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1. Introduction

One of the quantities which can be considered
as describing some properties of a given material is
its symmetry. Speaking about symmetry we can distinguish
more aspects as for example the symmetries of a
configuration of a crystalvor invariance propertiés
of constitutive relations ( which must reflect some
features of the physical propefties of the material
under consideration ): About invariance propertieé of
constitutive relations , used in the modern cbntinuum
mechanics , & first mathematical definition of the
local symmetry group was given by'w; Noll(jk] ;

From an experimental point of wiew it is
clear that in a process in which the temperature increase
some materials undergo changes of their symmetry
properties; This symmetiry changes are commonly assoclated
with a '"phase transition" . In fact,the general term
"phase transition" is used in order to indicate
suddenly changes of some physical properties ( and the
symmetry may be one of it ), but in this pa?er we
shall refer only to phase transitions in which the

-

symmnetry changes,
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A theoretical approach for phase transiiions
was made by Landau (}i} . He distinguish between these
the first order phase transitions and the second order

. i phase transitions . According to Landau |

".,.. the second order phase transition is a
continuous transition in sense that the state

of the body vary continuous. We underline
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that the symmetry in the transition point is

1 changed sudden and in every moment we can say

i to which phase the body belongs;.._ at

first order phase transitions, in the transition S
point, there are in equilibrium two different

states of the body while at second order phase
transitions the state of both phases is the same::."

The theory proposed by Landau excludes from the theoretical

| point of wiew some types of transitions - in which

the symmetry is changed - which seems to be obéerved |

in experiments as being of second order ( see [4] )[5]){%1)["(?)
A critical constructive analysis to this approach

is presented by Bricksen {g}){é} ; he constructed

with the aid of the symmetries of the crystaline

configuration ( point groups ; latice groups ) a possible

description of the changes of symmetries in crystals,

but his study deals only with the crystaline symmetries

and not with invariance properties of the constitutive

| “relations .



Motivating his point of wiew Ericksen [4il says:
" What we see in the phase transitions is a change in
the symmetry of a configuration . *
At this point an observation must be made: if we use a

macroscopic theory for describing the behaviour of a

‘medium and if we want to take into account some realities

from the microscopic 1ével we need a hypothesis which
must link quantities from a microscopic level (as might be
the crystallographic symmetry group.) by the quantities
from the macroscopic level (constitutive equations ,
invariance properties) : One of the hypothesis.of this
type is the hypothesis about crystalliné solids, was stated
by Noll [ﬁf}, and state that for a solid érystal in an
undistorted configuration the material symmetry group is
the group generated by the crystallographic symmetry

group (point group ) and the inversion - ﬂ_; This
hypothesis will be used in_fhis paper.

The fact that the symmetry is changed with

- modifications of the temperature and volume is sure but

the aim of this paper is the mechanism of this change
at a phase transition . The basic idea is to generalize
what happens inside a phase.

Most of the authors which study phase transitions

in the framework of continuum mechanics (:9] [ld]) [li]
)

associate this fact with a discontinuity of the deformation

gradient at the transition point .
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This kind of description might be suitable for a first
order phase transition ( in Landau's description ), but
since we are interested in the changes of symmetry in |
second order phase transitions we will suppose that at
the transition point the deformation gradient is continuous;
The present paper ffeats only constitutive aspects
of phase transitions and develops a mechanism for symmetry
changes; The second section presents the basic definitions,
and results in the framework of non-linear thermoelasticity

when the symmetry is changed by temperature only. The

third section includes general results about extensions

of groups , the classification of the extensions from

the isotropic phase and a compariéion of the results
obtained with some experimental results from the physics

of liquid crystals : The fourth section includes a
generaligation of the results from section 2 to non-simple
materials and in this framework treats the transition
cubic-tetragonal; It is shown that in the frameworg

of materials of grade rjy 2 the transition cubic~tetragonai
is possible as a group extension . At the end of -section 4
we present some modifications which could be made in

order to treat the change of symmetry when the volume

is varied.



