follows that the image Ω' of Ω in X is Zariski dense in X. Now for $y \in \Omega$, $x = \mathcal{F}(y) \in \Omega'$, $T_{\chi}(X \cap \Sigma)$ is by definition in bijection with $\operatorname{Hom}_{D-\operatorname{sch}}(\operatorname{Spec} \mathcal{F}, T_{\chi}Y)$ via T_{χ} \mathcal{F} . Since $\operatorname{Hom}_{D-\operatorname{sch}}$ (Spec \mathcal{F} , $T_{\chi}Y$) is Zariski dense in $T_{\chi}Y = \operatorname{Hom}_{\mathcal{F}-\operatorname{sch}}$ (Spec \mathcal{F} , $T_{\chi}Y$) we see that for $x \in \Omega'$, $T_{\chi}(X \cap \Sigma)$ is Zariski dense in $T_{\chi}X$. This implies that C_f is Zariski dense in X, this contradicting (2.2). The Corollary is proved.

(2.9) Proof of (2.4). The assertion that $\mu: S^{(d)} \rightarrow X$ is an isomorphism is contained in [GH] p. 245. Let's prove that X -> X is birational. Let $D \in S^{(d)} = Div^{d}(S)$, $D = P_1 + \cdots + P_d$ where $P_1, \dots, P_d \in S$ are distinct points and put $x = \mu(D) \in X$; we have by our hypothesis dim |D| = 0. One easily checks that $f(x) \in$ Grass(d, Lie A) is nothing but the affine cone $C(\overline{D})\subset Lie$ A over the linear span $\overline{D} \subset \mathbb{P}(\text{Lie A})$ of $Y(P_1), \dots, Y(P_d) \in \mathbb{P}(\text{Lie A})$ where $\Upsilon: S \to \mathbb{P}^{g-1} = \mathbb{P}(\text{Lie A})$ is the canonical map of S (assumed a closed immersion). We claim that $\overline{D} \wedge \Upsilon(S) = \Upsilon(D)$. Indeed if there exists $P \in S \setminus \{P_1, \dots, P_d\}$ such that $\gamma(P) \in \overline{D}$ then $\overline{D + P} = \overline{D}$. On the other hand by Riemann-Roch ([GH] p. 245) we have $\dim \overline{D+P} = d - \dim |D+P|$ and $\dim \overline{D} = d - 1 - \dim |D| = d - 1$ so dim |D + P| = 1. But |D + P| has degree d + 1 hence provides a covering of [P] with d + 1 sheets, contradiction. Now let D' be another reduced divisor of degree d and put $x' = \mu(D')$. If $\gamma(x) = \gamma(x^*)$ then $C(\overline{D}) = C(\overline{D}^*)$ hence $\overline{D} = \overline{D}^*$ hence intersecting with $\Upsilon(S)$ we get $D=D^*$ which proves birationality of $X\longrightarrow X$.

We start a very elementary digression on a " \triangle -linear" structure which will appear later in relation with the \triangle -tangent maps of \triangle -character maps. Recall that a Hodge structure of level 1 is a pair of \bigcirc - linear spaces \bigcirc V of dimensions g and 2g respectively together with a \bigcirc -submodule \triangle of V of rank 2g and non-degenerate in V. Roughly speaking in a \triangle -Hodge structure (over \triangle) the lattice \triangle will be replaced by a \mathcal{C} --linear subspace of V. Here is the precise definition:

(3.1) By a \triangle -Hodge structure (of level 1 and genus g) we understand a pair (V, W) consisting of a D-module V of dimension 2g over ${\mathcal F}$ and of an ${\mathcal F}$ -linear subspace W \subset V of dimension g. Two △ -Hodge structures (V, W) and (V', W') will be called isomorphic if there is a D-module isomorphism $\mathcal{O}: V \longrightarrow V^*$ such that σ (W) = W'. We let \mathcal{H}_g be the set of isomorphism classes of \triangle -Hodge structures (of level 1 and genus g); the ideal situation would be that in which \mathcal{H}_{arphi} has a natural structure of Δ -closed subset in some ${\mathcal F}$ -variety which would permit to examine the geometry of \mathcal{H}_g as one does for "classifying spaces of Hodge structures" in algebraic geometry. Unfortunately there seems to be no such structure on \mathcal{H}_g . We will give instead several descriptions of \mathcal{H}_g (or of parts of it) as "orbit sets" for several (not so obviously related) actions. Before starting this we give one more definition, A Δ - Hodge structure (V, W) has \triangle -rank r (write rank \triangle (V, W) = r) if \mathcal{F} -linear map $W \hookrightarrow V \xrightarrow{\nabla_{\mathcal{F}}} V \longrightarrow V/W$ has rank r (where $\nabla_{\mathcal{S}} x = \mathcal{S} x$, $x \in V$ is the multiplication by \mathcal{S} in V). Denote by $\mathcal{H}_{\rm g}^{({
m r})}$ the subset of $\mathcal{H}_{\rm g}$ corresponding to \triangle -Hodge structures of \triangle -rank r. A special role will be played by $\mathcal{H}_{g}^{(g)}$ which

(for several reasons) should be viewed as a "big cell" in $\mathcal{H}_{\mathrm{g}}.$

(3.2) The most obvious description of \mathcal{H}_g as an orbit set is the following "double caset" representation:

$$\mathcal{H}_{g} = GL_{\mathcal{T}}(g) \setminus Mat_{\mathcal{T}}(g, 2g)_{o} / GL_{\mathcal{C}}(2g)$$

(where Mat $_{\mathcal{T}}$ (g, 2g), are the matrices in Mat $_{\mathcal{T}}$ (g, 2g) of rank g)which arrises as follows. Since $_{\mathcal{T}}$ is constrainedly closed, V has a basis $_{1}, \dots, _{g}$ $_{2g}$ killed by $_{\mathcal{T}}$. Pick a basis $_{1}, \dots, _{g}$ of W and write $_{i}$ = $_{ij}^{g}$ $_{ij}^{e}$ $_{j+1}^{g}$ $_{ij}^{e}$ $_{g+j}^{g}$, $_{a}$ = $_{(a_{ij})}$, $_{b}$ = $_{(b_{ij})}$;

then (V, W) is represented by the double coset of $(a, b) \in Mat_{\mathcal{F}}(g, 2g)$ Note that rank $\triangle (V, W) = g$ iff $det \begin{pmatrix} a & b \\ a & b \end{pmatrix} \neq 0$.

(3.3) Each double coset in (3.2) contains a representative of the form (1,z) where $1 \in GL_{\mathcal{F}}$ (g) is the identity matrix. The \triangle -rank is g iff det z' \neq 0. Two matrices (1, z₁) and (1, z₂) belong to the same double coset iff there exist c₁₁, c₁₂, c₂₁, c₂₂ \in Mat \mathcal{C} (g,g) such that det $\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \neq 0$, det(c₁₁ + z₁c₂₁) \neq 0 and

 $z_2 = (c_{11} + z_1c_{21})^{-1}(c_{12} + z_1c_{22});$ if this happens write $z_1 \sim z_2.$ Then we get the representation:

$$\mathcal{H}_{g} \simeq \text{Mat}_{\mathcal{F}}(g, g)/\sim$$

(which reminds of the picture: "Siegel upper half space modulo simplectic group"). If (V, W) is represented by (1, z) \in Mat $_{\mathcal{F}}$ (g,2g) i.e. by z(mod \sim) we say that z is alperiod matrix for (V, W). Of course if Mat $_{\mathcal{F}}$ (g,g) is the set of all z \in Mat $_{\mathcal{F}}$ (g,g) such that det z' \neq 0 then \mathcal{H}_{g} (g) \simeq Mat $_{\mathcal{F}}$ (g,g) $_{g}$ / \sim .

(3.4) To get less obvious descriptions of \mathcal{H}_g we make a preparation. Put $D_n = \sum_{i=0}^n \mathcal{F}_i \subset D = \mathcal{F}_i \mathcal{J}$. Note that D_n is an \mathcal{F} -submodule of D for both the right and the left \mathcal{F} -module structures of D. We define the n-symbol map $\mathcal{T}_n: D_n \to \mathcal{F}$ by

the formula $\sigma_n (\sum_{i=0}^n \lambda_i S^i) = \lambda_n$; it is \mathcal{F} -linear

for both the right and left \mathcal{F} -module structures of D_n . Next let G, G^* be two algebraic vector \mathcal{F} -groups and $f:G\longrightarrow G^*$ a

 \triangle -polynomial homomorphism. If G = Spec S(W), G' = Spec S(W') then giving f is equivalent to giving an \mathcal{F} -linear map (still denoted by) f: W' \longrightarrow D $\varnothing_{\mathcal{F}}$ W.(Indeed for any G as above the natural D-module map D $\varnothing_{\mathcal{F}}$ X_a(G) \longrightarrow X_a(G $^{\infty}$) is an isomorphism!). We say f has order \leq n if f(W') \subset D_n $\varnothing_{\mathcal{F}}$ W; it is called of order n if it is of order \leq n but not of order \leq n-1. If f has order \leq n, define the n-symbol of f to be the composition:

$$\mathcal{O}_{\mathbf{n}}(\mathbf{f}) \colon \mathbb{W}^{\bullet} \xrightarrow{\mathbf{f}} \mathbb{D}_{\mathbf{n}} \otimes \mathcal{F} \mathbb{W} \xrightarrow{\mathcal{O}_{\mathbf{n}} \otimes \mathbf{1}} \mathcal{F} \otimes \mathcal{F} \mathbb{W} = \mathbb{W}$$

identified with an algebraic group homomorphism (still denoted by) $\mathcal{T}_n(f)\colon G\longrightarrow G^*. \text{ In coordinates, if } G=\mathcal{F}^N=\operatorname{Mat}_{\mathcal{F}}(N,\ 1),$ $G^*=\mathcal{F}^M=\operatorname{Mat}_{\mathcal{F}}(M,\ 1) \text{ and }$

$$f(y) = a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y$$
, $y \in Mat_{\mathcal{F}}(N, 1)$

where $a_i \in \operatorname{Mat}_{\mathcal{F}}(M, N)$ then $\sigma_n(f)(y) = a_n y$. Note that if $f \colon G \to G'$ and $g \colon G' \to G''$ are \triangle -polynomial homomorphisms of algebraic vector groups of order $\leq n$ and $\leq m$ respectively then gof has order $\leq n+m$ and $\mathcal{T}_{n+m}(g \circ f) = \mathcal{T}_m(g)$ o $\mathcal{T}_n(f)$. Moreover if f has order 0 then $\mathcal{T}_0(f) = f$.

