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DEEARES ON OPZRATORS IN FORLED ALVOST LINWEAR SPACES
e
by

G. GODINI

The normed a2lmost linear Spaces were introduced in [5] as

a generazlization of normed linear spaces. An example of a normed
almost linear space is the collection of all nonemnty, bounded

and convex csubsets of a norred linear space (see L5]).

The 2lmoct linear SvpaCES, which generalize the linear space:

were introduced by i2yer ([9], who called them quasilinear Snaces

os an abstraction of the algebra aic structure of the class of all
cloced intervale of . These cpaces nave been cubsenuently studie
by Kracht and Schréder ([8]) and Ratschek and Schrdder ([10]).

A much more studied notion ig that of a convex cone [?] (or

in other terminclogy = gemilinear snace [1], or simply cone [1?],

[13)), vhich is a set X satisfving all the axioms of an almost

linezar snace (sce the definition in ubctlon 1 below) replacing

evervvhere 2 by R ., (For some more general notions see [3],{14]).
It is easv to see that a. convex cone ¥ can be organized as an

almost linear space if we define >\°x = leox for }\4;0 and % € X.

sy

In [9] Farsr. considered non-negative norms on an almost

linear snacc but, as he observed there, su b norms are not
anto the wenkoning of the axionms of a linea

)1 norm on 2n almost linear space by ~dding

to the usual axiors of & norm on & linear svace an zdditional
one which makes the framework nroductive. In [ﬂ} [7] we began
to develop a theory for the normed olmost linear spaces, similar

N, Foe oo s I T W T e P o W 8 5 Al Aynien
Ll thedt of She pornod. Janenr gnaces. Thus, we defined the dual
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space of a normed almost linear space (whéf% the fﬁnctibnals are
no longer linear, but almost lineay), the bounded, linear and
almost linear operators betweén two such spaces and we obtained
in this more general framework basic results from the theory of
normed linear spaces. | |

The main tool for the theory of normed almost linear spaces
was given in Theorem 3ol of‘[7] , where we proved . that any‘nbrmed
almost linear space can be embedded into a normed linear space,
allowing us the use of the techniques of the normed 1inéar spacés.

e

As we have shown in.[6] , the space of bounded almost linear
-dperators between two normed almost linear spaces can be organized
as an almost linear space and we can endow it with a "norm" which
does not always satisfy the additional axiom requierd in the
definition of a norm on an almost linear Space} In f6] we vproved
the embedding theorem of [7] for the space of bounded,almost
linear operators under a condition which implies that this space
is a normed 2lmost linear spéce. In Theorem 2.9 of Section 25 00
embed the space of bounded almost linear operators into a normed
linear snace, even when it is not a‘normed almost linear space
and when it is, all conditions in Theorem 3.2 of E7J are satisfiec
"Besides this result, in this péper we also give conditions in orde
that this space belbng to the simplest classes of (normed) almost
linear spaced. | |

Finally, the author thanks 6 Dre - BB Schmidf for drawing

attention on the papers f8]~[1q} and for providing copies of

[11] - t13] K

1. PRELININARIES

For an easy understanding of this paper, in this scetion
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besides notation, we recall some definitions and results on normed

almost linear spaces. We assume that all Spaceq are over the real

field ¥ and we denote by R the set § NER: Azof .
A commutative semigroup X with zero O is called an almost

linear space ([9]) if there is also given a mapping (>\ W o >\ov

of X X into X satisfying (i)-(v) below. Let x,v¢ X and A o € ‘2 z
(1) lex =x s (3] e . G (4417 No(x+y) = Nox+ Noy 3

(lV) >\"()"’°X) = ()\)")°X D (./\-}}b)ox =}\ox+)l-°x for X,rbe R+

e set off the following two eubsets af ¥ b5 l) 7

% g_ wexse x+( lex) = }
Hy i e e S -—lox}

*
i

1

These zre almost linear subsnaces of X (i.e., closed under addition

and multiplication by reals) and VX is a linear space. Clearly, -

“an almost linear space X is 2 linear space iff X = VX y _ifff&."fs 0,
Tn an almost linear space X we use the notation )\"X for

the multiplication of \er by x € X, the notation )\y being veed

only in a linear space.

A normed almost linear space ([ ﬂ) is an almost linear space

X together with a norm W-lll+X—> 2 satisfying (;1)—(1-14) below.