2. The change of symmetry in the elastic case

Let K& be a fixed reference configuration

i : of a ﬁhermoelastic body Gs and let us suppose that

the temperature field in a fixed point has a vélue 94_ .

| A deformation whose gradient is iz give rise to &

?é Cauchy stress 'R(LQF)EM) : Following Noll [1f] the
material symmetry group in the point >< ( which is

% fixed for the whole paper ) at the temperature f}ﬁ

with respect to Ki is

Ky : ' : -
G;:{HGUW)! Tﬂ(p)aﬂ;&ﬁ&ﬂ%)eq\) for all TG?GL(%)WS =
%

. We shall denote by \J(?) - the unimodular group,
by O(%} - the orthogonal group , by (3L_(3} - the linear
group and by F&(?D the ring of linear transformations
in the real three-dimensional space.

Let us observe that an analogous definiiion was
given earlier by Gurtin and Williams (12i1 s thediy
definition make the group dependent on the local volume also,
but their paper deals only with the classification of
possible phases of elastic materials. We shall present
in the last section the modifications which need to bé
made in order to obtain results of the present section
in such a case; we choose this simplified version to make

the hypothesis more accesible.
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pefinition 1 : The temperatures 90. and 92_ are

called equivalent‘in the configuration KL if the

' ¥ . .
groups Gﬂ: and Gez are conjugate; this means
that there exists a non-singular matrix Ak‘kei‘) 92_\

so that: ,
K -A v : _‘ ‘
GG‘,\ T Ak,‘ keﬂ')@z\ Qe; Azﬂ(e")e}z—) (2.4)

From ( 2,4 ) it follows that the material response

at 82 is the same as if the material is at temperature 91‘
-4

but deformed by a deformation whose gradient is AK,, (64-’62_3

It follows easily the following proposition:

Proposition 1: If the temperatures 9,\ and 82_ are

equivalent in the configuration ¥ then they are also

1
equivalent in any configuration. 3

Proof Let ¥ be a configuration obtained from Kq

2
by a deformation whose gradient is” W?f‘“fﬁthénfﬁ

~4

\(2 Wy Kz. u.'z -4
694 ??G’eq P , 662 = (PG@Z p S
so that &
K =X ¥, ,
G@: = A\(zki—}")e?_\ Gez_ AK&(QQ )62.> ) |
3 . -\ _
where : AKZ(G}” 2 )= 'PA\(‘K@")GZ)@ . |

Let us observe that the equivalence from definition 1

¥ 5 e . g ¥ A :
is indeed an equivalence relation on @+ (which 1is

.choose as the range for the temperature field) and we
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have the following properties for the function AKK v

8 A lBye)=4

-
s Av\ (£459,) = A\( (6?—394\

5 ke (88) = ALLB,58) A8

( obviously relation 2 has sense only when -Akﬂg\Bea) is

invertible).

Definition 2 : An equivalence class obtained by factorization

through the above equivalence relation is called a phase.

Definition 3! a) A temperature O, is called regular
if there exist a neighbourhocod U of 60 ( in ll,t )
so that @a is equivalent with every & in U ;

b) A temperature 90 is called critical

if it ds .not regulery .

We shall suppose that there exists a finite number,ofﬁg%m¢ﬁm5;v
critical temperaturés ( for a fixed material ) so that
there exist also a finité nunber of phases,
Let us observe that if 90 is a regular temperature -
then in a neighbourhood of it the'syﬁmetry group is
changed by the conjugation rule ( Z.A ) and so its
structure is unchanged , and this fact ‘happens -.in
the interior of every phase. The basic problem is
to link the symmetries of two neighbouring phases,
and this link muét.generalize'the'conjugation rule.

For this we shall give the following definition :
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Befinition 4. leto AeWM T G & growp GeU3)

The set

G :{%&kaﬂ\ there exist g@_@ ) Q,‘A = A%\
A . } |

"is called the left extension through A of G in U('&) :

In a similar way’the set &
GA = % e U\'ﬁ)\ there exist_%EG : Ae\ :%A‘)l

is called the right extension through PaE G in U('%).

Proposition 2 3 If (B3 is a group , AG and GA

are groups .

