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SUMMARY

The traction problem for a transversely isotropie ineompressible elastie

material is eonsidered, and it is shown that when only pure homogeneous

deformations are eonsidered, the problem ean be formulated as a two-dimensional

Zr-equivariant bifureation problem in whieh the bifurcation parameter is the
' l ' .

dead-load. Using imperfeet bifureation theory condit ions for bifureation phenomena 
' '

are given and the reeognition problem is solved in the simplest eases eonsidering a

general non:linear form for the stored energy funetion. The last seetion treats

transversely isotropie non-linear perturbations for a Mooney-Rivlin material and a
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I.INTRODUC-TION

The traetion problem eonsists in the determination of the equil ibriunr

eonfigurations for an ineompressible elastie material subjeet to a eonstant dead-load

whieh aets normally on its boundary.

First results in this problem were obtained by Rivl in [1] who eonsidered a

non-l inear isotropie eiastie material deseribed by a Mooney-Rivl in eonstitut ive

equation and pure homogeneous deformations only. Later, Ball  and Sehaeffer [2]

analysed the same problem using the results of the imperfeet bifureation theory [3],

[4]. The results from paper [2] improve those obtained in [1J as fol lows: homogeneous

deformations and not only pure homogeneous ones were eonsidered and the methods

used make possible a greater generality in the stored energy form (applieable to the

specif ie ease of a Mooney-Rivl in material) and a quali tat ive analysis of the

bifureation of solutions in the ease in whieh small imperfections (as a sl ightlv

com pressibility) are present.

Other approaehes to the traction problem were diseussed in [5], [6], [?].

This paper is intended to perform an analysis similar to the one in [2] for a

transversely isotropie material.  Before formulating the problem we must observe

some part ieular features of the isotropie ease studied in [2]: The ehoiee of the

isotropie case leads to a Dr-equivariant bifureation problem of the form: g(x,\) = 0

, ,
wi th  g:  R"  x  R -+ R' .  The equivar ianee eondi t ion resul ts  f rom the '  fact ' ; that i  t . l r * , i ' , , '

stored energy W depends on the deformation gradient through the principal invariants

of C = FTF (f is the deformation gradient with respeet to a f ixed referenee

configuration) and they are symmetric eombinations of the eigenvalues of C.

In order to extend the analysis to transverselv isotropic materials some

diff ieult ies oeeur: i f  we want to maintain the general i ty from [ZJ Uy considering al l

homogeneous deformations (and not only pure homogeneous ones) we obtain a problem

of the form g(x,), ) = 0 where g is defined on R5 x R. Without addit ional assumptions

on the stored energy form g has, from the singularity theory point of view &
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C -eodimension greater than 20 (see [8], Ch. IX Propos!.t ion 1.3). By an a priori

restr iet ion of the solution set in the elass of the pure homogeneous deformations we

ean obtain a bifureation problem whieh ean be treated using the results from the

singularity theory. We will use normal formg defining conditions and universal

unfoldings determined previously by Dangelmeyer and Armbruster in fgl.

On the other hand in the isotropie case the results have been applied to ir

stored energy funetion of the form:

w ( a 1 ' ^ 2 ' \ s ) = $ ( a r ) +  $ t x r l + p ( \ 3 )  ( 1 . 1 )

in order to study the speeif ie eases of Mooney-Rivl in and neo-Hookean constitut ive

equations. In the transversely isotropie case we shall  maintain the general i ty of the

stored energy funetion without'assuming its separable form (1.1). ! t 'e show that the

problem can be formulated as a Zr-equivariant bifureation problem and in this way

the Zr-universal unfolding of this problem ean be viewed as deseribing the Z,

perturbations of an isotropie ease; as might be for example a sl ightly extensibi l i ty to

a direetion. IVe underl ine here that the Dr-universal unfolding from [2] ean show the

bifureation phenomena when a Dr-eguivariant perturbation oeeurs.

2. EQUILIBRIUM EQUATIONS, NOTATIONS AND AUXILIARY RESULTS

Using the same notat ions as in  [2 ]  we denote the posi t ions of  the mater ia l
, .., !., r';+'-.n 4 n;Eiii\',& ltttiltr t# i$liltjiju*lri,fiiidrkf .

points in the referenee configuration by X ancl the deformation by x(X). p = grad x(X)

is the deformation gradient, W(F) is the stored energy funetion and t is the surfaee

dead-load whieh aets normally on the boundary in the referenee configuration.