() Uiy UL £ Bl + Wl o (x,7 € X)

(1) lxlil=0 iff x =0 (x € X)

(%5) N oxtil = TAL it (Aem, xeX)
(114) =il £ x+w (x €X, W EN)

Note that Wl xll = O for each x ¢X. We also have (Ta41):

°

(1.1) W g il x+will - (x eX, weily)
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- We draw attention that in [4] ana f5] we have worked with
an equivalent definition of the norm and in [5]~the last axiom of

the norm is suverfluous.

1.1. LEVIA ([4]). Let X be 2 normed almost linear snace
and let x,ye X, W€ iy , vi€Vy , i=1,2,

(i) 1 x-&:je\lx then x,y7€Vy .

(1) 3g VW v w2+v2 then w,=w, and Vi=Vy e

Let X,Y be two (normed) almost linear spaces. For a mapping

T¢X—>7Y the definition of a llnear onerator (an 1%omﬁtrv) is

similar with that from the linear case. e draw attention that

a linear disometry is not always one-to-one. For A < X we denote

by T(A) the set { T(a): aé.A} . | ' '
The following result is the main tool for the theory of

normed almost linear spaces. In Section 2, we will make repeated}

use of this result,

Ye2e IR L. ([7], Theorem 3.2). For anv normed almost Tinem:

snace (X,Hill) there exist 2 normed linecar snoce (Boy el ) Bnd a
ke .‘.J:{ R i

mannine CUKZX'~€>Ey with the followine nronerties:
LSRR el 3 [

(i) By = OJX(A)n[UX(A) and a)X(X) cen be organized as sn 2lmos

linezr svace where the 2dditicn and the multinlication b non-necats

reals are the sgme 2 in =

“{ii) Por z & B, we bzve!

Il 2ll, = inf3 W=l + Wyl x,7€ X, z = W (x)= W ( v)%

o6
A

) is a norred almost linear snace.

an (OJX( Skl

(g ) 'UJY'iS 8. linear iédmetry of (X,M4il) onto (LUK(I),iI'Uq ),
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We shall sometimes denote 'l by Heil when this will not
X - .
lead to misunderstanding.
The proof of the following lemma is contained in the proof

of ([7], Theorem 3.2 (iv), fact I).

1.3. LEVMA. Let (X,H(]) be a normed a2lmost linear space and

let »x,ye X, IL wX(x) = wx(y) then for ecach & > 0 there exist

e

X 4Y

. 1Y, su, €X such that U %l =y, il < € and x+y, +U, =y+xX, +ug .

A subset CC X is called a cone if the relations ceC, A€R,
imply that ANoc €C. The definition of a convex set of X is similar
with that from the linear case

Let X and Y be two normed almost linear spaces and C a conve

~cone of Y. A mapping T:X—> Y is called an almost linear onerator

o

with resnect to ¢ ([6]) if T is additive, positively homogeneous

and T('J.’,) & G The st (j;a,(i(,(‘f,C)) of all such operators can be
organized as an a2lmost linear space if we define the addition
and O as in the linear case, while for A € R and Téff,(X,(Y,“C))
we define (AeT)(x) = T(Aex), x€ X. For TeX(X,(Y,C) ) define

(1.2) lnfmzsmp{ntﬁxﬂﬂlxex,mpmls 1}

and let L(X,(Y,é)) = § red(x,(v,c))illT \F since M« lif |
defined by (1.2) satisfies (’:Tl)-—(l‘fz), *,( £,(f,C)) ig an almost

linear space. It is not always a normed almost linear space fof ‘
arbiftrary convez cones O« ¥ / (see Theoren 1.5 below). Though we
shall avoid the word "norm" when (NA_) does not hold for |-}l given
by {(1.2), in the sequel we shall always consider the almost lineaz
space L(X,(Y,C)) equipped with the Wl defined by (1.2).

Let us note that when X = VX ok == VY , then C is superfluo



" a normed almost linear soace then llcy H < ch +C Hl c, € I T

s b=

and L(X,(Y,C)) = L(X,Y) is the usual normed linear space of all
bounded, linear operators T;X —Y .
" Yet ¥ be a normed almost linear sﬁace and. C a convex cone

of - Xe

1.4. DEFINITION.([6], Definition 3.1). The convex cone C<X
has proverty (P) in X if the relations x,yé X, x+y€ C and c€C

imply that

(1.3)  max 10 xil, iyl < max f nixecul ,uysclif

The existence of convex cones C # {’O} having property (P)
in XL { 0} ) is guaranteed by Proposition 3.2 of T6] .

