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ABSTRACT

We characterize the total preorders on R" which are compatible with the
vector space structure, in terms of linear operators and the lexicographical order. In
particular, we obtain that the lexicographical order is, up to a linear isometry, the
unique compatible total order on R". We also study compatible total extensions of
compatible preorders and give some Szpilrajn type results for comp‘atible preorders and

compatible orders.

§0. INTRODUCTION

In some previous papers [9-12] (see also [7,8,15]), we have studied the
lexicographical order and linear operators on Rn, and some of their applications, e.g. to
separation of convex sets, vector optimization, hemi-spaces (i.e., convex sets with
convex complements), etc. In the present paper, continuing these in\;estigations, we shall
give some applications of the lexicographical order and linear operators to the’study of
compatible total preorders (and, in particular, compatible total orders) on R" and to
compatible total extensions of compatible preorders.

We recall that a preorder (i.e., a reflexive and transitive binary relation) p on

RM is said to be compatible with the vector space structure of Rn, or, briefly,
compatible, if
Y PYY 2 Y PYY SV + YR Y + Yy s | (0.1)

yoy ,A>0=>hypAy' . 0.2)

The natural partial order < and the lexicographical order _<_L are well-known
examples of compatible orders (i.e., compatible anti-symmetric preorders) on R™. Let us
recall that the natural partial order 5 on R" is defined componentwise, i.e., denoting

the elements of R™ by column vectors and the transpose of a row vector by T,



= LoNge
X = (gl, s ,gn)T e R" is said to be Mess than or equal to" y = (nl, g ,nn)T e R" (in
symbols, x <y) if g < (i=1,...,n). We write x <y if x <y and x # y. Furthermore,
X2 (El, dara ,gn)T e R" is said to be "lexicographically less than" y =(n,,... ,nn)T eR"
(in symbols, x <L y) if x # y and if for k = minfie {1,...,n} | Ei # ni} we have g, <n, . We
write x_<_L y if x <L y or x =y. The notations y >L x and y_>_L x, respectively, will be
also used. | |

.We recall that a preorder p on R" is said to be _tg’@l, if for any y,y'e R" we
have either ypy' or y'py. A well-known example of a total order is the lexicographical
order _<_L on R".

In §1 we shall characterize the compatible total izréorders on R", in terms of
linear operators and the lexicographical order. In particular, for orders, we shall show
that the lexicographical order is, up to a linear isometry, the unique compatible total
order on R". We shall denote by £R"RD, UR"™ and ¢R") the families of all linear
operators u: R"— Rr, all isomorphisms v: R"—R", and all linear isometries
v:R" = R™ (for the euclidean norm on R™), respectively. We shall consider on2®",R")
the lexicographical order u ZL 0 in the sense of [8], defined columnwise, i.e., u ZL 0 if
and only if all columns of the r)Xn matrix of u (with respect to the unit vector bases of

R" and R") are > 0. We shall denote by u* the adjoint of the operator u eL@R",R") and

1
by I the identity operator on B
We recall that a preorder p,oNn R" is said to be an extension of a preorder pyon

Rn, and we write 0y =4 Py if
yo,¥ (y,y' e R", yo, ¥ 0.3)

when Py is total, we shall say that P,y is a total extension of gy Let us also recall that a

preorder ¢ on R" is said to be the intersection of the family of preorders {pJ}JeJon Rn,

in symbols



o:f}%, (0.4)
J€

provided that for any y,y'€ R" we have the equivalence
YO Y ey oy (jed; : (0.9

hence, in this case, 0 g pJ(j €J). By a classical theorem of E. Szpilrajn [16], any partial

order is the intersection of its total extensions, and many authors have investigated the

problem whether this result remains valid for orders having some prescribed additional
property (for a survey, see [1]).

In § 2 we shall characterize the compatible total preorders which are extensions
of the natural partial order  on Rn, in terms of linear operator‘s and the lexicographical
order, and we shall give some Szpilrajn type results for compatible preorders and
compatible prders.

The tools which we shall use in the sequel (the correspondence between
éompatible preorders and convex cones, some concepts and results of [l1] on

hemi-spaces, etc.) will be recalled in § 1 and § 2.

§ 1. COMPATIBLE TOTAL PREORDERS. UNIQUENESS OF THE LEXICOGRAPHICAL

ORDER

It is well-known (see e.g. [14]), p.3) that there exists a canonical one-to-one
correspondence between the collections of all compatible preorders on R" and all

convex cones (containing 0 as a vertex) in Rn, i.e., all subsets C of 0 satisfying
Cag e, (1.1)

\

MEEE (A >0); ' (1.2)

namely, to a preorder p there corresponds the convex cone



Cpé{ye R"|yp o} . i ' (1.3)

and, conversely, to a convex cone C & R" there corresponds the preorder p on R:

defined by ®

ypy'¢>y-vyeC. (1.4)

In particular, this induces a canonical one-to-one correspondence between the
collections of all compatible orders on R" and all "pointed" convex cones in Rn, i.e., all

convex cones C ¢ R satisfying

(or, equivalently, containing no line through 0).