(3.5) By a \triangle -Picard-Fuchs equation we will mean a pair (G, f) consisting of an algebraic vector $\mathcal F$ -group G of dimension g and of a \triangle -polynomial homomorphism f: G \longrightarrow G of order 2 whose 2-symbol $\mathcal O_2(f): G \longrightarrow G$ is the identity; (G, f) and (G', f') are called isomorphic if there exists an algebraic group isomorphism $\mathcal F$: G \longrightarrow G' such that $\mathcal F$ of $\mathcal F$ is denote by $\mathcal F$ the set of isomorphism classes of \triangle -Picard-Fuchs equations. Note that

for any (G, f) as above, f is surjective!

(3.6) By a \triangle -lattice we will mean a pair (W, Ξ) where W is an \mathcal{F} -linear space of dimension g and $\Xi \subset W$ is a \mathscr{C} -linear subspace of \mathscr{C} -dimension 2g. Once again we have an obvious notion of isomorphism and we denote by \mathscr{L}_g the set of isomorphism classes of \triangle -lattices.

(3.7) PROPOSITION. We have a natural bijection $\mathcal{H}_{\rm g}^{\rm (g)}\simeq\mathcal{E}_{\rm g}$ and a natural injection $\mathcal{E}_{\rm g}\to\mathcal{L}_{\rm g}.$

Proof. Let's start by constructing a map $\mathcal{H}_g(g) \to \mathcal{E}_g$. If (V, W) is a \triangle -Hodge structure of \triangle -rank g then the natural D-module map $D \otimes_{\mathcal{F}} W \to V$ induces an \mathcal{F} -linear isomorphism $\mathcal{F}_g(g) \to \mathcal{F}_g(g) \to \mathcal{F}_g(g)$ in $\mathcal{F}_g(g) \to \mathcal{F}_g(g)$. If $\mathcal{F}_g(g) \to \mathcal{F}_g(g)$ in $\mathcal{F}_g(g) \to \mathcal{F}_g(g)$ we have that

 $(3.7.1) \quad f(y) = y'' - \alpha y' - \beta y , \quad y \in \operatorname{Mat}_{\mathcal{F}}(g,1)$ where $\alpha = (\alpha_{ij}), \quad \beta = (\beta_{ij}) \in \operatorname{Mat}_{\mathcal{F}}(g,g).$ Let's construct a map $\mathcal{E}_g \to \mathcal{H}_g^{(g)}$ (and leave to the reader the task of checking this is an inverse for the map defined above).

Assume we are given a \triangle -Picard-Fuchs equation (G, f), put $G = \operatorname{Spec} S(W)$ and still denote by $f \colon W \longrightarrow D_2 \otimes_{\mathcal{T}} W$ the \mathcal{F} -liniar map defined by $f \colon Then put V = D_1 \otimes_{\mathcal{F}} W$ (viewed as a left \mathcal{F} -module in which W embeds via $x \longmapsto 1 \otimes x$) and define on V a structure of left D-module by the formulae

$$\int (\lambda \otimes x) = (\int \lambda) \otimes x + \lambda \int \otimes x$$

$$\int (\lambda \int \otimes x) = (\int \lambda) \int \otimes x + \lambda (\int \lambda^2 \otimes x - f(x))$$

for $\lambda \in \mathcal{F}$, $x \in W$. We get a Δ -Hodge structure (V, W) of Δ -rank g.

Finally let's define the map $\mathcal{E}_g \to \mathcal{L}_g$ by just sending a \triangle -Picard-Fuchs equation (G, f) where $G \simeq W^0 \simeq \operatorname{Spec} S(W)$ into the \triangle -lattice (W⁰, Ker f) (one easily checks that a \triangle (Ker f) = 2g!). To check injectivity of $\mathcal{E}_g \to \mathcal{L}_g$ let (G, f) and (G',f') be such that there exists an algebraic group isomorphism $\mathcal{T} = G \to G$? taking Ker f into Ker f'. Since f and f' are surjective, by $C \to G$? 910 there is a bijective \triangle -polynomial homomorphism $\mathcal{T} : G \to G$? such that $\mathcal{T} \circ f = f$ ' $\circ \mathcal{T}$. Taking n - symbols and using (3.4) we immediately conclude that $\mathcal{T} = \mathcal{O}$ and we are done.

(3.8) In what follows let's give an "orbit set description" for $\mathcal{E}_{\mathbf{g}}$. We claim that

$$\mathcal{E}_{g} \simeq \text{Mat}_{\mathcal{F}} (g,g) / \text{Ad GL}_{\mathcal{C}} (g)$$

(by which we mean of course the set of orbits of the action of GL $_{\mathcal{G}}$ (g) on Mat $_{\mathcal{F}}$ (g,g) via conjugation). In particular $\mathcal{E}_1 \cong \mathcal{F}$. To check our claim note that \mathcal{E}_g is in bijection with the set of equivalence classes of maps f: Mat $_{\mathcal{F}}$ (g,l) \to Mat $_{\mathcal{F}}$ (g,l) of the form f(y) = y'' + α y' + β y, y \in Mat $_{\mathcal{F}}$ (g,l), α , $\beta \in$ Mat $_{\mathcal{F}}$ (g,e) where f and \widehat{f} are equivalent iff there exists u \in GL $_{\mathcal{F}}$ (g) such

that $\tilde{f} = u^{-1}fu$.
We have

 $u^{-1}fuy = u^{-1}(u^{*}y + 2u^{*}y^{*} + uy^{*}y^{*} + \alpha u^{*}y + \alpha uy^{*}y^{*} + \beta uy)$ so $\mathcal{E}_{g} \simeq \text{Mat}_{\mathcal{F}}(g,g) \times \text{Mat}_{\mathcal{F}}(g,g) / \text{GL}_{\mathcal{F}}(g)$ where $\text{GL}_{\mathcal{F}}(g)$ acts on the right on pairs of $g \times g$ matrices by the formula

$$(\alpha, \beta)u = (2u^{-1}u' + u^{-1} \propto u, u^{-1}u'' + u^{-1} \propto u' + u^{-1} / 3u)$$

We have a map

Mat_{\$\frac{1}{3}\$} (g,g) / Ad GL_{\$\textit{G}\$}(g) \rightarrow \textit{Mat}_{\textit{G}}(g,g) \times \text{Mat}_{\textit{G}}(g,g) / GL_{\text{G}}(g) given by \$\beta \rightarrow (0, \beta)\$ which is clearly injective. We claim it is also surjective. Indeed given (\$\times\$, \beta\$) mod \$\text{GL}_{\text{G}}(g)\$, we may find (by Kolchin's surjectivity theorem for the logarithmic derivative \$\beta(K_1)\$ p. 420) a matrix \$u \in \text{GL}_{\text{G}}(g)\$ such that \$u'u^{-1} = -\infty/2\$. Then

(3.8.1) $(\alpha, \beta)u = (0, u^{-1}(\beta - \alpha^2/4 - \alpha^2/2)u)$ which proves our claim.

(3.9) In (3.3) we got two representations as "quotient sets" of $\mathcal{H}_g^{(g)}$ and \mathcal{E}_g respectively. Since on the other hand there is a natural identification $\mathcal{H}_g^{(g)} \simeq \mathcal{E}_g^{(3.7)}$ one would like to "see" what is the corresponding identification between the quotient sets:

$$\text{Mat}_{\mathcal{F}}(g,g)_{g}/\sim \xrightarrow{\sim} \text{Mat}_{\mathcal{F}}(g,g) / \text{Ad } GL_{\mathcal{C}}(g)$$

We claim that it is given by

(3.9.1)
$$z \longrightarrow \beta = (z^{i}(z^{i})^{-1})^{i}/2 - (z^{i}(z^{i})^{-1})^{i}/4$$

Indeed if z is viewed as a period matrix for some \triangle -Hodge struc-

ture (V, W) we may choose a basis w_1, \dots, w_g of W and a basis e_1, \dots, e_{2g} of V with $\int e_i = 0$ such that $w_i = e_i + \sum_{ij} e_{g+j}$. Then $\int w_i = \sum_{ij} e_{g+j}$, $\int w_i = \sum_{ij} e_{g+j}$ so

 $\begin{cases} 2 & \text{w} = \sum_{ij} \delta_{wj} & \text{where } (x_{ij}) = z''(z')^{-1}. \text{ By } (3.7.1) \\ (\text{V, W}) \text{ is represented in } \mathcal{E}_g \text{ by } f(y) = y'' - (z''(z')^{-1})y' \text{ hence} \\ \text{by } (3.8.1) \text{ the image of z in Mat}_{\mathcal{F}}(g,g) / \text{Ad } \text{GL}_{\mathcal{C}}(g) \text{ is} \\ (1/4)u^{-1}(2(z''(z')^{-1})' - (z''(z')^{-1})^2)u \text{ where } u'u^{-1} = z''(z')^{-1}/2. \\ \text{Our claim will be proved if we prove the following:} \end{cases}$

(3.10) LEMMA. Let $m \in \operatorname{Mat}_{\mathcal{F}}(g,g)$. Then there exists $u \in \operatorname{GL}_{\mathcal{F}}(g)$ such that $u'u^{-1} = m$ and u commutes with m and m'.

