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THE COMMUTATOR METHOD FOR FORM RELATIVELY COMPACT PERTURBATIONS

1. INTRODUCTION

In studying the spectral properties and the scattering theory
for Schrddinger operators, a very powerful method has been
initiated by Mourre [7] and developed in [2,4,8,10,14]. The main
point is to construct a self - adjoint operator conjugated to the
Hamiltonian [8] and to prove that it satisfies the "Mourre
estimate" [7] and some regularity conditions [4,7]. Then one can
use the Virial Theorem [4] in order to study the eigenvalues and
one can construct locally smooth operators with respect to the
Hamiltonian [13] in order to determine the absolute continuous
spectrum. Moreover one can obtain a very precise form of the
"Limiting Absorption Principle" [2]. This approach has been used
with very good results for the two-body problem [4,5,7] and for
the N-body problem [2,10,14]. In [2] the method is presented in a
very general version, a powerful abstract result being obtained,
which includes a large class of Schrddinger Hamiltonians (N-body,
nonlocal perturbations, long-range interactions). An important
condition for the result obtained in [2] is that the domain of the
Hamiltonian should be invariant for the unitary group generated by
its conjugate operator.

In principle, the method of the “Mourre estimate" does not
need that the Hamiltonian should be decomposed in a "“free part"
and a “perturbatioh", but up to now it has been used only in this
perturbative setting, considering the Laplacean as the free part
and the generator of the dilation group as its conjugate [6].
Then, because of the domain condition underlined above, the case
of form-relatively compact perturbations [15] is not -covered by
the general result in [2]; In fact the KLMN-theorem [12] does not
give any information concerning the operator-domain of the form
sum, and as one can easily see for the simple case: H = -gi— + vV

2
dt
with VeL'(R), the operator domain is no longer invariant for the

dilation group.

In ofder to be able to deal with the form-relative compact



case we shall consider a different cohjugate operator for the
Laplacean on R'. Ve shall denote by QJ (j =1,...,n) the symmetric
operator of multiplication by the variable xJ on LZ(R") by
#:L? (R*;dx)—L’ (F*;dk) the Fourier transform and we shall use the

notations:
ad
( e A T =
PJ L (j 1,...,n)
9
. VD> = J 1+[v]® for veR'
(1.1) A
x
fj(x) e for xeR", j=1,...,n
1t .
A= — f (P) + £ (P
y zjz:l{QJ.j( add )QJ)

The above defined operator A is a conjugate for the Laplacean on
R" as one can see from the following lemma.
Lemma 1.1. The following identity is verified on $(R*):

il-A,A] = -2 A<p>™,

Lemma 1.2. The operator A defined by (1.1) 1is essentially self
adjoint on ¥(R").

Proof: In fact A is symmetric on #(R'), and by performing a
Fourier transform and taking into account that f is a bounded
. function with bounded derivatives of any order, it results that
#(R') is a dense, invariant domain of analytic vectors for A. The
conclusion then follows from Corollary 2 of the theorem X.39 [12}.

]
Lemma 1.3. Let us denote A = FAF '. The unitary .group generated

by A is given by the formula:

W) = 1308, 1% foo, for : fel? (R';dk)
where @t is the flow on R’ associated to the vector field:
Xj = - fj(k), for: j=1,...,n
and S(Qt) is its Jacobian.

Proof: If we consider the operator X = iz fj(k)éé}— and
‘ b

observe that the field X has globally Lipschitz components, it

results that the associated flow is globally defined and satisfies

d ~ R g o ¥F = ik
(1.2) aﬂmw(t)f = ;{dL&X)fN Xf iAf.
Moreover one easily verifies that W(t) as defined is in fact a one

parameter unitary group. .