%

1.5. THEOREN ({EJ, Meoren 4.15). Let C be a convex cone of

the normed almost linear snace Y. Then L(X,(Y,C)) is a normed

almost linear snace for each normed almost linear svace X iff C

has property (P) in Y.

1.6. PROPOSITION. ([ 6], Proposition 4.14). If L(X,(Y,C)) is

9 <o

We recall that X satisfies the law of cancellation if the .

relations x,y,z € X; x+y=x+2z imoly that y=z.

1.7. LEvia. (D6], Lemmz 3.5 (i)). Let X be 2 normed almost

linear space satisfyving the law of tancellation gnd let C « X be

-*

a canvex cone having pronerty (P) in X and such that

< C. Thes

“i:{ A S

W, (C) is 2 convex cone having nroperty (P) in V(K)

L




e

Let us note that when Y = R and C = R, then L(x,(n,n+)) is

-

the dual snace X* of X ([5]), where the functionals are no longer
"linear" but "almost linear" . Since R_ has pronerty (P)-in R

* :
X is a normed almost 11near space.

1.8, PROPOSITION. ([6], Coroklary 2.9). If X is a normed

almost linear snace such that X £ VX then WX% ¥'{O}.

Since the next section is concerned with some properties of
L{Z,(Y,8)), the auestion wether this space is not §<L? must be
setteled. Due to certain inaccuracies in.fé], Remark 4.12, we

toke this oportunity to correct them.

1.9. REVARK.([6], Remark 4.12). If C #{0} and X # Vy
then BEEAL,6)) £ 50 . Indeed, let céCNx{ 0] and let
Té WY%‘\§0} (which exists by Proposition 1.8). Then f(x) > O for

each x ¢ X since by f € Wyx we have £ = -1of, i.e., Pl ) e Bl

i

for each we X and so Oz £lxs(=dox)) 2€ (%)« Define Tix)=Flx)oc,
®& k. Then TEL(% C)IN 40}t . As we have observed inl 6] , when

G =400 Hhen L(X,(Y,C)) may be or may be not § 07 . hen

X = Vy #5503 then L(X,(Y,C)) may be or may be not { Q} .’In&eed,
when X = V. (£ §0}) and Y = VY(# £ 03) then L(X,Y) # £0} and when
X =V, and. Vy = {.O} tHen LX; (150)) ::;SO} (this is a consecuence
of ‘the next re n°rk) Aﬁ example of 2 norméd almost linear Sp&CO,K%{C

with Vo = { 0} can be found in Example 2.5, Section 2.

1.10, REMARK.([€], Remark 4.10). We have T(VX) < ¥, for

'

caoh T L 0L (5,0
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2. THE SPACE OF BOUNDED ALMOST LINEAR OPERATORS

- Throughout this section X and Y are normed almost linear
spaces and C is a convex cone of Y. As we have observed in
Section 1 , Hl‘jil ‘given by (1.2) does not always satisfy (N4), e

the almost linear space L(X,(Y,C)) is not always a normed almost

linear space. In the seouel, if dtherwise not stated, L(X,(Y,C))

eouinped with Il.jf] given bv (1.2) is not necesserily a2 normed

almost linear snace.

Among the simplest classes of (normed) almost linear spaces
X are those of the form X = VX (when we recover the class of
(normed) linear snaces), X = WX and X = etV o In Proposition 2.1
(see 21lsgo Remark 2.2 (i)) and Provosition 2.3 (see als0 Corollary
3.4) we give sufficient or nccessary conditions in order that
I:(X,(Y,C)) = '.vL(X’(Y ,,))+VL(X’(Y 7)) + bet us note that by
Remark 1310, wihern N = VX then L (¥,0)) is the pauad nprmgd linecr

(
spaoce L VXPVY)’ i.e., L(L)(Y,C ) = V_,

v Vo {Tor)
_aTielg T loy S
ll(X) = 5 (x eX)
M =l alox) )
T,(x) = fecra Lot 4l (ve 1)
2 2
It is easy Yo chow that I.¢ Bl 2,0 ), 12140 B ihinee ¥ = Ve,

we get T = B 47, . Por each x eX we have (=1lo® 3 {w) = T](—lox) =
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Tl(x),, ive., T € "‘VL(*" (Y,C))--and (T2+(-10T2))-('x) = ‘l‘z(x)+T2(»—lvx)

N g

2 T(X.)‘*'é"lor”ﬂ(”lcx” + ¢(”'16X);("1L’T(X)) = 0 (since Y = VY)’ i.e.,‘s

7
T G\L(--’ Y,C)) ©

Suppose now X = Wy+Vy and let e L(X,(Y,C)). By Lemma 1.1(ii)
for each xe¢ X t}q@re exist unique wxé 'v.-"-]X and vXe VX such that

x = w +v_ . Define T, ¥ —>7Y, i=1,2 in the following way!

