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ABSTRACT

We characterize the total preorders on Rn which are compatible with the

vector space structure, in terms'of l inear operators and the lexicographical order. In

particular, we obtain that the lexicographical order is, up to a l inear isometry, the

unique compatible total order on Rfl. We also study compatible total extensions of

compatible preorders and give some Szpilrajn type results for compatible preorders and

compatible orders.

5 O. INTRODUCTION

In some previous paPers lg-nl (see also [7,8, lr ] ,  we have studied the

lexicographical order and l inear operators on Rn, and some of their applications' e.g. to

separation of convex sets, vector optimization, hemi-sPaces (i .e., convex sets with

convex complements), etc. In the present paperr continuing these investigations,,we shall

give some applications of the lexicographical order and l inear operators to the study of

compat ib le  to ta l  preorders (and,  in  par t icu lar ,  compat ib le  to ta l  orders)  on Rn,and to

compatible total extensions of compatible preorders.

We recall  that a preorder ( i .e., a reflexive and transit ive binary relation) p on

Rn is said to be compatible rvith the vecjlgr s-pace struclurg of Rn, orr brief ly,

compat ib le ,  i f

Y IPY'I , Y 29Y'2 
=)Y I 

* Y 29 Y'1 + Y'2 |

y p y ' , ) . ) 0 = ) ^ r O ^ r ' .

( 0 . 1 )

(o.z)

The natural part ial order (. and the lexicographical order (, are well-known

examples of compatible orders ( i .e., compatible anti-symmetric preoicters) on Rn. Let us

recall  that the natural part ial order ( on Rn is defirred componentwise, i .e., denoting

the elements of Rn by column vectors and the transpose of a row vector by Tt



T
x = (Elr . . .  rEn)t  e Rn is said to be ' t less than or

symbols,  x S y) i f  Ei  I  n i  ( i  = l ,  .  . . ,n) .  we wri te x

f h

equa l  to t t  y  =  (n l r . . . 'Qn) '  e  R" '  ( in

( y  l f .  x S y  a n d  x l y .  F u r t h e r m o r e ,

2

.  x = (E1r. . .  r6n)T e Rn is said to be t ' lexicographical ly 
- less thanrr  y = (nlr . . . ,nn)T e Rn

i s  sa id to  be an extension of  a preorder 01 on

( in symbolsr x ( ,  y)  i f  x  I  y and i f  for  k = min{ ie {1, . . . ,n}  |  Et  I  n/  we have EU ( nn. We

write *!l y it x <, y or x = y. Th€ notations y )L * and y)L *r respectively' wil l be

also used.

.We recall that a preorder p on Rn is said to be Ig!e!, if for anY Y,Y'e Rn we

have ei ther ypy'or y,py.  A wel l -known example of  a total  order is the lexicographical

order {; on Rn.

In 5 I we shall  characterize the compatible total preorders on Rn, in terms of

l inear operators and the lexicographical order. In part icular, for orders, we shall  show

that the lexicographical order is, up to a l inear isometry, the unique compatible total

order on Rh, \tr/e shall  denote by f(Rn,Rr1, UtRn) ana d(Rn) the famil ies of al l  l inear

operators u :  Rn* Rr ,  a l l  isomorphisms v :  Rn -  Ro,  and a l l  l inear  isometr ibs

v:  Rn-+ Rn ( for  the eucl icJean norm on Rn) ,  respect ive ly .  We s l ra l l  consider  on. f (Rn,Rr)

the lexicographical order u ) l  0 in t lre sense of [8], def ined columnrvise, i .e., u )t 0 i f

and only  i f  a l l  co lumns of  the r f ,n  matr ix  o f  u  (wi tn  respect  to  the uni t  vector  bases of

Rn and Rr) are ) l  0. We shall  denote by u* the acl joint of the operator u e.{(Rn,Rr) and

by I the identity oPerator on Rr.

We recall  that a Preorder 0, on Rn

Rn, and rve write Pf d P2, i f"

Y92Y' (y ,y 'e  Rn,  y  o ,  Y ' )  ; (0.3)

rvhen p, is total, we shall  say that g, is a total extension of pl. Let us also recall  that a

n -
preorder o on R" is said to be the intersection of the familv of preorders- {Or}ruron nn,

in symbols
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o = 'Ap,  ,
j e J  r

provided that for anY YrY'e Rn we have the equivalence

(0.4)

yo y'(+ y pj y' ( j . J ) ; (0.5)

hence, in this case,o { 
pj(je.l). By a classical theorem of E. Szpilrajn [15], anv partial

order !s_s the intersection of its tgtal extensions, and many authors have investigated the

problem whether this result remains valid for orders having some prescribed additional

property (for a survey' see Il]).

In 5 2 we shall characterize the compatible total preorders rvhich are extensions

of the natural partial order ( on Rn, in terms of l inear op..utoi, and thb lexicographical

order, and we shall give some Szpilrajn type results for compatible preorders and

qompatible orders.

The tools which we shall use in the sequel (the corresPondence between

compatible preorders and convex cones, some concePts and results of I I l ] on

hemi-spaces, etc.) wil l be recalled in 5 I and 5 2.

5 l. coMpATTBLE TOTAL PREORDERS. UI{QUENESS OF THE LEXICOGRAPHICAL

ORDER

It  is  wel l -known (see e.g.  t t+1,  p. l )

correspondence between the col lect ions of

convex cones (containing 0 as a vertex) in Rn,

C + C e C , '

I

l c 6 c 1 r  >  o ) ;

that  there ex is ts  a canonica l  one- to-one

all  compatible preorders on Rn and al l

i .e., al l  subsets C of Rn satisfYing

( l . l )

( t . 2 )

narnely, to a preorderp there corresponds t lre convex cone
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c ^ l { v * R n l y p o } ,- p . . .

C E Rn there corresponds the

'  (1.3)

npreorder p on R'

+

and, conversely, to a convex cone

defined by

y p l ( + y - y ' e c .

In particular, this induces a canonical

collections of all compatible orders on Rh and

convex cones C q Rn satisfying

cn ( - c )= {o }
\

(or, equivalently, containing no l ine through 0).

We shall  use the notation

(1.4)

one-to-one corresPondence between the

all  t 'pointedf'  convex cones in Rn, i .e., al l

f= the set of all compatible total preorciers on Rfl.

(1 .5 )

(1 .6 )

(  1 . 8 )

Theorem l . l .  For  any compat ib le  to ta l  preorder  p on Rn there ex is t  a  unic lue

. r  e  {0,  1 , . . . ,n}  and a unique u e" / (Rn,Rt) 'or i th  uu*  ;  I  (hence u(Rn)  -  Rr) ,  sgc l lbg!

y P y'€) u(y) (, u(Y') (y ,y 'e  Rn) . ( 1 . 7 )

ConJerselv, &iven any r -atg ue S(Rn,Rr1 -*i th uu* = I,  i f  we.define O = 0u !-I

( \ .7) r then p, ,  is  a  compat ib le  to ta l  preorder  on Rn.  Consequent ly ,  th-e mappin&

6 : u - + 0 ,

n
is a bi ject ion of  U {"  e. , i {Rn,Rr) luu* = I }  onto -P.

r=0

Proof .  Let  pe P.Then,  by (1.3)  and s ince p is  to ta l ,  we have

R n \ c p = { y . n n l o p v }  . ( l .e)



Therefore, by (0.1) and (0.2), the sets Co

hemi-space. Hence, by Itl], theorem -2.1,

5g l, * e Rr and u €g (Rn,Rt) *ith uu* = I,

cp = {y e Rn I u(yhx} . (1 . t0)

We claim that x = 0 and t is (, r i .e.,

I

c o = { y € n n l u ( y ) S l o }  .

Indeed, by ( t . f )  and the ref lexiv i ty of  Pr we have 0e CO, whence, by (1.10) '

0 = u ( g ) r x . A s s u m e n o w , a c o n t r a r i o , t h a t x I 0 . T h e n , b y O - r x a n d t . { a l - , ( 1 } , w e h a v e

0 (, x. By uu* = Ir we have rank u = r'r so there exists yo a R such that u(yo) = x." Then

u$fo)  =** rLx ,  whence * to*  CO and hence,  by  (0 .2 )  (w i th .Y '=  0 )  and (1 .3 ) ,  t ryo*  Cp

for al l  t r .> 0.  But then, by (1.10) and t  u {  <l  ,  ( ,  } ,  we obtain t rv = u(tryo) 5l  *  for  a l l

I  )  0,  whence *SLO, a contracJict ion. 'Thus, x = 0,  whence, by ( l '10),  tu {<l  ,  J1 }  and

0e COr i t  fo l lows tha t t  i s  ( r rwh ich  proves  the  c la im ( l . l l ) .  Hence,  /

yp  y '  ey  -  y ' p0 (+  y  -  y ' e  Co  (?  u (y  -  y ' )51  0<+u(y )  ( ,  u (Y ' ) ,

wh ich  p roves  (1 .7 ) .  A l so ,  s ince  fo r  any  u  sa t i s f y ing  (1 .7 )  we  have  ( l . l l ) '  f r om the

uniqueness of  r  and u e;8(Rn,Rr)  wi th  uu*  = I ,  sat is f  y ing ( l . l  l ) ,  there fo l lows the

uniqueness of  r  and u e{1pn,pt )  o ' i th  uu*  = I ,  sat is fy ing (1.7) .

Finally, the converse part fol lorvs from the propert ies of the lexicographical

order (, and the l inearitY of u. gB

Remark l . l .  a)  As shown by the above proof ,  the converse par t  in  theorem l . l

remains valid for any u ed.(Rn,Rr) (rvhich need not satisf y uu* ; I ,  nor even rank u = r).

b)  By (1.7) ,  u  may be regarded as a "vector-u" lu"d (namely,  Rr-va lued)  l inear

lexicographical ut i l i ty function (for r = l ,  i t  becomes a l inear uti l i ty function, in the

5

(of (1.3)) and Rn\Co are convex' so Co is a

t h e r e  e x i s t  u n i q u e  r €  { 0 ,  1 1 1 . . . r n } ,  T e  {  ( t ,

such that

( t . l  l )

(1 .  I  2 )



usual sense) representing the preorder prt. Then, for example, remark

be regarded as a linear version, for this case, of the well-known

utility functions to represent the same preorder (see e.g. l2), p.971.

For any compatible preorder p on Rn, we shall .denote by D

setr tof  g,  i .€. ,

6

2.2 e) of  I l  l ]  may

condition for two

O 
the rrindifference

Dp = Cpn(-Cp) = fy.  Rnl  yp o,  op y l  " (1.  I  3)

By (1.2),  we have lDp e Dp ( IeR),  and hence, by ( l . t ) ,  Dp is a l inear subspace of  Rn

(the'rindifference subspace" of p). !/e recall that, following Il l ], a hemi-space H in Rn,

r e p r e s e n t e d  ( u n i q u e l y )  i n  t h e  f o r m  H = { y u R n l u ( y h x } ,  w h e r e  r e { 0 ,  1 , . " . , D } ,

r . {< l  ,5g} ,  xe  Rr  and ue . f , (Rn,Rt ) ,  uu*  =1 ,  i s  sa id  to  !e  o f  type  ( ,  ( respec t ive ly ,

of type aL), if r is (t (respectively, (r), and (in either casei the set

M = &4(H) = {y e Rn lu(y)  = x}  is  cal led " the l inear manifold associated to the hemi-space

Ht'@y "l inear manifold" we mean a translate of a l inear subspace).