Definition 1.4. For any seR we consider the Hilbert space:
# = {fe9 (R)]| <P>*rel’ (R"))

endowed with the norm: Ifll := <P>s £l
8

Lemma 1.5. For any seR, # is left invariant by the unitary group
W(t) generated by A.
Proof: We prove that W(t) is bounded on any space Fi:

- £ i w8 o ks %
(1.81 W () llgegyey = NCP>THIL)P>T = Oﬁp ['<<Dt(k)>l =t

using the fact that |®t(k) - k| = C eap(at) with some constants C
and a. =

Given two Hilbert spaces }g and }g we denote by iﬂ}g;}g) the
Banach space of bounded operators from }g to }g. For XcHcK* a
triad with (X #) and (¥ X*) Friedrich’s couples [2], we shall

constantly use the notations: -l for the norm in B(X), W-Il  for
that in B(K*¥), H-1 in B K); H'Ho in B(H;K) -1 i in B(K*; H),
and -1l in B(X*;K), -1 . in B(X; H) and H'Ho in B(¥H: K*),

In the next paragraph we shall prove an abstract result,
close to the Theorem 1.3.1. in [2], but supposing only that the
form domain of the Hamiltonian [17] is invariant for the unitary
group generated by its conjugate. In the third paragraph we shall
use this abstract result for the two-body Schrodinger operator

with form-compact perturbations.
- 2. THE ABSTRACT RESULTS

Let us consider a Hilbert space ¥, a self adjoint operator H
and a unitary one parameter group {W(t)}te[R with a generator A.
Let us identify ¥ to its dual, by the Riesz isomorphism, and let
us denote by § its domain endowed with the graph-norm of H. Let
{§'@}SEKR be the scale of Hilbert spaces associated to 0 [2;12); . 06
that € = § . We shall denote by K the form domain of H so that K =
- g/2 = p(|H|*/?) and ¥ = §'/?. On ®* we shall consider the
dual norm given by:

(2:1) Ml = H(1+1H]) " fl for any feX.



We shall suppose that XK is invariant for W(t), for anmy teR. By
duality we can extend W(f) to *®* which will also be left
invariant. Evidently HeB(K;X*). We denote by E:B(R)—B(X) the
spectral measure of H. We shall also use the Hilbert <space §&cK
‘representing the domain of the generator of W(t)lj( endowed with
the graph norm of A.
Theorem 2.1. Let ¥, K, H,W(t) and A be as above and suppose that
W(t) leaves K ihvariant for any teR. Let us denote B := i[H, Al
defined a priori as a symmetric element of B(&;6*) and take JSR
any bounded interval. Suppose that the following hypothesis are
verified:
a) BeB(K; X*) and there is a strictly positive constant a and a
compact operator on ¥ denoted K such that:
E(J)BE(J) = aE(J) + K. '

B) One can find a function: fO,l]asreH(c)eB(K;R?) such that:

81) The function H(e) is strongly continuous and H(0) = H.

82) The function: (O,l)aekaBC:=i[H(e),A]eiﬂC?@) is strongly
C! and there are two strictly positive constants C and &8 such
that:

d -—105.

Il EBCH-v = Ce

Bs) For any €€(0,1] we have that [BS,A]eB(K;R?) and there are

some strictly positive constants C and 8 such that:

NB, Al = gettr

Then J contains no singularly continuous spectrum of H and.only a
finite number of eigenvalues, each of finite multiplicity.

Remark: Theorem 2.1 is an analog of theorem 1.3.1. in [2] but we
only impose thé invariance of K = §'/% under W(t), and we consider
all the operators acting between the spaces K = /2 and ¥ =
g /2. In order to do that, in applications, we need the modified
conjugate operator A.for the Laplacean.

Proof: The proof of theorem 2.1 goes exactly through the
same steps as that of theorem 1.3.1 in [2], with only a few
modifications. In some sense our version of the theorem 1is more
natural, involving only two levels of the scale of Hilbert spaces
associated to H, namely X and K*.

1] We shall first look at the eigenvalues contained in J. Observe

that the Virial Theorem as stated in [2] (theorem 1.2.3.), can be



applied taking K for § and X* for &%, bécause any eigenfunction of
H is in X Moreover in theorem 1.2.4. of [2], the condition that §
is in fact the domain of H is not really needed, the necessary
condition being that any eigenvector of H should be contained in
g, and that remains true also for the form domain of H. Thus
theorem 1.2.4. in [2] gives us directly the desired conclusion
concerning the eigenvalues of H in J.