Proof. Let H be the connected component of the centralizer C(m) of m($C(m) = \{ h \in GL_{\mathcal{F}}(g) ; h m h^{-1} = m \}$) hence Lie H = $\{ x \in Mat_{\mathcal{F}}(g,g) ; xm = mx \}$. By Kolchin's surjectivity theorem the logarithmic derivative $\ell d : H \to Lie H$, $\ell d (h) = h h^{-1}$ is surjective so we may find $u \in H$ such that $u^{\dagger}u^{-1} = m$. Now $u^{-1}u^{\dagger} = u^{-1}mu = m = u^{\dagger}u^{-1}$ so $u^{\dagger}u = uu^{\dagger}$ so applying f we get $u^{\dagger}u = uu^{\dagger}$. Since m^{\dagger} is a polynomial in u^{-1} , u^{\dagger} , u^{\dagger} , we get that u commutes also with m^{\dagger} and we are done.

(3.11) We close this section with the remark (not to be used in the sequel) that the set $\operatorname{Mat}_{\mathcal{F}}(g,g)$ / Ad $\operatorname{GL}_{\mathcal{C}}(g)$ identifies with $\operatorname{Mat}_{\mathcal{F}}(g,g)$ / \approx where if x, y \in $\operatorname{Mat}_{\mathcal{F}}(g,g)$ we write x \approx y iff there exists u \in $\operatorname{GL}_{\mathcal{F}}(g)$ such that y = uxu⁻¹ and y' = ux'u⁻¹, in other words iff the pairs (x,x'), (y,y') \in $\operatorname{Mat}_{\mathcal{F}}(g,g)$ × $\operatorname{Mat}_{\mathcal{F}}(g,g)$ are conjugate under the adjoint action of $\operatorname{GL}_{\mathcal{F}}(g)$ on "pairs of matrices". The "only if" part of this is clear. To check the "if" part assume y = uxu⁻¹, y' = ux'u⁻¹ for some u \in $\operatorname{GL}_{\mathcal{F}}(g)$. Then y' = u'xu⁻¹ + ux'u⁻¹ - uxu⁻¹u'u⁻¹ hence u'xu⁻¹ = uxu⁻¹u'u⁻¹ hence xu⁻¹u' = u⁻¹u'x

hence $u^{-1}u^*$ belongs to the Lie algebra of the centralizer C(x) of x. As in (3.10) we can find $b \in C(x)$ such that $b^{-1}b^* = u^{-1}u^*$ so u = cb for some $c \in GL_{\mathcal{C}}(g)$ hence $y = uxu^{-1} = cbxb^{-1}c^{-1} = cxc^{-1}$ and we are done. The remark above may give a clue on finding a " Δ -algebraic structure" on a "big" subset of $Mat_{\mathcal{F}}(g,g)$ / Ad $GL_{\mathcal{C}}(g)$ by using the invariants of the adjoint action on pairs of matrices. The coefficients of the characteristic polynomials of any (non-commutative) Δ -polynomial in $x \in Mat_{\mathcal{F}}(g,g)$ provide invariants of x modulo $Ad GL_{\mathcal{C}}(g)$.

4. A Torelli map

(4.1) Let A_g be the moduli \mathcal{F} -variety of g-dimensional principally polarized abelian \mathcal{F} -varieties. We define the Δ -Torelli map

$$h: \mathcal{A}_g \to \mathcal{H}_g$$

by associating to each principally polarized abelian \mathcal{F} -variety A the \triangle -Hodge structure $h_A = (H^1_{DR}(A), H^0(\Omega^1_{A/\mathcal{F}}))$ where $H^1_{DR}(A)$ is viewed as a D-module via the Gauss-Manin connection

 $\nabla^A: \operatorname{Der}_{\mathscr{C}}\mathcal{F} \to \operatorname{End}_{\mathscr{C}}(\operatorname{H}^1_{\operatorname{DR}}(A)), [\operatorname{Ka}] .$ Note that $\operatorname{rank}_{\Delta}(A)=r$ (in the sense of $[\operatorname{B}_1]$ (6.5)) iff $\operatorname{rank}_{\Delta}(\operatorname{h}_A)=r$ in the sense of Section 3 of this paper because by $[\operatorname{Ka}]$ the composition

$$H^{0}(\Omega^{1}_{A/\mathcal{F}}) \longrightarrow H^{1}_{DR}(A) \xrightarrow{\nabla_{\Gamma}} H^{1}_{DR}(A) \longrightarrow H^{1}_{DR}(A)/H^{0}(\Omega^{1}A/\mathcal{F}) = H^{1}(\mathcal{O}_{A})$$

coincides with the "cup product with the Kodaira-Spencer class" $f(f) \qquad \text{(where } f: \text{Der}_{\mathcal{C}} \mathcal{F} \longrightarrow H^1(T_A) \text{ is the Kodaira-Spencer}$ map). One easily checks also that h is constant on isogeny classes. On the other hand h clearly forgets polarisations and sends $(\mathcal{A}_g)_{\mathcal{C}} \text{ (= set of } \mathcal{C} \text{-points of } \mathcal{A}_g = (\mathcal{A}_g)_{\mathcal{F}} \text{) into a point;}$ in any case h is far from being injective! The aim of this section will be to "compute" h as explicitely as possible. In the next sec-

tion we shall relate it to \triangle -tangent maps of \triangle -character maps. For any abelian variety A of \triangle -rank g we shall denote by $z_A \in \operatorname{Mat}_{\mathcal{Z}}(g,g)_g$ and $\beta_A \in \operatorname{Mat}_{\mathcal{Z}}(g,g)$ representatives of the classes corresponding to h_A via the identifications (3.3) and (3.8) respectively. One can choose z_A and β_A such that they are related by the formula (3.9.1). The most explicit result we are able to obtain is (as expected) in case g = 1. Here A_1 is the "j-line" $\mathbb{A}^1 = \mathcal{F}$ while by (3.7), (3.8) we have $\mathcal{H}_1^{(1)} \simeq \mathcal{E}_1 \simeq \mathcal{F}$. Since the restriction of h: $A_1 = \mathcal{F} \longrightarrow \mathcal{H}_1$ to $(A_1)_{\mathcal{C}} = \mathcal{C}$ is constant we may restrict our attention to the restriction of h to $\mathcal{F} \setminus \mathcal{C}$; since $h(\mathcal{F} \setminus \mathcal{C}) \subset \mathcal{H}_1^{(1)} \simeq \mathcal{F}$, h induces a map h: $\mathcal{F} \cdot \mathscr{C} \to \mathcal{F}$. Recall also that we dispose of the j - map j: $\mathcal{F} \setminus \{0,1\} \rightarrow \mathcal{F}$, $j(\lambda) = 2^8 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2(\lambda - 1)^2}$ and clearly so after all we dispose of a map $\mathcal{F} \cdot \mathscr{C} \stackrel{j}{\longrightarrow} \mathcal{F}$ j(F18) = F18 \underline{i} , $\mathcal{F} \subset \stackrel{h}{\longrightarrow} \mathcal{F}$ given by $\lambda \longmapsto \beta_{A_{\lambda}}$ where A_{λ} is defined by $y^2 = x(x-1)(x-)$. Our first result is

(4.2) PROPOSITION. For any $\lambda \in \mathcal{F} \setminus \mathcal{C}$ we have

$$\beta_{A} = h(j(\lambda)) = \frac{1}{4} \left[(\lambda^{i})^{2} \frac{\lambda^{2} - \lambda + 1}{\lambda^{2} (\lambda - 1)^{2}} + \frac{2\lambda^{i} \lambda^{i} i^{i} - 3(\lambda^{i})^{2}}{(\lambda^{i})^{2}} \right]$$

(4.3) COROLLARY. The fibres of the \triangle -Torelli map

h: $A_1 \to \mathcal{H}_1$ are constructible in the \triangle -topology and their \triangle -closures have \triangle -type zero and typical \triangle -dimension ≤ 3 .

In particular the \triangle -closure of any isogeny class in A_1 has \triangle -type zero and typical \triangle -dimension ≤ 3 .