We shall use the notation

J= the set of all compatible total preorders on B, (1.6)

Theorem 1.1. For any compatible total preorder p on R" there exist a unique

re [5795 TRts ,n} and a unique u e&‘,’(Rn,Rr) with uu™ = I (hence uR™) = Rr), such that

ypy e uly) & uly) (y,y' € R™. (1.7)

Conversely, given any r and uecf(Rn,Rr) with uu® =1, if we define p = Py by

(1.7), then Py is a compatible total preorder on rR™ Consequently, the mapping

Biau=xp. (1.8)

n
is a bijection of Vo) fued (Rn,Rr) | uu® = I} onto J.
r=0

Proof. Let p € J. Then, by (1.3) and since p is total, we have

Rn\sz{yeRn|ODy}. (1.9)




N %0 ¢ i

Therefore, by (0.1) and (0.2), the sets Cp (of (1.3)) and Rn\Cp are convex, SO Cp is a
hemi-space. Hence, by [11], theorem 2.1, there exist unique r € T0itsie 5uilyi e { S

& ], xe R" and ue£ (R",R") with uu® =1, such that

c, ={ye R"|ulyrx} . (1.10)

We claim that x = 0 and T is SL iy - 8

cpz{yc-:R“lu(y)gL o} . | . (1.11)

Indeed, by (1.3) and the reflexivity of p, we have 0€ .C, whence, by {s18),

p

- 0 = u(0)rx. Assume now, a contrario, that x £ 0. Then, by 0Tx and T € { SRS L}’ we have

0¢ x By uu® =1, we have rank u = r, so there exists y € R" such that u(yo) = xo Then
1 1 1 .

u(—z- yo) = 5% <% whence 5y _€ Cp and hence, by (0.2) (with y' = 0) and (1.3), Kyo € Cp

for all A > 0. But then, by (1.10) and T€{<L , SL}’ we obtain Ax = u(kyo) SL x for all

X > 0, whence x SLO, a contradictioh; Thus, x = 0, whence, by (1.10), T€ { <L 3 —<-L } and

Oe Cp )it follows that T s g ,which proves the claim (1.11). Hence,
Yoy <ry-ypo0ey-Yye Cp & uly - y) 06 u(y) <L uly", (1a12)

which proves (1.7). Also, since for any u satisfying (1.7) we have (l.11), from the
uniqueness of r and ueéf(Rn,Rr) with uu® =1, satisfying (1.11), there follows the
aniqueness of rand ued (R™R") with uu® =1, satistying (1.7).

Finally, the converse part follows from the properties of thé lexicographical

order <, and the linearity of u. £

1

Remark 1.1. a) As shown by the above proof, the converse part in theorem l.1

remains valid for any u 6;!.’.(Rn,Rr) (which need not satisfy uu® =1, nor even ranku = r).

b) By (1.7), u may be regarded as a "vector-valued (namely, RM-valued) linear

lexicographical utility function (for r = 1, it becomes a linear utility function, in the




= B
usual sense) representing the preorder p". Then, for example, remark 2.2 e) of [11] may
be regarded as a linear version, for this case, of the well-known condition for two |
utility functions to represent the same preorder (see e.g. [2], p.97).

For any compatible preorder p on Rn, we shall denote by Dp the "indifference

. set" of p, i.e.,
Dp:CpFKJ%Q:{yeRPIyp0,0pﬂ, (1.13)

By (1.2), we have ADp c Dp (A e R), and hence, by (1.1), Dp is a linear subspace of B™
. (the "indifference subspace" of p). We recall that, following [11], a hemi-space H in Rn,
represented (uniquely) in the form H={ye Rnlu(y)Tx}, where re{0,1,... ,n},
tef <L : -<-L} e R" and uc—:&ﬁ’(Rn,Rr), uu® =1, is said to be of type <L (respectively,
of type EL)’ o s £ (respectively, -<-L)’ and (in either case) the set
M =MH) ={yeR" | u(y) = x} is called "the linear manifold associated to the hemi-space

H"(by "linear manifold" we mean a translate of a linear subspace).

Corollary 1.1. For any compatible total preorder p on R", the cone Cp (of (1.3))

is a hemi-space of type < ,and the associated linear manifold to Cp is the linear

L

subspace

M(Cp):Dp . (1.14)

L ,for which the associated linear

manifold M(H) is a linear subspace of R", there exists a unique compatible total

Conversely, for any hemi-space H of type <

preorder p = Py ON Rn, such that

C,=Hj _ Gty s

moreover, this p satisfies Dp = M(H).

Proof. The first part follows from the above proof of theorem 1.1, observing



that, by (1.11), we have

n :
M@&:beRIdW:ﬂ:CpnGCJ=DW | (1.16)

Conversely, let H be a hemi-space of type _<_L ysuch that the associated linear
manifold M(H) is a linear subspace of R", Then, by [11],theorem 2.1, there exist unique

re {O, lyuiss ,n}, x eR" and u ea’.(Rn,Rr) with uu® = I, such that

H={yeR"|uly) ¢ x}. (1.17)
5

But, since M(H) = [ye By luly) = x} is a linear subspace of Rn, we must have x = 0, and

hence (1.17) becomes
H={yeR"|uy) ¢ 0}. | | (1.18)

Therefore, by theorem l.1, for p= Py defined by (1.7) we have pue]) and

(taking y' = 0 in (1.7))

'H:{yeRnlypO}:Cp,M(H)'—'{yeRnlypO, Opy}:Dp.

Finally, the uniqueness of pe P satisfying (1.15) follows from the fact that Cp

determines p uniquely.

Remark 1.2. For related results on relations between hemi-spaces and
compatible total preorders see also corollaries 1.2, 1.4 below and [6], proposition 2.2
and proposition 2.3, equivalence (2)&»(7) (in the framework of linear spaces over an

ordered field).

Corollary 1.2. For a compatible preorder p on Rn, the following statements are

eguivalent:

1°, p is total.

25 Cp(_o_i (1.3)) is_a hemi-space of type < ,and the associated linear manifold

P S




M(Cp) is a linear subspace of p"

3°, There exists a unique r ¢ {0, 1,...,n} and a unique u e2R"R") with uu* = I

such that we have (1.11). B

Definition 1.1. For any p e?; we define the rank of p by

r(p) = the unique r € {0; 1, ... ,n} of corollary 1.2, (1.19)

Remark 1.3. Definition 1.1 yields a classification of all compatible total

preorders p on R" (into those with r(p) = 0, those with r(p) = 1, etc.). This is quite
natural, by [11], theorem 2.2, according to which the rank and type of hemi-spaces give
a (metric-affine) classification of hemi-spaces, since now r(p) coincides with the rank
of Cp and the type of pis fixed (namely, it is <L ,by corollary 1.2).

b) By [11], theorem 2.1, for the class of compatible preorders on R", of a given

. . r ;
rankr, one can choose a "canonical representative" p , defined by

I

T ' ' T 43 g §
(nl,...,nn) p(nl,...,nn) @(nl,...,nr) —<-L (nl,...,nr) . (1.20)

Corollary 1.3. For Pys Py e P, the following statements are equivalent:

1°. We have r(pl) = r(pz).