2] Let us consider noﬁ the statement concerning the absence of
singularly continuous spectrum. We shall prove that the operator
L=<A>"1! is locally H-smooth on J by proving that the conclusion of
prdposition 1.3.6. in [2] remains true also in our hypothesis.
Therefore the theorem XIII.23 in [13] gives us the desired
conclusion on the singular continuous spectrum. Suppose A°e§ is
not an eigenvalue of H. From hypothesis Bz we obtain Dby

integration that B=£im B_ and:
€% €

(2.2) BBl = Z¢°.
We can apply now point (b) of lemma 1.3.2.in [2], and we get a
neighborhood J of A such that for any function ¢EC (J) we have:
(2:3) ¢(H)B ¢(H) z ——¢(H) :

for €€(0, € ] with € =<1. We fix now J a closed interval such that:
_ A ej CJ CJ and a functlon ¢EC (J ) such that 0=¢(A)=<1 VAeR and
¢(A) = 1 on a neighborhood of Jo. We consider now the following

operators as defined in [2]: R

¢ := ¢(H)
(2.4) pti=1 - @
M:=229B6 ,for ee(0,e ).
£ a £ 2

We can now apply lemma 1.3.3. in [2] and obtain:
2 1/2
(2:5] Il [H-Aii(Mew)]fll = [—187+ pz]

for: feD(H)EK, AEJO, u=0, ce(O,eo], £ S€ . Thus, the operator on
the left side of (2.5) is an isomorphism from &=D(H) to H, for
ee(0, £, 1, p=0, such that e+puz0 and Aéj . By duality and
1nterpolat10n we can see that it is also an 1somorph1sm from K to
K¢, and thus it has an inverse in B(KX*; K). We denote:

(2.6) G (np) = [H—A+1(M8+u)]‘1 for A, €, as above.

First observe that L=L*eB(¥) and has dense range. We define:

(2.7) F_Onp) = LG (A, pL



and we use the method described in [2] in order to control -the

e-dependence of F_ for €-50. We have:

>
(2.8) IF I = 91.
€ €
Now we want to obtain a differential inequality for FC:
(2.9) dp-_ o2t foree 9p ge.1 4 16 8B.96.L
de € a e de g€ € € €

so that by denoting e-differentiation with a prime we get:

(2.10) WF’ Il = 3—[SHLG $B’ 3G LIl + ILG_®B_%G LH].
€ a £ & E € € ¢

We have the following four estimations, a reformulation of

lemma 1.3.4. in [2]:

(2.11) G o+ ek =&
€ 0+ £ 0+ £
(2.12) nelc 1 o+ neiexn =c
€ 0+ £ 0+ % ,
(2.13) 018G LI+ NeG*LI = ce */2uF /2
€ 0+ 4 0+ £
(2.14) IG LI+ UG*LI = C[HLH + e Y 2F "1/2]_
£ 0+ € 0+ £
In proving lemma 1.3.4. in [2] one shows that: "GSHSC/C and

H@GCLHZSCC'IHFCH, and thus all we have to do is to show that one
can get this estimations in B(}#;X) instead of B(}#;§). But as the

operator lHl(i+H)'1 is in B(¥) and the norm on X 1is the graph

norm of 4 |H| we see that:

- 1] G_ = [H| (i+H)'1[1 + {A—i(M€+p—1)G€]

I [H] G _LIl = aup {jlxl | xeoupp ¢} 119G LI

Using the inequalities 2.11 - 2.14, by a similar procedure to that
described in [2], we can estimate the two terms on the right side
of 2.10. For the first one we easily get:

(2.16) ellLG 8B’ &G LIl = CIF ne‘l*a.
erE T g £ 35

For the second term we obtain:

(2.17) LG #B 4G L = LG B G L - LG "B #'G L - LG &'B oG L -
E. e v E e £-E 4 £ £ € £ €

- LG 8B &G L
£ 34 £ 34 £
(2.18) ILG B &'c Li = nLi®nG ofn B 0 nwe'G 1 = CILI?
£ £ £ f 34 -0 £ +- £ 0+
L ’ L
< LI =<
(2.19) ILG_#B_8"'G_LIl < ILG @l  WB_N 137Gl

1A

CILI e‘?’aneul/z



(2.20) LG B G L = i(LAG L-LG AL) + LG (B -B)G L + LG _[M ,A]G L
gee € & 2E e &8 >

[(2.:21) ILAG LIl < ULAI NG LIl =< CILAI [HLH + g e e "1/2}
£ +0 34 0 +0 £

+

(2.22) LG (B _-B)G L)Il = ILG_I _IB_-Blt WG LI =
€ € € € -0 € +- € 0

+

< Cea[HLH + e'l’zupeul/z]

(2.23) [M ,A] = ¢ {[@,A]B ® + 3B [9,A] + O[B ,A]@}
€ € € €

-2+

(2.24) ILG ®[B ,Al®G LI=<ILG &Il N[B_,Alll 1®G LIl =Ce aﬂF Il
€ .7€ € E° =0 € Fie € 0 €

We only have to study the terms containing [$,A]l. We use a
procedure similar to that in [2]. We remind that for ¢EC:(R) and T
a self adjoint operator, the following representation formula is

true (Section 4.2 in [1]):
(2.25)  ¢(T) = 1/(2m)*’? J ot) et har
R

with a them Fourier transform of ¢. Using 2.25 one immediately
proves that [®,A] €B(&;€*). By a method similar to that in the
proof of lemma 1.2.8. in [2] we shall see that in fact
[#,AleB(K*; K). In fact one can observe that the only hypothesis
needed for proving pointé (a) and (b) of Lemma 1.2.8. in [2] are
that (&,8) and (§,¥) must be Friedrich’'s couples (1.i.4. in [2]),
with € invariant for W(t), things that remain true if we replace §
by K Thus we obtain that:
| [P, A1 e B3

(2.26)

Il[eth,A]II+

= C|t] uBI

so that using 2.25 we obtain: [®,A]leB(K;K*). Now we remark that
because (i+H) is an isomorphism from K to K* we have that

[(i+H)™ ', AleB(X*; K). Finally we get:

(2.27)  IF0 = C[[HLH + UILAI ] {e'l/ZHF H1/2+HLH]'+ & =P u].
€ 0+ € €

From this inequality, by integration, we improve the estimation

2.8 and by repeating the procedure for a finite number of times we

obtain:

(2.28) aup { HFE(A,u)H | O<e<eo, AEJO, p=0 } <

so that L turns out to be H-smooth on Jo. .

Besides this result concerning the spectral properties of H,

we can extend the result of theorem 1.4.4. in [2] in order to



obtain a Limiting Absorption Principle valid for our situation. We
shall use the same class of "weight operators" as in [2]:

Definition 2.2. For vel0,1/2), we denote by‘Lv(§;R;A) the class
of self adjoint, injective operators in B(H) for which a family of

operators {L_} , (e = 1) in B(#) can be found, that
€ €€(0.€ 1 0

satisfies the_fOIIOW1ng properties:
1. For €0, L is weakly convergent to L in B(H).
2 L AeB(G; H) for any €€(0, €, 1.
3. The function: (O, £, )asreL eB(G; H) is weakly 2
4, There is a p051tlve constant C<w such that:

LA = ol =t
£ +0 £ +0

Theorem 2.3. (Limiting Absorption Principle)