(4.4) Proof of (4.2). Let $A = A_{\lambda}$ be given by $y^2 = x(x-1)(x-\lambda)$ By [Ka] the D-module $H^1_{DR}(A)$ is isomorphic to the space H/dL where L is the function field of A and H $\subset \Omega_{L/f}$ is the space of diffe-

rentials of the secont kind on A viewed as a D-module by letting \int act on L and $\Omega_{L/\mathcal{F}}$ by putting $\int x = 0$ and $\int (dx) = 0$ respectively. Then if $\omega = \frac{dx}{y}$ a computation similar to the classical one (cf. e.g. [Ka] p. 99) gives the following equality in $\Omega_{L/\mathcal{F}}$:

$$-\frac{1}{2}d\left(\frac{y}{(x-\lambda)^2}\right) = \frac{\omega}{4} + \left(\frac{2\lambda-1}{\lambda'} - \frac{\lambda\lambda''(\lambda-1)}{(\lambda')^3}\right) \delta\omega + \frac{\lambda(\lambda-1)}{(\lambda')^2} \delta^2\omega$$

So the image $\overline{\omega}$ of ω in $H^1_{DR}(A)$ satisfies the equality

$$g^2 \overline{\omega} + \frac{(\lambda \cdot)^2 (2\lambda - 1) - \lambda \lambda \cdot \cdot \cdot (\lambda - 1)}{\lambda \lambda \cdot \cdot (\lambda - 1)} \int_{\overline{\omega}} + \frac{(\lambda \cdot)^2}{4 \lambda (\lambda - 1)} \overline{\omega} = 0$$

By (3.7.1) and (3.8.1) we get

$$h(j(\lambda)) = \frac{(\lambda^{i})^{2}}{4\lambda(\lambda-1)} - \frac{1}{4} \left(\frac{(\lambda^{i})^{2}(2\lambda-1) - \lambda\lambda^{i}(\lambda-1)}{\lambda\lambda^{i}(\lambda-1)} \right)^{2} - \frac{1}{2} \left(\frac{(\lambda^{i})^{2}(2\lambda-1) - \lambda\lambda^{i}(\lambda-1)}{\lambda\lambda^{i}(\lambda-1)} \right)^{2}$$

A direct computation yealds then the formula from the statement of the Proposition.

(4.5) In what follows we consider the case $g \geqslant 2$ and seek to describe the composition of h: $A \cap A \cap A$ with the projection $A \cap A \cap A \cap A$ where $A \cap A \cap A$ where $A \cap A \cap A \cap A$ is the universal abelian scheme over $A \cap A \cap A$ of smooth duced via base change from a morphism $A \cap A \cap A$ of smooth

 $\mathscr C$ -varieties. Next we assume (which is possible by taking a covering of $\mathscr A_g^{(n)}$) that Y_o is affine with trivial tangent bundle and that both $H^o(\Omega^1_{X_o/Y_o})$ and $H^1(\mathscr O_{X_o})$ are free $\mathscr O(Y_o)$ -modules. Then we shall express the map $Y \to \mathscr H_g$ as a composition $Y \xrightarrow{\mathcal O} TY \xrightarrow{\mathcal O} \operatorname{Mat}_{\mathcal F}(2g,2g) \xrightarrow{\mathcal O} \mathscr H_g$ where ∇ is the natural \triangle -polynomial section of $TY \to Y$ defined in $[B_1](3.8)$ so $\nabla y \in \mathcal O$ for all $y \in Y_o$, Ω will be a morphism of $\mathcal F$ -varieties (which descends to $\mathcal C$!) constructed with the help of the Gauss-Manin connection of X/Y_o while $\mathscr V$ is map which does not depend on the geometry (i.e. of X/Y_o) being defined only in terms of " Δ - linear algebra".

Let's define Ω . One can pick a basis $\omega_1, \ldots, \omega_2$ of $H^1_{DR}(X_0/Y_0)$ as an $O(Y_0)$ -module such that $\omega_1, \ldots, \omega_g$ is a basis of $H^0(\Omega^1_{X_0/Y_0})$, let $\nabla^{X_0/Y_0}: H^1_{DR}(X_0/Y_0) \longrightarrow 0$

 $H^1_{DR}(X_0/Y_0) \otimes H^0(\Omega^1_{Y_0/\mathscr{C}})$ be the Gauss-Manin connection and write

$$\nabla^{X_0/Y_0} \omega_i = \sum_{j=1}^{2g} \omega_j \otimes \omega_{ij}, \quad 1 \le i \le 2g$$

where $w_{ij} \in H^{\circ}(\mathcal{L}_{Y_{\circ}}/\mathcal{C})$. The matrix of 1-forms $\Omega_{\circ} = (w_{ij})$ on Y_{\circ} identifies with a morphism of varieties $\Omega_{\circ} : TY_{\circ} \to Mat_{\mathcal{C}}(2g, 2g)$ and let $\Omega_{\circ} = \Omega_{\circ} \otimes \mathcal{F} : TY \to Mat_{\mathcal{F}}(2g, 2g)$ be the morphism deduced form Ω_{\circ} .

Let's define γ . If $\mathbf{M} \in \mathbf{Mat}_{\mathcal{F}}(2\mathbf{g}, 2\mathbf{g})$ pick any matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_{\mathcal{F}}(2g)$$
 where a, b, c, $d \in Mat_{\mathcal{F}}(g,g)$

$$\begin{pmatrix} a^{\dagger} & b^{\dagger} \\ c^{\dagger} & d^{\dagger} \end{pmatrix} = M \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and then the image of $(a, b) \in \operatorname{Mat}_{\mathcal{F}}(g, 2g)_0$ in $\operatorname{Mat}_{\mathcal{F}}(g, 2g)_0$ / $/\operatorname{GL}_{\mathcal{G}}(2g)$ is well defined (i.e. it depends only on M and not of the choice of a, b, c, d); we let η (M) be the image of (a, b) in the double coset space $\operatorname{GL}_{\mathcal{F}}(g) \setminus \operatorname{Mat}_{\mathcal{F}}(g, 2g)_0/\operatorname{GL}_{\mathcal{G}}(2g) \cong \mathcal{H}_g$ (cf. (3.2)). In notations above we have:

(4.6) THEOREM. The map Y \rightarrow \swarrow \swarrow \swarrow \swarrow coincides with the map Y $\xrightarrow{\nabla}$ TY $\xrightarrow{\Omega}$ Mat \swarrow (2g, 2g) $\xrightarrow{\eta}$ \swarrow \swarrow \swarrow

(4.7) To prove the above statement let's make some notations.

$$\nabla^{X/Y}: \operatorname{Der}_{\mathcal{F}} \mathcal{O}(Y) \longrightarrow \operatorname{End}_{\mathcal{F}}(\operatorname{H}^{1}_{\operatorname{DR}}(X/Y)), \theta \mapsto \nabla^{X/Y}_{\theta}$$

be the "external" Gauss-Manin connection and for each $y \in Y$, letting $X_y = f^{-1}(y)$ consider the "internal" Gauss-Manin connection

$$\nabla^{X_y}: \operatorname{Der}_{\mathscr{C}} \mathcal{F} \longrightarrow \operatorname{End}_{\mathscr{C}} (H^1_{\operatorname{DR}}(X_y)), \quad p \longmapsto \nabla_p^{X_y}$$

Recall that we proved in $\begin{bmatrix} B_1 \end{bmatrix}$ a formula relating the "external" and "internal" Kodaira-Spencer maps. Using an analogue reasoning one can prove the formula (4.8) below relating the "external" and "internal" Gauss-Manin connections (for details see our mono-

graph $[B_{4}]$, Chapter 5). Before writing down the formula we need more notations. For any O(Y)-module E and any $Y \in E$ denote by V(Y) the image of V(Y)-module E and V(Y) and V(Y) the maximal ideal of V(Y). For instance if V(Y) then V(Y)

(4.8) LEMMA $[B_4]$. Let $y \in Y$, $\omega \in H^1_{DR}(X/Y)$ and $\theta \in H^0(T_Y)$ such that $\theta(y) = \nabla y$. Then

$$\nabla_{\mathbf{x}}^{\mathbf{x}}(\omega(\mathbf{y})) = (\nabla_{\mathbf{y}} + \nabla_{\mathbf{y}}^{\mathbf{x}/\mathbf{y}}\omega)(\mathbf{y})$$

(4.9) Proof of (4.6). Put $\omega = {}^{t}(u, v)$ where $u = {}^{t}(\omega_{1}, \dots, \omega_{g})$ $v = {}^{t}(\omega_{g+1}, \dots, \omega_{2g})$. By definition of the D-module structure on $u = {}^{t}(\omega_{g+1}, \dots, \omega_{2g})$. By definition of the D-module structure on $u = {}^{t}(\omega_{g+1}, \dots, \omega_{2g})$. Assume $u = {}^{t}(\omega_{g+1}, \dots, \omega_{2g})$. By definition of the D-module structure on $u = {}^{t}(\omega_{g+1}, \dots, \omega_{2g})$. Assume $u = {}^{t}$

$$\begin{pmatrix}
S(u(y)) \\
S(v(y))
\end{pmatrix} = \langle \Omega(y), \nabla y \rangle \begin{pmatrix} u(y) \\
v(y)
\end{pmatrix}$$
If $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_{\mathcal{F}}(2g)$ is such that
$$\begin{pmatrix}
Sa & Sb \\
Sc & Sd
\end{pmatrix} = \langle \Omega(y), \nabla y \rangle \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and if u(y) and v(y) are defined by

$$\begin{pmatrix} u(y) \\ v(y) \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \widehat{u}(y) \\ \widehat{v}(y) \end{pmatrix}$$

then applying \int to the above equality we get that $\int (\widetilde{u}(y)) = \int (\widetilde{v}(y)) = 0$. So $\left(\widetilde{u}(y)\right)$ is a basis of $H^1_{DR}(X_y)$ killed by \int and $u(y) = a \widetilde{u}(y) + b \widetilde{v}(y)$ is a basis of $H^0(\Omega_{X_y}/2)$. By (3.2), (a, b) represents the image of X_y in \mathcal{H}_y via the Δ -Torelli map which proves the Theorem.