2°. We have (with D of (1.13))

dimD._ =dimD_-. (1.21)
P p
1 2
3°.4°, There exists v e UR™ (respectively, v € &(R™M), such that

y o,y @ v(y) p, vly) v,y eR") (1.22)

(in other words, such that v : (Rn,pl)—-z» (Rn,pz) is an isomorphism of preordered sets).

Proof. 1°¢2°, by wu* =1 and Dp:Ker u, for u of corollary 1.2. Finally,
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1°©3°>4°, by (1.11) and [11], theorem 2.2.

Let us denote

J = the set of all compatible total orders on R _ (1.23)

Theorem 1.2. For any compatible total order P on R" there exists a unique

u € €’(R™ such that we have (1.7).

Conversely, given any ueR"), if we define p = P, by (1.7), then P, is 2

compatible total order on R Consequently, the restriction of the bijection p of (1.8),

to R = lue2®",R™|uu* =1}, maps o'(R™) onto T,

Proof. Let P€J and, by theorem 1.1, let us= 5-1(0) G:E(Rn,Rr), with
refo, 1,... ,n} . Then, for any y € Keru, by u(y) = 0 = u(0) and (i.7), we have y PO and
0 p y. Hence, since p e is anti-symmetric, we obtain y = 0. Thus, Keru = {O}, which, by
r<nandu e 2(R"R"), implies r = n. Hence, by uwt* =1, we obtainu€ OR".

Conversely, let u€ O R") (hence uu® =1), and let Py = §(u) eP. Then, for any
y,y' € R" with Yoy and y'p y we have, by (1.7), uly) <L u(y") and u(y") 4L uly), i.e.,

u(y) = uy"), whence, by u€ 0'(R"), we obtain y = y'. Thus, Qué.fp is anti-symmetric, i.e.,

8(u)=pueff'.

Remark 1.4. a) As shown by theorem 1.2, the Jlexicographical order SL on g" i3y

up to a (unique) u € o' (R™), the unique compatible total order on Bk

b) The theorem on "lexicographical separation” of a convex set from an outside
point ([17], p.258; see also [5,9]) can be restated, using theorem.l1.2, in the following

equivalent form: A set G & R" is convex if and only if for each o R"\G there exists

P& O(yo) e J such that

EPY, (g € G). (1.24)

Note that this is a characterization of convexity in R" in terms of the compatible total




e e
orders p on R", which permits to generalize the concept of convexity (see [13]).
- ¢) The theorem on "lexicographicél separation" of two sets in R" ([9], theorem

2.1, equivalence (1)¢3(4)) can be restated, using theorem 1.2, in the following

equivalent form: For two sets GI’GZC R" we have coGlﬁ co Gé =@ if and only if

there exists p = p(G 1,(}2) e J such that
8108, (gleGl, g, € GZ); (1.25)

this latter result has been obtained, with different methods, by Coquet and Dupin (3],

theorem 7, equivalence (1)&(2)), in arbitrary real linear spaces.

Corollary l.4. For a compatible order p on Rn, the following statements are

eguivalent:

1°.:p is total.

2, Cp is the complement of a semi-space at 0 (i.e., Cp =R"\'S, where S is a

maximal convex subset of R" such that 04éS).

)

3°. r(p) = n.

Proof. 1°¢> 2°. By theorem 1.2, we have 1° if and only if there exists (a unique)

ue U(R™ such that we have (1.7). But, (1.7) holds if and only if it holds for y' = 0, i.e.,

Cp ={ye R"|uly) & o} = R™\fy e R" | u(y) >L o} ; _ d (1.26)

also, by [15), lemma 1.1, al set SCR” is a semi-space at 0 if and only -if
s={yeR"|uly) > 0} for some u e oM.

2°¢3°. By definition 1.1, r(p) is the rank [11] of the hemi-space Cp, or,
equivalently, of the hemi-space S:Rn\Cp. But, by [11], remark 2.3 d), S is a

semi-space if and only if it is of rank n. £3

Remark 1.5. The equivalence 1°<>2° is due, essentially, to P.C. Hammer (C14],



theorem 1.4).

§ 2. COMPATIBLE TOTAL EXTENSIONS OF COMPATIBLE PREORDERS

Note that, if Py and p, are compatible preorders on Rn, we have (with the

notations g and Cp of §0 and (1.3)) the equivalence

pl4p2¢:§Cplg cpz. (2.1)

Let us first consider compatible total extensions p efp_ of the natural partial
order < on R", Since (by theorem 1.1 and remark l.1a)) the compatible total preorders
p e P are precisely the preorders p = Py defined by (1.7), where u eLR"R"), we shall

state the next result in terms of Pyt

Theorem 2.1. For a compatible total preorder p = pu'e P defined by (1.7), where

u eﬁ(Rn,Rr), the following statements are equivalent:
g q

i Py is an extension of the natural partial order < on R",

©

2.u2 0.

Proof. By (0.3), (1.7) and [8], corollary 2.3, we have the equivalences

1° &3 yo, v y<yle uly) < uly) v € yleruly) 2, 0y > oyes2’. 38

Corollary 2.1. For a compatible total preorder p e P,the following statements

are equivalent:

(V] . .
1, p is.an extensionof <.