Corol lary  l . I .  for  any compat ib le  to ta l  preorder  p on Rn, the cone C (o f  (1 .3 ) )
p -

the l inearis-  a  hemi-sperce of  lvpe ( ,  rand the associa led l inear man i fo ld  to  C  i s

subspace

Conyerselv, for anv hemi-gpacg

mani fo ld  N, l (H)  is  a  l inear  subspace.of

p reo rde r  0  =  0 , ,  o l  Rn ,  such  tha ts ' l - l -

H of  tvpe ( ,
& - L '

Rn, there e{. ists a unigue compati l le total

(1 .  l  r )

( 1 .  I  4 )

for  u 'h ich the associated l inear

[,l(cp) = Dp ,

c p = H i

moreover th is  p satisf ies D = N'1(H).p

from the above proofProof. The f irst part fol lows of  theorem l . l ,  observ ing



7

that, by (l. l  l) '  we have

M(cp) = {y. Rn lu(y) = 0} = cp n (-cp) = Dp .

Conversely, let H be a hemi-space of type 51 rsdch that the associated linear

manifold M(H) is a l inear iubspace of Rn. Then, by [l l lrtheorem 2.1, there exist unique

r e { 0 ,  1 1  . . . , n } ,  x  e R r  a n d u  e d , ( R n , R t ) t u i t h  u u *  = l r s u c h t h a t

H = {y .  Rn lu(y)  SL x} .  (1.17)

Butn since M(H) = {y u Rn [u(y) = x] is a l inear subspace of Rn, we must have x = 0, ahd

hence (1.17) becomes

H = {y * Rn I u(r) 5, o} . ( l . ls)

Therefore,  by theorem l . l ,  for .  p  = p,  def ined by (1.7)  we have pu eP and

( tak ing y '  =  0 in  (1 .7))

(1.  I  6)

H =  {y  enn lvo0 }  =  Cp ,  f v l (H )  -  { v  t  Rn  l vpo ,  opv }  =  Do '

Final ly ,  the uniqueness of  p  e f  sat is f  y ing (1.15)  fo l lows f rom the

determines p uniquely '  
.En

fact that aO

Remark 1,2. For related results on relations . between hemi-spaces and

compat ib le  to t4 l  preorders see a lso coro l lar ies 1.2,  1 .4 below and [6] ,  proposi t ion 2,2

and proposit ion 2.3, equivalence (2)e(7) ( in the frameworl< of l inear spaces over an

ordered f ield).

Corol lary 1.2. For a compatible preorder 0 9! Rn, tbe fol low.inP, statements are

equiva lent :

lo .  p  is  to ta l .

2". 
:e(e! 

(1.3))is a hemi-sp3!9_gjY.Ps



M(C^) is a l inear subspace of Rn.
v -

3o. fhere exists a unique r  e {0,  11. . . ,n}  and ? unique u e$(Rn,Rt)  * iU uu* = I ,

such that we have ( l . l  l ) .  B

p e9, we define the rank of p by

I

Definition l.l. For any

r ( p ) = t h g u n i q u e r e { O ;l 1 . . .  r n ] 9 f  c o r o l l a r y  1 . 2  . (1.  l9)

Remark 1"3. Definit ion l . l  yields a classif ication of al l  compatible total

preorders p on Rn (into those with r(p) = 0, those with r(p) = l ,  etc.). This is quite

natural, by [ l  l ] ,  theorem 2,2, according to which the rank and type of hemi-spaces give

a (metric-aff ine) classif ication of hemi'spaces, since now r(p) coincides with t lre rank

of CO and the type of p is f ixed (namely, i t  is (r rby corol lary L2).

b)  By I l l ] ,  theorem 2.1,  for  the c lass of  compat ib le  preorders on Rn,  of  a  g iven

rank r ,  one can choose at tcanonica l  representat ive '  pr ,  def ined by

T r  . T  - T  . T( n 1 , . . . , h ) ' o ' ( n i , . . . ' r i l ) ' 4 + ( n r , . . . ' n r ) '  S L  ( n ' 1 , " ' , 4 ) ' .  ( l ' 2 0 )

Corollary 1.3. For e1t e2e 9, the fol lowing slatements-ar-q equlvalent:

1 " .  we  have  r (p , )  =  r (p " ) .
L L

2o.  \ t ,e  have (wi th  D of  (1 .13))
p . _

dim D = d i m D ( 1 . 2 1 )
Pl  P?

3" -4o , There gligE v e Z{.(Rn) (respe!:t ively,v e ff(Rn)), such that

Y Pl Y' 6 v(v) o, v(v') (y,y' e Rn) ( t .22)

( in  other  words,  such that  v :  (Rn,pr)* (Rn,pr)  is -an isomorphism olpreordgred sets) .

Proof .  lop?o,  by uu* = l  and Dp=Ketu,  for  u  of  coro l lary  1.2,  F ina l ly ,



I

lo(+3o(+4o, by (1.1 1) and Il l ], theorem 2.2. n

Let us denote

S= the set of all compatible total orders on Rn. (1.23')

Theorem 1.2. For any compatible total grder I on Rn there existl a uniq!.re

u e fl(Rn) such that we have (1.7).

Conversely, Ri.ven anv u e fl(Rn), if we def ine g = P, ry (l '7)' then Pu lr 3

compalible total ordqr on pn. Consequently, the restriction of the bliection g of (1.8)'

to fl(ttn) = {u eS(Rn,Rn) luu* = I}, maps Y(nn) onto T-

proof.  Let  p ef  and, by theorem l . l ,  let  u = 6- l (o)  t . t tRn,Rr1, wi th

r  e  { 0 ,  1 , . . . , n } .  T h " n ,  f o r  a n y  y € K e r u ,  b y  u ( y )  :  0  =  u ( 0 )  a n d  ( i . 7 ) ,  w e  h a v e  y P 0  a n d

0 0 y.  Hence, s ince p eT is ant i -symmetr ic,  we obtain Y = 0 '  Thus, Ker u = {O},  which'  by

r - (  n  and ue8(Rn,Rr ) ,  i rnp l ies  1= o .  Hence,  by  uu*  =  I ,  weobta in  ued(Rn) '

Conversely,  let  u e 0(nn) (hence uu* = I ) ,  and let  0u = 6(u) e9. Th"n,  for  any

y ,y '€  Rn w i th  ypuy ,  and y '0uy  we have,  by  (1 .7 ) ,  u (y )  -< ,  u (Y ' )  and u(y ' )  ( ,  u (Y) ,  i ' e ' ,

u(y)  = u(y,) ,  whence, by u e0'( f tn) ,  we obtain Y =Y' ,  Thus; g,ref  is  ant i -symmetr ic,  i 'e ' ,

6(u) = ou ef. 6

Remark 1.4. a) As shown by theorem 1.2, the lexi-cgs.rapfrical jrcJer l l  9! Rn is'

up to 3 (unique) u e ff(Rn), the lrniqge coPpa[ble t-otal order on Rn'

b) The theorem on "lexicographical separation" of a convex set from an outside

point  ( t71,  p .258;  see a lso [5 ,9] )  can be restated,  us ing theorem- l '2 ,  in  the fo l lowing

equivalent form: A se! G g Rn is c-onvex if  and oql) l  i f  for each Yo e Rn\C tfrere exists

CY
0 = 0(v )  e" l  such t l ta t' o

( t . 24 )

terms of the comPatible total

8 0 Y o
(g e G).

Note that this is a characterization of convexity in Rn in
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orders p on Rn, which permits to generalize the concePt of cQnvexity (see tl3]i.

c) The theorem on ',lexico6raphical separation'r of two sets in Rn (9], theorem

2,1, equivalence (1)(+(a)) can be restated, using theorem 1.2, in the following

equ iva len t  fo rm:  For  two se ts  GI ,G2CRn we have coGrAcoGr=O i f  and on ly  i f

there exists 0 = P(C tGZ) 
eTsuch that

819 82 (e ,  e  G, ,  g- ,  e  G,r ) ;
" l  I ' " z  z

(1.25)

Coquet and Dupin [3],

_ n
Corollary 1.4" Foi a compatible ordgl p on R", the following stateme-n:E-ere

equivglelt:

I  ".  p is total

2" .  Cnis  t l le  cor lp lement  of  a_semi-space at  0  ( i .e . ,  CO = Rn\S,  rvhere S is  a
p . - - -

maximal convex subset of  Rn such that 0 + S).

31. r(p) = n.

this latter result has been obtained, with different methodsr by

theorem 7, equivalence (l)(9(Z)), in arbitrary ieal l inear sPaces.

Proof .  lo(=+ ?" .  By theorem 1.2,  we have lo  i f  and only

ue l / (Rn)  such that  we have ( t .z) .  But ,  (1 .7)  ho lds i f  and only  i f

i f  there exists (a unique)

i t  ho lds for  y t  =  0,  i .e . '

[ 1 i ]  o f  t he  hemi -space  Co  r  o r ,

by  I t t ] ,  r emark  2 .3  d ) ,  S  i s  a

co = {v . nn lu(y) !1 o} = nn\{y € Rl lu(v) >'- o} ;
'  (1.26)

also,  by [15] ,  lemma l . l ,  a  set  S C Rn is  a senr i -space at  0  i f  and only  i f

S = {y .  nn lu(y)  >1 o}  tor  some u e g(nn) .

2oe3".  By def in i t ion l . l ,  r (o)  is  the ranl<

equivalent ly,  of  the hemi-space S = Rn\CO' But,

semi-space if and only if i t is of rank n' gl

Remark 1.5.  The equiva lenc"  1o6?o is  due,  essent ia l ly ,  to  P 'C '  Hammer (14] '
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theorem 1.4).

S 2. COMPATIBLE TOTAL EXTENSIONS OF COMPATIBLE PREORDERS

Note that, if p1 and g2 are compatible preorders on Rn, we have (with the

notations { and CO of 50 and (1.3)) the equivalence

Pt  {  Pz  €  Co 
te  

Coz '  -  (2 ' l )

Let us f irst consider compatible total extensions p eg of the natural part ial

order ( on Rn. Since (by theorem l. l  and remark l . la)) the compatible total preorders

p e f are precisely the preorders g = gu defined by (1.7), where u e$(Rn,R.r), we shall

state the next result in terms o1 Pu.

Theorem 2.1.  For  a compat ib le  to ta l  preordqr  0 = 0ueS def ined bv (1.7) ,  where

u e S(Rn,Rr) ,  the lo l lowinF statements are equiva lent :

lo .  p . .  is  an extension of  the natura l  par t ia l  or fu  (  on Rn.
u -

2o. u ).,  0.

proof .  By (0.3) ,  (1 .7)  anA [8] ,  coro l lary  2.3,  we have the equiva lences

l " s l  ypuy '  ( ySy ' )e -u (y )Ss  u (v ' )  ( y  (  y ' ) c=+u(y ) )1  O  (V20) (+2 ' .  f f i l

Corollary 2.1. For a compatible total preorder- p e.?rthe fol lojving slatements

are equiva lent :

I  
o .  

p  is  an extension of  (  .

,  2o,  O- l (p)  ) ,  0  ( rvhere 6 is  the b i iect ion ( l .S)) .  6
_L

Remark 2.1. a) As shown by simple examples, for n ) I  there exist total



tz

extensions of ( which are not compatible rvith the vector sPace structure of RD.

b) By the equivalence (2.1) for compatible preorders, theorem 2.1 means'

geometrically, that I9t pu e.F !,e have C< = {y. Rn ly S 0} t ao, if and onlv if u 2l 0'

Now we shall give some Szpilrfn type results for compatible preorders and

compatible orders. Note that, if o and q, (j eJ) are compatible preorders on Rn, we

have (with the notations f\ g, of 50 and (1.3)) the equivalence
j e J  *

o = 
fft€co= prto, ' (2.2)

Let us f irst prove that fol lowing proposit ion, which we shall  need in the sequel.

Proposit io n 2.1. Let o be a compatible .preordgr ol Rn

t

there ex is ts  a compat ib le- lg ta l -extension p of  orsuc l l  that

and le t v d - c  . T h e n
t l

D p = D o t

! * c p .