Proof we consider the right extension only ; A € .GA
because 1€ G , let %,‘ & G‘.!A and %le C’JA" thus
exists %sze G so that AQ\‘:-%/gA , AQNZT- CiQ_A

and so AB‘R‘? :ﬂq‘ng\ s ol Ae\:—ﬁA‘ then

Ae\‘qz g‘qA 80 ‘%\Q: G{A implies &"'\G: GA : s e

We observe that the concept of left and right extensions

.géneralize in a natursl way the conjugation rule ; more
exactly if A is invertible the left extension is the
same thing with conjugation by A and the right

extension is the same thing with conjugation by A‘ﬁ'

also we have in this case ( A invertible )

A(@A_‘): (P‘Q‘\)A:' G o About ihis “reversibality"

relation we shall prove an important proposition in the



next section; :

Let ec a eritical point:, B and F\
open intervels at both parts of %c coresponding ,
at two different phases; let ©,&F  and @Q_Q-F‘

(see below) :

We shall suppose that for Y end ‘5,\ fixed the :
function AKKQ,'.,G\ is continuous on' ¥ - ,A\,\\B',Bz)

\
is continuous on ¥ for 92 fixed,and that
a) MM A (9 92_) exists and is invertible 5
0 -»9, : :
6>9Q

(and we denote this limit by AKK%){BL) )

b) at least one of the limits =

| -A
im A, (8,,8) lim A (84;8)
B8, 850,

exists (we denote them by Ak(@q‘; Bc,) and Ki(@,ﬁ;%g)
Let us consider 694 known and we shall indicate a
mechanism for construct G}@z in the above hypothesis -
( from now on we omit the fixed configuration [ § )
Let Aﬁgq,%) A(*}e)@l) A\Bﬂe')( it A(Qq 1 Oe ) exists )
and respectlvely A (058, )= A’i 94) )A (90)9 > (-S" A (BUQQQ
exists). In the above hypothesis we can construct either

A(e{) 92) or A (@4)92) 13 moreover -any of them
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is singular .(- because @,, and Bz are not equivalent )
Let us suppose that we can construct A Q%,\‘,GQ_)

then we can define !

G 8, "’ ‘b‘(gﬁgz k691> .

-1 7
e A (9;392_) exists we can define

G, * ( Ga,)

A—'\ (9, ) 02

Vie sﬁall postulate that symmetries in neighbouring phases

are linked through this extensions. Thus we had

construét the symmetry group ng ( the symmetry group

in the phase. 'F‘ Yowith the eid of GO.\ ( the symmetry

group in the phase T ) and the constitutive function
A . put the same construction could be made starting

from Q;G,F to a 9\2% 'F‘ and then through conjugation

to 91 . We can prove the following result .

Theorem 1 : The construction of @432_ ~ as above

does not depend of @1QF 5 of eZQ'F-‘ - ; 1t depends

only of the phase [ and of the constitutive function A
Prgel t o et B € = 92 and @2‘ ¥ : We can
construct GQQ. from @94 through an extension or

f'rom Gxeu by conjugation after G;'@;t was
coxlstructzd from ng by extensioﬁ Lét us. suppose

q
that A(\eh@z) exists ( so that Akﬁ,“.’@;) ~exists)

so that ¢
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‘ e Qg = @
o e, AlOq3 B, o

It is easy to see that if B is invertible we have

: o :
BN = G
B( 52) AB ;
so that the two possible ways to construct 69 give
: : 2
. the same result. The same thing is possible if we start
4 \
9 : with 9;&? . 86 F and elC:F ceaeait

é ﬁ(‘(ebei) exists.

The above result shows that the constitutive function A
( which is not neccesary invertible because does not represent
a deformation gradient ) and the symmetry in the phase £ 3

determine in a unique way the symmetry in the phase F .

%. Group extensions ; the isotropic case.

For the whole section A will be a2 singular
transformation in MI2), & a group , @QcUL?) .
One of the problems that arise naturaly is the reversibility
of such symmetry changes; we know that A@?‘Q 2QA%>A=- G
for an invertible A . What happens when A is

not invertible?

Let g & G and define °
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T]A:{%\c-.um \ ‘A%zgfﬂ» .