The equil ibrium equations are obtained from the Euler-Lagrange equations

for the total free energy:

I (x) = \ twtptxl l  -  t t rF(X)ldX
;.

In the ineompressible ease detF = 1, thus the equil ibriurn equations are obtained from

the Euler-Lagrange equations for:
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I
r(x) = 

\ tw(F(x)) - ttrF(x) - p(xxdetF - 1)ldx
JL

where p(X) is an arbitrary real-valued function. As we mentioned before we eonsider

only ineompressible homogeneous deformationg thus F is independent of X, and the

Euler-Lagrange equations beeom e:

$ t t l - u = p F - T ,  d e t F = r . (2 .1)

In [2] it is shown that if t I 0 any solution F of the equation (2.1) ean be written as

F = QDQT with Q € SO(3) (the proper orthogonal group) with D diagonal and D a

purely homogeneous solution for (2.1). We prove the same result by using the prineiple

of material objeetivity (see [tO], Cn. 19). For the rest of the paper we shall suppose

that the stored energy is a C* function. The following two propositions show

restrictions imposed on the energy form by principle of material obieetivity and

material symmetry.

PROPOSITION 1. If w(F) = W(QF) for all QeSO(3) then every solution

(2.1) is of the form F = QDQT, where Q€SO(3) and D is diagonal and is a solution

e.L\.

for

for

Proof.

so(3)):

From W(F) = W(QF) we obtain for

I rnr
hixFr.i ff.= o

u

and f rom (2.1)  for  t  1  0,  mui t ip ly ing i t  by h i tFt l  and tak ing in to aecount  (2 .2)  we

obtain:

(2 .3 )Fikhki = o

for  everyhEso(3)  so thatF is  symmetr ie ,  f  =  QDQT wi th D d iagonai  and subst i tu t ing

this F in (2.1) we obtain the desired result.

By def in i t ion (see [10] ,  Ch.  31)  $wsU(3)  ( the unimodular  group)  is  ea l led

the symmetry group of the energy function of an elastie material i f :

... = | He u(3) I rr '{EH) = r\ '(F), v F€ cl(3ilu w  L  
-  |  -  ' J

every h eso(3) (ttre Lie algebra of

(2.2)
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'  We observe that {", it a Lie group under our hypothesis on the stored energy

funetion. For solid elastie materials 9r=9" , where 91 rt"nOr for the symmetry

group of the stress funetion (see [10], Ch. 31).

PROPOSITIOTI 2. Any solutionF of the eguation (2.1) satisf ierFit hki = 0 for

D 0 0
everv he L ( Tr)-ttre Lie algebra of the symmetry group d w.

The proof of this proposit ion involves the same steps as the proeeeding one

and we omit i t .  For sol id elastic materials the result of proposit ion 2 is contained in

that of proposition 1.

In order to have an objeetive energy funetion we must have:

W ( F ) = W ( C ) ;  C = F T F

and in order to have transverse isotropy in a direetion (said er) we must have (see [10],

ch.  3 l ) :

w(c) -.w(c11 * czz,c?z*.3,e,.rtczz- 
"?r,"t ,oet 

c)

In partieular, on the set M of pure homogeneous deformations in the direetions

(er,e'er) and whieh preserve the volume:

( - - - - , . 1 -  ^  .  a  . .  ^  . 1N I  = L F € c L ( 3 )  
[  
u " ,  = h i . i ,  i =  r , 2 , 3 ,  l t l Z A g  =  t )

W(F) takes the form:

t r r t r . r r t .
w ( F )  =  w ( ^ ;  * ? \  

; ,  
} . ; A ; , ? \ ; )  =  w ( h ; ' ? . ; ' ? \  

; )  Q . 4 )

Let us observe that interehangingl ,  witha, the value of W(F) remains unchanged

and it  is this invarianee property whieh permits us to formulate a Zr-equivariant

bifureation problem.

For W(F) given by (2.4) the equations (2.1) beeome:

/\
^ r 2  d  W  . ^2 \ : - : - +  - t 1 , , = O  ,  i = 1 , 2 , 3 .  ( 2 . 5 )

d n i

From (?. '5)  resut ts  that  F = d iag(1,1,1)  is  a  so lut ion for  (2 .1)  for  every t  I  0  i f  and only

if:
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4 ( r ) = a Y t r l = o $ t r l  .  4  ( z . o )
a ^ i  a ^ ;  e h ;