Proof. We claim that

.o ({cotDo)u {v) n Do = o .

(2.3)

(2.4)

Q.5)

Indeed,  assume,  a contrar io ,  that  there ex is t  y  e CO\DOand 0 < ) '  <  I  such that

( l  -  I )y  + ) ,y  e Do.  Then,  s ince Do is  a l inear  subspace,  -y  -  ( I / l  -  I ) t .  Do rwhence,

s ince y€ Co and Co is  a convex cone'  we obta in - ( f / f  -  I )y  = y  + ( -y  -  ( I / l  -  I )V)e Co'

Hence,  -y  uCor in  contrac l ic t ion wi th  our  assumpt ion.  This  proves the c la im Q'5) '

Norv, by (2.5) and Zorn's lemma, there exists a maximal convex subset H of Rn

(witn respect to inclusion), such that

co ((cotno)u{tD c H, H n D o = Q . (2.6\
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. h

But, then, H is also a maximal convex subset of Rn such that Hf1 Do = O;

indeed, if not, i.e., if there exists a convex subset C of Rn such that H c C, H I C and

Cn Do =6,  then co( tCotn/U{ t } )  C,HcC,  HIC and CnDo=@, in  cont rad ic t ion

with the maximality of H with property (2.5). Hence, since Do is a linear subspace of

Rn, from [11], theor em 3.2 i1 follows that H is a hemi-space of type (r rwith associated

linear manifold M(l-l) = Dorso HUDo is a hemi-sPace of type S; rwith lvl(HUDo)= Do.

Therefore, by corollary l. l , there exists a unique compatible total preorder p on Rn,
I

such that

CO =  HUDo,  
?p  

=  M(H\JDo)=  Do . (2.71

p is  an extension of  o ,Then, since Co\Do G H, we have Co < H\JD' = CO r so

F i n a l l y ,  y t  H c  H t J D o =  C p .  f f i l

Remark 2.2. Proposit ion 2.1 corresponds to a lernma of Szpilrajn (161, P.387) on

general posets.

13

Now we can prove the fo l lowing Szpi l ra jn

Theorem 2.2. Any compatible preorder

compat ib le  to ta l  extens. ions p sat is f  y ing (2.3) ,

Proof. By the equivalences (2.1) and (2.2) for compatible

means that

c o = F  c p .
Co €Cp,Dp=Do

The inclusion c in (2.8) is obvious, recall ing that

ip u 9l co g cp , Dp = Do h O, by coroilarv 2.2 below).

type reSult .

o' on Rn is the itrtersection of its

preorders,  theorem 2.2

(2.8)

ffc^ = Rn
p€o P

(but, actually,



t+
ln order to Prove the opposite inclusion

exists an element

ln (2.9),assumer a contrario, that there

Q:,.91,^.

v . ( (e rF  \  ce ) \ co

cogh,Dp=Do

Therrrsince y 4corby proposition 2'l (applied

a.o 
"aoo,ooo 

= Dorsuch that -y t too' whence' by

in contradiction with Y * Co ' 6l

to I = -y) there exists

(Z . r , t .Cpon( -Cpo)

oo ef with

= co /1(-c6),

One can def ine a tr ivial compatible total preorder Po

y 0o y' YtY' c Rn) ;

then, by the equivalence (2.1), Po isl lgjulggst compatible preorder on Rn' We shall  cal l

the.compat ib le  preorders o*  0o non- t r iv ia l '

R e m a r k 2 . 3 . a ) B y t h e o r e m 2 ' 2 ' e v e r y n o n - t r i v i a l m a x i m a l c o m p a t i b l e p r e o r d e r

Oon Rn ( i .e . ,  admi t t ing no proper  extension to  a non- t r iv ia l  compat ib le  preorder  on Rn)

is total. However, the converse is not true' as shown e'g' by the lexicographical order

Sf .on Rn, whiclr is compatible and total, but not a maximal compatible preorcler on Rn;

indeect ,  i t  admi ts ,  for  example,  the proPer  extension p €f  def ined by

(nr,  .  .  " ,nn)TP(n'r,  .  .  . ,n;)Tc+l l  (  I ' l '

n
on R", by

(2.  l0)

( 2 . 1  l )

U) By the equiva lence (2.1)  and by (1.3)r ! - * - - ,a  ngn- t r iv ia l  compat ib le

^ n
pre.order 0 on t< ls maximal is  a  c losed hal f  -space (s ince the c losed

cones) .
hal f -sPaces are the max ima lnon- t r iv ia l  convex
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Corollary 2.2. A compalible preor<Jer o on Rn is total if and onlv if it is maximal

among those h"ui Do = Co n(-CJ.

Proof. tt oe I is not total, then, by theorem 2.2, it admits a proper total

extension p€.r) with DO = Do rso o is not maximal (among the compatible preorders

P € P w i t h D ^ = D J .p 6

Conversely, assume now that o is total and let p e P be any compatible preorder

s u c h  t h a t  o < p r D p = D o , W e  s h a l l  s h o w  t h a t  p { o r w h e n c €  p = o r s o  o  i s  m a x i m a l

(among the pe.P with Dp = DJ. Assume, a contrar io,  that  there exist  y 
l ,YZeRn such

that y,  9!2,  y 
tGyZ.Then, 

s ince o is total ,  we have Y20Y y whence, by o {  P ,we obtain

y2pyr.  Therefore;  Yl  .  YZe Dp = Do rwhich contradicts y 16YZ. 
gl

Let us consider now compatible orders on Rn.

Theorem 2.3.  Anv cqTpat ib l -e order o on Rn is the intersect ion of  i ts  extensions

to comJ:atible total orders on Rn. &

Proof. This follows immediately from theorem 2.2, since a compatible preorder

p is an order if and only if no = {O} . ff i

Note that ,  s ince the preord*r  0o of  (2.10) is not an order,  every cofpat ib le

order  i s  non- t r i v ia l .

In contrast  wi th remark 23 a),  we have now

Corollary 2.3. A com-patib&_elgel o on Rn is total if and orr,br if it is maximal

(i.e., aggits no proger extelsion to a gompatiblg-order p on Rn)'

Proof. This.fol lows f rom corol lary 2.2, applied to Do = {O}' m
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Abstrac}. 'l{e introduce and study the concepts of segmential convexity and sepa-

rational convexity in a multi-ordered set (i.e., a set endowed with a non-empty fa*

nrily of partial orders) . i^Ie prove that, for a suitabl-e farnily T of total orders on

pn- tho secrmentially convex sets and the separationally convex sets in the multi-or-
I \ ,  w r v  P v i r r r v r r w

dered set (Rnr?) coincide with the usual (vector) convex sets j-n Rn. zurthennore' r^/e
naneIv, -

study two concepts of discrete convexity,@ibntial and separational crcnvexity in

(Zn,T,) , where?, is the fanrity of restrlctions to Zn of Lhe orders belonging iuoT-

Also, we prove that the usual order convexity j-n a poset coincides with the segrneh-

tial convexity anC the separational convexity in some associated nn-rlti-ordereC set-s-

50. rt{rRoDUCrroN

The aim of the present paper is to introduce two natural general concepts of

convexi-ty of subsets G of a set S, in terms of (oartial) orders on S, encompassi:tg,

as particular cases, various known notiond of (c.ontinuous and discrete) ornvexity.

Our first concept is defined with tire "segmential-" (or "!Irn"t") aopr.oach, defining

first the notion of a "segnert" (Xry> in S and then calling a set G "convex", if the

relations xryeG jmply <x,y>cG. The second one of our concepts is defir-red withr the

"sep-aratiorial" (or ttollterrt) approach, calling a set G<S "convex", if every xeS\G can

be ',separated" from G, in a certaln sense (defined in terms of partial orders on s) -

Concerning the well-knovm concept of "order convexity" of a subset G of a poset

(sr<), v;e shall- see in s2 that there exists no order relation 5 on Rn (nU2) for which

the ord.er convex suhsets of (Rn,s) are the usual (vector) convex subsets of Rn.

Therefore we shal-l r.rse, instead of lnsets, the following natr.rral framework.

Definit-ign _0.i. We call multi-orde.red set an ordered pair (5,01 , where S is a

set and O is a non-empty family of partial- orders (i.e., reflexive anti-s1zm'oetric

transitive binarlz relations) on S'

Rsnark 0.1. a) In the parLicrrlar case when flis a singletonr sdY,o={S}, the

mult i-ordered set (S,0)=(S,{5}) can be identif ied with the poset (S,5)'

b) Althrough not in ttre above generality, multi-ordered sets have been used e'g'

in [4] (in ]inear spaces) ard [13], [14]; moreover, in [t4] there has been introdired



a concept of rcnvexity in multi-order:ed topological spaces, different frcm those
introduced in the present paper. For other concepts of a set endcryed with a farnilv
of binary relations, see also [1 ] and the references therein.

I* St of the present paper we introduce and study fr-segments and 0-segrnentially
convex (or, briefly, d="o-convex) sets in a murtj--ordered set (sra;. we also consi-
der. the concept of an fr*-semi-space in {S r|l , genera}izing the rotion of a serni_-
-space in a linear space, intrcduced by P.C. Hanrner [S]; tfre fj-rst fundamental r*
sults about 5s11i-enanoq in 1ina31 slnces have been obtained by p.C. Hanrner [5] and
V. xlee [ 9] .

In 52 we study segmential c:onvexity in the mu}tl-orderecl set (Rt,?) , where ? is
the set of all total orders on Rn which are compatibte with the vector space struc*
ture of Rn. we prove that the T-segmerrts of Rn coincide with the usual segments of

n
R" anrl- hcnr-o ?- -nnnrzav' i+-rr i .11 Rn cOinCideS With the UsUaf Convexitv in RD.wrs t  r ru rv - t  -Seq uvr rvE&L/  r l r  r \  LTUI I IU-LLre5 WIL I I  l - J le  USUd" I  C(y r rve : r , - l -Ly  r l r  I \ .

In  53 we shov that  segrnent ia l -  convexi ty  in  {Zn,T ' ) ,  where Z={ . . . , -2 , -1 ,0 ,1 ,2 , . . . }
and ?' is the fanLtly of restrictions to the subset zn of Rn of the order relations
l 'nlnnnina l-a 7 of $2, is equivalent to a concept of discrete convexifv conqidcred hrz

L. Lupsa ( [11J , L12)) .

ln 54 we prove that the usual order conve)< sets of a poset (S,S) coincide w"ith
J-ho  qomrar r f  i  r ' l ' lLrrc b€y1rrc..rurcur! convex sets of scXne associated multi-orderecl sets, having the same

"ground set" S.

In 55 we intrcrluce and study fl-separationatly conver< (or, briefly, 0 ^*-convex)
b c l J

sets in a multi-ordered set (S,0) , defj-ned by mearrs of a separation propertlrby ele-
meuts of 0'. lve show that every ffrap--.rex set is 0'*-convex, but Lhe converse is
not true (in general) . we also prove that, for ur-,y *.riti-ordered set (S,0') , the fa-
nrily of ff^^*-convex sets coincides with that of T,--convex sets in an assrcj-ated- seP -- "sep
mul-ti-ordered set (S,tr) (with the same S) , such that J"consists of total orders.

In 56 we prove that in (Rn,f) (with T of gZl , ?-o^-convexity, too, coincj_des
with the usual convexity in Rn. 

"'-Y

fn 57 we give some characteriizations of separatlonal- convo<ity in (Zn,T, ) (wigr

T' of 53) , one of which shows that separational convcxity in (Zn,T' ) is equivaLent

to another concept of discrete convexity considered by L. Lup;a (L11J, [lz)1. Hence,

we infer that there exist flj";c-cnvex sets which are not ?'. -convex.