Then

- - e (’b"\-
GA—SE)GﬂA ﬂg 94 . )
gk

This result and the following observation permit us

to give an answer to the "reversibility" problem .

-~

I 49\6‘_%;\ then Ae\?—%A : so that %G.Ag\ .
Eroposition 3 .t For A fixed there exists at
least one group QQCUH) so that AK—R&\:R z
Proof ¢ The proof will be constructive. Let ¢

R =dheumy | R o#p) .

We shall prove that oL is a group ; Ae & because A& A'A.’«
if 9\‘61’\’_ and ?\2_6_%% we have %4A:Aﬂi ‘ ,Q\ZA =A‘<\22
for some 9,,4,¢Ul3)  so that b, A =A%,9, . If

e then WA=Ag o tnat %"‘A*-Ag"\ thus
g‘“'\e‘%&_ . We shall show that , (”QZEA>= oA is .
clear that ’&QA:KL&J'}{&A and so if Hhe & ) %\A:}:¢

and from the above observation ‘&& e‘& implies Q\Q:A&
thus %QA(Q’A> and we obtain QKCAQ’}?_A) . Now

16 -E\QA(\—%?“A\ there exist a &Q—AX‘A so that 'Q\Q.Ae(
thus ‘?(Q %A s=80 that e\A:i: ("5 and so %E?&.

and the proof is complete . |

We can observe that _38 is maximal with this property
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but may have subgroups "stable" in this sense .

We can prove also the following *

Proposition 4t Let & a group , Geuld) = H
a subgroup of (€ e singular ; then ¢

1'. HA is a subgroup in GA .

2. /lA is a normel subgroup in G7A- for every &

5o GA‘*(C'J ﬁR)A( for the definition of R
see the above proposition )
4. GCQL ior every & .
5. Denoting KC’A> G A(G,A\ and so on we have

an increasing sequence @

A 2
e Goc .ot

proof : For 1. we have H &UR o U T Gj
- eRn ’
and —}\),A is obviously a group ; for 2. 1et OA S C7A

and 'Q\E iA ; we show that 33\3—4& 15  we have A%—-QA
with 'Q<€: G and Ae\: A so that Age\‘l = .
%, is clear from the above proposition , ‘4. follows.from
(2.4 ) and the definition of o ier 5; we shall
prove that CL::C LG:\ ( »4) . Let us observe that

fiA and all aA% (;b ( from the definition
of C;. :+ then if ke GA we have 'Q«G:Q\ with

%\G. (_:, th‘us Q\QAQ and so QCA(GA_> -l

The last assertion in the above proposition shows
that the symmetry in a proccess which pass cyclic through

a transition point tends to a "stable" symmetry.



The following proposition establishing a property
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of the extensions,in the elastic case, is very useful: for

computing the extensions from O(%)  ( the isotropic phase )
Proposition 5 : Let- G 8 group , - GE M) X
Act(?2) non-invertible . Then GIA is not compact .
Proof ¢ Clear GA contains i‘A . We shall

prove a stronger result which state that ’\A is

| not compact . Frorﬁ‘ the definition /\A —.5‘9\&‘)(%3 \ Ah= AS
e dim( ker A ) = 3% ‘then A =0 so that ’\A"—UU5>
which is not compact 1t dim ( ker A ) =2

there exists REO0(2) s'o that-if - €, - span ( ker A )-L
we have QA e_ﬂ'-_t\e,‘ : N+o thus in an orthonormal

basis ’(e1 . Qz_ . Q% ) we have ¢

?\.Oo
(.0
RA (%32>37\¢0‘ .>

Buto 4 = for 2 invertible , end
A RA

iy e

thus I\A is not compact . If dim ( ker A )=l

there exists &Q_OQ%) g0 that %
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R A A Ve = i e

O

’ }\;\ O o -
R_’\"‘(O 7\02-:) »6‘4\7°> mEe . (%'3)

a4 ( in a basis in whieh ( ei,ez) span ( ker A ) )

so that ¢
(E o )
A = (c 4w ) o,b s & )
b & e
RA “ b o4
thus it is not compact so the proof is complete . B

4 . The formulas (3.2 ) and (3.3 ) are analogous
. with the polar decomposition theorem and are very useful

in describing the exlensions from the isotropic phase.