(2.1) , A TR | (x € X)
(2.2) T2(x) = T(VX) (x e X)

For i=1,2 it is easy to show that T. 1, additive and positively
homogeneous. By (2.1) and since 'l‘('.‘.’},) c C, it follows that Tl(x)éc
for each xe X and by (2.2) it follows that T?(w) = 0€¢C for each

el (ﬁs‘ince W B oty T_.ez‘gf;;(i{,(‘f,(})), fely 2 Vaing (1.3)

w
we get for each x€ X that HIT (il =112 (w )Hé il lexfll £

,5Hlmiuiuwx+vxnl= Well il =, i.e., T, € L(X,(Y,C)). Similarly,

1
using (N ) instead of (1.1) we obtain that TQéL(X,(Y,C)). Since
for each x € X, x = w +V_  we have ~lox = wX+(-«1on) we get

( 10T )(Y) T (‘-10}\) = r!‘(Wx) = T (X), i.e., T é ‘;‘Ii—J(X‘ (-Y C)) and

_ (T2+(—-10L2))(X) = T (x)a-‘i‘2(-—1ox) = rT‘(v Y+ T~ Tev, ) = T(V +(-—va )

= PL0) =0, ety T e.fL( (,0)) Clearly, by (?.1) and (2.2) .we

get T = T1+T2 , which completes the proof.

0.9, REFARKS. (i) An inspection of the above proof shows

A1 ,,’p’“f {0 o= N 6 Y = X =

that ol 050)) = \.’;(.{ (f,”))+V*O(X,(Y,C)) when ¥ = Vy, or X ..{+V.(
= "0(‘ A 8 TS e v — e .

and d‘b\_.{,([,v)) = %aix,(7,0)) when X = Wy . Conseauently, when

< vy

e M e TR Y O e T % e
i (%, (¥,0)) LiX, {T:6)]
it} "hen ¥ = R and C = R, by Proposition 2.1 we obiain
) ¥ ?

that X* = Wox+ Vo
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We give now a necessary .condition in order that Lilx, (¥,0)) =

. wm 1 2
= Mo e 80 T, ))

2.3. PROPOSITION. Let TL_L(Y (£48) ) T2 T2 BytT,
T, € WI(X (1,c)) * T,¢V L(X,(Y,C)) then T(X) < C+Vy . Consequently,

E L(K (Y C)) = 'L(){ (Y C))%’VL(-L,(Y m)) then .L(J{) < C&VY fm(zz‘_
each Té L(X,(Y,C)).

7 m '1 Y = W
PROOF. Let 7€ L(X,(Y,0)), T = Ty+T5 , Ty€ ¥p ey (v o)) ?

T2é VL(X,(Y,C)) and let xe X. Ve have |
(2.3) . T(x+(nlcx5) = Tl(x+(~iox))+T2(x+(—10x))

Since Tle WL(X,(Y,C)) , we get

(2.4) Tl(x) = (mlle)(x) = Tl(—lox)

Since Tzé VL(X,(Y,C)) , we get

(25 0 = (Ty4(-10T,))(x) = T,(x)+Ty(~1ex) = T, (x+(~1ox))
Using (2.4) and (2.5) in (2.3) we get

P (x+(~1ex))

Then Tl(x)é G, sinte T€ L{X,(Y,0)) and x+(—1ax)<§¥x . By (2.5)
and Lemma 1.1 (i) we’get Tz(x)e Ty Consequently, T(x):Tl(x)+T2(x

€ C+VY , which completes thtc procf.

2.4. COROLLARY. If Y # C+Vy and Wy < C then L, L, 00 #
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= H\(d,l)\{fb ) Then Y = Wy and VY :%Oz o -l X = WY"'VY .

o]} o

£ Y‘X"L(Y,(Y,C))JrVL(Y,(Y,C)) . In verticular, if X £ Wyt Vs then

LA s s Mot isay .
ARl £ M Y VB, W)

PROOF. Let Ti¥Y —> Y be defined by T(y) = y, y€ Y. Then
(sirice W, € C) we get T€L(Y,(¥,0)). Since T(Y) = ¥ and ¥ £ CeVy ,

by the above proposition Te{: WL(Y,(Y,C))"LVL(Y,(Y,C)) .