The first of these two equalities hotd from symmetry reasons of (2.a). We observe

that M has 4 eonneeted eomponenets M* and Mi , i=!r2r3 and we shall study the

problem (2.5) on [ , , t*  = {  Fe ] \ {  lp" ,  
'e,  > 0}.+ L - l r l J

3. REDUCTION TO A %-EaUTVARTANT 
BIFURCATION PROBLEM;

THE RECOGNITION PROBLEM

In order to show that (2.5) ean be formulated as a Zo-equivariant

bifureation problem we wil l use the same method as in [2]. Denoting w, = lnt, we

have w, * *Z * *g = 0 and considering the projeetion:

e  c  1 r  ^ ' l
P :  R" -+  V =  

l (wrwrwr )eR" [  * t  *  w ,  +  w,  =  oJ

defined by:

P(x , y , z )  = ( x  - 3 *  * ,  +  z ) ,V -# * *  y  +  z ) , r - i - ( *+  y  +  z ) )  ( 3 ' 1 )

we observe that the equations (2.5) are equivalent with:

Pf(w,,t) = o where f, = 
"*i $fi 

- ,"*t

Let us eonsider the permutations r = (1 
ll tno r = (l 

!l "no 
the aetion of the

grouP S, = (1, t- ) on R3 given bY:

1 . ( x , y , z ) = ( x , y , z )
(3.2)

f . (x,y,z) = (y,x,z)

Then f  is  Sr-equivar iant ,  which means:

f( f ,  (w), t )  = (  f (w,t)  (3 '3)

Through the isomorphism H : V -+R2 given by:

" H(x,y,z) = tfrt* + y - 2z);frt- - v)) = (o ;P) (3.4)
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,
the aetion (3.2) of So on R3 induees a natural aetion of Zron Rz through:z -

I  .  ( oc  ;F )  =  HH- I (N ,p )  =  ( x  ;F )

-1  .  (x ;P)  =  Hc H- r ( * ;F  )  =  (x  ; -p )

g(o( ,p,t)  = HPf(H-1(0,;  p), t)

and the map:

(3.5)

(r.01

(3.8)

beeomes Zr- equiv ariant, whieh means3

g(u(,  p, t )  = (gr(x,p, t ) ;gr(<,p, t ) )  =
(3.?)

= (gr(a,-  p, t l ; -g r(x,-p,t))

We observe that  g( ( ,p , t )  =  0 i f  and only i f  there ex is ts  p€R sueh that  (2 .5)  ho lds.  We

have proved:

PROPOSITION 3. The problem (2.5) with lV of the form (2.4) ean be
9 ''  formulated as a bifureation problem of the form g(( ,F ,t) = 0 with g: R" x R -) R",

Zr-equivariant. By the use of (3.6), (3.4) and (3.1) the problem (2.5) beeomes:

sl(x,p,t) = "*t,ry- t) + "*z*ffi - t) - r"'a# - t) = 0

gz(fi ,p,t) = 
"*r,J 

w t) - .tt,#, - t) = o

where: *,  =Sx *$p, *,

In order to study the problem (3.8) we use results for the normal forms,

defining eonditions and universal unfoldings for Zr-eguivariant bifureation problems

obtained by Golubitsky and Sehaeffer [3] and Dangelmeyer and Armbruster [9].

I t  results from the works of Sehwartz [11] and Poenaru [12] that in the ring

=5$' Er, *s=-+"

of Zr-invariant C 
- 

germs of real valued funetiong a Hilbert basis is given (see
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notations from [13]) by u = x and v = 
FZ and thus the general form of a bifureation

problem is

g(*,p, t )  = (p(u,v, t ) ,  p g(u,v, t ) )

where p and q are smooth germs at t lre bifureation

for a problem of the form (3.9). Subsequently we

convention: an subseript following eomma (e.g. p,u;

eomputed at (0,0,1^) (tfre bifureation point) for' o

respeetively.

We start the reeognition problem with an observation:

bifureation at a point (0,0,to) we must have ([13], Ch. XIX, seetion

p(0,0, to)  = q(0,0, to)  = p,u(0,0, to)  = 0

A simple eomputation shows that:

point. We use

also use the

W ., )  means a
S L

p and q and

(3.e)

the notation [p,q]

fol lowing notation

part ial derivative

in  (1 ,1 ,1 )  f o r  w

I N

3):

order to have a

(3 .10)

(3 .1  1 )

(3.12)

p ..(o,o,t^) = s, u o) 
=:f,(tt,1 + lV,Z + 4lV

, L , 3 * w r l l  
* w r z 2 *

(3 .13)

*  2w,1 z  
-  4w 

,Ls 
-  4w 

,23 
*  4w,33 -  6  to)

The condit ion (3.11) is satisf ied due to (2.6). I t  also represents the faet that

the residual stress in the undeformed material is of the form sl. I 'Ve note that in

general in a transversely isotropie material this eondition does not result only frorn

symmetry eonsiderations as in the ease of an isotropie material.