(4.10) Remark. Although (4.6) gives an "explicit" way of computing the \triangle -Torelli map it seems rather hard to evaluate the \triangle -type and typical \triangle -dimension of the fibres of the \triangle -Torelli map and hence to get dimensional upper bounds for the \triangle -closures of isogeny classes as in case g = 1. In any case we have:

(4.11) COROLLARY. The fibres of the \triangle -Torelli map h: $A_g \to \mathcal{H}_g$ are constructible for the \triangle -topology of \mathcal{A}_g .

Proof. One easily checks that the fibres of η are constructible in the Δ -topology of Mat $_{\mathcal{F}}(2g, 2g)$ and use (4.6) and Δ -Chevalley constructibility" B_7 .

5. \triangle -tangent maps of \triangle -character maps

(5.1) Start with \triangle -character maps of abelian varieties $\forall_{\mathbf{r}}: \mathbb{A} \to \mathcal{F}^{\mathbb{M}_{\mathbf{r}}}.$

By [B] there are two cases which are better understood name-ly when rank \triangle (A) = 0 (i.e. A descends to $\mathcal C$) and rank \triangle (A) = g

(where g = dim A as usual). We shall be concerned here with the \triangle -tangent map $T_0 \not \vdash_r$ in the second case (which is more interesting). By $\begin{bmatrix} B_1 \end{bmatrix}$ (6.1) if $\operatorname{rank}_\triangle(A) = g$ then $\not \vdash_2 : A \to \mathcal{F}^g$ is surjective (with kernel A^{\sharp} of \triangle -type zero and typical \triangle -dimension 2g, equal to the \triangle -closure of the torsion subgroup of A) and any $\not \vdash_r$ factors through $\not \vdash_2$. So it is sufficient to look at $T_0 \not \vdash_2$. Note that the map $\not \vdash_2$ is not an "invariant of A" since it depends upon choosing a basis in the space of \triangle -polynomial characters of order ≤ 2 . But if one is able to prove that the 2-symbol $\mathcal{T} = \mathcal{T}_2(T_0 \not \vdash_2)$: Lie $A \to \mathcal{F}^g$ is invertible then the composed map $\not \vdash_A : A \xrightarrow{f_1} \mathcal{F}^g \xrightarrow{\sigma^{-1}}$ Lie A is an "invariant of A" and if $T_A := T_0 \not \vdash_A :$ Lie $A \to L$ Lie A then by (3.4) $\mathcal{T}_2(\mathcal{T}_A) = 1_{Lie}$ so (Lie A, \mathcal{T}_A) is a \triangle -Picard-Fuchs equation (3.5). (see also the Introduction). Our main result is:

- (5.2) THEOREM. Let A be a principally polarized abelian $\mathcal F$ -variety of dimension g and Δ -rank g and let $h_A \in \mathcal H_g^{(g)}$ be its image under the Δ -Torelli map. Then:
- 1) $\mathcal{T}_2(T_0, \mathcal{Y}_2)$ is invertible (so by (5.1) we may define \mathcal{Y}_A and $\mathcal{T}_A = T_0, \mathcal{Y}_A$)
- 2) The class of the \triangle -Picard Fuchs equation (Lie A, \mathcal{T}_A) in \mathcal{E}_g coincides with the image of h_A in \mathcal{E}_g via the isomorphism $\mathcal{H}_g(g) \xrightarrow{\sim} \mathcal{E}_g$ in (3.7).
- 3) The class of the \triangle -lattice (Lie A, Lie A $^{\sharp}$) in \mathcal{L}_{g} coincides with the image of h_{A} in \mathcal{L}_{g} via the embedding $\mathcal{H}_{g}(g) \to \mathcal{L}_{g} \text{ in (3.7)}.$

Remark. Assertion 2) implies that if $z_A \in \operatorname{Mat}_{\mathcal{T}}(g,g)$ is a -period matrix for A (cf. (4.1)) then Lie A has a basis (called

in what follows a distinguished basis) such that upon identifying Lie A with $\operatorname{Mat}_{\mathcal{F}}(g,l)$ via this basis we have $T_A(y) = y'' + \beta_A y$ for all $y \in \operatorname{Mat}_{\mathcal{F}}(g,l)$ where $\beta_A \in \operatorname{Mat}_{\mathcal{F}}(g,g)$ is given by $\beta_A = (z''_A(z'_A)^{-1})'/2 - (z''_A(z'_A)^{-1})^2/4.$

By (3.8) all distinguished basis of Lie A are $\operatorname{GL}_{\mathscr{C}}(g)$ -conjugate.

Proof of the Theorem. Assertion 3) follows directly from 2). So we concentrate ourselves on 1) and 2). Recall from $\begin{bmatrix} B_1 \end{bmatrix}$ the "standard picture" giving ψ_2 . Let $\cdots \to A^n \to A^{n-1} \to \cdots \to A^0$ be the infinite prolongation sequence associated to A (cf. $\begin{bmatrix} B_1 \end{bmatrix}$ (3.2)), let L^n = Spec \mathcal{O} (A^n) and C^n = Ker($A^n \to L^n$). By the proof of $\begin{bmatrix} B_1 \end{bmatrix}$ (6.1) L^n are algebraic vector groups, $C^0 = A^0 = A$, $C^1 = A^1$ and $C^n \to C^{n-1}$ are isomorphisms for $n \ge 2$. So $C^\infty := \lim_{n \to \infty} C^n$ is a D-group scheme whose underlying group scheme is isomorphic to A^1 and $C^\infty \subset A^\infty$ is the D-scheme closed immersion corresponding to the inclusion $A^{\sharp} \subset A$ so after all $C^\infty = (A^{\sharp})^\infty$, $\begin{bmatrix} B_1 \end{bmatrix}$ (3.9). Moreover the components of ψ_2 viewed as elements of $\mathcal{O}(A^2)$ form a basis of $X_a(L^2) = X_a(A^2)$ (see the proof of $\begin{bmatrix} B_1 \end{bmatrix}$ (6.1)).

Now it follows from $\begin{bmatrix} B_5 \end{bmatrix}$, Chapter III, (2.14) that the \triangle -Hodge structure $h_A = (H^1_{DR}(A), H^0(\Omega^1_{A/\mathcal{F}}))$ is isomorphic to the \triangle -Hodge structure ($T^*_{o}C^{\infty}$, $T^*_{o}C^{0}$) where $T^*_{o}C^{\infty}$ has the structure of D-module induced from the D-module structure of the maximal ideal of O (see (1.6)); to be able to apply $\begin{bmatrix} B_5 \end{bmatrix}$, loc. cit. we have to use the D-module isomorphism $T_{o}C^{\infty} \geq L(C^{\infty})$ (cf. (1.6)) and the fact implicitely noted in $\begin{bmatrix} B_1 \end{bmatrix}$ (6.6) that A^1 is the universal extension E(A) of A by a vector group (Instead of $\begin{bmatrix} B_5 \end{bmatrix}$ one could probably invoke the characteristic zero version of the main result from $\begin{bmatrix} MM \end{bmatrix}$ plus the "duality theorem" from $\begin{bmatrix} BBM \end{bmatrix}$). Fix an \mathcal{F} -basis $y = (y_1, \dots, y_g)$ of $T^*_{o}A$ and pick any basis $z = (z_1, \dots, z_g)$ of $X_a(L^2)$. Then the map $Y_2 : A \rightarrow S : = \mathcal{F}^{-g}$ corresponds to a D-map $A^{\infty} \rightarrow S^{\infty} = Spec \mathcal{F} \{ z_1, \dots, z_g \}$ so the map

 $T_{o} \not\downarrow_{2} : (T_{o}A)^{\infty} = \operatorname{Spec} \mathcal{F} \big\{ y_{1}, \dots, y_{g} \big\} \longrightarrow (T_{o}S)^{\infty} = \\ = \operatorname{Spec} \mathcal{F} \big\} z_{1}, \dots, z_{g} \big\} \text{ is given precisely by the inclusion}$ $\mathcal{F} \big\} z_{1}, \dots, z_{g} \big\} \longrightarrow \mathcal{F} \big\{ y_{1}, \dots, y_{g} \big\} \text{ taking each } z_{i} \text{ into the corresponding element of } X_{a}(L^{2}) = T_{o}^{*}L^{2} \longleftrightarrow T_{o}^{*}A^{2} \longleftrightarrow T_{o}^{*}(A^{\infty}) = \\ = \underbrace{\sum_{i=1}^{g}}_{i=1} \operatorname{Dy}_{i}. \text{ So to compute } T_{o} \not\downarrow_{2} \text{ we must choose a basis } z_{1}, \dots, z_{g} \\ \text{and express its elements as linear } \triangle \text{-polynomials in } y_{1}, \dots, y_{g}.$ We have a commutative diagram

inducing a commutative diagram

$$T^{\frac{1}{2}} \circ C^{2} \leftarrow T^{\frac{1}{2}} \circ A^{2} \leftarrow T^{\frac{1}{2}} \circ A^{2}$$

where the vertical arrows are thought of as inclusions in particular $T_0^*C^1 = T_0^*C^\infty$. Clearly $z_i = \int_0^2 y_i - \sigma_1^{-1} \int_0^2 \sigma_0 y_i \in T_0^*A^2$ belong to $T_0^*L^2 = X_a(L^2)$ and form a basis of it. Write