The next example shows that the condition given in Propositi
2.% is not sufficient for L(X,({,C)) = NL(X,(Y,C))JrVL(X,(Y,C)) .
This example also shows that the assumption ¥ = NY+VY does not

P L 1 m 5 7 5 = (!,\! | .
always imply that LM’;({’C)) L(X_,(Y,C))+VL(X,(Y,C)) , even

2.5, EXAMPLE. Det X =Y = j (x,p)e¢ gé g et 7.

We organize X as an almost linear space vhere the addition
is as in RZ and for AN€E€R and x = (x ,[5 ) e X we define Nox =
= Nt s lM[b} e have Wy = % (o, M, | = O} and Vy = g 0f¢,
Sy """IX*'VX . For (« ,ﬁ Ye X define (£, ) = lo(]' ;.L{ﬁ . Then
X is a normed almost linear space.

‘We organize Y as an aimost linear space where the addltion
i a8 in 7° and for A€ R a2nd y = (« » o Ye Y we define Moy =
For vy = (« (5 )€ ¥ define (¢ ' b il = ¢| +P . Phen Yis & norrh..ed
almost linesr space.

Tet T¢X —> Y be defined by
(2.6) T((d,p)_) = (o(,(wé‘f ((of,(me:-t)

Then clearly, T€ L(X,(7,Y)). Suppose T = T,+T, , T, € “(JL(X,(Y,Y))

To €V (x, (v,Y)) ° Similar with the proof of Provosition 2.3 we
Ny ~ ¢ ~ .
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g o o , ; < i v

obtain that

T(3)+7 (~lox ' .
P dx) = L(}>42( Lox) - (x€X)

Consequently, for x = (O{’F Yé X we have Tl((af,@ ) = (O,[B) and
TZ((o<, p)) = L ,J ),cf‘; l¥] . Since by our assumption T:T1+T2 :
we get (xﬂ,@ o= (O,P )+(X’,J.), whnich is impossible for (d,ﬁ)ﬁ(O,

Let us note that for T defihed by (2.6) we have T(X) - Y (=
= C+VY)°

”hen LLE, (Y,C)).is a normed zlmost linear space, it is of

interest to determine (EL(v (v ¢yt d ) and
l\.’ ’

(A,(Y C)) L(XS(YfC>

gi#éﬁ by Theor®m 1.3. These were done in [€] , Theorem 5.€ under
the additionsl assumption that L(OUX(K),(M{i(Y),a} (c)))

normed almost linear space. As we have observed in [6] this
assumption implies that L(%,(Y,C)) is a normed almost linear space
and we have no counterexample to show that the converse doce not
hold. In the next proposition we collect three simple conditions
when the converse holds. We observe that in (i) and (iii) the

acsumntion that L(Z,(¥Y,C)) be 2 normed alwost linear sgpace is

i

@

superfluous.

2.6. PROPOSITION. Sunpose L(x,(1,8)) is & normed almost

1inear svace. Then ezch of the conditions (1¥=(341) is suffic cup

for L{Wy(X), (W (¥),V
(1) =507

G A e

¢))) be a normed almost linear spacel

¥ (

(iii) ©C has nroverty (P) in Y, W, < C and ¥ satisfies the

law of cancellation.
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PROOF. (i) If € =§0} ~then wy(C) = {0} . Since $07}
has property (P) in u)Y(Y), by Theorem 1.5 it follows that
‘L(OJX(X),(aJY(Y),CJY(C))) is a normed almost linear space.

(ii) Suppose C = Y and that Welll given by (1.2) for
L(wku) (W (¥),W,(C))) does not satisfy (N,). Then there exist
' & Tl (v) (cuy(y) aJY(C))) and T,& JL(cu (X) (CUY(Y) CUY(C)))

such th
Lz M QI

Consequently, therc exists xoesK,"UfXOH/;§ 1 such .that H(T+T1HI<f

P (/))li Then
() liT(CUX(XO))+T1(a)K(xO)){[4,}T(UJX(XOD(;

Let y,yié Yobe =uch thit s (v) i T(OJ (x )) and(u)Y(yl) =
= pl(CUK(X }). Hence, by (2.7) we get i y+y il = I{UJY\y4yl)
1((7 ))4'1“ ( ( ))“/ I m(w w\ ))” = “U)Y gl = Wy .’