Proposition 6 ¢ Let AL H\")\ be non-invertible ; then ¢

3. 3 OKOQA':- UV)‘)) s
i
2 , €, span (kerA) and

(€ , €, €,) is an orthonormal basis we have ¢

Ca) 0 @im-( ker A )

(b) if dim ( ker A)

=R e o)
0 = ( e vﬁvybx OONEY - (2. 4)
A 24 g 2o

=\
(o) df -dim ( ker ) =1, &, and €, span (kerA ) and

(€, + % , &) deEn orthonormal . basis we have :

[Qq WO, © i

(2.5)
o) = Bl by \ ( by b, 3 & O)
| g R ?

e II\A Ve Tr AR '}\ Ry '& 3 oL T S AR R e NP e L [ ')x‘ \
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Proof 4 (a) is obviously and (b) and (c) can be easily
obtained from the definition taking into account the
fact that if we denote ©B=RA and RE& O3
OI%) = O3 3
then VS)A 8 _ Q0

Let us observe that all the propositions from this
section were stated for right extensions but analogous
results hold obviously for the left extensions : For the
. left extensions from 0(5) we can observe that ¢

IEN (or) 0
N i 'AT‘)

At this point we will compare this theoretical
resuits with some experimental facts from the monography
"The Physics of Liquid Crystals " (A3 7] ; We begin
by recalling some definitions from koll [g7] , Gurtin
‘ and Williams [42;] _( see élso Wang “_M\],ColemanDS_])

In a fixed point, a material is called: solid if there

exists a configuration ¥ so that GJKC‘-O(%) s IF
G’K: o%) the material is called isotropic ; if
Gy = vid) the material is called fluid and if for

every configuration X GK\ DAY (}S end Q.+ U 3)
the material is called liquid crystal ( Wang Efnl-\-_l or
Coleman E}%] ) or we say that the material is in a

mesomorphic phase.

! : Let us analyse the result of the last proposition;

in the case (a) we have a transition from a solid
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isotropic phase to a fluid phase , and in the other

two cases we have transitions from an solid isotropic
phase to a mesomorphic phase with symmetry group given by
E3. and (2.9 ) : There exists a qualitative
difference betwen the groups (3.h ) and (2.5 ); In the
case (3.Q ) the transformations from the mesomorphic phase
leave the plane (€,,83) invariant and preserve the
areas from this plane unchanged and also preserve the
distances in the direction of the €4 axis : In the case
(2.5 ) - the transformations from the symmetry group
preserve the distances in the direction of the €, axis
and in the plane spanned-by Qq and R, act ( modulo
a change of the configuration of the plane ) as orthogonal
transformatioﬁs:

Thus in the case (b) we have to deal wiﬁh a symmetry
group of a mesophase with properties of a fluid in the
plane (€, , €, ) and in the case (c¢) with a symmetry
group which describes a mesophase with properties of a
golldd in the (e, , Q. } plané: .

A comparision with results from physics is now
suitable; P;G; de (Gennes Eﬁ?{] state ( page 1) -+
";.. mesophases can be obtained in tWo different
ways ¢
(1) Imposing positional order in one or two
dimensions rather than in three dimensions.
This does happen in nature: In the main
practical case we have positional order

in one direction only; the system can be

wiewed as a set of two dimensional liquid
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layers stacked on each other with a well-defined
‘spacing 3 the coresponding phases are called

smectics ceeo "

‘and about smectics ( page 273) !
" Inside the broad class of layered materials,
we may distinguish two major subgroups it
Group 1% Each layer‘is a two-dimensional 1iquid:;:
Group 2 : Each layer has some features of a

two-dimensional solid ... "
Thus it seems probably that the groups obtained at (b)
and (c) could.describe some qualitative aspects
observed in experiments , so that the mecnaniem of
symmetry changes previously presented appears to be

quite well motivated.