From (3.12)  and (3.13)  we obta in a neeessary eondi t ion in  order  to  have a

bif ureation:

p(0r0, to)  = I { ,1 *  W 
rZ- 

zw,B

g(0,0, to)  = 
$tr r , ,  *  w,2 *  w, l  t *  w,zz-  2w , tz-  2to)

, r r+  w,zz= 2(w,12 +  w,3  *  w,33  -  w ,13  -  t r { ,23)

take plaee for:

W r * W o * W
t r  t L

and the bifureation ean

(3 .1  4 )



t o = w , 3 * w , 3 3 * w , 1 2 - w , 1 3 - w , r g  4  ( 3 ' 1 5 )

Moreover, we observe that the problem (3.8) is l inear in t and that p,,(0,Orto) = 0 scr

that using the results from [13] the simplest bifurcation which ean oeeur isdeseribed

p = € . u 2 * € - v + m ( t - t - ) 2- r z o '
(3.16)

. g = € r u + E 4 ( t _ t o )

whieh represents a family of bifurcation problems, where m is a modal parameter

(see'h31, Ch. XIX, [3], seetion 3).

The defining eonditions and the non-degeneraney eonditions are:

€,  = sgnp,u,  l0

ez= sgnP,v # 0

€ 3 = s g n q : u l O  ( 3 ' 1 ? )

24= €rsgn(qrtP,uu - 9,uP,u1) I o

2 , 2ln.,up,,r - pi,lqi
m = € ,  j  , 2  ,  f f i l o ,  m l - € ,' [9r1Pruu-qruprut] r

A straight forward eomputation leads to:

P , t t =  0  
(

-  P ,uu  =* t * ,1  *  w ,2  -  2 t r { ,3  *  2 * ,  r r *  2 \ l  
, zz -  

16w,83  +  4w rLZ+

* 4w,13 *  n*  
, r r *  

w,111 *  w ' rzzz-  81v,333 +

* 3w,1r, + 3I{ ' ,122 - 6w,11a - tzi0 
Sn* 

12w,1-33

-  6w,zzB *  12w,?33 + 6toJ

(3 .1 8)
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1

P,u= i tw , t  *w , z *  2w ,11  *2w ,zz -  4w ,12 *  w , r . 11  *w ,zzz -  
, n  -(3.1 9)

-  w,Lzz- w,r  lz '2w,Lr l -  2w,zz|*  4w,rz l  -  z to l

.rT
q --  = #[w .  + w .  + 2w ,  ,  *  2w . , ,  -  2w ,  o -  2W oo * W - -  -  +Y r U -  6 t " r l  " r L  r r r  s L l  r r J  s L J  

" 1 1 1 1
(3 '20)

+ w ooo -  w 
, rzz -  

w,11  z -  2w 
, t r |  

-  2w 
,zz3  

*  4w,1za -  2 to l
, 4 4 2  , L 4 4  , L L u

We obtain by taking into aecount (3.15) at the bifureation point:

1

P,uu #* , t  
*  w  

,2*  
4w,3  *  2w,1  t *  2w 

r_zz-  
10w,38 +  10w,12 -

-  2w,13 -  2w 
,zr*  

w, l r1 *  w 
,zzz-  

8w,333 *  3w,rrz -  (3 '21)

-  6w,113 *  3w,12 r-  l }wJ2,  + 12w,tBB -  6w,223 + t iw,233l

lu 
= 

l tw,r  *  w,z -  2h' ,3 *  2w,11 *  'Y , r r -  
6w,12 -  ' * : r ,  *

2w,13 *  2w ,23* 
w,111 *  w ,z2z- 

w,112 -  w 
, tzz-  $ '22)

' -  2w , r1g 
-  2w ,zz3 

*  4w,1zg )

r;.
q,u =#tw,1 *  w,z -  2w,3 *  2w,11 *  2w ,zz- ' * , ! r -  2w,38 *  

, r . r r ,
+ w, l11  *  f r , zzz-  w,11  z -  w, rz2 '2Y; | .B '2w,zz3  *  4w,1z3 l

The normal form (3.16) has Zr-eodimension C$o 3 and Zr-topologieal

eqdimension 2. The Zr-universal unfolding for this normal form is given by (see [tg]):

2 - . ,
G(u,v, t ,p ,a,b)  = [Lru"  + t rv  + u( t  -  to)"  + b;

(3.24)

, u + € . n ( t - t o ) + a l

where a and b are small and p is elose to m.

