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SUMMARY

The traction pr;oblem for a transversely isotropic incompressible elastic
material is considered, and it is shown that when only pure homogeneous
deformations are considered, the problem can be formulated as a two-dimensional
Zz—equivariant bifufcation problem in which the bifurcation parameter is the
dead-load. Using imperfect bifurcation theory conditions for bifurcation phenomena
are given and the recognition problem is solved in the simplest cases considering a
general non-linear form for the stored energy function. The last section treats

transversely isotropic non-linear perturbations for a Mooney-Rivlin material and a

neo-Hookean material and the corresponding bifurcations. .. ..




1. INTRODUCTION

‘The traction problem consists in the determination of the equilibrium
configurations for an incompressible elastic material subject to a constant dead-load
which acts normally on its boundary.

First results in this problem were obtained by Rivlin [1] who considered a
non-lfnear isotropic elastic material described by a Mooney-Rivlin constitutive
equation and pure homogeneous deformations only. Later, Ball and Schaeffer [2]
analysed the same problem using the results of the imperfect bifurcation theory [3],
[4]. The results from paper [2] improve those obtained in [1] as follows: homogeneous
deformations and not only pure homogeneous ones were considered and the methods
used make possible a greater generality in the stored energy form (applicable to the
specific case of a Mooney-Rivlin material) and a qualitative analysis of the
bifurcation of solutions in the case in which small imperfections (as a slightly
compressibility) are present.

Other appréaches to the traction problem were discussed in [5], [6], [7].

This paper is intended to perform an analysis similar to the one in [2] for a
transversely isotropic material. Before formulating the problem we must observe
some particular features of the isotropic case studied in [2]: The choice of the

isotropic case leads to a D, -equivariant bifurcation problem of the form: g(x,\) =10
2 2

with g: R xR — R". The equivariance condition results from the" fact ithat:the w0

stored energy W depends on the deformation gradient through the principal invariants
of C= FTF (F is the deformation gradient with respect to a fixed reference
cc;nfiguration) and they are symmetric combinations of the eigenvalues of C.

In order to extend the analysis to transversely isotropic materials some
difficulties occur: if we want to maintain the generality from [2] by considering all
homogeneous deformations (and not only pure homogeneous ones) we obtain a problem

of the form g(x,% ) =0 where g is defined on R5 x R. Without additional assumptions

on the stored energy form g has, from the singularity theory point of view a
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Cw—codimension greater than 20 (see [8], Ch. IX Proposition 1.3). By an a priori
restriction of the solution set in the class of the pure homogeneous deformations we
can obtain a bifurcation problem wnich can be treated using the results from the
singularity theory. We will use normal forms, defining conditions and universal
unfoldings determined previously by Dangelmeyer and Armbruster in [9].

On the other hand in the isotropic case the results have been applied to a

stored energy funection of the form:
WA A 0 A9) = PR+ (A + BNy (1.1)

in order to study the specific cases of Mooney-Rivlin and neo-Hookean constitutive
equations. In the transversely isotropic case we shall maintain the generality of the
stored energy function without assuming its separable form (1.1). We show that the
problem can be formulated as a Zz-equivariant bifurcation problem and in this way
the Zz—univer-sal unfolding of this problem can be viewed as describing the 22
. perturbations of an isotropic case; as mighf be for example a slightly extensibility to

a direction. We underline here that the D3-universal unfolding from [2] can show the

bifurcation phenomena when a D3-equivariant perturbation occurs.

2. EQUILIBRIUM EQUATIONS, NOTATIONS AND AUXILIARY RESULTS

Using the same notations as in [2] we denote the posmons of the mlatemal
oy N il

pomts in the reference conflguratlon by X and the deformatlon by(x(X; )’I‘i‘ mgrad x(X)
is the deformation gradient, W(F) is the stored energy function and t is the surface
dead-load which acts normally on the boundary in the reference configuratien.

The equilibrium equations are obtained from the Euler-Lagrange equations
for the total free energy:

I(x) = S[W(F(X)) - t trF(X)1dX

Lo
In the incompressible case detF = 1, thus the equilibrium equations are obtained from

the Euler:Lagr‘ange equations for:
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160 = | [W(E(X)) - t trF(X) - p(X)(det F - 1}X
o

where p(X) is an arbitrary real-valued function. As we mentioned before we consider
only incompressible homogeneous deformations, thus F is independent of X, and the

Euler-Lagrange equations become:

oW
9 F

(F)-tl=pF ', . detF=1 . (2.1)

In [2] it is shown that if t # 0 any solution F of the equation (2.1) can be written as
F= QDQT with Q€S0(3) (the proper orthogonal group) with D diagonal and D a
purely homogeneous solution for (2.1). We prove the same result by using the principle
of material objectivity (see [10], Ch. 19). For the rest of the paper we shall suppose
that the stored energy is a C* function. The ‘following two propositions show
restrictions imposed on the energy form by principle of material obiectivity and

material symmetry.