(*)
$$S^{2}(\sigma_{o}y_{i}) = \sum_{j} \alpha_{ij} S(\sigma_{o}y_{j}) + \sum_{j} \beta_{ij}(\sigma_{o}y_{j}),$$
with α_{ij} , $\beta_{ij} \in \mathcal{F}$

in the D-module $T_0^*C^{\infty}$. Since $\int k(\sigma_0 y_i) = \sigma_{\infty}(\int k_{y_i})$ we get

$$(xx) z_{i} = \int_{y_{i}}^{2} - \sum_{x_{ij}}^{2} \int_{y_{j}}^{y_{j}} - \sum_{x_{ij}}^{2} \int_{y_{j}}^{y_{j}}$$

So $T_0 \not\vdash_2$ is given by $y \mapsto y'' - \alpha y' - \beta y$ where $\alpha = (\alpha_{ij})$, $\beta = (\beta_{ij})$, in particular $T_2(T_0 \not\vdash_2)$ is invertible, this proving assertion 1). On the other hand by (3.7.1) the Δ -Picard-Fuchs equation associated to the Δ -Hodge structure $(T_0 \not\vdash C^{\infty}, T_0 \not\vdash C^{\infty})$ is also given by $y \mapsto y'' - \alpha y' - \beta y$ this proving assertion 2). Our Theorem is proved.

(5.3) Next we pass to computing \(\triangle -tangent maps of \(\triangle -cha-\) racter maps of curves. So let X be a smooth projective non-hyperelliptic curve over ${\mathcal F}$ of genus g and ${\color{black} riangle}$ -rank g and denote by ψ_{X} the composition $X \xrightarrow{\mu_{A}} A \xrightarrow{\psi_{A}}$ Lie A where A is the Jacobian of X. For any functional $0 \neq h \in (\text{Lie A})^0$ denote by \forall_h the composition $X \xrightarrow{\psi_X}$ Lie A \xrightarrow{h} \mathcal{F} (cf. the Introduction); clearly the space of the maps $\psi_{\rm h}$ (as h varies) coincides with the image of the restriction map $Ch_{\Lambda}(A) \longrightarrow \mathcal{O}^{\Delta}(X)$. Now fix a distinguished basis in Lie A (cf. the remark after (5.2)) and identify as there Lie A \simeq Mat₃ (g,1) via this basis so that $T_Ay = y^{11} + \beta y$, $\beta = \beta_A \in Mat_{\mathcal{F}}(g,g), y \in Mat_{\mathcal{F}}(g,l)$. Then (Lie A) identifies with Mat f(1,g) so we may speak about the derivatives h, h', h., ... \in Mat $_{\mathcal{F}}(1,g)$. Moreover view X as canonically embedded into $\mathbb{P}^{g-1} = \mathbb{P}((\text{Lie A})^{0})$ and note that the distinguished basis of Lie A provides distinguished coordinates on [Pg-1. In particular it makes sense to speak about the set $\mathbb{P}_{\mathscr{C}}^{g-1}$ of \mathscr{C} -points of \mathbb{P}^{g-1} ; these are the points which can be represented with respect to the distinguished coordinates as $(c_1: \cdot \cdot \cdot : c_g)$ with $c_i \in \mathcal{F}$. Now define

some canonical divisors on X as follows. First let $K \in Div(X)$ be the canonical divisor pull-back of h, next we let $K' \in Div(X)$ be the pull-back of h' if h' $\neq 0$ and write Supp K' = X if h' = 0 and finally let $K \in Div(X)$ be the pull back of h'' + h β if h'' + h β $\neq 0$ and write Supp K = X if h'' + h β = 0. It will be also convenient to consider a certain union of linear subspaces of \mathbb{C}^{g-1} as follows: let $V_1, \dots, V_s \subset L$ ie A be the eigenspaces of M and let M_1, \dots, M_s be the linear subspaces of M and let M_1, \dots, M_s be the linear subspaces of M are lefined by M and let M and M if M is not a scalar matrix while M course M has distinct eigenvalues. With the notations above our result is:

(5.4) THEOREM. The following hold:

- 1) $a_{\wedge}(Ker(T_x \psi_h)) = 2$ iff $x \notin Supp K$
- 2) $a_{\triangle}(\text{Ker}(T_x + h)) = 1$ iff $x \in \text{Supp } K \text{ and } x \notin \text{Supp } K$
- 3) $a \triangle (Ker(T_x + h)) = 0$ (equivalently $T_x + h$ is injective) iff $x \in Supp K \land Supp K'$ and $x \notin Supp \widetilde{K}$.
- 4) $T_x + T_h = 0$ iff $x \in Supp K \cap Supp K' \cap Supp K$
- 5) If h is \triangle -generic in (Lie A)° then Supp K \cap Supp K' = \emptyset so only cases 1) and 2) above may occur.
- 6) a $(\text{Ker}(T_X + X)) \leq 2$ for all $x \in X$
- 7) $a_{\triangle}(\text{Ker}(T_X + X)) \geqslant 1$ for only finitely many $x \in X$
- 8) $a_{\triangle}(\text{Ker}(T_{X} + X)) = 2 \text{ iff } x \in X \land \mathbb{P}_{\mathscr{C}}^{g-1} \land (\cup L_{i})$

Remarks. 1) Since $T_X \vee_h : T_X \times_{\mathcal{F}} \to_{\mathcal{F}}$ is a linear differential operator it follows that a $(\text{Ker}(T_X \vee_h))$ coincides with the order of $T_X \vee_h$ (with the convention that the "zero operator" has order, say, $-\infty$). Of course this interpretation fails for a $(\text{Ker}(T_X \vee_X))!$

2) A heuristic principle in algebraic geometry says that "any dimensional invariant depending algebraically on a parameter is uper semicontinuous". This principle is violated here (as noted also in the Introduction). But there is nothing misterious here for one can give very down-to-earth examples when this principle is violated in \triangle -algebraic geometry. For instance let $f\colon \mathcal{F} \to \mathcal{F}$ be the \triangle -polynomial map f(y) = y + yy. Then for $y \in \mathcal{F}$, $(T_y f)(t) = (1 + y')t + yt'$ hence

$$a_{\triangle}(\text{Ker}(T_{y}f)) = \begin{cases} 0 & \text{if } y = 0 \\ 1 & \text{if } y \neq 0 \end{cases}$$

Proof of (5.4). Let $x_0 \in X$ and let $s \in \mathcal{O}_{X, x_0}$ be a local parameter. Then the tangent map $T\mu: TX \to TA = A \times Lie A$ has the form $(x, t \frac{\partial}{\partial s}) \mapsto (\mu(x), t \nu(x))$ for x in a neighbourbrood of $x_0, t \in \mathcal{F}$ and $\nu(x) \in Lie A = Mat_{\mathcal{F}}(g,l)$; note that the image $[\nu(x)] \in \mathbb{P}^{g-1}$ of $\nu(x)$ is precisely the image of x under the canonical map. Consequently for x around x_0 and writing ν instead of $\nu(x)$ we have the following formulae for $T_x + T_x \times T$

Now $T_x +_h$ has order 2 iff $hv \neq 0$ which proves 1). $T_x +_h$ has order 1 iff hv = 0 and $hv' \neq 0$; since h'v + hv' = 0 this is equivalent to hv = 0 and $h'v \neq 0$ which proves 2). Similarly one proves 3) and 4). To prove 5) start with the \triangle -polynomial map $Y: \text{Mat}_{\mathcal{F}}(1,g) \longrightarrow \text{Mat}_{\mathcal{F}}(1,g) \times \text{Mat}_{\mathcal{F}}(1,g)$, Y(h) = (h,h') which clearly has a Zariski dense image and let $U \subset \text{Mat}_{\mathcal{F}}(1,g) \times$

X Mat $_{\mathcal{I}}(1,g)$ be the Zariski open set of all pairs (h_1, h_2) such that Supp $D_1 \cap Supp D_2 = \emptyset$ where $D_i \in Div(X)$ is the pull-back of h_i on X. Then $\mathcal{I}^{-1}(U)$ is a Δ -open subset of Mat $_{\mathcal{I}}(1,g)$ such that for any $h \in \mathcal{I}^{-1}(U)$, Supp $K \cap Supp K' = \emptyset$. Assertion 6) is clear from the formula of $T_X \mathcal{I}_X$. Assertion 7) follows from (2.6). Let's check the "only if" part of assertion 8) (the "if" part follows similarily). We must have $v' \in \mathcal{F}$ v because otherwise there exists $h \in Mat_{\mathcal{I}}(1,g)$ with hv = 0 and $hv' \neq 0$ hence $a_{\Delta}(Ker(T_X \mathcal{I}_X)) \in a_{\Delta}(Ker(T_X \mathcal{I}_X)) = 1$, contradiction. So $v' = \lambda v (\lambda \in \mathcal{I})$; taking $w = \mathcal{I}_X v (\lambda \in \mathcal{I}_X) = 1$, we get $v'' = (\lambda' + \lambda^2)v$; if v was not an eigenvector of $\mathcal{I}_X v (\lambda \in \mathcal{I}_X) = 1$. Finally we get $v'' = (\lambda' + \lambda^2)v$; if v was not an eigenvector of $\mathcal{I}_X v (\lambda \in \mathcal{I}_X) = 1$. We would get that $v'' + \beta v \in \mathcal{I}_X v (\lambda \in \mathcal{I}_X) = 1$ and $h(v'' + \beta v) \neq 0$ hence once again $a_{\Delta}(Ker(T_X \mathcal{I}_X)) \leq a_{\Delta}(Ker(T_X \mathcal{I}_X)) = 0$, contradiction.