Let us observe that i f  in (3.10)

7

P r u t = - { T

9r1= -  {?
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p(0 ,O, to )  =  q (0 ,O, to )=  0 ,  p .u (0 ,0 , to ) l  0 ,

then the first equation in (3.8) is locally solved by the impiieit funetion theorem and

we obtain near the bifureation point: u = u(v,t) and substituting this in the seeond

equation of (3.8) w.e obtain a bifureation problem of the form: Er(p ,t) = O with
, \ ,  t ! .  - r !  .'Br :  

n  *T - tR where Sz(P, t )  =  gr (u(p, t ) ,v , t )  sueh that  9 ,  is  even in  F .  In  the same

way as above, al l  the derivatives of 6, ean be eomputed as depending on the

derivatives of the stored energy W. We are led in the same way as above, to a

l-dimensional bifureation problem without any symmetry this t ime if  in (3.10)

'  q(0,0, to)  l0  and p, r (O,0, to)  = 0;  ( in  th is  ease f r r ,p  # 0 and is  th is  equat ion whieh ean

be loeally solved with respeet to p ). For these two speeial eases the normal forms,

the universal unfoldings and the defining eondit ions were eomputed by Golubitsky and

Langford [tC] for the Zr-invariant ease and by Golubitskv, Sehaeff er and Keyfitz [15]

for the ease when there is no symmetry.

For the basie two-dimensional bifureation problem the normal form (3.16)

was studied in [16], [1?J, [18], in the eontext of an interaetion between a Hopf

bifureation and a steady state bifureation. 1\'loreover, for any Zr-equivariant

perturbation p the bifureation problem g + e p with small a is zr-equivalent (as

refered to in the imperfeet bifureation theory) with one of the problems described by

the universal unfolding (3.24). The bifureation diagrams for the normal form (3.t6)

are ind ieated in  [3 ]  and [13] .

4. NON-LINEAR TRANSVERSELY ISOfROPIC PERTURBATIONS

- 
FOR THE MOONEY-RTVLIN AND NEO_HOOKEAN CONSTITUTTVE

EQUATIONS

The aim of the analysis presented in [2] was the applieation of the general

results of imperfeet bifureation theory to the ease of a I\ ' looney-Rivl in material and a

neo-Hookean material whieh have the property that the stored energy funetion has a

separable form (1.1). In what fol lows we apply the results from the preeeeding seetion
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to a separable stored energy funetion but more general than (1.1)

W(w. ,^ ,  
' r^r  

)  + R/r^ ,  ' t. '  l r *2 ,*3)  = A(wr)  +  A(wz)  + e(wg)  (4 ,1)

The analysis given in seetion 3 permits us to study this problem even in the

case in whieh A = B but in this speeial ease it  is more eonvenient to use the entire

^ symmetry of the problem (whieh in this ease is D, as was stated in [2]). But this

pproaeh leads to the D, universal unfolding of the problem, and this describes its

behaviour under Dr-equivariant perturbations.

If we want to study the transversely isotropie perturbations we have to f ind

out the Z, universal unfolding and it is this observation that we use to study

transversely isotropie perturbations for the IVtooney-Rivlin and neo-Hookean

materials

tVe must have by taking into aeeount the results of the last seetion

Ar + Arr  = to ,  Ar  = Bt ,  A"  = Btr ,  (4 '2)

in order to have a two-dimensional bifureation phenomena (the prime means the :

derivative of the funetion eomputed at 0). For a stored energy of the form:

w(1,  1 ,x2 ,x r )  =  u ( l ' r , -  
"7 r+  

?( r i '  * ^  r ' l  *  u r1  !  -  0  11  ;2

(whieh redueed to the Moonev-Rivlin material when ! = U, and C = 0 ,) the two

dimensional bifureation does ngt oeeur if we are not in the isotropie ease.

From (3.1?),  taking into aeeotrnt  (4.1) and (4.2) we have:

€ l= sgn(At  -  At t  -  6 , , ,  1  314, , '  -  Btn))  I  0

t  Z =  s g n ( A ' u  + " A ' t )  l 0

t  g = s g n ( A ' +  A r r  +  A ' u )  I  0 (4.3)

L 4= Z rssn(3A' r  
+ Arr r  + 2B"t )  I  o

" m = x ' ; 9 { j { #  ,  m  + 0 , - t l
'  

4 (3At t+Ar t r+2B ' r ' ) -



1 3 -

and eonsidering B as a perturbation of A, B = A - 3T we obtain for T: T'(0) = T"(0) = 0

and from (4.3) we have:

and we observe that only A', A" + A[t and Tttt have a significant influenee on the

normal form and also on the bifureation diagram.