=] ?(ow

which contradicts Preoposition 1.6, since (T, (1;6})) is & norted
almost linear snace and ¥ = C. Consequently, i

- L(OUX(X),(uJY(Y),a)Y(C))) is a normed almost linear snace

(iii) If C hos proverty (P) in Y, 4, < C and Y satisfies
the law of concellation, then by Lemma 17 LUY(C) has propnerty (P
in u)v(Y), whence by Theorem 1.5 iﬁ follows that
L(Q), ' (a/ (Y),a)v('))) ia a norred slmost linear space, which

A

completes the proof.

2 -r -\, - 1 e -1a - N 5 e iy A |
The next examvle shows that the assumption ¥ = 0 does not
r

imply that C has property (F) in Y. Hence by Theorem L5, tliere

evyizcts o normed almost linenr space X such that 1%, (y,0)) 4= not



=

a normed almost linear space and so the assumption 1n.Pronoa1tLon
2.6 (ii) that L(Z,(7,C)) be 2 normwed almost~linear space is not

superfluous.

2.7. DXAKPLE. Let X'= § (=,p)e RZ, B2 0] . Define the

addition as in Rgnand for \ ¢ R and (o(,ﬁ Ye X define Ao (o ;ﬁ) =

(Adﬁ[}fﬂ ), Then X is an almost linear space. ¥e have_‘;‘!X =

$(0,p)t P2 0F, Vy = 4 (x,0)1xeR} and X = Ups¥y . Tor

¥ = (o n Ye X defin

D

(

s if e [ {od ] +f » Then X is a normed almost

linear space. The cone C = X has not property (P) in X. Indeed,

il

let % = (1,0)€ Cand v = (1/2,1/2) €€ and ¢ = (21/2,0).C, e
and max.{ u(x+cU!,H(y+cH(} =1/2,

i vy Bes- Eohias not nroneru, (P) in X.

II

have max{lﬂcq I(FWH§

-'\'
N

Now we show that we can embed L(x,(Y,C)) into a linear
subspace of L(EX,EY) without the additional assumption that
L(CUX(X),(UJY(Y),CVY(C))) is a normed 2lmost linear space. e
enall not assume even that Hl‘m given by (1.2) for L(X,(Y,C))
satisfies (¥,) but when L(%,(Y,C)) is a normed almost linear.space,
then 21l the conditiors in Thcorem 1.3 will be satisfiedu First
we prove 2 lemma.

o/
T

‘:Exn~9 B, be defined for
4

98, LENMA. For TeL(X,(Y,C))

/R O)X(xl)wéux(xz)é By » ¥9sXp €%, by

~
8 m = W -,
(2.8) T(z) = W (T(xq))-U A(2(x5))
lad ~
Then T i well defined and T €L(Z,,By). Je also have i =) Tl
PROOF. Suppose 7 = le(x1)~CU((xh) = W, (x.,)-W, (x ), ¥: €%,

(A . ./{\ ‘3



1L L& &, Then & (xl+x ) = v(y +x3), w,h ence by Lemma 1.3 for
each & > O there exist xg LY € ¥ such that (2.9) and (2.10)
below hold :

| (2+9) Xq +X 4%, ~|u2 = KX g+, A

(2.30) MW= =M= <%

By (2.9) we get T(x )+rf‘(y Y+ T (x> )+T(u ) = T(x2)+T(x3)+T(xg')+T(u£)
and so W (T(xl))+wx( T(x, ) )+ WY\*(%))* W (T(u,)) = W (P(x,))+
+wY(T( ))+wf( (A ))+C«) (T(u }). Conseaquently, we have
“(w (T(X ))- W (; X ))?~(WY(L(-3)) Y(’ )))” ‘
= | w\[\ (X‘é)) Wy (2=, Wil £ H’(/‘)Y(T(Xé))ll + !wY(;(xg))H =
= (] 1 :-:2 W+ 2=, Ml £ 1[(’1‘”[(”1):'“1 il Y < 2¢ll7Ml. As £ — 0
we getb wY(T(xl)%w{( (x5)) = wY\L(_ ) )~ W (T(y )Y, i.e.,
ﬁ'\l‘/ is well dofiﬁmd.