6. Calculus of variations

means as usual the ring $\mathcal{F}[\mathcal{J}] = \sum_{i \geqslant 0} \mathcal{F} \mathcal{S}^i$; this map will replace "integration by parts" from "usual" calculus of variations. First, some notations: if p_1 , $p_2 \in D$ we let p_1 o $p_2 \in D$ be their product. If $p_1 \in \mathcal{F}$ then we simply write $p_1 p_2$ instead of p_1 o p_2 . But if $p_2 \in \mathcal{F}$ then we keep the notation $p_1 p_2$ to denote $p_1(p_2) \in \mathcal{F}$ ($p_1(p_2)$ = result of applying the operator p_1 to the scalar p_2); therefore we have $\begin{cases} 0 & 1 \\ 0 & 1 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 1 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 1 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 1 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 1 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 1 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 1 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 1 \end{cases}$

(6.2) LEMMA. The map ad: D \rightarrow \mathcal{F} is \mathcal{F} -linear where D is viewed with its right \mathcal{F} -module structure.

Proof. First note that if $p \in D$ then ad(po S) = -S(ad(p)). Then prove that $ad(po \lambda)) = \lambda(ad(p))$ by induction on ord(p) = minimum n such that $p \in D_n$.

(6.3) Let G be an algebraic vector \mathcal{F} -group. To any Δ -polynomial character f: $G \to \mathcal{F}$ we will associate an algebraic group character ad(f): $G \to \mathcal{F}$ as follows. Assume $G = \operatorname{Spec} S(W)$, $W = X_a(G)$. Then f corresponds to an element of $D \otimes_{\mathcal{F}} W$ and we let $\operatorname{ad}(f) \in W$ be the image of f under the map

$$D \otimes_{\mathcal{F}} W \xrightarrow{\text{ad} \otimes 1} > \mathcal{F} \otimes_{\mathcal{F}} W = W$$

which makes sense by (6.2). In coordinates, if $G = \mathcal{F}^g$ and $f: \mathcal{F}^g \to \mathcal{F}$ is given by $f(y_1, \dots, y_g) = \sum_{i,j} a_{ij} \mathcal{S}^i y_j$ then $ad(f): \mathcal{F}^g \to \mathcal{F}$ is given as expected by $ad(f)(y_1, \dots, y_g) = \sum_{i,j} (-1)^j (\mathcal{S}^j a_{ij}) y_i$.

vector bundle on X (viewed as a group scheme $G = \operatorname{Spec} S(W)$, W locally free on X). By a Δ -polynomial section of G/X (or of W) we mean a Δ -polynomial map s: X \longrightarrow G such that \mathcal{T} os = 1_X . To give a Δ -polynomial section of G/X is equivalent to giving a map s: X \longrightarrow G with \mathcal{T} os = 1_X such that for each $\mathbb{X}_0 \subset X$ there exists a neighbourhood U of \mathbb{X}_0 in X and a frame $\mathbb{W}_1, \dots, \mathbb{W}_g \in H^0(\mathbb{U}, \mathbb{W})$ such that $S(\mathbb{X}) = \sum_{i=1}^{n} f_i(\mathbb{X}) \mathbb{W}_i$ for $\mathbb{X} \subset \mathbb{U}$ where $f_i \in \mathcal{O}^\Delta(\mathbb{U})$. So the space of Δ -polynomial sections of G/X equals $H^0(X, \mathbb{W}^\Delta)$ where $\mathbb{W}^\Delta := \mathbb{W} \otimes_{\mathcal{O}} \mathcal{O}^\Delta$. Note also that to give a Δ -polynomial section

of G/X is equivalent to giving a \triangle -polynomial map $G \longrightarrow \mathcal{F}$

where $G:=\operatorname{Spec} S(W)$ such that for each $x\in X$ the induced map $G_X\to \mathcal{F}$ is an algebraic group character (where $G_X=\operatorname{preimage}$ of x in G).

- mial character of G/X we mean a \triangle -polynomial map f: G \rightarrow F such that for each x \in X the induced map f_x : $G_x \rightarrow \mathcal{F}$ is a \triangle -polynomial homomorphism. To any relative \triangle -polynomial character f: G \rightarrow F we can associate a \triangle -polynomial map ad(f): G \rightarrow F by the formula ad(f_x) = ad(f_x) for x \in X (one checks that ad(f) if \triangle -polynomial by a local computation: we may assume G = X x \mathcal{F}^g and using the fact that $\mathcal{O}^\triangle(X \times \mathcal{F}^g) = \mathcal{O}^\triangle(X) \otimes (\mathcal{F}^g)$ [B₃] section 1, f has the form $f(x, y_1, \dots, y_g) = \sum f_{ij}(x) \sum f_{ij}(x) y_i$ with $f_{ij} \in \mathcal{O}^\triangle(X)$ so by (6.3) ad(f)(x, y_1, \dots, y_g) = $\sum (-1)^j (\sum f_{ij}(x)) y_i$). Since each ad(f)_x: $G_x \rightarrow \mathcal{F}$ is an algebraic group character by (6.4) ad(f) corresponds to a \triangle -polynomial section of G/X i.e. to an element in $H^0(X, W^\triangle)$ which we still denote by ad(f).
 - (6.6) Let X be a smooth \mathcal{F} -variety and $f\colon X\to \mathcal{F}$ a polynomial map, i.e. $f\in\mathcal{O}^\triangle(X)$. Then the \triangle -tangent map If: TX \to T $\mathcal{F}=\mathcal{F}$ composed with the second projection $p_2\colon\mathcal{F}\times\mathcal{F}\to\mathcal{F}$ yelds a relative \triangle -polynomial character p_2 off: TX \to \mathcal{F} hence we may consider the associated \triangle -polynomial section $\mathrm{ad}(p_2$ off) of the cotangent bundle $\mathrm{T}^{\mathbb{X}}X\to X$; write $\mathrm{el}(f)=\mathrm{ad}(p_2$ off) and call it the Euler-Lagrange section (it lies in $\mathrm{H}^0(X,\Omega^\triangle)$). Its zero locus in X (i.e. the inverse image via $\mathrm{el}(f)\colon X\to \mathrm{T}^{\mathbb{X}}X$ of the zero section of $\mathrm{T}^{\mathbb{X}}X\to X$) will be called Geo(f) and is \triangle -closed in X.

In coordinates, if $X \subset A^N$, $X = \operatorname{Spec} \mathcal{F}[y_1, \dots, y_N]/J$ and $f \in \mathcal{O}^{\Delta}(X) = \mathcal{F}\{y_1, \dots, y_N\}/[J]$, $f = F \mod [J]$, $F \in \mathcal{F}\{y_1, \dots, y_N\}$ then $\operatorname{el}(f) \colon TX \to \mathcal{F}$ is induced by $\operatorname{el}(F) \colon TX \to \mathcal{F}$.

:
$$T \triangle^{N} = \triangle^{N} \times \triangle^{N} \rightarrow \mathcal{F}$$
, $el(F)(y_{1},...,y_{N}, dy_{1},...,dy_{N}) =$

$$= \sum_{i,j} (-1)^{j} S^{j} (\frac{\partial F}{\partial (S^{j}y_{i})}) dy_{i}$$

which is precisely the expression which vanishes in the classical Euler-Lagrange equations corresponding to the "lagrangian" F (see [P]). In what follows we examine Geo(f) in two particular situations which we were very fond of in this paper namely when f is a "quadratic form in the Δ -polynomial characters of order 2" on an abelian variety of maximum Δ -rank respectively on a curve of maximum Δ -rank. We need a preparation.

(6.7) Let G be an algebraic vector \mathcal{F} -group, viewed as on \mathcal{F} -linear space and let q: G \longrightarrow \mathcal{F} be a non-degenerate quadratic form. Then for any Δ -Picard-Fuchs equation (G, f) we can define "the adjoint" Δ -Picard-Fuchs equation (G, f*) with respect to q as follows. Pick any basis of G which is orthonormal with respect to q, identify (using this basis) G with Mat $_{\mathcal{F}}$ (g,1), write

$$f(y) = y^{**} + \propto y^{*} + \beta y$$

where α , $\beta \in Mat_{\mathcal{F}}(g,g)$ and define

where \propto , t are the transposed of \propto , β . One easily checks that the definition of f^{2} does not depend upon choosing our orthonormal basis.