Suppose H satisfies the hypothesis of theorem 2;1. (for a given
conjugate operator A) and that LeL (;#, A) for a given velD,1/2).
Let us denote by R the domain of L endowed with the graph norm

and let ﬂ: be its dual. If AeJ is not an eigenvalue of H we have:
1. (H—Aiip)'leﬂ(ﬂ ,NF) for any p>0 and the following limit exists:

fim (H- axip)™! = (H-A%10)7 eB(R ,H)
uniformly 1n A on compact sublntervals in J\o (H).
2 The  mappings: J\G (H)ahke(H -A+i0)” eB(R ﬂ?) are norm
cont inuous and even norm Holder -continuous of order 6, with:
6 = mn {‘;?5-,§€§{;}n
Proof: The proof goes through exactly the same lines as that

of theorems 1.4.3. and 1.4.4. in [2] taking into account the

arguments given in the proof of theorem 2.1 and replacing L by Le-
- 3. Application to the Schroedinger two-body problem

As announced in the Introduction, our aim is to extend the
general abstract formulation of the Mourre method, in order to be
able to deal with the two-body Schroedinger operators with a
potential having strong local singularities and also some
"long-range" part. In order to see that the abstract results of
the theorems 2.1 and 2.3 cover the situation described above Wwe

prove theorem 3.6., a result similar to Lemma 9.9 4. An o],
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giving a general procedure to verify condition (B) in Fheorem 2.1.

We shall work in R’and we begin with some technical results

that we shall repeatedly use in the following. Suppose geRa\{O},

we denote £=]£|7£ and PE:=5»P=|§|'1z§jpj. We denote by BC” the
3

‘space of bounded c® functions with bounded derivatives.
Lemma 3.1. Suppose geBC00 and t is a self adjoint operator such
that: [T,Pj]eﬂ(K;R?) for j=1,2,3. Then, in B(X, K*) we have the

formula:

e el
[T,g(P)] = -i(2m) j'a dg g(E)Jmp{irPE}[T,Pglmpin{(Iil—r)}dr
R 0

A

where ; is the Fourier transform of g, (thus g is a measure of
rapid decrease).

Proof: It is an evident reformulation of the result in
Section 4.2 of [1] and point. (a) of Lemma 1.2.8. 1in [2], by
observing that E'P=|EIPE. . o
Lemma 3.2. For s,«,BeR, there is some finite positive constant C
such that:

II<Q>°‘<P>B(Q-P)<P>'B"1 < et

= (.
Igge) = ©
Proof: It follows immediately from the results in [11].

Lemma 3.3. For o, teR, there is a finite positive constant C such
that:

1<@>%eap{itP, }<Q> ¥l oty = ClTl

3

Proof: We remind that: HuH§: = lI<P>ull. Thus:
o -t

‘ H<Q>aemp{irPE}<Q>'aHB(§t) = H<P>t<Q>aexp{irPE}<Q>' <P>

I =

2
= CH<Q>aemp{irP€}<Q>'aH = C oup { —l—i—lfl—-|xema} = Cltl

1+Ix—T§J2

[l
We have intertwined <Q>%<P>® by using the results in [11].

Lemma 3.4. For eeC?(Rs) satisfying: 0=6(x)=1, 0(x)=0 for |x|z2
and 6(x)=1 for |x|=1, let us define 6(€Q) the bounded operator of

' d
multiplication with ee(x)= o(ex) on L*(R’). Then ey 6(eQ) and

[B(CQ),Pj], for j=1,2,3, are operators of multiplication with

functions of class C:(Ra) with support in {xeR3| 1=|x|s2 }. . More
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specifically we have: -

(3.1) a%—e(eq) & ; 0, (3,6)(sQ) = e ! 8(eQ)

(3.2) [G(CQ),Pj] = ie(aje)(eQ)
where 68(x) := z (x 8 8)(x).
. 3 3

We shall use the following result proved in [2] (Lemma 2.9.2)

3 PR
(3.3) ly(£Q)<Q> n,B(g,s) =< Ce

for weC (R’\{0}), &,seR, €€(0,1].
Lemma 3.5. Let us consider xeC (R ) such that x=const. for |x[=1
and s,a,BeR. Then there is a flnlte, positive constant C such that
for €€(0,11; :
1<@>*[x(£Q), A]<Q>BIIB(gs) <Ce
Proof:

-(a+B)

[x(eQ),A]l = (1/2)2 {9 [x(eQ), P <P>"11 + [x(eQ), P <P>"'10Q }

as operators in B(E"). We use Lemma 3.1 with g= f and observe that

due to Lemma 3.4 we have that:

[x(£Q), P ] = [ £e(d, 2) (£Q)

If we define now: yY(x) := <x>2§j(ajx)(x) and use (3.3), Lemma 3.2

~ j
and the fact that fj has rapid decrease we obtain the desired

inequality. -
Theorem 3.6. Suppose V is a symmetric operator in BIKK*)  such

that there are two positive constants & and C for which:

i) H<Q>6VH =C

ii) 1<y, Al =c

Let GEC:(R3) be such that: 0=6(x)=1, 6(x)=1 for lx|§1 and ©(x)=0
for |x|z2 and let us denote: V(e) := 6(eQ)ve(eQ). Then:
a) The function: [0,1]2eV(e)eB(K K*) is strongly continuous and:
= Lim N(e).
€50
b) The function: (0,1)3e3[V(e),AleB(K, K*) is strongly c' and:
|- vee), Al = cent?
de + -

&) 1 LIV(e), AL AN = ce™H°,



12

Proof: The proof follows that of Lemma 2.9.4. in [2], ‘“but
some technical points are more complicated because the commutator
[V(e),A] is no longer a multiplication operator as in [2] and we
have to make a systematic use of Lemma 3.1. Point (a) is identical
to that in Lemma 2.9.4. in [2].

_ For point (b) we use Lemma 3.4 to obtain:
(3.4) ag—[V(e),A] = c‘l{té(eQ),A]Ve(éQ) + B(eQ)V[e(eQ),A] +
+ 8(eQ) [V,Al0(€Q) + [6(£Q),AIVE(£Q) + 0(£Q)VO(eQ),A]l +

+ e(eo)[v,AJB(sQ)}

Observe that the“last three terms are the adjoints of the first
three and hence will have the same bounds. Using Hypothesis (i)
and (ii) we have: H<Q>6Vx(cQ)H* =C and H<Q>6[V,A]x(eQ)H‘_SC for
any xeC?(Ra). Therefore we can éstimate the second and third terms
by using 3.3 because [6(eQ),AleB(§°) for any seR. For the first
term we use Lemma 3.5 with a=0 and B=-§.
c) A direct computation gives:
(3.5.) [[V(e),Al,A] = 2[0(eQ),AlVI0(£Q),A]l + 2[6(eQ),Al[V,A)B(eQ)+
+ [[6(€Q),A],AlV6(cQ) + 6(eQ)[[V,A],Al0(£Q) +
+ 20(eQ) [V,Al[0(eQ),A] + 06(eQ)VI[I[0(£Q),A], Al
We observe that the last two terms are the adjoints of the second
and third ones, so that we only have to estimate the first four
terms. Let us denote S=[6(£Q5,A] ‘and remark that it can be
-controlled by Lemma 3.5. We also denote T=[V,A] and observe that

it is not an operator of multiplication, but it is controlled by

hypothesis (ii). We thus have to consider the operators : SVS,

STe(eQ), [S,Alve(eQ) and 6(eQ)I[T,Al8(eQ)=6(eQ)TAB(cQ)-06(cQ)ATO(£Q)

(3.6) EEIE HS<Q>'5H_H<Q>5VH*_HSH = ¢e°

(3.7) ISTe(cQ)ll = HS<Q>'6H_H<Q>6TH*_HG(CQ)H+ < @

(3.8) ASVe(eQ) = E%{Q-<§> + z_g;JQ]<Q>'1][<Q>6S<Q>'5][<Q>6V9]
1-8) |1 -1+8 P P -3 1)

(3.9) SAve(eQ) = [S<Q> ][§<Q> [Q'-<—P—>—+ WQ]<Q> ]<Q> Ve

and by using Lemma 3.3 and 3.5 we get:
(3.10) IS, Alve(eQ)l < ce™*"d

For the last operator it is enough to control 6(eQ)ATe(eQ), the

first term being its adjoint
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(3.11)  6(eQ)ATO(£Q) = [e(eQ)<Q>1'5][<Q>'1’3A<Q>'5][2Q>5T]e(eq)