1

2§ p) 2, 0 (where § is the bijection (1.8)). 3

Remark 2.1. a) As shown by simple examples, for n> 1 there exist total



o . e
extensions of < which are not compatible with the vector space structure of R
b) By the equivalence (2.1) for compatible preorders, theorem 2.1 means,
geometrically, that fg{ Py € P we have C< ={ye R" ly < 0} ¢ Cé if and only if u —>-L 0.
Now we shall give some Szpilre.x—jn type results for cor':lngatible preorders and ‘
compatible orders. Note that, if ¢ and p‘j (j ed) are compatible preorders on Rn, we

have (with the notations [\ p. of §0 and (1.3)) the equivalence
JEJ

o= \p.&C =MNC_ , ' (2.2)
Jel® S jed

" Let us first prove that following proposition, which we shall need in the sequel.

Proposition 2.1. Let ¢ be a compatible preorder on R" and let y ¢ —CU . Then

there exists a compatible total extension p of ¢,such that

D =D (2.3)

ye C, , | (2.4)
Proof. We claim that

co <(C0\ DU yhnp,=a. (2.5)

Indeed, assume, a contrario, that there existy € C(I \D0 and 0 < X < 1 such that
(1-Ay+iye D+ Then, since D is a linear. subspace, -y - (\/1 - \y e D , whence,
since y e C0 and CO is a convex cone, we obtain -(\/1 - Ny =y + (-y - /1 - Ny e C(j :
Hence, -y € CO,in contradiction with our assumption. This proves the claim (2,50

Now, by (2.5) and Zorn's lemma, there exists a maximal convex subset H of R"

(with respect to inclusion), such that

o ((CO\DU)U{'y‘})g H, HNAD = . | (2.6)
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But, thén, H is also a maximal convex subset of R" such that HN DG=¢;
indeed, if not, i.e., if there exists a convex subset C of R" such that He C,H#C and
CND, =@, then co (o528 uU{y) cHeC, H£C and CND =, in ikl
with the maximality of H with property (2.6). Hence, since D is‘a linear subspace of
R", from [11], theorem 3.2 it follows that H is a hemi-space of type <L ,with associated
linear manifold M(H) = Dy ,s0 HUD is a hemi-spacé of type < ,with M(HUDG)z Dy
Therefore, by corollary 1.1, there exists a unique compatible total preorder p on Rn,

such that

Cp:HUDU,DpzM(HUDG)z DU' e (2.7)

Then, since CG\DOQH, we have CU«_:_HUDG: Cp ,80 p is an extension of 0,
Finally,?eHCHUDG:Cp.

Remark 2.2. Proposition 2.1 corresponds to a lemma of Szpilrajn ((16], p.387) on
general posets.

Now we can prove the following Szpilrajn type result.

s : n . : . :
Theorem 2.2. Any compatible preorder 0 on R is the intersection of its

compatible total extensions p satisfying (2.3).

Proof. By the equivalences (2.1) and (2.2) for compatible preorders, theorem 2.2

means that

C0 = f\\ Sl (2.8)

pef B

CG (;Cp ’Dp:‘DO

The inclusion < in (2.8) is obvious, recalling that f\cp = R" (but, actually,

pe®

{pe?] Cy &C, 4D, = DO};@ @, by corollary 2.2 below).

p’ P




In order to prove the opposite inclusion in (2.8), assume, a contrario, that there
exists an element : - - : ; '
ye(//i;~§\\ ERNE, | (2.9)

pe : : g
GG 1Dp=Dg
Thén,since y¢C6,by proposition 2.1 (applied to y = -y) there exists 0y eP with
?0 (ol OOk b Do,,such that -y eCp , whence, by (2.9), y eCp /\(-Cp ) = Con(_.co‘)’

)
e o : o o o
in contradiction with y ¢ Co e i

One can define a trivial compatible total preorder P, ©n Rn, by

V¥ (y,y' € R 3 (2.10)

then, by the equivalence (2.1 Pe is the largest com patible preorder on R". We shall call

the compatible preorders 07 P non-trivial.

Remark 2.3. a) By theorem 2.2, every non-trivial maximal compatible preorder
6 on R™ (i.e., admitting no proper extension to a non-trivial compatible preorder on rR™)
is total. However, the converse is not true, as shown e.g. by the lexicographical order
_<_L on Rn, which is compatible and total, but not a maximal compatible preorder on Rn;

indeed, it admits, for example, the proper extension P ¢ P defined by

T e
(nl,...,nn) p(n'l,...,nn) &, <y (2.11)

b) By the equivalence (2.1 and by {130y = __a non-trivial compatible

preorder p on R™ is rmaximal if and only if Cp is a closed half-space (since the closed

~ half-spaces are the maximal non-trivial convex cones),
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Corollary 2.2. A compatible preorder o on R" is total if and only if it is maximal

among those having the same indifference subspace D = C f\(-Co).

Proof. If oePisnot total, then, by theorem 2.2, it admits a proper total

extension p e with D_ = D0 ,s0 O is not maximal (among the compatible preorders

p
o] efpwnh Dp = DO).
Conversely, assume now that o is total and let p e P be any compatible preorder

such that 0 p 4D :Dc We shall show that pf o ,whence p=0,s0 0O is maximal

p
(among the p e P with Dp = DO). Assume, a contrario, that there exist y,,y, € R" such
that Yy p y2,' yl'ay2 .Then, since 0 is total, we have Y50Y s whence, by 0 5 p ,we obtain

YoP Yy Therefoke, Y- Y€ Dp = Dcs ,which contradicts Y 9Yye #

! : n
Let us consider now compatible orders on R"

Theorem 2.3. Any compatible order o on R" is the intersection of its extensions

to compatible total orders on R

Proof. This follows immediately from theorem 2.2, since a compatible preorder

p is an order if and only if Dp = {o}. ]

Note that, since the preorder p_ of (2.10) is not an order, every compatible

order is non-trivial.

In contrast with remark 2.3 a), we have now

Corollary 2.3. A compatible order 0 on R" is total if and only if it is maximal

. . . ¥ n
(i.e., admits no proper extension to a compatible order p on R ).