PROPOSITION 1. If W(F) = W(QF) for all Q& SO(3) then every solution for
(2.1) is of the form F = QDQT, where Q€& SO(3) and D is diagonal and is a solution for

(2.1).

Proof. From W(F) = W(QF) we obtain for every h eso(3) (the Lie algebra of
SO(3)):

h (2.2)

J W_
ikE kj Ty 4

and from (2.1) for t# 0, multiplying it by hikaj and taking into account (2.2) we
obtain:

Fik ki =0 (2.3)

for every h g so(3) so that F is symmetric, F = QDQT with D diagonal and substituting
this F in (2.1) we obtain the desired result.
By definition (see [10], Ch. 31) QWCU(3) (the unimodular group) is called

the symmetry group of the energy function of an elastic material if:

G, ={ He U®)| wEm = wF), v Fe GL(3)]



We observe that ‘gw is: a Lie group under our hypothesis on the stored energy
function. For solid elastic materials Qw =€T\, where \gT stands for the symmetry
group of the stress function (see [10], Ch. 31).

PROPOSITION 2. Any solution F of the equation (2.1) satisfies Fyhy; =0 for

KMk
every he E( 'gw)—the Lie algebra of the symmetry group 8w.

The proof of this proposition involves the same steps as the proceeding one
and we omit it. For solid elastic materials the result of proposition 2 is contained in
that of proposition 1.

In order to have an objective energy function we must have:

WF)=W(C), C=FF

and in order to have transverse isotropy in a direction (said e3) we must have (see [10}
Ch. 31):

2 2 2
- W -
w(C) .V\ (C11 ¥ (:'22,C1'3 t C23’C11C22 CIZ,C33,det C)

In particular, on the set M of pure homogeneous deformations in the directions

(el,ez,e3) and which preserve the volume:
M = {Fe GL(3) l Fe,=Ae, 121,23, A, XApA, = }

W(F) takes the form:

2

2
97 A 3) (2.4)

2. 2,922 2 2
7 - W 4+ - W
Let us observe that interchanging A 1 with A 9 the value of W(F) remains unchanged
and it is this invariance property which permits us to formulate a Zz-equivariant

bifurcation problem.

For W(F) given by (2.4) the equations (2.1) become:

2 3 W e R L) (2.5)

i 2
Y
From (2.5) results that F = diag (1,1,1) is a solution for (2.1) for every t # 0 if and only

if:
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Bowgy %

Sl 0l o I

1) . - (2.6)

The first of these two equalities hold from symmetry reasons of (2.4). We observe
that M has 4 connected componenets MJr and Ml_ , 1=1,2,3 and we shall study the

problem (2.5) on M = {FE M lFei -, > 0} .

3. REDUCTION TO A ZZ-EQUIVARIANT BIFURCATION PROBLEM;

THE RECOGNITION PROBLEM
In order to show that (2.5) can be formulated as a Zz-equivariant
bifurcation problem we will use the same method as in [2]. Denoting w; = ln’)\i we

have w, + w, + W

1 9 3 = 0 and considering the projection:

3 N 3 _
P:R 7V—{(V\1,w2,w3)€R w1+w2+w3—0}

defined by:
: o 1 1 1
P(x,y,z)—(x—ﬁ(x+y+z), y-g(x+y+z),z—§(x+y+z)) (3.1)

we observe that the equations (2.5) are equivalent with:

Wiodw . %
e

Sw,

1

Pf(wi,t)=0 where fi:

Let us consider the permutations 1 = (i g) and G = (; %) and the action of the

group 82 = (1, ) on R3 given by:

1-(x,y,2) = (x,y,2) .
(3.2)

“ Q- (xy,2) = (,%,2)
Then f is Sz—equivariant, which means:
£ (w),t) = @ f(w,t) : (3.3)
Through the isomorphism H : V ->R2 given by:
‘ 1 . 1 (
,V,2) = (~=(x + - 27); —(x - = ™ s (3.4)
H(x,v,2) (\f_ﬁ.(x y - 2z) H(x y) = ( @)



the action (3.2) of S2 on R3 induces a natural action of Z2 on R2 through:

Bl

1-(x;p)= HH-1(°<;%$)=(°<;S$)