(3.12)  e(eq)<@>*™® = 0(Q)<g>t"% - JJ1<Q>5(TQ)<Q>'61'2dT.
’ £
(3.13) I9(eQ) [T, Al0(eQ)N _ = Gla+a"2*9 :

Let us prove now that the case of a potential with strong
local singularities and long-range can be covered by theorem 2.1.
From now on we consider #=12(R), H0=—A and K¥H (R), (so that
%=1 ' (R’)). We shall consider a potential function V=VS+VL such
that:

. : 1
(3.14) V is compact in BH ,H ),

where Vs is the "short range" part satisfying:

(3.15) u<Q>‘*5vsu L0 for some & > 0
and VL is the "long range" pért satisfying:

(3.16) u<Q>5an .8

(3.17) H<Q>1*6(63VL)H =0, for j = 1,2,3.

In order to apply theorem 2.1. we observe that conditions 3.15 and
3.16 imply that H<Q>6VH’PSC for some &>0. Thus VeB(H# , ¥ ') so that
it is form-relatively bounded with respect to the Laplacean and it
is even form-relatively compact (3.14). Thus we can apply the KLMN
theorem and define H=-A+V starting from the form sum. H so defined
is semibounded from below and has R’ as essential spectrum. We
shall consider for the Laplacean the conjugate operator A
discussed in the introduction and using Lemma.1.5 XK is invariant
for the unitary group generated by A.

Lemma 3.7. If V satisfies condition 3.15 then we have:

1<@>°[V,All_ = C

Proof: In fact we see that:
(3.18) 021V, Al = [<Q>5v<Q>] [<Q>'1A] - [<Q>6A<Q>'1"5] [<Q>3V]

and using Lemma 3.3 one gets the stated result.

Lemma 3.8. If V satisfies condition 3.17 then we have:,

1<@>>[v, Al =C

Proof: From lemma 3.1 we get:
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~ (&l
) o .0 -3/2 S =
(3.19)  <@>O[V, Al i(2n) ;I‘Ra a £, L @ %

x[éjemp{irPg}[V,Pglemp{i(IEI-r)Pg} -

- emP{iTPE}[V,A]ea:p{i(IEI-T)Pg}QJ] dt
_ s -1
(3.20) [v.P.] = 1[ 1€17°€ 8 v

so that using Lemma 3.2 we get the conclusion.

We study first condition (a) of theorem 2.1. We have:
(3.21) B := i[H,A] = —20<P>"* + i[V,A]
and due to the Lemma above, it will belong to B(#,# ). But:

1 -1

(3.22) A<P>™ - H<A|H|> '= (A-H)<P> '+ H[<P>‘1-< |H|>'1].

Due to conditions 3.15 and 3.16 we have: V<P> 'eB(#¥ ') and is
even compact [14]. Thus the operator: '
il

1 -1

<P>"" - <d|H|>" " |[<P>

will also be compact in ZX}C}(I), due ,to the fact that the

function h(t)=<5;;'1 is a continuous function vanishing at
infinity [4]. Lemma 3.7 and 3.8 .imply that E(J)I[V,A]JE(J) is
compact in B(¥). Thus condition («) is satisfied with:

a<u¢{—-—————-————t |teJ}

L g2

Now using theorem 3.6 and lemma 3.7 and 3.8 we see that condition
(B) of theorem 2.1 is also verified.
Remarks: i) If V satisfies conditions 3.14 - 3.17 and H is defined
as above one can apply theorem 2.3 with an operator L defined as
in [2] (the proof of proposition 1.4.5), and obtain the Limiting
Absorption Principle.
ii) Condition 3.15 covers the situation discussed by M.Schechter
in [15]. v
iii) Let us observe that if V 1is of Rollnik class [17] and
satisfies: |[V(x)]| = Clxl'a,lajv(x)l =< Clxl'l'a for |x| =R,
and j=1,2,3, then it satisfies conditions 3.15 - 3.17.
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