Proof. This follows from corollary 2.2, applied to Do = {o}. ¥
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Abstract. We introduce and study the concepts of segmential convexity and sepa-
rational convexity in a multi-ordered set (i.e., a set endowed with a non-empty fa-
mily of partial orders). We prove that, for a suitable family T of total orders on
Rn, the segmentially convex sets and the separationally convex sets in the multi-or—
dered set (Rnff) coincide with the usual (vector) convex sets in R®. Furthermore, we
study two concepts of discrete convexitygggggﬁéntial and separational convexity in
(z",7'), where T' is the family of restrictions to 7" of the orders belonging to T.
Also, we prove that the usual order convexity in a poset coincides with the segmen—

tial convexity and the separational convexity in some associated multi-ordered sets.

§0. INTRODUCITION

The aim of the present paper is to introduce two natural general concepts of
convexity of subsets G of a set 5, in terms of (partial) orders on S, encompassing,
as particular cases, various known notions of (continuous and discrete) convexity.
Our first concept is defined with the "segmential" (or "inner") approach, defining
first the notion of a "segment" <x,y> in S and then calling a set G "convex", if the
relations x,yeG imply <x,y>¢G. The second one of our concepts is defined with the

"separational" (or "outer") approach, calling a set G¢S "convex", if every xeS\G can

be "separated" from G, in a certain sense (defined in terms of partial orders on S).

Concerning the well-known concept of "order convexity" of a subset G of a poset
(S,<), we shall see in §2 that there exists no order relation £ on i (n22) for which
the order convex subsets of (Rp,g) are the usual (vector) convex subsets of B
Therefore we shall use, instead of posets, the following natural framework.

Definition 0.1. We call multi-ordered set an ordered pair (s,06), where S is a

set and 0 is a non—empty family of partial orders (i.e., reflexive anti-symmetric
transitive binary relations) on S.

Remark 0.1. a) In the particular case when @ is a singleton, say, 0 ={<}, the
multi-ordered set (S,0)=(S,{<}) can be identified with the poset (S,%).

b) Although not in the above generality, multi-ordered sets have been used e.g.
in [4] (in linear spaces) and [13], [14]; moreover, in [14] there has been introduced
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a concept of convexity in multi-ordered topological spvaces, different from those
introduced in the present paper. For other concepts of a set endowed with a family
of binary relations, see also [1] and the references therein.

In §1 of the present paper we introduce and study & —-segments and 0-segmentially
convex (or, briefly, Oéeg-convex) sets in a multi-ordered set (S,0). We also consi-
dervthe concept of an Oéeg—semi—space in (S,0), generalizing the notion of a semi-
—space in a linear space, introduced by P.C. Hammer [5]; the first fundamental re—
sults about semi-spaces in linear spaces have been obtained by P.C. Hammer [5] and
V. Klee [9].

In §2 we study segmential convexity in the multi-ordered set (RQ}TO, where T is
the set of all total orders on R which are compatible with the vector space struc-
ture of R". We prove that the (-segments of R coincide with the usual segments of
r" and, hence, ZJ —convexity in R coincides with the usual convexity in g

In §3 we show that segmential convexity in (Zn,Z”), where Z={...,~2,-1,0,1,2,...}
and T' is the family of restrictions to the subset 2" of R® of the order relations
belonging to T of §2, is equivalent to a concept of discrete convexity considered by
L, -Tupsa ({11}, [12])

In §4 we prove that the usual order convex sets of a poset (S,<) coincide with
the segmentially convex sets of same associated multi-ordered sets, having the same
"ground set" S. :

In §5 we introduce and study 0Lseparationally convex (or, briefly, O;ep—convex)
sets in a multi-ordered set (S,0), defined by means of a separation property by ele-
ments of ¢'. We show that every Oéep—convex set is Ogeg—convex, but the converse is
not true (in general). We also prove that, for any multi-ordered set (5,9), the fa-
mily of O;ep—convex sets coincides with that of ﬂgep-cbnvex sets in an associated
multi-ordered set (S,J) (with the same S), such that T consists of total orders.

In §6 we prove that in (R',7) (with T of §2), ’Z;eprconvexity, too, coincides
with the usual convexity in B E

In §7 we give some characterizations of separational convexity in (Zn,T") (with
T' of §3), one of which shows that separational convexity in (Zn/T“) is equivalent
to another concept of discrete convexity considered by L. Lupsa ([11], [12]). Hence,
‘we infer that there exist T;eg~convex sets which are not‘Tgep—conVex.

Finally, in §8, we prove that the usual order convexity in a poset (S,<) coin-
cides with O;ep—convexity in an associated multi-ordered set, having the same "gFound
set" 5.

We emphasize that the concepts of segmential and separational convexity in mul-
ti-ordered sets, introduced in.this paper, are motivated by the above mentioned re-
sults of §2 and §6, according to which the Z” —conveXlty and.?’ p)—convexity in
(R ,U) coincide with the usual convexity in Rp The proofs of both resqii;bgﬁglgiiigy
on a lexicographical separation theorem ([15], p. 258;see also [i6], theorem 27T,V lexico-
graphical separation theorem of V. Klee ([10], §2.4). Since the lexicographical order
on R" will play an important role in the sequel, we recall that x={gi}$ERn is said



to be "lexicographically less than" yz{ni}?eRn (in symbols, X<Ly) if x#y and if for
k=min{ie{1,...,n}|£i#ni} we have gk<nk. We write ngy if X<y or x=y. We denote by
(Rp)* the conjugate space of Rp, identified with R© in the usual way, and by 0 (R™)

the family of all linear isometries v:R R (for the euclidean morm |-l on R™).