4, The change of symmetry in non-simple bodies; the

cubic - tetragonal transition

As we proved in a proposition of the preceding
gsection if A 'is not invertible (EA is not compact
because 4A is not compact and so the orthogonal
group 0  which is compact can not be obtained

by an extension. We shall present in this section a

mechanism for symmetry changes for non-simple bodies
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which represents the natural generalizatibn of the
ideas from the section 2 and which overleap the
above mentioned difficulty;

Denoting by X the position of a
particle in a reference configuration ¥ , denoting
the motion of the body by qLKX{ty, for a fixed time t

the i'P deformation gradient ( {34 ) will be:

v

B aw e ((X)

Naturaly we shall impose det F#0 . VWe shall suppose
constitutive equations ( for non-simple materials of

grade I )} of the form '
Y v
T S e )

rc 2
¢ of course for vl . ¥ is symmetric in the last ¥

indices ) . If we change the reference configuration

from ¥ to ¥Q ( by a volume preserving - - -
-4

deformation ) through a map dl ()(3 , we can compute

the ith deformation gradient for 0L()<B with

x 1} Y
respect to K by

.
L

G o= Vdv(m o) D (et

using the chain rule , so that , for example , in components

: WL lase 2 5. oo A A2 e
G"«S:F‘&\Hki . Giikth&mHM\\’\‘?&+ ‘FLQ HQSQ‘ ( : Y

L

In (L2 ) and (4.3)
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H&' = (\7 (b"‘\ ) ulfc QVLCb ‘)

and we easy observe that the set of all V - tuples
2 y
(*i B e R - Per owhiiol e

A 2 v ey A 2
Tw(F)F\'“)Fme\ =’\|c‘U7’G’""'1G)g‘>

do form a group which will be called the symmetry group
with respect to K" at temperature ©
At this point all ideas from section 2 are direct

applicable (‘all definitions and theorems hold ) but this
time the constitﬁtive function A will be
a Y - tuple ( & " ;t- ,:.., X ); We are
interested in extensions through a Y - tuple in which

;i is not invertible so that the application A
is singular . Let us observe that such a framework in ™
which we work with non-simple bodies offers more-
information about the singularity of the map /\,
at the transition point , so that it gives a larger class
of extensions; We shall adopt the classification of
phases given in section % which uses only the linear
of the symmetry group and we are mainly interested in

extensions which have as a linear part the group 0(%) .
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We shall denote by . ’\> the proJjection of the
5 : first component of a (’“ - tuple  ( é 5 é‘.’ ,:;., é );
1 | ‘ thus P (é ,é—, e Ez Vo= é . ‘
We easily see that if % is a symmetry group for
" a body of grade | & then ?(%\ is also a group, and

. ?(‘?})C: VRS . Let Y be a symmetry group of a
3 ] 2. 2 \
" body-of ierade W 2 Bet - Ao A A e, B ) De
A
a singular map ( so that det A =0 ) . The extension 'SA

is defined by

] TR . .
| %A ={ He =B ol eees H } s hdetdil =l oW
‘ is symmetric in the last L indices and

A o X
there exists Ge ¥ , G=(G ,& e

_ so that #AoH = GoA 15

» where the symbol O denotes the composition rule
described in ( 4.4 ).
' We shall prove the following theorem which solves

the problem raised at the begining of this section .

Theorem 2 ; For any (%2 , there exists a symmetry group

9 and a non-—invertible A so that ?(%,A:O(?:):
Proof ¢ The proof will be constructive; First we shall
reduce the problem to the case Y =2 by observing
et it % — | é . é ) is a symmetry group ‘
for a body of grade 2 , the group "éj =(é‘: /,% ,(_),...‘.;,<> ]
| with: éf ) é ) in ~% v oig algo a fgyiimetry groﬁp

for a body of grade ¢ .
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S0 we restrict our attention to bodies of grade 2.