e show now that Lé(‘f(“,,, f) Let z,29€ %y ; say,

= = ’ . . _ 2 < 4 : = ;"
VA a),(x ) wX(}‘2)’ 7y wX(X3) wX( ), x; € Xy 1 £1i g4, Then

242 = (2% (v1|/3) WX(:c?+x4) and s0 N(/»H:cl) =
= UJY('.‘( UB,) uJY(T‘(>t2+714)): UJY(T(XI)% UJ~’|,('1‘(:-:2))+
00 ((x4))- Wy (7(x,)) = T(2)4%(2,). Let now A€R and
7 = wx(xl)—-wx(y?) €Zy 4 Xl’y26X° I >\ 0 then Az =
=)\wx(xl)~)\w )_1\ W (%)= )\ow Xo)= uJX(/\oY) w(/\exgz
and so T(Az) = w-u\m))- (T hex,))= }ww (2 (g )=y (105c5))
S A (2 N=AW,(T(x,)) = A (@ y(T0x))- wy(B(x,))) = /\m,).,_
If A < O then Az = t>\((/~1~{(\?)~l>\‘w.{ r ) = I\eew. (X IM"WK(:{E
= Cx) ]Hov,)) W, (H\loxl) and as above we get T()\ z) =

wY (Nox,))-w (i Mox)) = TN (o (20e)) - 0y (20x)D) =
A (g (10))= w0y (T0p0)) = AT(z), i.e.,

Let now z € & Sy li zll « 1. Then therec exist xl,xz- e ¥ -such that

i

~ Y
T éf(E( 1-'Y'>

it
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& 5 "JK( )= o, (V ) and Nl x4 +1Hx Hl £ 1. _We have Hfrl?u(z)ll =
-l g (20 )= 09y (2 () Il 2110 (G NI W (20 =

= !HT(yl)HHm” *Z)IH ] (gl + wxei ) £ Tl and so
WS < uell, i.ee, T e JX,EY). Finally, we show that Il Tl £ e
Let ¢ >0 and let xeX, fl x1l] <« L such that Mol < 2l + € .

Then 1] T(OUX(X))I[ I e, (rx)U = W rGON = i Tllj-£. As €0

we get [T £ 12 WX(X))H = T( Il (/UX(X)“ = H%"H Uiz i £ 11 ",l‘vl/

. o~ '
Consequently Tl = i, which completes the proof.
Let wL‘;L(X,(Y,C)) —> L(EX,EY) be the mapping defined by

(2.1)  wy(m =T . (1€ L(x, (¥,6)))

~
where T is given by Lemma 2.8 and let z\c:L(T‘y,“Y) be the set

(2.,12) K == WL(L(X1<Y)C)))

~ ~ )
As in Lemma 2.8, for TéL(Ey,EY) we denote by (| Tl the usual

norm on L(Ey,EY). ¥ow, we can formulate and prove the new version

of Theorem 5.6 of [6:] o

2.9. THEOREM. The set K defined by (2.12) is a convex cone

of L(E,{,Ev) which ca2n be orennized as an almogt lineaxy guoce
= P8 = ;

where ihe nddition znd the mulsinlication by non-necsotive reals

are the seme as in L(E,,E,) and (’/JI',L(X,(Y,C)) —3%ig & linear
Sm— )

o
onarator. Tha linear subspnce 7. = K-¥ of L(?-T«(:T } ecuinncd
1 » (S 2 b i =
a ] 1 A Fot m e -
with the norm i+l defined Tor TE€I. Db
T

~ ~ ) 1a% ~n N
(233) N Tl - int § 11T ST T, T, ek, T =TT, 3



S

T,'r(f (Y,C})) ~—>E; given by (2.11) satigfy (i)

= Nloll, 1&1(%,(Y,C)). ihen

and the manping

in Theorem 1.2 and {| e, (D).,
it | _.JIJ

L(X,(Y,C)) is 2 normed almost linear space then (i)m(iii) in

Theorem L. are gatisfied.