(3.5
“1+(%;) = HOH Hotsp) = (% 3-p)
and the‘ map:
glx 1) = HPA(H (x5 ),) (3.6)
becomes Zz—equivariant, which means:
g(x, p,t) = (g,(x » Brthigy(X, B, 1)) =
(3.7)

= (gl(cx B ,t);—g2(0< ,-p ,1)

We observe that g(x ’F’t) = 0 if and only if there exists p&R such that (2.5) holds. We

have proved:

PROPOSITION 3. The problem (2.5) with W of the form (2.4) can be

formulated as a bifurcation problem of the form g(x ,@ ,t) = 0 with g: R2 xR= Rz,

Zz—equivariant. By the use of (3.6), (3.4) and (3.1) the problem (2.5) becomes:

oMy S W Wy 9w W g~ 5
gl(M,P,t)-e (ﬁi—t)'*e (ﬁ;'t)—Ze (—a—-—wz-t)—o
: (3.8)
w., W, 9 '
LW 2T W
where w1=£66x+-—22?,, szié_b(_gF’ 3:-é_§x

In order to study the problem (3.8) we use results for the normal forms,

defining conditions and universal unfoldings for Z, -equivariant bifurcation problems

2
obtained by Golubitsky and Schaeffer [3] and Dangelmeyer and Armbruster [9].

It results from the works of Schwartz [11] and Poenaru [12] that in the ring

of Zz—invariant cr germs of real valued functions, a Hilbert basis is given (see
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notations from [13]) byu=« and v = F‘Z and thus the general form of a bifurcation

problem is:

g B ,t) = (p(u,v,t), B q(u,v,t)) (3.9)
where p and g are smooth germs at the bifurcation point. We use the notation [p,q]
for a problem of the form (3.9). Subsequently we also use the following notation
convention: an subseript following comma (e.g. p,u; W,l) means a partial derivative
computed at (0,0,to) (the bifurcation point) for p and q and in (1,1,1) for W
respectively. |
. We start the recognition problem with an observation: in order to have a

bifurcation at a point (0,0,to) we must have ([13], Ch. XIX, section 3):
p(0,0,to) = q(O,D,to) = P,U(O’D’td) =0 (3.10)
A simple computation shows that:

p(0,0,to) =W 1 + W 5~ 2w 3 (3.11)
’ ’ ’

q(0,0,t )=L2—(w +W +W_ _ +W,_, -2W
(o) 2 ,1 9 9

9 11 122 = 2to) (3.12)

12

\l 6
- 7 T 7
p’u(o,o,to) 3 (“,1 + W’2 + 4&\’3 + w’11 + “,22 +

(3.13)

+ 2W -4W ., - 4W + 4W
9 9

12 1o T AW e =Gt )

33

The condition (3.11) is satisfied due to (2.6). It also represents the fact that

~the residual stress in the undeformed material is of the form sl. We note that in

general in a transversely isotropic material this condition does not result only from
symmetry considerations as in the case of an isotropic material.
From (3.12) and (3.13) we obtain a necessary condition in order to have a

bifurcation:

7 7 7 7 = 7 7 7 =i YAT -
W bW o Mgy b g = AW o W gt Woan =W ag - linn

and the bifurcation can take place for:
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t =W, +W +V\,12 “,13 w’23 . (3.15)

Moreover, we observe that the problem (3.8) is linear in t and that p t((),O,t;}) =0 s¢
,.

that using the results from [13] the simplest bifurcation which ean oceur is deseribed

by the normal form:

= 2 2
p—ilu +22v+m(t-to)

(3.16)
q= £3u+ 24(t-to) ;
which represents a family of bifurcation problems, where m is a modal parameter

(see’[13], Ch. XIX, [3], section 3).

The defining conditions and the non-degenerancy conditions are:
& 1E sgnp’uu L
82 = sgnp,v # 0
€3=5gnq  # 0 (3.17)

€4 21587(9P yy = 9Py # 0

[ Sy
p,uup,tt p,utq,u

E ]2 9 m#07m¢-il

m

1
[q,tp,uu 9 4P ut

A straight forward computation leads to:

Ptt=0
_l 7 (A7 o 7 = '7
B 5[“,1 FW o 2W oW L+ 2W '16W’33 HAW o+
7 / + W - ' + 2
+4w,13+4w’23+u,111 “,zzz sw,333 (3.18)
7 a 7 - 74 -
BN g B o = B g BAW os M 30W g
“BW 993 ¥ 12W ggq + 61 ]



e

1
=W . B+ + + - Y V =
Py gl XSl AW g ~ W o PN G T Y e
(3.19)
= - - - 7 -
Woio2™ W 1127 2W 1337 2W 993 4W 193 = 28]
B | .
= ot I + / + - - .
ool ol o O FO = B Wy =W g B Wy
(3.20)
7 - - W - . 7 7 -
W ooe " Wiae ™ W 1197 2W 1937 2W 993+ AW 193~ 28]
p,ut= 3 \r(;
q t = "—-2—
9
We obtain by taking into account (3.15) at the bifurcation point:
:l 7 7 7 7 - 7 =
D SBIW [+ W o+ AW H W | W o 10W g 4 10W
S W 2W ot W FW oo~ BW g 3N - (3.21)
- 7 _ 7 7 s ;
BW 113+ 3W 199 = 12W 15q + 12W 145 = 6W gy + 12W o351
:l 7 V4 - 7 16 - 7 o
Py 4[“,1 + “,2 2“,3 + zw’11 + 2“,22 6“,12 zw’33 +
7 T 7 7 e 7 - 2=
+2u,13+2w,23+»\,111+u,222 Vx’uz w’122 (3.22)
s 7 e 7 7
2W 113 7 2W 993 T 4W 193]
{3 : ’
2 iviarnen = 7 7 7 _— 7 - 4
9y G[W’1+\A,2 2\\,3+2“,11+2u’22 2“,12 2w’33+ .y
U - ws AL i o 7
FW W oao T W1am Wign T 2W 1q3 7 2W 993 F AW 193]

The normal form (3.16) has Zz-codimension c™ 3 and Zz-topological

codimension 2. The Zz—universal unfolding for this normal form is given by (see [13]):

G(u,v,t,p,a,b) = [*’z'_lu2 + Ezv + u(t - to)2 + by
(3.24)

€3u+ 34(t—to)+a]

where a and b are small and p is close to m.

Let us observe that if in (3.10)
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p(0,0,to) = Q(0,0,to) =10;. p,U(O’O’tO) #0 ’

then the first equation in (3.8) is locally solved by the implicit function theorem and
we obtain near the bifurcation point: u = u(v,t) and substituting this in the second
equatioh of (3.8) wg obtain a bifurcation problem of the form: Ez(}a,t) =0 with
%’2 :R xB - R where %’2( F,t) = gz(u({;,t),v,t) such that ’52 is even in B - In the same
way as ébove, all the derivatives of %’2 can be computed as depending on the
derivatives of the stored energy W. We are led in the same way as above, to a
1-dimensional bifurcation problem without any symmetry this time if in (3.10)
: q(0,0,to) # 0 and p’u(0,0,to) = 0; (in this case gz’P # 0 and is this equation which ean
be locally solved with respect to F’ ). For these two special cases the normal forms,
the universal unfoldings and the defining conditions-were computed by Golubitsky and

Langford [14] for the Z,-invariant case and by Gblubitsky, Schaeffer and Keyfitz [15]

2
for the case'when there is no symmetry.

For the basic two-dimensional bifurcation problem the normal form (3.16)
was studied in [16], [17], [18], in the context of an interaction between a Hopf
bifurcation and a steady state bifurcation. Moreover, for any Zz—equivariant
perturbation p the bifurcation problem g + E_p-with small € is Zz—equiva}ent (as
refered to in the imperfect bifurcation theory) with one of the problems described by

the universal unfolding (3.24). The bifurcation diagrams for the normal form (3.16)

are indicated in [3] and [13].

4, NON-LINEAR TRANSVERSELY ISOTROPIC PERTURBATIONS
FOR THE MOONEY-RIVLIN AND NEO-HOOKEAN CONSTITUTIVE

EQUATIONS

The aim of the analysis presented in [2] was the application of the general
results of imperfect bifurcation theory to the case of a Mooney-Rivlin material and a
neo-Hookean material which have the property that the stored energy function has a

separable form (1.1). In what follows we apply the results from the preceeding section
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to a separable stored energy function but more general than (1.1)

MWy mmg) = Alwy) + Alwy) + Blwy) (4.1)

The analysis given in section 3 permits us to study this problem even in the
case in which A = B but in this special case it is more convenient to use the entire
symmetry of the problem (whieh in this case is D3 as was stated in [2]). But this
approach leads to the D3 universal unfolding of the problem, and this describes its
behaviour under D3—equivariant perturbations.

If we want to study the transversely isotropic perturbations we have to find

out the Z, universal unfolding and it is this observation that we use to study

2

transversely isotropic perturbations for the Mooney-Rivlin and neo-Hookean
materials.