% A 2
Let be such a group and A =( A E A be

a non-invertible map ; the group extension %A

A 2.
consist of pairs ( Y\ , 1 ) for which there exist
A

(Gl,%a)e-'q‘ so that
‘ A

A A A
= =l A Ch.b
A-«’) HJQ Y Axe 3
oE: he. A e A !
& A X

Agt M Haa™ Ay R, SR G”\A e

We shail choose e_l té be the group consisting by
2

the pair ( Cj] yaler o e g 5% s (@ ) - ge=that

?L§A3 y /\ﬁ . Because we want O\'B\C:r\)(,‘?jk\) we must have

O\«S)C,\A so that ffom prop?sition 5 of the preceding

section we must have A =O ., Thus relation ( G

becomes ¢

v

O A e o |
Ak Hie Han = Aten - (b6)
so that choosing A-"“'l‘ = )Arz\ =—A3{i = ‘g\\ the
relation ( l,g ) shows that C-\\\ belongs to ?K%A’)‘

if and only if ¢
Pt e T
(H) w =1

so that ?(%A) =0(3) and the proof is complete . 1

In what follows we shall treat the change of
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symmetry in the cubic - tetragonal transition in the
above mentioned context : As we already observed

in the introduction this was treat by Ericksen EQT’I:Sil
in order to overpass some difficulties which seems to
appear in Landau's theory of phase transitions ; We
shall work in the framework of bodies of grade 2

because we have to deal with two compact groups.

The cubic‘and tetragonal symmetries are

described in Noll [lg'] U saDaige L6 mEE. 5, T
and are generated by { R_ e p?z st - 48 elements e
for the cubic symmetry , and by . {. ‘VZ) W Q;S -
16 elements - for the tetragonal symmetry . We denoted
by Q: the rotation around the axis @ by

an angle & . By an element of the cubic symmetry group

( in the context of bodies of grade 2 ) we understand
& pair ( G e O S 5% G in the group above

mentioned and @) a third order tensor analogously

’
for an element of the tetragonal symmetry group .

Theorem 3 ° For materials of grade 2 the transition

cubic-tetragonal is possible as an extension .-

Proof - Let % be the group generated by
' K7 w/. :
the set { Q,z .L —-LH amd A the group
N
generated by { Q’2 0 ﬁ_?‘ '%':S((G,D))GQ{SE

and :gl Xk“ D) \{Q;Q{_B . We det to show-that there
exists an A = LA A‘) so that ?( eJA} =¥ ; this means 3
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4 4
A\\ H‘{ = C*n} Aﬁ" (Q”f-}
2 2
A
We choose A = e, ®e, +,®C, ; ( here (€ ,€,,6)
\ 2
form an orthogonal basis ) and Az‘j - A'S‘\‘) = O g
2
A so that -

A 2
fioreover with this choice of ( A , A ) we have GA'# ¢

only if G“ =4 .

Straightforward computations show that ¢

4 o 9

reas RN s ret(T 3R
LSRR RAC Nt L
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and we obtain ?( %A) =1?. so the proof is complete. a

Before ending this section we mention some modifications
which make possible changes in symmetry when the volume is
; varied also ; First the definition of the symmetry group
must be given in such a way to make the group dependent
% : of the volume. As we already mention this was done
earlier by Gurtin and williams [ﬁljl , and

following them -

G(\: v = %{He U('B)\ 'TKQFH,G)V) :TK(F,G)\') Jor ol

| Feu V”ﬂ_{

] Now two states S, = (©,,v, ) and S el By Wy )
| : will be called: equivalent if the coresponding groups

are conjugate . Then we can define regular and eritical

states and we need some hypothesis about eritical states
and the constitutive function & : Such suitable
hypothesis are :
1; The critical states are all the points of some
continuous curves in the ( © , ¥ ) quadrant
| : which does not intersect betwen them and which

are in a finite number .

2. The constitutive function A has at any two



-

different points situated on the same critical

curve the same type of singularity . This means

that the two singularities sre conjugated

through an invertible transformation .

4 Under these hypothesis similar results with that of section
2 can be proved , and also a path independence of the

symme try group and symmetry group extension is now

easy to prove,

We end this section with an important observation ;
There exist a strong similarity betwen what we called

here a group extension ( the formal definition ) and

some definitions in singularity théory and bifurcation

theory ( see for example J; Damon. [:Aé‘l y Tormula ( 2:1) )
Far from being only formal this similarity may play | |

an important role in understanding the complex phenomena

! of phase transitions using strong tools from singularity

| theory and bifurcation theory .
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