PROOF. Ve first show that K is a convex cone of L(dy,T,).
» :
Lot TEY 2nd A2 0. There cxists TEL(Y,(Y,C)) such that GUL(T) =

Let E; = “/I(>\°T56'V Tor z :‘a)X(Xl)wLUX(Xz)é Ty y XqsX,e X, wo
have (using (2.8)) that 11( z) = UJY((XcsT)(Xl))—CU ((AoT)(x o))
= (Mo (T0xy)))= @0 N0 (2(2))) = Noeo, (g )) =Y ((x,)) =

=Awgmuﬁw4an<f M ({2 )= Wy (10p) )= AT ) 1y

i

i

? )

(2.14) E‘Jl = W (N\em) = AT = hw (1) €x

- ~ o
To show that K is a convex cone, let Tl,TgefT and let TI’T?(
eL(%,(¥Y,C)) be such that %; = CUI(T.), i=),2. Let T = T1+T2 and
~/
T = UJL(T)é K. For z = ( )_ (Y )ézjf ) XqiXy €L, we have

T(z) = ou,<w<x1>>~cuy<r<x2>> - Wy (14, ()= Wy ({1 475) (5,)) =
(0 (7 (g ))= 00, (g (3,0 ) )4 (0 (T (32 ) )= (T, () =

1( )+.L2(7:), iaeo,

"

i

T1)+WL(T2) & X

; ~t
= A m s SO )
(2019 Pz wL(i) -—‘ 2 L(

He orzanize K as an almost linear svace defining the additio

and the multinlication by non-negative reals as in L(E(,EY) and
4
~ ~
for A< 0 and T€X, sayy T = W, (-,, re L(Z,(7,C)) we definre

(2.16) NoT = w (AeT)
=1

To show that (2.16) is well defined, let T,,T,€ L(X,(Y,C)) be sueh



~18~

r~ ‘ ;
that a)L(Tl) = uJT(Tg) = T and we must show that UJL(A‘°T1)

( Aoty). Tor z = <

X( 1) CUK( 550 _fﬁ, Xy X, € X,y let
(-10x2)é By o We have
2) = Wy((Xon)(x))=wWil(Ao 1) (x,y))

= (1) (Noxy )= () (Noxy))

= (W (1) (<Texy ))- W (T (<Lex,)))
lk!(oLwl,ul)) R :
I N2 (zp)

~
Similarly, OUL( XOTE)(Z) = \AIT(Zl), ooy CUIK,XOTHJ:CUL(>‘”T,

1t

il

vhich proves that (2,16) is well defined. It is easy to show that
K is an almost 1inear.8pace. Using (2.14)-(2.16) we get that
COLiL(K,(Y,C))—mélijr s linear operator.

Since ¥ is & convex cone, the set EI = ¥~¥ is a linear
A

subspace of L(EK’EY) and Nell, defined by (2.13) is a norm on p,
JJ -

Let now 7€ L{X,{¥;C)) and let T = (“W € ¥ be given by (2.11).

"~ oS

Then by Lemma 2.8 we have that l”H =7l . Tow since T = T-0 we
~ o~ o~/ ~ N ,
got M T“;«:I SUTH ond if T = Ty-1, , -1‘] ,T? €% thon ITHLIT I+ ” H
’ o o) ~
vhence by (2.13), It <lTll. . Consequently I Tl :[lTI[xIHT!H,
L “L A

gy (Bl - = "l
a7

Finally, supposc that L(¥,(Y,C)) is a normed almost linear

space. We show that (K,H‘NEL) is a normed almost linear $pace,

oA ./
i.e., that Wl on K sctisfies (N,). Let T €K, Ty& 'y and let
-L i f )

?,7* € L(X,(Y,C)) be such that w (T) = Tand o (1') =T . Let '

T = (DSl -1oT%) /2 €. . . Since <. is-a linear onerstor
1 as 'L ,(f, )) L
~J v
and T, = -leT. , we get (T ) = ~lew (1) = w_(-1eT*) and
5 _] 3 ad L
~J
LUL&TI) = (oUL(T') UJI( 6tY)) /2 L(ﬂ'} = Tl . Then by the

above we obitrin f]TH, =il e (MWL =Tl £ HI =
L 4, R :



e e« A A o e B el e 2 N

£ “ e L(T+T1 ) Hj

=10

~ ;
:l\CuI(T)+‘x}(T1)H? = [|'T+2,ll,  which shows that
L 2 e = Bhageit

(K, 14 ) is a normed almost linesr space and completes the proof.
) *'—“L {

5.10. RIMARK., ILet us note that the cone K defined by (2.12)

satiafies the following condition :
. A o/ (%] - il .
(a1 K § Fenls,n): Tw(n)ew (1), Heuylihe e (@]

when the eouality sign holde in (2.17)5 Shen by [€], Lemna 5. 30iw)

it follows that L(éUX(K),(OUY(Y),CUY(C))) is a normed almost

~linear space.
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