We must have by taking into account the results of the last section
A'+ A" = t,o A'=B', A"=B", (4.2)

in order to have a two-dimensional bifurcation phenomena (the prime means the

derivative of the function computed at 0). For a stored energy of the form:
, I’ 2 2 #2 =2 2 =2
(whieh reduced to the Mooneyv-Rivlin material when p = g and J = 1) the two

dimensional bifurcation does not occur if we are not in the isotropic case.

From (3.17), taking into account (4.1) and (4.2) we have:

s - n(A' - AN _‘Am + E(A’" o ! Bm)) # 0
1758 3

% 5 = sgn(A'" + A" £0
% 5= SEN(AT+ AT+ A™) # 0 (4.3)
<. 4 =i 1Sgn(3A" + AM + ZB'") 40

—9(A'+A"+A"')2
4(3A"+A"'+2B"')2

;’mzil 9 m¢07'£1



g

and considering B as a perturbation of A, B = A - 3T we obtain for T: T'(0) = T"(0) = 0

and from (4.3) we have:

S = sgn(A' - A" = AM 4 4T

: (4.4)

£, 7 € sEn(A"+ A - oTm)”
and we observe that only A', A"+ A™ and T™ have a significant influence on the
normal form and also on the bifurcation diagram.
: If for A we consider the form from the Mooney-Rivlin material:
Aw) = PU(w)) with Lw) = ew. and ¥ ()= u12 +91°2 we obtain for t, at the
bifurcation point to = 4(p +9 ) (and this value is the same as the one obtained in [2]

for the isotropic problem) and:
£ ;= sgn(T™ - 8J)#0

£ =soen(p-93)#0

2
€4 =sgn(n-5J)#0 | (4.5)
£4= ilsgn(p— 99 -TM #0

2

m____i 9(}1‘5 )

by m # 0," 2.
1 4(]J‘9 __Tm)z

j [ i

As an example, let us consider B #0, and:

T(}\3)=—6>\§—39>\ ;%99\;4 (4.6)

We have: T'(1) = T"(1) = 0, T"™(1) = -48 B and T'(')\3) =-28 ('>\3 - 3N :;3 + 2N 55). For
a transversely isotropic material for which the stored energy function has the form

(4.1) with B = A - 3T the stress in the e, direction will be greater (or smaller

3
respectively) than that in a direction in the (el,ez)—plane if the sign of T' is smaller
(or greater respectively) than 0. In the example it can be easily checked that

sgnT'= -sgn © for 7\3 > 0; thus for @ > 0 the e3—direction is more rigid that any

other ohe from the (el,ez)—plane while for © <0 it is less rigid that any other
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direction from the (el,ez)—plane. From (4.6) we obtain for B=A - 3T:
i 2 -2 -4
B(7\3)—(p+39)7\3+(0+99)?\3 —39’>\3 :

_ In order to obtain a monotonie dependence in the relation stress-strain we

can put for example
B <o, p+36>0, J+90>0.

Before studing a perturbation for the neo-Hookean material let us observe
that if the nondegenerancy conditions (4.5) are not satisfied we can have more
degenerate singularities (the normal forms are classified up to Z2 topological
codimension < 5 in [9]).

Ball and Schaeffer have shown in [2] that'for a neo-Hookean material only
~ the simplest singularity can occur and this happens if to=4(u +3J) (in [2] the
coefficient is 2 but the energy has a 1/2 coefficient compared to that from (4.1)). By
taking into account the results from the Mooney-Rivlin case we obtain the
neo-Hookean one (J=0) for transversely isotropic perturbations. Because p> 0 we

have:

& =8 == 1, € . = sgnT™, : :
sl ! S@n

92

= ¢,.sgnp - T™), m=-¢&
6 4 1 1 4(p_Tm)2

We observe that if T"™ =5y, YT"' =1, - T" =0, TW=-p/2 then more degenerate
| singularities can appear. Moreover, from (4.7) we see that for the pair (& X 2.4) only
the cases (1,1), (1,-1) and (-1,1) are possible for 0<T" <p, p<T™ and T" <O

-respectively. In this case the normal forms are:

(Zryi- mo(t-t)h yixrt-t) (4.8)

2

(x? + y'- m (t- to)2, yix - t+ to)) (4.9)

(—x2 : y2 + m(t - to)z, yx +t- to)) ‘ (4.10)
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For perturbations of these problems see also LB] . All
bifurcation diagrams coresponding to normal forms (3.16) and
it's perturbations are shown in k}B} .
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