§1. SEGMENTIAL MULTI-ORDER CONVEXITY

Definition 1.1. Let (S,0) be a multi-ordered set.

a) Given x,yeS, we define the 0'-segment <x,y>=<x,y>, by

i)
<x,y>=<x,y>v= ﬂ<x,y>? 2 (1.1)
where pel ;
<x,y>p={zes|either XpzZpy Or ypzpx} (pe) . (1.2)

b) We call a set Ge¢S, "0-segmentially convex", or, briefly, @geg—convex, if
<x,y><G (x,y€G) . (1.3)
In the sequel we shall assume, without any special mention, that (S,0) is a mul-—
ti-ordered set.

Proposition 1.1. For any x,yeS, the following statements are equivalent:
1°. <x,y>#0.

279 R Ve, TR

3°. For each pel, either xpy or ypx.

Proof. 1°=3°, by the transitivity of each pe0. Also, 3°=2°, by the reflexivity
of each pe0. Finally, the implication 2°=1° is obvious. '

We recall that an order p on S is said to be EQEE&! if for any x,yeS we have ei-
ther Xpy Or ypX.

Corollary 1.1. The following statements are eguivalent:

1-2% <x,y>o,#® (x,y€S).
2%, X Y€K, Yy (x,v€S) .
3°. All pel are total.

Remark 1.1. a) By corollary 1.7, implication 1°=3°, if there exists pe{ which
is hot total, then there exist x,yeS such that <x,y>g=®; thus, in this case, the
axiom J1 for "join geometries" (see [19], o. 209) is not satisfied. Moreover, let us
also note that, by proposition 1.1, equivalence 1°%=3°, for X,y€S we have
<x,y1y=® if and only if there exists p=p(x,y)eé? such that xpy and ypx, where § de-
notes the negation of o.

b) One may (and, sometimes, we shall) assume, without loss of generality, that
for (some, or all) pel we have p-150'(since the segments <x,y> remain the same),

where p”1 is the "reverse order" to p, defined by

X0 'y & ypx (x,v€S) - (1.4)
c) We have

<X,y>=<Y,%X> (x,veS) . (1.5)
Clearly, the whole set S, the empty set @, and every singleton {x},.(=<x,x>),

~ where xeS, are Oéegrconvex. Furthermore, we have

N




‘Proposition 1.2. For any x,y€S, the segment <x,y> is Ogeg—convex.

Proof. Let z,té<x,y>, ue<z,t> and pel. Then, there are eight cases:

i) If zpupt, xpzpy, Xptpy, then xpzpuptpy, whence xpupy, soO ue<x,y>p.
ii) If zpupt, xpzpy, yptpx, then zpuptpxpzpypt, whence z=u=t=x=y, so ue<x,y>p.
iii) If zpupt, yvopzpx, xptpy, then zpuptpypzpxpt, whence z=u=t=y=x, so ue<x,y>b.
iv) If zpupt, ypzpx, yptpex, then ypzpuptpx, whence ypupx, so ue{x,y>p.
Finally, the other four cases are obtained from i)-iv) by interchanging the
roles of z and t.

Proposition 1.3. a) For any pe(, each set McS such that

xXeM, U€S, Xpu =y ueM, (1.6)
i O;eg—convex.
b) For any pell, each set NeS such that
‘ x€eN, ueS} upx => ueN, (1.7)
1§_O;eg—convex.

Proof. a) Assume that pe@ and McS satisfy (1.6), and let z,teM and ue<z,t>.
Then, for each p'el, we have either zp'up't or tp'up'z. Let p'=p. If zpupt, then,
by zeM and (1.6), we have ueM. On the other hand, if tpupz, then by teM and (1.6)
we have, again, ueM. Thus, M is Cgeg—convex. ; 1

b) The proof is similar to that of part a). Alternatively, assuming that p 0
(see remark 1.1 b)), part b) follows from part a) applied to p—1.

For each aeS and pel;, let us denote
={xeS|xpal, épz{xe8|aﬁx}, (1.8)
xpalt; (1.9)
clearly, CaogMapU{a} and CéngépU{a}. The sets Cap have been called "upper cones" in

ap
= < g
o {xes|apx}, - {xes

[20], and the sets Cép may be called "lower cones", in the poset (S,p). The sets

MaO and Mép are useful in vector optimization.

Definition 1.2. We call O;eg—hemi~space, any set Mg¢S such that both M and S\M
are 0 -convex.

seg

From proposition 1.2 we obtain

Corollary 1.2. For any aeS and pe¢l, we have the pairs of complementary Oéeg—

~hemi-spaces

o, -,

Sl 8 Uialy OF Mal)r ] /C

Cép ap), (Mépu{a}, Cag\{a}). (1.10)
Proof.. 1T aeS, pel, xc—Map and xou, then ue’:Map (sincelotherwise xpupa, in con-
tradiction with xeMap), SO Mao satisfies (1.6). Furthermore, let x=a and xpu. If
u=a, then ueMapU{a}; if u#a, then upa, whence ueMangapU{a}. Thus, Maaj{a} satisfies
(1.6). Finally, if aeS, pe0, xeCaO and xpu, then uecap (since apxpu) and, if also
x#a, then ufa (by apxpu); thus, Cap and Capu{a} satisfy (1.6). With a sim%lar argu-
Vi
and Cédj{a} satisfy (1.7). Hence, by proposition 1.3,

ment (or, alternatively, assuming that o '€ and applying the above to o
follows that Map ,Mapy{a}, Cap
all eight sets in (1.10) are D; —-convex.

Definition 1.3. For aeS, we call O;egtsemi—space at a (or, OgengQPOint at a),




any maximal (in the sense of inclusion) O’ g,--convex subset of S\{a}.

Se

Corollary 1.3. If aeS is a p-minimal or a o-maximal element for some pe(, then

S\{a} is the only Oéeg—semi—space at a.

Proof. If aeS is p-minimal, i.e., if

' M, ={xes|xpa)=s\{a}, : (1.11)
then, by corollary 1.2, S\{a} is Oéeg—convex, and hence, clearly, a maximal 0§eg_
—convex subset of S\{a}.