Finally, in SB, we prove that the usual o::der convexity in a poset (SrS) coin-

cides wjth fl^^*-convexity in an associated multi-ordered set, havJ-ng the same "grounrJsep
set t '  S .

r''^ ^**l-^^ize thal the concepts of segmential anC separational- convexity in mul-Y Y c  q l w I l C b I r

ti-ordered sets, introduced in this paper, are motivated by the above mentioned. re-

sults of 52 *d S0, according to which the ?_^_-convexity and A^--convexity in
n ssg ' sep

(R'rf) coincide with the usual convexity in *'. The proofs of both results are bascd
cl.os; 1y relate, l  i , -r  +,

on a lexicographical separation theorem ([15], p. 258;see atso Lil,lrlheoreri=2lfi/-fGxiCo--
graphical separation theorem of V. Klee ([10], S2.4). Since the texicographr_ical order

n
on R" will play an lmportant role in the sequel, we recall that x={Eri}nn is said



I )

to be "Iexicographically l-ess than" y=inrll.nt (i:r synbols, x<"Y) if xly ard if for

k=rnin{ie{1 ,... ,n} | Erfnr} we have 6t.tk. We write xS"y if x<Ly or ;=y. W€ denote by

(nn)* the conjugut'=ptu"" of Rn, identified with Rt"i.r the ilsual way, and by o(nn)

the family of all'li-near iscxnetries v:RD*RD (for the eu.liJean norm 
.ll.ll 

oa Rn),

s1 . SEG4n\ruIAL I"IIILTI-ORDER @NVEXITY

De-fil-ition- 1.1. Let (Srtr) be a multi-ordered set-

a) Given xryeS, we define lhg d-gggt,ns"t (xrY)=(XrY,o by

where

(Xry)=(Xry>6= 
ftxry>, I

"  p€0

<xry>p ={zeSleither xezpy or ypzpx}

( 1  . 1  )

( p e  f f ) .  ( 1 . 2 )

b) We call a set GgS, "fr-segmentially convex" r orr briefly, %--tg!Yg"'if- w -

<xry>sG ( x , yeG)  .  (1  .3 )

In the sequel we shall- assurne, w-j-thout any special mention, that (S'f) is a mul".:

ti-ordered set.

proposition i.1. For any x,yeS, the followinq statements are equivalent:' -  -  
L -  , _ : L

1" .  . * i r l \ .

2o .  x , y€<Xry ) .

r 1". ror.egch pe fr, either xpy or ypx-

proof. 1o=+3o, by the transitivity of each peff. Also, 3"=+2o, by the reflaciviLy

of each p6fi Finafly, the implication 2o=y1o is obvious.

lVe recall that- an orcler p on S is saj-d to be total, if for any x,yes we have ej--

ther xnv or vox.er  rv r  J r l l_1

Coroll.ary 1.1. The fo.tlcl.ving statements. are equi-val.ent:

1 o .  < x , y > a l @  ( x , y e S )  .' -  u
2o .  x ry€<x ,y> r r  ( x rye  S )  .

3". AfL pedg,"re totat-

f iggtf!_1J. u) By corol lary 1.1, irnpl ication' lo=t3", i f  there exists pelwhich

'r^ Laf lar-rl then there exist xryeS such that <x,Y>AiQi thus, in this case, the
- L 5  I I U L  L ( J L d I  7

axicxn J1 for "joil gecrnetries" (see [19), g. 209) is not satisfied. ]'loreover, let us

also note that, by proposition l.l, equivalenqe 1 o<+3" , for xryeS we have

1x,y)-=Q if and only if there exists p=p(x,y)€fr such that xpy ag] y0*, where F de-
_ U

notes the negation of p.
- 

b) One may (and, scrnetjmes, we shall) assume, without loss of generality, thai-

for (some, or all) peflwe tave p-le 0' (since the segnnents <x,y> remain the same) ,

where p-' is the "!eY".te-e!getl' je p, defined bv

xp- ly€* ypx (x,Ye s) '  (1 '  4)

c) !{e have
(x , ] r<S) .  (1  .5 )<xry>=<yrx>

Clearly, the whole set S, the empty set 0, and every singteton {x}' (=<x,x>),

where x€S, are fi=a;convex. FurthenTlore' we have
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Proposition i.2. for any xryeS, the segrnent (Xry> fg %.--gg!tgl.DEY --:-

Proof. T-eL ztLe<x,y>, ue<z,t> and pefl. Then, there are eight cases:

i) If zpupt, xQzQy, xptpy, then xpzpuptpy, vdrence xpupyr so u6<xry>p.

ii) If zpupL, xQzQy, y0t0x, then zpuptpxpzpypt, whence z=u-t=x-y, so u€<xrytQ.

iii) If zpupt, yezQx, xgtpy, then zpuptpypzpxpt, whence z-u-t=y-X, so u€<xryt(r.

iv) If zpupt, yezgxr ygtpx, then ypzpuptpx, whence ypuQxr so u6<xry>p.

Fila1ly, the other four cases are obtained frcrn i)-iv) by interchanging the

roles of z and t.

peU, each set ]4eS such thatProposition 1.3. a) For_.any

xeM, u€S, xpu 4 ueM, ( 1  . 6 )

is fr -convex.
se9 --
b) for a$z Oe flr

x € N ,  u € S ,

^ ^ ^ 1 ^  ^ ^ l - such that

UPX =+

NsS

u6N, ( 1 . 7 )

is ff -convex.
Seg -

pioof. a) Assrsne that pefrand l4eS satisfy (1.6), and let z,LeM and u<<z,t>.
rrhan fnr aar-h o'€.4, we have ei ther zp'vp' t  or tp 'uptz.  I -et  p '=p. I f  zpupL, then,! r  } \ 4 ]  ,

by zelvl  arrd (1.6),  we have uel4. Or the other hand, i f  tpupz, then by teM and ( i .6)

we have, again, ue}4. Thr-rs, 14 is flo,r-convex.
rEV  -1

b) The procf is sj-milar to that of pa.rt a) . Alternatively, assuur-jng'that p 'eff

l-aa ram=rr- 1 r b)) , part b) follcx,vs frcxn part a) applied t" p-1.\ > c s  l s r r r u N  r .  I

For each aeS and pefr, Iet us denote

M ^ ^ = { x e s l x p a } ,  M l ^ = { x c S l a p x } ,  ( 1 . 8 )
ap ap

( 1  . e )c^^={xes I  apx} ,  c ]^={xe s  lxpa}  ;ap dp
clearly, CuorMrOU{a} and CjOeUTOU{a}. fhe sets CrO have been cal}ed "upper cones" in

[gO], and the sets Cl^ may be calted "Iolver cones", in the poset (Srp). The sets

M_ and i"Il^ are useful in vector optlmization.
a0 a0

Definit,ion 1.2. Ide call trseq-herrl:rpgee' any set l4gS such that both 14 and S\M

are 0 -convex.
5CV

nrcm proposition 1.2 we obtajn

Corylt.ary 1 .2_. FoI any aeS and 0e ff, we have the pairs of ccmplcmentarlz d."o
-hernlspgggg

0 4 ^ ^ , c : ^ )  ,  ( u _ ^ u { a } ,  c : ^ \ { a } ) ,  ( M : ^ , c . ^ )  ,  ( r 4 j ^ u { a } ,  c ^ ) { a } ) .  ( 1  . 1 0 )
ap dp dp d0 c lp cLp ot , ,  crp

proof . If aeS , QeA, xeM,^ and xpu, then ue\,., (since otherwise xpupa' in con-
qP aP

tradiction eTiflft vr],ir ) - so ]4 satisfies (1 .6). Furthermore, let x=a and xpu. Tfr ; L3 rap /  ,  " "  . . a0

u=a, then ueM^^U{a}; i f  ula, then uBa, whencc ueM-^sM^^u{a}. Thus, M-J.l{a} satj-sf ies
d p  d p  d p  d p

(1 .6) .  F inal ly ,  i f  aeS,  peA,  xeC and rznrr ,  1-hon r r rc  {q inca apxpu) and,  i - f  a lso-ap * ' *  , 'vs '

xfa, then ufa (by apxpu) ; thus, C^,. and C^,.U{a} satisfy (1.6). Wit}r a sj:ni-lar argnr-
_r'v -1

ment (or, alternatively, assuming that p 'ef and applying the above to p '), it

fo l lows thatMl^  ,Ml^U{a} ,  C:^  and Cl^U{a}  sat is fy  (1 .7) .  Hence,  by proposi t ion 1.3,
ap ap ap ap

all  eight sets in (1.10) are ff^----convex.seg

Pef'jni-t.Lgn 1.1. For a€s, we cafl trseq-ggmr:spg-9! a (or, %o--gcper+i! a) ,Dcv -----_



any muimal (jn the sense of inctusion) fl=u;convex subset of S\{a}.

gglglf.ary. .1 ..3, If ae S is a p-m_anjrnal it i p-mq4l$qJ eleme]rt for scrng p€tr,

SVa] is the only fl."o-eern]-space at a.

Proof . If aeS' j-s p-ninjmal, i.e., if

M.O={xes lxpa}=S\ {a} ,  (1  .11)

then, by corollary 1.2, S\{a} is ff=un convex, and hence, clearly, a maxjmal 0"*-
-convex subset of S\{a}.,

If aeS is p-maximal, i.e., if

]41 ={x€SIapx}=S\{a},
ap

then

11 .12l '

the argunent is sim|lar.

Proposition 1"4. For Nty peT, the family of all subsets M ({99p99!rygly, N) o!----_--*_'

S w.hi"c.lr salisfy (1 .6) (geqpe*lygly, (1.2)) +g.Sros.ei qqdel ,rna.o,.q-a$ iqtF.tsecqg.

u-rion and the intersection'of anri-lv of subsets of S whose all mem-Hon6o_  i - he  r r n i on  and  i . ha  i n t a rq r . ^ r l ^ ' ^ ' ^F  ^ - . '  t - ?n i  l r z  n f  s r r hse1 -s  g fI -LsluEt LI tc ur lv f r  aru ul ls  ! i ruL!rc!-Lr \ - /11 ul -  cury laru-ai  Yl  1YY9s-o 
'

bers sat isfy (1 .5),  o-r  (1.7),  iF O=uo-cgnY.eI.

p.Loof.  Let {Mi} i . I .S b sr ich that eachM, sat isf ies (1 .6),  and let  xe[ /M. I
i-sl '

u€S, xpu. Then xel4, for some ioel, whence, by our assumption, udi gV*:_.'Ihus,

o  o i e l *
\ JM s,af.isfies (1 .6) and hence, by prolrcsi'tion 1.3, it is fl--*ccnvex. l 'or f\M.
. v " i  

\  '  '  v /  r ^ - r - - - - - - - - -  s e g  ;  - ;  I
ier ' "*:' i€r
fho arcnrment is sjmilar (see also pr:oposition i.6 belci,\,) . For (1.7) the proof is sj.*

nrilar.

pl

brry

r.nrn]l- '-, 1 ,1 tror anv sef. AcS ^*r ^^-- ^-rv '-^ haVe the pairS Of COmplementaryL()I UIId.Iy | " 
'l . - ^-- an 1\r o.r ry pc v r ws

-a^-t -"^.-^-

,vo*oo,ffc.o) , ,,t-r.o)uA, 
ff,.;ot{ai)) 

,

(  t - /M:^ ,  Ac^^)  ,  (  (L . /M' . , )uA,  A tc^ ; {a} )  )  ,
a€A 

t f '  
a€A 

oP 
a€A " '  a€A 

qv

( nM^^, Ll c:^) , ( a)ln{^, L,/ co.,) .
aEA 

*v 
aeA 

*"  
aeA 

* '  
a6A 

-*

proof. Tlris follcx,ss from proposition 1'.4 and corollary 1.2, observing al-so thaL

( 1  "  1 3 )

( 1  . 1 4 )

( 1  . 1 5 )

the pai rs  in  (1  .13)- (1.15)  are ccmplo 'nentary.  Indeed,  €.9. ,  for  (1  .13)  ,  we have

s\( t-/ 14^^) =A (s\14^..,) =A cj,.,,
aeA 

*v 
aeA aeA 

- '

s\(  (  L- /M^^)trA; =s\(  [J (Mo uia])  )  =A (conr.{a};  "
aeA *Y acA a'.A

Corollary 1.5. If AGS is an antichain (i.e.-a.set of paiS'vise iJr.comparabLe el-e-

ments) for some peff, then the sets

(rfM^^)uA, (r\M:^)uA,
a€A 

*v 
aeA 

*v

U -herni--spaces.
St=J -

Proof. Let us first show that ( / \uu ' )uA sat is f ies (1.6) .  r f  xe l ) ]4 .0 ru€S,  X0u,

1 .2 , we have ue fll4-^ e (n l'l-^)uA. Assume no^/ that
a€A 

*P 
a€A 

oP

there exists a'eA such that upa'. Then xpupa', when-

obtain x=a'. Hence, again b17 xpupa', it follows that

( 1  . 1 6 )

are

then, by the Proof

x€A, ucS, xpu, and

ce, since'A is an

of corollary

uf f'1l'l^^ , so
aeA 

*v

antichain, we



b

u=ar6As(nM^^)uA. Let us shcr^r ncr,r that S\( (n M^^)uA) satisfies (1.7). If xeS\
aeA 

oP 
a€A 

oP

\((nM^..,)uA) , uESr u0Xr then xfAM^,. and x$A. ret a'eA b€ such that xfM^,,.. r i.€.,
aeA 

oP 'ae 
A 

oP cr P

xpa'. Then upxpar , so 
"fOMrp. 