(6.8) THEOREM. Let A be a principally polarized abelian \mathcal{F} -variety of dimension g and \triangle -rank g, let q: Lie A \rightarrow \mathcal{F} be a non-degenerate quadratic form, let f:= q o \mathcal{Y}_A : A \rightarrow Lie A \rightarrow \mathcal{F}

and let (Lie A, \mathcal{T}_A^*) be the adjoint of (Lie A, \mathcal{T}_A) with respect to q (where \mathcal{Y}_A and \mathcal{T}_A are as in (5.1)). Then $\text{Geo}(f) = \text{Ker}(\mathcal{T}_A^* \circ \mathcal{Y}_A)$ hence Geo(f) is an irreducible \triangle -closed subgroup of A of \triangle -type zero and typical \triangle -dimension 4g with Lie algebra $\text{Lie}(\text{Geo}(f)) = \text{Ker}(\mathcal{T}_A^* \circ \mathcal{T}_A)$.

Proof. Under the identifications $TA = A \times Lie A$, $TLieA = Lie A \times Lie A$, $T = \mathcal{F} \times \mathcal{F}$ the map $T \not\vdash_A$ identifies with $\not\vdash_A \times \mathcal{T}_A$ while the map P_2 o T_4 identifies with the bilinear map P_2 o P_3 in in the map P_4 of P_4 in the map P_5 of P_5 in the map P_5 of P_5 in the map P_5 in the map P

So $Geo(f) = Y_A^{-1}(\sum)$ where $\sum = Ker T_A^*$ and we are done.

(6.9) THEOREM. Let X be a smooth projective non-hyperelliptic curve over \mathcal{F} of genus g and Δ -rank g embedded into its Jacobian A and also viewed as embedded in $\mathbb{P}^{g-1} = \mathbb{P}((\text{Lie A})^Q)$, let $g: \text{Lie A} \to \mathcal{F}$ be a non-degenerate guadratic form and let $f: X \to \mathcal{F}$ be the composed map $X \xrightarrow{f_X} \times \text{Lie A} \xrightarrow{g} \mathcal{F}$. Then Geo(f) has Δ -type zero and for any $x \in X$ not belonging to the quadric $Q \subset \mathbb{P}^{g-1}$ defined by Q, $T_X \text{Geo}(f)$ has typical Δ -dimension $\in A$.

Proof. Let's borrow the notations from the proof of (6.8) and exactly as in the proof of (5.4) express the map $TX \longrightarrow TA = A \times Lie A$

as $(x, t \frac{\partial}{\partial s}) \mapsto (\mu(x), t\nu(x)), t \in \mathcal{F}, \nu(x) \in Mat_{\mathcal{F}}(g, 1)$. Then we get:

$$(T_x f) (t \frac{\partial}{\partial s}) = t \psi_X(x)((tv(x))) + \langle (tv(x)) + \langle (tv(x)) + \langle (tv(x)) \rangle$$

For a fixed x write v = v(x), $\psi = \psi_X(x)$ and $\varphi = {}^t\psi \in \operatorname{Mat}_{\mathcal{F}}(1,g)$.

Then

ad(
$$T_X f$$
) ($t \frac{\partial}{\partial S}$) = ad(φ (t ''v + $2t$ 'v' + t v'' + φ t v' + φ t v))
$$= t(\varphi'' - (\varphi_{\alpha})' + \varphi_{\beta})v$$

$$= t(^t_v(x)) (\mathcal{T}_A^{**}(\varphi_X(x)))$$

Let X_1 be the Zariski open set where $\frac{\Im}{\Im s}$ is a basis of T_X . Then $\operatorname{Geo}(f) \wedge X_1 = E^{-1}(o)$ where $E: X_1 \to \mathcal{F}$ is the \triangle -polynomial map $E(x) = {}^tv(x)$ ($\mathcal{T}_A \overset{\text{\tiny H}}{\not} \mathcal{T}_X(x)$). Let's compute the \triangle -tangent map $T_x E: T_x X \to \mathcal{F}$; it will be sufficient to check that $T_x E$ has order \triangle and $X \not\in \mathbb{Q}$ iff $T_x E$ has order 4 (Because $T_x \operatorname{Geo}(f) \subset \mathbb{C}$ $\mathbb{C}(f)$

We have:

 $(T_X E)(t) = {}^t v(x) \ (T_X (T^* \Upsilon)(t)) + ({}^t (T_X v)(t)) \ (T^* \Upsilon(x))$ where we put $T^* = T^*_A$, $\Upsilon = \Upsilon_X$, $T = T_A$. Since $T \Upsilon = T \Upsilon_A \circ T \Upsilon = T \circ T \Upsilon \qquad \text{we get by (1.5):}$

 $(T_X^E)(t) = {}^tv(x) \ ((T^* \circ T) \ (tv(x))) + (a \text{ term of order 0 in } t)$ Since $T^* \circ T$: Lie A \rightarrow Lie A has order 4 and $T_4(T^* \circ T) = 1$ $= 1_{\text{Lie A}} \text{ we get that } T_4(T_X^E) = {}^tv(x)v(x) \text{ and the Theorem is proved.}$

APPENDIX. A HEURISTIC DICTIONARY

We already noted several times that there is an analogy between "Ritt-Kolchin Theory" and "global non-linear analysis" as presented in Palais book [P]. We would like to present here a short
"dictionary" between the two theories. This "dictionary" motivated
(and on the other hand suggested) some of our results and might be
significant for further developments.

	Ritt-Kolchin [K ₁][K ₂][B ₁]	Palais [P]
distr	affine line Al (identified	unit circle $S^1 = \{e^{i\theta} \theta \in \mathbb{R}\}$
	with F, where F is an or-	("identified" with the
	dinary Δ -field)	algebra C [∞] (S ¹))

- derivation $S: \widehat{\mathcal{F}} \to \widehat{\mathcal{F}}$... derivation operator $d/d\theta: C^{\infty}(S^{1}) \to C^{\infty}(S^{1})$
- \mathcal{F} -varieties X (identified \mathbb{C}^{∞} fibre bundles E over with their sets X \mathcal{F} of \mathbb{S}^1 ("identified" with their \mathbb{C}^{∞} manifolds of sections $\mathbb{C}^{\infty}(\mathbb{E})$)
- \triangle -polynomial maps of \mathcal{F} . . . non-linear differential operators $\mathbb{C}^{\infty}(\mathbb{F}_1) \to \mathbb{C}^{\infty}(\mathbb{F}_2)$
- △ -polynomial functions lagrangians $C^{\infty}(E) \rightarrow C^{\infty}(S^{1})$ $X \longrightarrow \mathcal{F}$
- algebraic vector \mathcal{F} -groups vector bundles η over S^1 (identified with \mathcal{F}^N) (identified with their manifolds of sections $C^\infty(\eta)$)

		3	4	,			
63%	△ -polynomial homomorphism	0	0	6	•	•	linear differential ope-
	between algebraic vector						rators $C^{\infty}(\gamma_1) \rightarrow C^{\infty}(\gamma_2)$
	groups						
gana	symbols of the above	•	•	0	6	6	symbols of the above
dies	\triangle -tangent maps of		6	•	•		linearizations of non-li-
	△ -polynomial maps						near differential opera-
	Marinelot, L. Tree.						tors
	F -varieties X which	•	•	•	0		trivial bundles M x S1
600	descend to C						"identified" with the
							loop spaces Map(S1, M)
	subset X Q of X for X	•			•		embedding of M into
auto	descending to C						Map(S1, M) as "constant
	Control Books Toland						loops.

The list can be continued but should also be taken with a grain of salt since these analogies cannot be "perfect" and don't go too far (as this is the case with the analogies between "algebraic geometry" and "finite dimensional differential topology").

REFERENCES

- [BBM] P. Berthelot, L. Breen, W. Messing, Théorie de Dieudonne cristalline II, Lecture Notes in Math. 930, Springer 1982
- [B] A. Buium, Geometry of differential polynomial functions, I: algebraic groups, Preprint INCREST 55/1989
- [B₂] A. Buium, Geometry of differential polynomial functions II: algebraic curves, Preprint INCREST 1/1990
- [B3] A. Buium, Some results on differential polynomial functions, to appear.
- [B4] A. Buium, Differential algebraic groups and a conjecture of Serge Lang, to appear.
- [B₅] A. Buium, Algebraic D-groups, to appear
- [B₆] A. Buium, Splitting differential algebraic groups, J. Algebra, 130, 1(1990), 97-105
- [B₇] A. Buium, Ritt schemes and torsion theory, Pacific 2, Math. 98(1982), 281-293
- [C] P. Cassidy, Differential algebraic groups, Amer. J. Math., 94(1972), 891-954.
- [J] J. Johnson, Prolongations of integral domains, J. Algebra 94-1(1985), 173-211.
- [Ka] N. Katz, Algebraic solutions of differential equations, Invent. Math., 18, 1-2(1972), 1-119
- [K₁] E. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York 1973.
- [K2] E. Kolchin, Differential Algebraic Groups, Academic Press,
 New York 1975.

- [La] S. Lang, Division points on curves, Anali di Matematica pura ed applicata, IV, LXX (1965), 229-234
- [La2] S. Lang, Abelian Varieties, Springer Verlag 1983
- [MM] B. Mazur, W. Messing, Universal Extensions and One Dimensional Crystalline Cohomology, Lecture Notes in Math. 370, Springer 1974.
- [P] R. Palais, Foundations of Global non-linear Analysis, W.A. Benjamin, New York 1968.
- [R] M. Raynaud, Around the Mordell conjecture for function fields and a conjecture of Serge Lang, in: Algebraic Geometry, Lecture Notes in Math. 1016, Springer, 1-20.

Institute of Mathematics

Bd. Păcii 220

79622 Bucharest - ROMANIA