If aeS is p-maximal, i.e., if

Mép={xeS| apx}=s\la}, (1.12)

the argument is similar. :

Proposition 1.4. For any pe(, the family of all subsets M (respectively, N) of

S which satisfy (1.6) (respectively, (1.7)) is closed under union and intersection.

Hence, the wnion and the intersection of any family of subsets of S whose all mem-

bers satisfy (1.6), or (1.7), is Ogegfconvex.

Proof. Let {Mi}. <S be such that each;M. satisfies (1.6), and let xe(\jMi ’

iel
ueS, xpu. Then xeMi for some 1 eI whence, by our assumption, ueMl el M, . Thus,
(e} O 1lel
\~jM satisfies (1.6) and hence, by proposition 1.3, it is Oseg~convex. For /’“\Mi
el : i€l

the argument is similar (see also proposition 1.6 below). For (1.7) the proof is si-
milar.

Corollary 1.4. For any set AcS and any pe0, we have the pairs of complementary

~hemi-spaces’
e P

(UM, ,MCL ), (UM JUA, (€ Nab) (139
aeh p" aeA P achA aeh

R S YE N RGN Yo, M, Nal)) (1.14)
aeA A aeh p aeA aeA

/‘\D P e ({"\M L«/CI (1.15)
a€eA & acA.aD aen ap aen p

Proof. This follows from proposition 1.4 and corollary 1.2, observing also that

the pairs in (1.13)=(1.15) are complementary. Indeed, e.g., for (1.13), we have

S\(uMap)—f\ S\M, )=\ CL

ashA ach aeA
S\U(LM, JuB) =S\ 01 ufah) =M (C; \{al).
aeh achA o ach &

Corollary 1.5. If AcS is an antichain (i.e., a set of pairwise incomparable ele-

ments) for some pel, then the sets

([\w UA4 f\M'puA, . (1.16)

aeh a€en

are 0’ g—hemi—spaces.
Proof Let us first show that (/“\Ma JUA satisfies (1.6). If xe[\\M - ,U€S, xpu,

ael o acA
then, by the proof of corollary 1.2, we have ue/A\M /“\w JUA. Assume now that
acA aeA
X€A, ues, xou, and ugfﬁ\M 5 , SO there exists a'€¢A such that upa'. Then xpupa', when-—

aeA
ce, since ‘A is an antichain, we obtain x=a'. Hence, again by xpupa', it follows that




u=a'eAc(/\M_ JUA. Let us show now that S\((/\M_ JUA) satisfies (1.7). If xeS\
A ap et ap
aehA aeh
\((/”\M JUA), ueS, upx, then x¢/”\M and x¢A. Let a'eA be such that x¢M_, ,i.e.,
ae 2P - aeA anp
xpa'. Then upxpa', so u#/ﬁ\M - We claim that u¢A. Indeed, if ue€A, then, by upa' and
ach
since A is an antichain, we obtain u=a'. Hence, by upxpa', it follows that x=a'eA,

in contradiction with our assumption that x¢A. This proves the claim that u¢A, and

thus ueS\( /"\M JUA). Hence, by proposition 1.3, (/\M_ JUA is an 0 —hemi-space.
aen aen ° =59

Finally, the result for (“\M' JuA follows by assuming that p-1eO’(see remark
: aeh
1.1b)) and applying the above to p 1.

Proposition 1.5. Assume that each pellis a total order on S and, for each a,xeS
with x#a, let

—{peU| xpalt, $glx={peﬁlapx}:ﬁ\ﬁzlx : . (et
Then, for any a,xeS with x#a, the sets
D ,x:{YES\{aH%,y:g,X}’ D! —{_yhc)\{a}],(’Iy-g)(;1 o (1.18)

d 1 N e, .
an Da’XU{a}, Dalxu{a}, are Oéeg convex

< Fix : eLZiplre 1 =P .
Proof. Fix z,t(Da,X and ue<z,t>. Let pcfélu If zpupt, then zpupa, so péiua o

on the other hand, if tpupz, then tpupa, so pfj; " Hence, in either case, by z,te

14
. =3 D ¢ 1 g - =D
€D, » e get pejgrx. Conversely, if 9633,x ,then, by Z’tCDa,X ,we have peP P =8 Bt
and hence peJ; " (indeed, if p¢]2 . ,then, since p is total, we have apupt when

{4 r
zpupt, and apupz when tpupz, whence, by pejg 7=32 AC get either a=t or a=z, con—
re I

tradicting z,teDa X). Thus, j> u—jg < Also, uf#a; indeed, if u=a, then ae<z,t>, so
14 I
either zpapt, whence péj; zn?' ~]‘ th & , whence a=t, contradicting teD < 1 OF
T I

tpapz, whence pejgrtnPé,Z=Zg,ZnPé,z ,whence a=z, contradicting zeDa’X. Thus, UEDa,X ’
which proves that D : is 0;egfconvex.

Now, let ZEDa,x and ué<z,a>, ufa. If pejg,u . then, by ue<z,a>, we have zpupa
{the case apupz cannot occur, since upa, u#a), whence pe}élz. Conversely, if péj;,z "
then, by ue<z,a>, we have, again, zpupa (the case apupz cannot occur, since zpa,

= < n ’) :' T - .
z#a, by ué<z,a>, ufa), whence p&ja,u' Thus, JD ,and Ja ” J i (by cha’X),
whence » =P  ,i.e., ueD_ _<D_ _u{a}. This Droves that D, u{a} is 0 -—convex
a,u "a,x a,x d,X a,x seqg
(since we have proved already that Da < is 0’ —convex).
4

Finally, the proofs for the sets Dé « and D' XU{a} are similar.
7 I

. . ~ . (.«’] . . 4 o
Proposition 146 The pair (S’“seg)’ where {geg is the family of all Oseg convex

subsets of S, is-an aligned space in the sense of [8], i.e.:

1. § and S are 0 —-convex.

w2 s i intersecti - is 0 —convex.
A.2. An arbitrary intersection of Oéeg convex sets 1is seq convex

A.3. The union of any family of Ogeg—convex sets totally ordered by inclusion,

is ' —convex.