We claim that u{A. Tndeed, if ueA, then, by upa' and
ctEfr

since A is an antichain, we obtain u=ar. Hence, by upxpa', it foltows that x=EI'€Ar

j-n contradiction with our assunption that x4A. This proves the claim that ut'A, and

thus ueS\( ([1M^^)UA) . I{ence, by proposition 1.3, (f\u,^)ua is an S-^--hemi-space.
aeA dP aea ap- seg

I . . ine ' l  1 rz  j .ha  raor l { -  fn r  ( lM:^ )VA fO l lows- * : * r " - - - \ '

aeA 
oY

1.1b)) anl  apptying the above to p- ' .

by assurning that p-1eff (see remark

Proposition 1 . 5. Assune
i .

that each pefr1s a total order on S and, for each arxeS

with xfa, LeL

f  , *={or0 l  
xpa} ,  9L,*={puf l  lap*}=f l \3 ,*

m1.^*  f ^e  - - . ,  -  : rpS w i fh  v la -  J -he  se tsI t_--:--

D- --={y€sr{a} l?^ . .=12 . .1,  Dl  , .={ycs\{u} l f  =:1, '  }
E r Y  " - -  a r Y  - a t x '  d r X  "  

' ' - d r Y  " a r x -

D^ - -U{a} ,  D:  ,_u{a} ,  are f f^_-convex.
d t x  d t x  5 L j v  _ _ _ - _

Prnn f  F in  z . - l ( ^  - -A  , ' r zo  1 -> .  Le t  p€q  , , .  I f  zpup t ,  t hen  zeDpa ,  so  p€  ?^  , ,r ! v v ! .  r r ^  o  r - . U a r x  C U U L I  L t c \ z ,  L /  
q r u  

L  L p a p w ,  L r r c r (  a p  
q f  u

on the other hand, i f  tpupz, t-hen tpupa, so Oc{,a. Hence, in either case, by z,Le

€D we qet  pe .P cnmzr, rqo l  , , r ,  i f  p€P^ - - , then,  by z ,LeD^. .  ,we have pe ? -=?-  -*  " a r x  t  - ' a r k '  ' r  r  - "  t -  - a r x  t  - ' - -  
d t r ,  d t L  

' d r L

anr l  hence nrP / inr ranr l  iF a, t?-  . -  , t t ten,  s j -nce p is  to ta l  ,  we have apupt  whenc U l L l  I 1 ( : I r u q j l r a r a r U  \ r l l u u L - v ,  - ,  t , f  
O r ,

zpupt, and apupz lvhen tpupz, whence, by PeFo,r=?u,L rwe get eiLher a=t or a=zt con-

t - ra . l i r -J- ' i  nr r  2 .1-cD^ __)  .  Thus,  ?^ - -=n " - .  A lso,  u f . r ;  indeed,  i f  u=a,  then aeczr t>,  sou l q q r v u r r r - l  u  t  v ' u a , x ' '  * ' l . J r  
" a r a ,  d r X  

,  - -  *

ej-ther zpaoL, whence pe?a,znl:,L=E,tnl;,a rwhetrce a=tr contradict ing L.Dr," ,  ot

t^anz.- whonr:o 
"€.L -nJl -=n -ntl  _ rwhence a=zt conLradict ing z€D- -. Thus, u€D. - rv l ) s P u  f  i r r a e r r v \ -  v '  

c a r L  d t L  d t L  d t L  
- - - - - -  -  - - J  

d r X  d r X

which nro\/eq that D is U -convex.* " * "  "a rx  * "  " seg  - - l . " - ' " '

Now, let ,rou,* anC uecz,a>, ufa. I f  pe I ' l , ,u rthcn, by ue<zra>' we have zpuoa

(the case a1upz cannot occur, since uoa, ufa) , whence Qe'la,z. Conversely, i f  O€?u,r,

then, by ue .z,d), we have, again, z}uQa (the case apupz cannot cxlcLlr, since zpa,

- J - ,  ! * r  r r z l z  : \  , , J - \  , . , r - ^ ^ ^ ^  ^ -  4 )  m L . . ^  D  - ' D  - - r  , ? )  
- P  ( b V  Z e D  \  -Z F a ,  D Y  l J e < Z t d 2 r  L J - f d l  r  W I I e I I L e  9 * . r l  

, U .  
f l l u : > r  

" a r z - t a r '  
r ^ t u ,  u a r z  u a r x  \ - . 1  " " " U r * , ,

' ,ho,. ' . 'o ? -A 
.  , i .e. ,  ueD^ . .cD^ . ,U{a}.  f f r is proves that D^ --u{a} is 0^^--convex' " " - ' " "  

" a r u  ' a r x  
d r L  c L r L  d r X - '  s e g

(since we have proved alreadlr that D^ -- fs fr^^^-convex).
drX  seg

Finally, the proofs for the sets Djr" -td D',*u{a} are sj-rnil-ar-

Drnr - rnq . ' i l - ' i  nn  1-6-  Tho na i r  (q  g )  )  -  v rhere  /  i s  the  fa r ' tu i l v  o f  a l l
r r v v v r r \ - r v r r  r . v .  r r r u  t / s ! !  , - ,  

" S e g ,  
t  Y v r r s r v  L S e O  _ - " -  

- , "  
. - . i . * - - J  

-
# -

subsets of S, is. an aligred space in the sense n€ f al ' i a '
) L | v J , j j . - .

A.1 .0 and S qr:e 0'seq-gonvex.

A. 2. An a-rbitra+z inlersec-tion_.of 0r*-9o"rg"_9g!=_:g Oseg-g]c.nvex.

A.3. The union of. qJry farnily, of fu"o-conv-e-{ sets.tota.l.ly o-rdered by_i ,

A -conve'<.
se9 ..---
pioot. a1 has been observed before proposition 1.2. M. and a3 hold for any

3$

( 1 . 1 7 ) '

( 1  . 1 8 )

0 -convex
qAaT --" -:,

I b

"segmential.convexity" ( i .e., defined by (1.3), for some concept of "segrnent" <xrY>).



-r

gr proposition 1.6, one can apply to the pair

spaces (see [B]). In parbicular, for any set GsS'

cides with

G coincides

(S,gseg) the theory

the fi----convex hull

of aligned

" o f f  .  G o f G
se9

sufficient to en*

for wliich the or-

se9

is defjned as the srnallest Or"o*ottex set :containing G'

ProPosition 1.7. lrle hgve

"oo 
{x ,Y}=<x,Y> 

(x 'Ye s)  '  (1  '  19)

se9

proof. Ey proposition 1.2, we have the inclusion e jn (1.19). The opposite in-

clusion P follows frcrn ('1.3) .

Corol lary 1.6
.  ,  t  i '

1 .6 .  T f  t he re exists Pe0which is not total, th+, llrer.e exists nq fa:

cgj-ngides wilh ffseq:ee!-of total- orders on S, such thaL 3--^^--tt94ty-it S
beq _

vexity i_n S:

Proof . If. y is any family of ordeis on S, such that %.o.tottexltlr 
in S coirt-

mrry J

<x ry>l- =cor 
^_{", 

y }=coo-_^{*r t } =<x rY>g
' "seg seg

But, since there exists an order pefr vhich is not total'

Iows that there exj_sts no family 3"of total orders on s,

of (S,S) are defined bY
' [ * ,y1  ={zeSl  x5zSY}

and that a subset G of S is

ff^^^-convexity in S, then, for any subset G of S'.the 3'=.;convex hull of

iITn an ff=";convex hull of G, and hence, in pa.ri-icular, by (1 '19)'

( x , y e  S ) . ( 1  . 2 0 )

frcm coroIlary 1 -1 it fol-

satisfying (i  .20)

(rf ,r)

Let us first show that the concept of order convexiLy

compass, as a particular case/ the usual (vector) convexity
n

P r o r n s - i t i o n 2 . l . T h e r e e x i s t s n o o r d e r r e } a t i o n 5 o n R .
I  l v Y v r ! v 4 v _

der convex sets are the usual convex -sets'

proof. We recall  (see e.g' [Z]t that, for any poset (S'5)' the order segnerug

(x ,yeS)  r ( 2 . 1 )

^ -- i  u{ {-n }-  nrr lor a t
salu uv (-LJt lV g  t  r  !

Ix 'Y]eG
Clearly, for anY xlY in S we have

is an order convex set contajnjng

der convex set G containing x and

co.{x ,Y}= [x 'YJu[Y 'x ]

where co.{xry} denotes the order convex hu}l of tx'y}.

Assrnne nov/, a contrario, that there exists an order S on Rn sqch that the order

convex sets are the usual convex sets. Then, by (2'3) we obtajn' as in the above

proof of corollary 1.6, that

Ix rY]U tY, x] =co. { x, Y }=co*n{x rY}
R-

is not
. _ n
] f I K .

(n22)

(x ,YeG) .  Q '2)

either [*,y] =fi  or ly,xJ=@, arrd hence [x,y]U[y'x]

x and y; on the other hand, by (2'2\ , for any or-

yr w€ have [x,Y]u[Y,x]eG. Thus I
( x , 1 z e S ) ,  Q - 3 )

l x r yeRn) , ( 2 . 4 J

where co - denotes the usual convex hull in nn' Let x'Y tz't(Rn be any four distinct

K



x1zsv. Since [z,t]U[t,zf=co ^{z,t} l@, we have either zSL or
R,.

so zl[*rt]=co -{xrt}, or tSzSy, so zeftry]=co -{try}. Thus, in either case, t belongs
R,^R,' R,^

to the line determined by xry and z, in contradiction with the arbitrariness of
n

t eR- \ t x r y rz  j  .

We recall that an order p on Rn is said to be conrpatiJrle with the vector space

structure of Rn, or, briefly, cornpatible, if

points with zeco 
,r{x,y}. We may

}(
assurne that co_n{x,y}=[xry],

R
whence ze,lxry], -i.€. ,

tSz, whence either xSzSt,

( 2 . 5 1

( 2 . 6 )

(2  "7 ' , )

ylpvi , vzpYi 4 Yr+Y2pYi+Yi ,

YPY' ' tr>O =+ IYPtrY' '

iale shall consider the multi-ordered set (Rn,?), where

T=the set of all ccrnpatible total orders on Rn.