If for A we consider the form from the I\{ooney-Rivl in material:

A(w) = gOtr)) with l(w) = ew and I (t) = pt2 + 0 t-2 we obtain for to at the

bifureation point to= 4(Lr +9 ) (and this value is the same as the one obtained in [2]

for the isotropie problem) and:

t t  = sgn(At -  Att  -  Att t  + 4Ttn)

t  4=  {  rsgn(At t+  
Ar t t  -  2 " f l r r ; '

L t = s g n ( T " ' - 8 C ) * o

t z = s g n ( p - g Q l * O

€3 = ssn(F - s{ )  * o

f q = | r s g n ( P - 9 { - T ' n ) # o

m - - t r ^ . | 1 | ! - - ) | ,  r  m l o , - t l'  4(u-9 -T" ')"

u.4)

(4.5)

(4.6)

As an example, let us eonsider 0 I 0, and:

r ( l a )  =  -Q) '3  -  3O) ,  ;2  *  9 l  ; 4

We have:  T, (1)  = T, , (1)  = 0,  T,u( l )  =  -48 0 and T(Ag)  = -2 0 (Xg -  tX ; t  
*  2 t i5) .  fo .

a transversely isotropie material for whieh the stored energy funetion has the form

(4.1) with B = A - 3T the stress in the e, direetion wil l  be greater (or smaller

respeetively) than that in a direetion in the (e'er)-Plane if  the sign of Tr is smaller

(or greater respeetively) than 0. In the example i t  can be easily eheeked that

sgnT'= -sgn O for Xf t 0; thus for I > 0 the er-direetion is more rigid that any

other one from the (er,er)-plane while for O < O it  is less r igid that any other
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direetion from the (e'er)-Plane. From (4.6) we obtain for B = A - 3T:

B ( 1 8 )  =  ( u  +  3 0  ) 1 3 - , ,  +  e 0  ) l  ; ' -  t 0 \ ; n .

.  In order to obtain a monotonie dependenee in the relation stress-strain we

ean put for example :

I  < - 0 ,  U + 3 O > 0 , 3 + g 0 > 0 .

Before studing. a perturbation for the neo-Hookean material let us observe

that if the nondegeneraney conditions (4.5) are not satisfied we ean have more

degenerate singularities (tfre normal forms are elassified up to ZZ topoiogieal

e o d i m e n s i o n < 5 i n [ 9 ] ) .

Balt and Sehaeffer have shown in [2] that for a neo-Hookean material only

the simplest singularity ean oeeur and this happens if  1o = 4(p +Q ) ( in l ,zJ the

eoeff icient is 2 but the energy has a 1,/2 eoeff ieient eompared to that from (4.1)). By

taking into aeeount the results from the l l looney-Rivl in ease we obtain the

neo-Hookean one ( Q = 0) for transversely isotropic perturbations. Beeause pr ) 0 we

have:

t  z=  t ,  
=  sgn l t  =  1 ,

€ 4 =  E l t g n ( p - T ' u ) ,

€ 1 = s g n T ' n '

e gu2
m = - L r  l - 1 7'  4(P-T'u1'

Q.7)

(4.8)

(4.e)

(4 .1 0)

We ObServe that i f  Tttt  = 5U, Tt" = U, T"t = 0, ?tu = -p/2 then more degenerate

singularit ies ean eppear. Moreover, from (4.?) we see that for the pair ( € 
t,  

€n) onty

the eases (1,1) ,  (1 , -1)  and ( -1,1)  are poss ib le  for  0  (  Tn ' (  p ,  p  < T" '  and Tr"  (  0

respeetively. In this case the normal forms are:

( *2  *y2  -  r  t t  -  to )2 ,  y (x+  t -  to ) )

( * 2 * y 2  -  r  { t  -  t o ) z ,  y ( x -  t +  t o ) )

(-*2 * y2 * r(t - to)z, y(x + t - to))
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For perturbat ions of  these problems see also Ll l  .  Al l
b i furcat ion diagrams coresponding to normal forms (3.L5) and

i t 's  perturbat ions are shown in [ i l ]  .
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