Let us recall the folloulng result of L1BI.

Thsorern U. (1181, theorem 1.2). For.aJrJ pe? -ther.e exists an }:nique veO(Rn)

such that
- -  " 1  ' +  v  ( Y ) 5 - v  ( Y ' )y p y q _ ) J

Conve{ge}y, given any veo(nn) ,
-,o-*il-lio-I . '.*pp1n9

6*-rc*
' i q  :  h ' i - i an l - ' i nn  r r f  n {n i l i  nnJ -n  ? 'f , p  q  u r J e u u l v r r  u r  \ - / \ l v  u l r L v  u  .

Ncx,^/ we can prove the main result of this Section.

Theol:el .2..3. rn (Rn,?') , w.e .hq\'.e
< x , y > = {  ( 1 * } . ) x + t r y l f  e  [ o , t ]  ]

n

i.e. , the C-segments of R*^ coincide with thc usual seg'ne4lq of
,",----]--_---

v e x i . t l z + n t g  R t .

v (x) slv ( (1-l)x+ly)=v (z) Slv (y) ,

while if v (y) S"v (x) , then

if we define

( y , y ' .R t )  .

p=p_, by (2.8) , then p_.eT.
V - V

n
(x ,yeR ' )  ,

*np  H 6 n ^ a

( 2 . 8 )

Conse-

( 2 . 9 )

Q . 1 A )

t -con-
. a o f r  - _v v Y

PJogf . Lel z€<Xry> and assurne, a contrario, that zd{ (1-I)x+lYltre [0,1] ]- rhen,

by the lexicographical separation theorem ( [tS1, n. 258] , there exists veO(Rn) such

1-h:t-

v (, ) . lv ( (1 - l  ) x+ly) ( f e L 0 , l l ) ,  ( 2 . 1 1 )

whence, in part icular (for tr=O and tr=1\, v(z\<lv(x) and v(z)<lv(y), that is, ,QO*

and zp;r, for prre?of theorem 2.1. On the other hand, sjrtce ze<xty>, we have either

xO,rzguy or ypvzpvx, wherrce, by the antisylrnnetry of 0u, reither z=x or z=yt in contra.*

d ic t ion wi t l r .  z1{(1- f )x+Iy l I€ [O, t ] ] .  Thus,  we have the inc lus ion € j l  (2 .10)  .

Conversely, Iet 2=(' l- l)x+).y, where tre [0r1], and, for arty peT, let v=6-1 (p)eo(Rn)

of theorem 2.1. Then, sllce S" belongs to?, we have either v(x)S"v(Y) , or v(y)S"v(x1'

Hence, again since S" is in f; if v(x)slv(y) , then

( 2 . 1 2 )



1

v (y) Sr,v ( (1-I)x+Iy)=v (z) Sr,t (") ' ( 2 . 1 3 )

Therefore (by (2.8)), we have either x,zpY or ypzpxt whence, sjnce pe|has been ar-

bitrary, ze<xty>. Thus, we also have the inclusion? in (2'10), md hence the equa-

l i ty.

Remafi:2.1. Since the henr-L-spaces and senrl-spaces j-n Rn are kncn"rn (see [,17]

and [5]), so are, by theorem 2.2, t]rc?:* n*t-spaces -uq:n semi--spaces. In the

converse direction, frcm corollary 1.2 anA theorem 2'1 it follows that for each

veo(nn) and aeRn, the sets
( 2 . 1 4 )

Ml^ ={xeRnlap,rx}={xeRnlv (*) <lt (a) } '
60v

Clo ={*ent lxp,ra}={x€Rnlv (x)  5"v (a) } ,  (2 '15\
-rv

are herni-spaces i-n Rn, and, frcrn Ull , theorem 2.1 , LL follows that these ex6aust

aII hemi-spaces "of rank il", i.e., aII serni-spaces and all ccmplements of semi-spa-

ces in Rn. However, there are also other hemi-spaces in Rn' which ntlght perhaps be

enccxnpassed by a more general theory of "mulLiply- .p.reo.rdered. sets" ' Note also that'

sjnce the otlrer sets occurring in corotlaries 1'2 and 1'4 for p=p,, lveO(nn))' are

again of the form (2.14\ or (2.15) , and since 'to utf is minimal or maxjmal (for

any peT) and every non-empty antichajn in Rn (for arry pef) is a sjngleton' corolla-

ries 1 .Z-1.4 and proposition 1.5 do not yield any f'rther results in (Rn'7)'

Proposii- ion 2.2- In (Rn,T) ,

(1 .18) are. the oPgn h9"lf-h--nes

D_ __={a+l  (x-a)  i  l>O},
d r X

Proof. It is sufficient to

€n r  : n r r  AcR"
r v r  w r j and xla, the sets Darx  @ ou, *  €

( 2 . 1 6 )

a=0,  i .e . ,  to  shcw that ,  for

( 2 . 1 1 )

( 2 . 1 8 )

( I>0 )  , { 2 . 1 9 )

D'  ={a+t r  1x-a)  I  I<0} .

consider the case when

any xl0, we have

o o , " = { l x l  I > 0 } ,  o [  
, * = { l x l  

l < 0 } .

Indeed, for anY arYeRn we have

2,o={pe- f  I  vpa}={put I  v -apO }=€,y . . '

and hence, if Q.17) holds for all xl0' then' for all xla'

D.,*={ye Rnr{t} I  
'Q,o=4,*}=ionR"l q ,y-a=6,"-r}=

=4+{y 'e nnt{  o}  I  8,v,  
= 8,*-u}=a+D6,X-?=

=s+{ I (x-a) I 11g}={a+l 1x-a) I tr>0} ,

and the Proof for Dl,* is sjmilar'

Thus, let xl0. then,

8, ̂ *={ pell Lxpo}={pef I xoo}= ff ,*

so  { } x l r>o }eoo , * .
Conversely, Iet y*ilxltr>O]' rf y=6' ther^r

any veo(nt) tith v(x)>"0, we obtaln orref\'fr r*

other hand, Lf yl\, then, since xf0, we have yd{}xl)'}0}' which is a closed conver<

set in Rn. He.ce, by the classical strict separation theorem' there exists a func-

8 ,o= I ,o 
=e Thus, since xlo, taking

=€;;\6 
7)s 

, wllst"e YeDo,*' * tn



\C'I

t ional O€(f)* with l lOl l=i ,  such that
0 (y)>0 ( lx) =10 (x)

Then, in particular, we obtain 0(x)<0 (by

n)2, since otherwise we woul-d obtain y=9,

( l>o) . (2.20',)

tajcing tr+*o)and 0(y)>0 (by taking l=0). I
€lr oGT;0--tun6il;

a contradiction), take Ue(nn)* with

l l , l l  l=1 , such that 0 anc rl, are orthogonal, and V(y)>0; if 0(y)>0, take Ue (f)* satis-

iil; ff."il: ;Ti]liT:;r:.rt 
the rast one' F\:rthermore' take Qr"" 'o,'e(Rn)*'

v (x)= (0 (x)  , r !  (x)  ,03 (x)  , .  .  .  ,0r . ,  (x)  )  (xeRn) (2.211

we have veo(nn). Then, v(x)<"0 (since o(x)<0) and v(y)rr,0 (since either o(y)>0"or,
i f  0(y)=0, then V(y)>O) . Thr:s, for prre?of theorem 2.1 , we have p,reS,*\6ry , rh?r-

ce  y {og , * .  Th* ,  Dg , *e { l x l l >o } , . a rd  hence  D0 ,x= { l x l I>0 } .

Fj-na1ly, the proof of D$,*={kjf<O} is sjmilar.

S:. sEG4Er,irrAr,l,y colwEx sETS tN (zn,T,)

Ncxd we shrall consider the multi-ordered set (Zn,T, ) , where

T'=Tl  r ,= io l  . lpe?]  ,z" z"
with T of (2.71 . By (3.1) , the ?'-segments in Zn are

(xry)*t=ZnA<x;y>,.,,
L L

Therefore, from theorem 2.2 we obtain

Theorem 3.1. In (zn,T') we have

1x,y).-,=znn{ ( 1 -l ) x+ly I r e 1-0, t1 ' l  I
r  t J  I ( x , yezn ) .  (3 .3 )

T
Hence, t =,rt="t- G of Zn 1;sT' -convex if ald onlv if wer l 'rarr,- fhe imn1 iea1-ionr  q  u w s v  

c 6 ^  
i r y  r r  w c  l t q . v ( j  L I l c  r L r y I I u c t L I U t l .s € 9 *

x , y 6 G ,  l e [ 0 , 1 ] ,  ( 1 - ) , ) x + l y e z n  : + ( 1 - t r ) x + t r y e G . ( 3 ' 4 )

l - n a n  r . r l l r y ]  i n  r - ^ 1
Esrr uorrrf,.a, rrl Ll Z .l I Z-CO[-Remark 3.'i . The sets GgZn with property (3.4) have

Y t ^ ' '  ^ ^ ! ^
V I - ? I  J E L b .

Sa. SEG',ENrrAay CONVEX SETS rN MLLTr-ORDERED <-.\
--'*/-'

SEIS ASSOCIATM TO POSEIS

pnr anrr .nset (SrS), it is natural to consider the multiordered sets (S,{5})\ v r - : t  f  L v  u v r r i  

4

and (S, {S,>}); note that } is nothing else than (- ' ,  ir  the sense of (1.4), so rs-

rnark 1.1 b) applies.

Proposlt iorr 4. l .  I 'or a poset (S,5) , the mult i-ordered sets (S,{5}) and (S,{S,:}),

and. .any x ,yeS,  we hav.g-  {wi th  l . * ry ]  c t f  (2"1))

<x,y>{ < 1= [x,y i  u [y,  x]=

for a subset G of S

1" -  c  i s  { ( }  - convex .
\ = ) ^ n -

J w -

2".  G is  {5  ,Z}^^ -convex.
se9 _-

( 3 . 1  )

(x ,yezn1.  (3 .2 )

f  [* ,y] ,  i f  xSyJ

I t y , * t  ,  r f  ys* ]  
=<x 'Y>1s ' ] ]

the_ .follcnving statements a.re eguiv.alent:

( 4 . 1 )
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3o. G is order convex.

Proof. Obvious frcrn the definitions.

Scrne further rsnarks on posets and relatex1

Remark 4.1. a) Given a:ry multi-ordered set

orders on S, one can define an o::der S-.on S, bY.t"

multi--ordered sets are collected i-n

(S,f) , where 3* is a familY of total

- xSFy € xpy

However, then segment'ial convexity in

i n  (SrS^ . )  and,  i -  ran f  (  marz  1 - :e  the
J - - r I ! g g u ' : y ' . ' - J ^

( x ryeSrpe f ) .

(S,f) need not coincide with order

"trivial order" on S, in which

( 4 . 2 1

conve)aity

xS;z q=1x=Y
J

Jndeed, in parLicul-afr

(x ryeS)  ; ( 4 . 3 )

if fcontains p urrd p-i (for example, if (S,fl)=(Rn,fl, with

T of (2,7t), then we have (4.3) , and hence every set in (S'Sr) j-s order convex.

b) R. Jaurison-!,ialdner lZ] tras observed that in t pot.i (S,5) , at each aeS

there exist ai- mosL two semi*spaces; namely, if aeS is not maxjmal and not minimal,

then M - and Ml- of (1 .B) above (with p being 5) are the only semi--spa-ces at a
1 <  A \

(while if aEs is minjmal- or maxjmal, then corollary 1.3 abovc applies) . It is an ulF

solved problen to fjnd the semi-slnces for segmential convexity in multi-ordered

sets (S,ff) .

c) An aligrecl space (Sr$) (see proposition 116 abcrre) is said to be deterrirind

r . 1
Jry aloroer 1oi, if there exists an ord-er 5 on s such that $ coincid""'*G *

ty of all order convo< sets in (SrS). fn [0], R. Jamj-son-Waldner has given necessa*

ry and sufficiert conditions for an aligned space (S,g) to be dei-ermined by an order

(in terms of "naLural" properties of aligned sp.rces). It is arr unsolved problem tc>

extend this result'to an aligned space (S,:f) "detertnined by a fani-ly of orders"

(replacing ordgr convex seLs by ff=uo-"ottex sets, in the alrcve definition) '

In c-onnection with remaric 4.1 U) , let us give the following result on posets'

which may have some interest for applications'

P.roposition .4J. l!-gly*ig:et (S,5) , the fanLily

.1i1={Mai l ae s}uit'ni. I ae s}us ( 4 . 4 )

is an intersectional basis for the famil of all ord-er convex sets '

order coJrvex se! G(S we-have

G=A 14 .
14rJ.i.
GqM

Ftgo!. I-et GcS be order convex'

( 4 . s )

Since the inclusionG jn (4.5) is obvious, it

will be enough to show that for each atlG there exists Me,l4, namely, eittrer M=Mr. or

M=M,- , such that GsM (indeed, then, by a$M, a does not belong to the right hand side
a-\

of (4.5)) . Tf , a contrario, G$M-a and G{{. , then there exist 91,92eG with grSa'gr'

whence, siJrce G is order convex, it foll-ows that aeG, a contradiction'

Remark 4.2. rt is an unsolved problern to fjnd an intersectiornl basis for the

farally of all segmentially convex sets in a multj-*ordered set'

F ina l l y , I e t t r sg i veacharac te r i za t i ono f the fami l yo f

a 1nset, which will impty again prolrcsition 2'1 , and may have

al1 order segments in

some other aPPlications-



tp,

Propgsition 4.3. Ie! S be a s9t and let {<a,b>}.,'., be Lfgmily-of- qr:bse-ts..ol

S. The following conditions are equiJralent: ,

1o. There exists an order relation 5 on S such that

[",yJ =(XrY) ( x , yeS)  ,  ( 4  .6 )

where [*,y] is the order Fqnen! (2.1) j-n (S,5] -

2o. We have

<xrx>={x} ( x e  S )  ,  V . 7 )
(x ,ye  S)  .  (4 .8 )

( 4 . e )

<x,y>= {z eSl(x, z>l!, <z,y>l[}

l4oreover, in this case the gdel S of 1o is unigue, namPly, it is the .order de--

fined, for_elY. xrY€S, hy_

"<"Y 
e <x,Y>fO -

Proof. i"-12o. Assume io. Then, by {4-6), for any xeS we have

= z€<xrx> e+ x1z* '&z=x &ze \x  j  r

which proves (4.7) .  Now, le t  x ,yeS.  Then,  by (4.6\ ,

ze<x tY>  I  xSzSY *  x , z€1x rz ) ,  z ,Y€42 ,Y>  ,

which proves the inclusj-on S jn (4.8). Conversely, let z€S be such that <x,z>lL,

<z,y>t'Q, and take any te<x,z>, s€<zty>. Then, by {4.6\, we have xStszsssy, whence,

again ny @.6\, z€<xry>. This proves the inclusion; jn (4.8)'  and hence the equa}j-ty"

2o "+1o. Assume 2o and define a binary relation S on S, by (4.9) . Then, by (4.1),

we have x€{x}=<11,;> (xeS) , whence, by (4.9), x5x (xeS) . F\rrthermore, if xSy and y5x I

then, by &.g), we have <x,y>l$ and <y,x>lt,  f i ience, bY (4.8) and (4-7) we obtain

ye<xrx>={x} ,  i .e . r  F,x i  thus,  5  is  ant j - *synmetr ic .  A- lso,  L f  xSzly ,  then,  bv (4.9)r

we have <x,z>l@ and <z,Y>l@, whence, by (4.8) , we obtain ze<x,Y>f6, and hcnce, again

by (q.9), xSy; thus, S is transitive, which proves that f is an order on S. Finally'

for  any x ,y ,zeS we have,  by (4 '9)  and 
" (4.8)  

,

z e lx,y I (q) x1z Sy €9 <x, z >16, <z,Y>l@ ti  z( <x rY > r

which proves (4.6) .

Fi1-1ally, in or:der to prove the uniqueness stat-ement, let { be any order on S

satisfying (4.6). Then, for any x,y€S, we have

XSY :+ xry€[xrY] =(X rY) : l  <x,Y>l@,

and, converselY,

<x,y>l@ (=)  3 z(1x,y>=[* ,y ]  4v ly ,

which proves (4.9).

" 3 s [ e l ] < _ 1 . . - 1 . a ) P r o p o s i t i o n 4 . 3 i m p l i e s a g a i n p r o p o s i t i o n 2 . l , b y ( 2 . 4 ) a n d s j : r c e

the family of a1l usual segrngnts co_r.{x,y} jrr Rn does not satisfy (4'B) '

b) It is an unsolved problem t5 f*a a corresponding characterization of the

family of all- ff-segments in a multi-ordered set (S,0).

s5-. SEPARP{|rONAL MULTr-ORDER CONVEXTTY

Definition 5.1. Let (Sr0) be a multi-ordered seL. ItIe call a set GsS, "f-ge:

!i""arg_:"""*.,,, ot, briefly, fl".o-rorr.*, if for each xoes\G there oiists an order
uvI'



\)

o=o(x )e fr such that (virere p denotes the negation of p)

x"Q l geG) . ( 5 . 1 )

RsnaIE_!:1. a) In other words, a t= S=*O-convex, if every outside pojnt xo can

be "se[nrated froT G by .gcxne order p=p (xok0"; this motivates our ter:rninology. Note

also thal this defjnition is of different type frcxn that of f"*-convexity, which

has jrrvolvedall pe0; also, Osep-convexity is a "one-sided" concept (see (5.1))'

while O=.n-convexity is a "slnrmetric" concept (see (1.5)).

b) When all pe0are total, a set GsS is S""il"o*ex if and only j-f for each

x^eS\G there exists p=p (xo)e ff such that
o u

9Q*o
(gec ) . ( 5 . 2 )

c) Tn contrast with the case of 0""o-convexity (see remark 1.1 b)) , if 0'=

- 1  ,
=ffv{p- li, for sctne pefl, then ff'-.on.r""i.ao need not coincide with fl"* corxrocity

(see remark 5.2 and proposition 5-2\ -

d) In contrast with the case of dr.o-convocity, a singleton {xJ, where xeS,

nnnrr nnr- ^^ (Y -convex. Indeecl, for example, vdren ff=tp) (a singleton) and x^Qx -' r
need not F u=ao , ror exalrlple, wIIeII u=tpJ \ct b-Lrrr:,*-*---, -_--- --o --, no,

fx, then {x} is not fl^^*-convex. Also, an ff-segment <x,y> need not b %^;"onvex'sep
rndeed, for example, i f  0={p} and ypx, ylx, then <x,y>={zeslypzpx}. Hence, i f  xo0Y,

x^fy, thel x^{<X,y>,.x6<xrY> md x^pypx, so (5.1) (with G=<XrY>) is not satisfJ-ed'
' - O '  t  ,  - - - - -  - - O r  - - ' 1

and therefore <x,y> is toa ff="O convex. Thus, flrun-conve+ity dg"s not +pfy fl="p

-conyexlly

e) Clearly, the whole set S and tlre empty set @ are du*;convex.

nrnmclr inr l  g.1. For any pcO',  each seL NSS sat isfyjng (1 .1) is f f^^*-convex.
rIul/L/*-I ulvl SeP -

pi:oof . Let xo4N. If (5.1) (with G=N) cloes not hold for -!-hre qiv-eq p, then there

exists x'eN such that xopx', whence, by (1.7), we obtairi xoeNr in conLradiction with

our assumption. Thus, for any x.r{N and for the given p (r'ieich'dces not depend on xo) ,

we have (5.1) (with G=N) .

Coroltarv 5.'1 . For any set ngs and any 0e 4 ! l ^ ^  ^ ^ ! a A c l  , A ( c l J { a } ) ,
aeA 

oP 
aeA 

crP

are U -convex.
c^n -._...-v v-t-

proof . By the argnrments of 51 , these sets satisfy (1.7'') , and hence, by proposi*

tion 5.1, theY are 0=.p*convex.

3*nu!n_IJ. The rlsutts corresponding to proposition 1 .3 a) and its consequen-

ces given in 51, do not hold, in general, for O=up tottexity' Moreover, let us show

that if d=tp], where p is total, therr no set M (different frcxn @ and frcrn S) satis-

fyjng (1 .6) is S*o;convex. Indeed, if xo$Mr and (5.1) holds (with G=M) , then, sjnce
"-t-

p is total, we havl xOxo for all- xeM, vfttellce, bY (1 .6) , we obtain xoeMr in contra-

,diction witLr our assumption. Thus, M is not s'"";convex. Hcniever, for any multi-or-

dered set (S,0), we have

Proposition 5.2. 1,f- fo-{ .scxLe pef we have

(1.6) is f f^^^-convex.
b C l J  -

V#o 
'  ( !-%e)uo' 

Ht;p 
*d 

*t lo 
'  g (1 '13)-(1 '15)'

p-1ea,then each set l,lsS sati:fying



\1.{. \

Proof. Let xJM. We shall shov that

7
x 0  x

o'

der p., on S, if

yp2y'

arrd that, by a classical theorem of Szpilrajn

S admits a total extension 'r on S'

concerns total orders, the situation for Or-conve-

frr*-convexity, described in corollxy 1'6' To this

(xeM) , (s .  3)

in O -convex.

-1
which, since Q 

'€U, wiII prwe thnt M is fir.il.o*ex. If (5.3i does not hold' then

there exists x'€M such that xop 
tx' 

, or, eguivalently x'pxo' Hence, bY (1 '6) ' we

obtajn xoel4r in contradicticn with or:r assumption- Thus, M j-s flsep-convex'

Definition 5.2. We call U -hemi-space, ilY set MES such that both M and' S\M
S e D . -

are 0 -convex,
DCW

. - l

Cor-o]lary 5.2. -If fo.r scrng pedwe.hgve p 'eA, 
!heJr.,. f-o.r. any s-e-t AeS, (1'13)-

-(1 .i5) are pairs of ccxnpl-emg..ntary 0""O-@:spac-es.. If ,,"in. aldition' A }q. un-9tdJ

@fl_for p, then tlle.s.ets (1 .16) are ff="n-he:ni:!P$"'

proof. By the above proofs of corollaries 1.4 and 1.5, these sets satisfy (1 '6)

or (1.7), so the result fol lows frcxn proposit ions 5-1 and 5.2.

proposi_lion 5.J. An qfbitr.ar-y inler.s,ection of 0sep-gonvqx-elE can ....--
J9-Y

P{oof . i€t {Gi}iet h a fanr-ily of 0r* convex subsets of S and tet x^fAG, .
a€r

Then there o<ists ioel such that xofGi,-.,, wherlce' sjnce 
"to 

t= fl=.il"ottex' there
(J

exj_sts o=0. (x^)E0'such that x^pq for all geG- , and hence, in particular, also for
' r u ' L

o - o

a l t  geAG,eG. .
4  z - T  

*
] E a

F:gFar"k.5..3. lVe do not know under what conditions on 0 is the union of any family

of U -convex SetS, totally ordered by inclusion, agairr fl o,.-convex' i'e" under
"- "sep - 

:'sY

what conditions is the pair (srEscD) an aligred sl)ace, where 4u.n t" the family of
u v r

at} u^^^-convcx subsets of S (cp. proposition 1 '6) ' Nevertheless' proSnsition 5'3
DC}1

p.noil='us to define ft. f.o.fconvex hull co' G of a set Gc=S as the smallesL
)cy ^^p

U -convex set containing G.

Now we shatl show that, as

xity is better than the one for

end", we need scrne PreParation'

Let us recall that an order 02 on a set S is said to be an o<tension of an or-

( Y , Y ' e  s ,  Y P l Y ' )  '  ( 5 '  4 )

lZlJ, every order relation P on a set

Iet GsS and x^eS\G satis-
ULemma 5. 1 . T,et p be an ordg.r relation oh. -a -set S ald l-e}

(5 .1 ) .  Th  t  o f  P  9 !  s ' , s -uch  tha t

. 9TXo

P-roof. Let

[c ]={* .s i  3geG, xPg}

{ 5 . s )

( 5 . 6 )

Fv
(gec) .



\b

Then,by (5.1), xoes\[G]. By Szpilrajn's theorsn, there ercist total oirder re-

lations ,1, r2on [C] atd S\tGl, respectively, ortending the restrictions of p to

these sets. Let us define a binary relation r on s, by saying that xty, if one of

the followlng conditions hold's:

a) x,yeLc.l and xt,Y' i

$) x,Yes\[c] ana xtrYi

c) xe[c] and Yes\[G]

Clearly, .r is a total order on S. Furthermore, if nrYeS are such that xpy, then

we cannot have xes\[c] ana y€[G], since otherwise, by y€[c]' there woul-d o<ist geG

such that ypg, whence xpypg, contradictjng xeS\[CJ. fherefore, if xpy, then we have:

the following three possibilities:

1) xrye LGI; in this case, x'r.'Y (since 'r', ex'tends

whencc x'ry.

the restriction of P to [GJ,

2) x,yeS\[e]; in thi..q case, xr2Y (since t, extends the r:estrictj-on of p to

S\ [c ] ) ,  whence xrY.

3) x€[c], yes\[G], whence, agalrt '  xry'

Thls proves that'r is an o<tension of p. Filally, by Gs[G] *d xo€S\LG]' we have

( 5 " s )  .
Now we can prove the result on tota-l- orclersf announced ai:ove. Namely, in con-

trast with corollary 1 -6, we have

Theorem 5.1. For each mult:-grqglgg se!_ (s,s) there exists a. .faqily- !" g! -t"!1l

orclers on S, such that fi.;"otytttity 
it't

Proof. The famllY laetined bY

c } . , l l . l "
.1 =LJ Jn I

p c f f  Y

where, for each Pefr,

I=the family of all total exterrsions of p 
(5'B)

ir3t tf'r* t.quit"a property' Indeed, each {";convex 
set G is fftun-c"""t1: 

::"" 
ut

xodG ar.Ld -refrsatisfy xoTg (geG) , then for pefisucfr that re$ ' we have (5'1)' Converr-

sely, if G is an 0*n J*Yff,r:9.: g,"4., if xodG and peo satisfy (5'1)' then' by lemma

5.1, rhere exisrs ii\rf %;:ti{3"3;7'ny remarr 5.1 b) , G is ]l"n-convex'

. Remark.5.4. By theorem 5.1, in the study of ff"";convexiLy it is no restrict-ion

of the generality to assune that each peff is total'

. Ibgoory. fl=.n-*ryu-{tty r}rpll* Orun-goty.."tU.

rygoJ. l,et G b;-L fl=.il.orrex sulcsel of s, and assune, a contrario, that G is

not ff^^^-convex' i.e., that there exist x,yeG and xoe<x,y>, Such that xodG. Then,
>cY

since G is f=";convex, there exists p=p(xo)e fl satisfying (5'1)' whence' in parti-

cular, xoox and xooy (since xryeG). But, by xoe<xrot, tlt this p we must have either

xoxoOyr ttti.rt coniradicts xogY, or ypxopx' which contradicts xopx'

Rernark 5.5. The converse implication need not hold, even when eachpedis total'

as shovn by remark 5.1 d). However, theorems 2.2, 6'1 and, respectively' proposition

4.1 and theorem 8.1, show two impo::tant cases when 0"";convexity coincides with

S cojncides-l{illr 0.^-*"g1tt5i!y.jt S tc rln
" -t-

( 5 . 7 )



1r
A -convo(ity" In the general case. we do not kncx,v under what cordj-tions on d is
-seq

",r.iu 
fr -convex set O-^--conve><"____r  _seg sep

56. SEPARI{IICEiALLY CONVEX SEIS TN (RN,T)

I€t us consider the multi-ordered set (Rn,?) , with f of (2.7) (so every p

is total).
n

Thpor_eI 6.J. 0=uo-gg!r..-i!y_ ir Rn coincides wi.tlr lhe usual conv.exity iq R' -

proof. If GeRn i= d.";.onvex, then, by theorem 5.1, G is do -convex, and hen.-
JEV

ce, by theorem 2.2, G is convex.

cn'lrarqe'lv assune ncx,v that. C.ff is convex, and let xoennfC. Then, by the lexi-
v v r r v  v !  r v 4 J

cographi-ca1 separation theorem ([15], p. 256], there exists veO(Rn) suc]r that

v (g)<,v(xo) (geG) '  (6 '  1 )

Let p=p.reflr ti.*re,m 2.1. Then, by (6.1) and (2.81 , we ltave 90,r"o for all g*G,

and therefore, by renark 5.1 b), G is ff". -convex'

Ren.ark 6.1. Actually, theorem 6.1 is equivalent to the lexicographical separa-'

tion theoreur.

sz. strPArufrrcD{AlrY coNVEX SE'rS rN (Zn ,T'l

IeL us consider ncxr i-he multi-ordered set (Zn,T' ) of 53 (so every pe?' is to*

tal) "

t@Iu* l-.1. g-g"-ggp9-* G of Zn, the folro'{-4-q-*g!'cns:n!s are eqf'1iv+lent:

1 o .  G  i s ? t  - c o n v e x .
{ a}") ."-

2o. rhere &ists a corwex sl:Qs-e-t C of nn, sgch that
n  ( 7 . 1 )G=Z"|1C. \

3o. We have.

n- , r f rnnn c  Q.2)u_a  , . " "On " ,

whe,re co . aengteJ, Rn'

4" . For-gggh xoezn\G tlrere .e.xists v=vx'€ o (Rn) s-uch- tha!
o

v (g) <.v (x^) 1qe G) '  (7 '  3)
U

Proof" 1o =+4o. ff 1o holds ancl xoeZn\G, then, by remark 5'1 b) , there e:<ists

p=p(xo)e?i such that we have (5.2) . By (3.1), Iet poef be such Lhat p=polr '  utd' bY

-1 11

theorem 2.1 ,  Ie t  v=6- l (Oo)e O(nn) .  f l ren,  bY $.2\ ,  (2 .8)  and xodG, we have (7 '3) '

4o =+3o. Since the inclusion g in (7.2\ is obvious, it is enough to shorv that
n

4o implies the inclusion a in (7.2\. Assrme 4o anC LeL xo€z"A"o_rrG. rf xot'G' then
p"

by (7.3) , we obtain x.-,{co ,..,G, t contradiction'
R .

The implication 3o:=' 2o is obviotts



{ ; ,

2o +1o. Assume 2o and let x^eZn\G. Then, bv (7.1), we have xodC, and, by
o

theorem 6.1, C isfu;conveD<.Hence, by rernark 5.1 b), there exists po=go(xo)e?such

! 1 ^ ^ L
tl lct L

xPo% (xeC) . ( 1  . 4 \

Consequently, for p=pol 
.n€T'we 

have (5.2) (sjnce GcC by t7'1)), md thus' by remark

TJ
d l

5.i b) ' G is C=.;convex" r
n  r  - - -  r -  -  ^ - -  ^ ^ 1  I  ^ J  . l  ' ^  f  ' 1  1 1  n ] - r n n a

Remg{k 7.1. a) The sel;s GeZ" satisfying (7.2) trave been called, in [12], scrurrg

convex sets. I4orewer, by [tZ], proposition 3.1, condition 2o is equivalenL to

5o. G is P-convo<' where p=dim G+1 , i...e., -we have lhe inplicqti--ol

*1 ,. . . ,xneGrtr1 ,. . . ,^n=0, 
Jrtr i=1 

, 
J.,^rrrur" 

orlr),rx,eG' ( 7 . 5 )

Also,  by l tZ] ,  exary71e 1.3,  the subset  6={  (1  ,3) ,  (0 ,2\ ,  (2 ,1)}  o f  Zz is  2-convex '
?

but not 3*convex; hence, by the above, G -ig ?r*-g-onvefu bu!-l* ?i"n-c..onv.q.r- rn Z-'

For other related results, j-n a more general framework, see llZJ'

b) The equivalerrce 1o<=+4o means thaL a subset G of Zn is ?i.;convex if and

'\G ''.* be separated fr:om G by a ljnear isometry
only if each outside Point xoeZ-

veo(Rn),,. I-n,t us recall the similar concept of "W*convexity" (due to Ky Fan [3])' in

wh ichonese ,oa ra tes (s t r i c t l v ) x^andGbyrea t_va lued func t i ons ( jns teado fope ra*

Lors v:Rn,nt), ;;;r;l-") (#ruon(nt) is rhe famlty of arr functions *:Rn-,R) , a

subset G of Zn is said to be W-convex, if for each xoeZntG ther:e exists a f'rrctio.

w=w e l^l such that
ta

o  s tp  w(G)<w( *o ) .

rn parti-cufdr, for \'f=(Rn)* (the duat of nn) one can

above, that GeZn is (Rn)*-convex if and only if

6=znn66 ,.,G, 
(1 '7)'

R"

where q".denotes the closed convex hul-l in Rn. Hence, slrtce --"" is convex' from

} { n .
theorem 7.1 (jmplication 2o =t1o) it follows Lhat eve'ry (n")o-got-u€'<-!$!s! G {Zn

.is 7' -convex. However, the converse is noL true, as shovrn by simple exafples (of
-- - sep
infjnite sets) .

IN MULTI-ORDERM E-)

( 7 . 6 )

shcx,v, similarlY to the

sets (S, {5})  and

{<.>}  -convex
c a n #rvt-

so there exist

we have (5.1)  e i -

$8. SEPARATIONA],LY CONVEX SETS

\sgl's ASSocr/\TED Tt) Posgrs

F o r a p o s e t ( S , 5 ) , l e t u s c o n s i d e r a g a i n t h e n r u l t i - o r d e r e d

( s , { s , } } )  ( see  54 )  .

Theor.em 9.1. Let (S,5) b.e a po.set' Then' a qu-bse-t G € S 19

i€ rnrr nnlrz i f  i - t  iS Ofdef Convex.
I I  C t l r u  v l r l y  ! r  r

. Proof. Assume that G is is,2}*convex, but irot order convex,

gn,g"€G and x^eS\G, with gfxolgr' Then, since G is {f 'Z}-convex'
- t ' ' z  L ,



/f

ther. for p bejng 3, oT for p bejng ), i.e., eittrer xo#9 (geC1 ' whr-i-ch contradicts

*oSg2 , or xofg (geG) , wlrich contradicts 9't5xo'

r-rrnrrorqplv, assume now that G -is order convexr but not {5r2}-convex, so there
v v r r v v ! e v ! l

exists xoes\G such that neither xofg (geG), nor xo+g lqec) ' Then, there exist

q-,g^GG SuCh that q.Sx^5$.. Hence, since G iS Order convex' we obtajn xoeGr which
1 1 ,  ) ' Z  . l  O  - Z

contradicts our assumPtion on xo.

Remar\ 8.1. By theorem 5.1 arid proposition 4.1, every {S}""n-conve*< set is or-

der convex. However, the converse is not true, as shornn e"9. by romark 5'1 d)"
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