Proof. Al has been observed before proposition 1.2. A2 and A3 hold for any

"segmential convexity" (i.e., defined by (1.3), for some concept of "segment" <x,y>).



By proposition 1.6, one can apply to the pair (S, f ) the theory of aligned

spaces (see [8])« In particular, for any set Ge<S, the 0’ —convex hull COy G of G
seg
is defined as the smallest O;eg—convex set containing G.

Proposition 1.7. We have

CO {x,y}=<x,y> (x,y€S) . (1.19)
seg 4

proof. By proposition 1.2, we have the inclusion ¢ in (1.19). The opposite in-
clusion = follows from (1.3).

Corollary 1.6. If there exists pe@ which is not total, then there exists no fa-

mily 7 of total orders on S, such that ?’ —convex1ty in S coincides with 0’ —con-

vexity in S. G i
Proof. If 7" is any family of orders on S, such that ?’ —convex1ty i 8 “coln-

cides with 0’ g—conveXLty in S, then, for any subset G of S the 3’ g_—convex hull of

G coincides W1th the Os g—convex hull of G, and hence, in partlcular, by (1.:19),

<X'Y?T:COTée‘{X’Y}:COU {x,y}:<x,y>U _ (x,v€S) . (1.20)
g seg

But, since there exists an order pe( which is not total, from corollary 1. 146 fol=

lows that there exists no family T°of total orders on S, satisfying (1.20).

§2. SEGMENTTALLY CONVEX SETS IN (Rn,T)

Let us first show that the concept of order convexity is not sufficient to en-
compass, as a particular case, the usual (vector) convexity in o

Proposition 2.1. There exists no order relation £ on R (nz2) for which the or-

der convex sets are the usual convex sets.

pProof. We recall (see e.g. [2]) that, for any poset (s,<), the order segments

of (S,<) are defined by

‘[x,y]={zes| xsz2y) (x,V€S) , {21
and that a subset G of S is said to be order convex, if
[x,y1cG (x,7€G) . (ZiZ)

Clearly, for any x#y in S we have either [x,v]=p or [y,x]=p, and hence Lx,yluly,x]
is an order convex set containing X and y; on the other hand, by (2.2), for any or—
der convex set G containing x and y, we have [x,y}u[y,xng. Thus,

co {x,y} [x,yJVly,x] (x,veS) , 2.3)

where co {x,y} denotes the order convex hull of {x,y}.

Assume now, a contrario, that there exists an order £ on Rn such that the order
convex sets are the usual convex sets. Then, by (2.3) we obtain, as in the above
proof of corollary 1.6, that

; [x,y]U[y,x]=cog{x,y}=coRp{x,y} ‘ (x,yeRn), (2.4)

where co 5 denotes the usual convex hull in b g x,y,z,teRn be any four distinct
R - ‘




points with zeco n{x,y}. We may assume that co n{k,y}=[x,y], whence z€[x,y], i.e.,

R R
x<zsy. Since [z,t]ult,z]=co n{z,t}#Q, we have either z<t or t<z, whence either x<z<t,
R ,
so ze[x,t]=co n{x,t}, or tfz<y, so zelt,v]=co n{t,y}. Thus, in either case, t belongs
R R

to the line determined by x,y and z, in contradiction with the arbitrariness of
55
teR Nx. v, 2},

We recall that an order p on R is said to be compatible with the vector space

structure of Rn, or, briefly, compatible, if

Y1PY] 1 Y0¥y = Y Y, 0¥ty o (2.5)

Yoy, A20 = Aypry'. (2.6)
We shall consider the multi-ordered set (Rnffﬁ, where

T'=the set of all campatible total orders on " (2.7)

Let us recall the following result of [18].
Theorem 2.1. ([18), theorem 1.2). For any peT” there exists an unique veO (RM)

§uch that

viy') (v,y'erRY). (2.8)

ypy'e viy)sp

mems@y,gW@1mw\mom%,ifwe&ﬁﬂw OWVEZ(Z8% umngﬁﬁ Conse—

quently, the mapping
6:V+QV > (2.9)

is a bijection of O(R") onto T.

Now we can prove the main result of this Section.
Theorem 2.2. In (RH/T), we have
<x,y>={ (1-\)x+xy| Ae[0,11} (x,yeR™), (2.10)

i.e., the T-segments of R" coincide with the usual segments of R Hence, T -con-
: ‘Sog

vexity in R™ coincides with the usual convexity in B,

Proof. Let zeé<x,y> and assume, a contrario, that z¢{ (1-\)x+\y| Xe[0,1]}. Then,
by the lexicographical separation theorem (1158] 4. 1a 258), there exists veO(Rn) such
that

: v (2) < v ((1=2) x+Ay) ety ) (2.11)

whence, in particular (for A=0 and A=1), v(z)<Lv(x) and V(z)<iv(y), that is, Zp X
\and Zp Y for pveffof theorem 2.1. On the other hand, since ze<x,y>, we have either
Xp Zp Y Or Yp,2Z0 Xr whence, by the antisymmetry of oy ,either z=x or z=y, in contra-
diction with z¢{ (1-A)x+xy|1e[0,1] }. Thus, we have the inclusion € in (2.10).
Conversely, let z=(1-A)x+\y, where A€[0,1], and, for any pel, let v:6—1(p)eO(RW
ofmmmmZJ.m@,Mme%ﬁhmmsm?ﬂmﬂm@eﬁmmvwngLorWW%wm
Hence, again since éL g dn € At Ve = (y), then

V(x)éLv((1—K)x+ky)=V(Z)éLV(y), (2.12)

while if v(y)éLv(x), then



v(y)ély((1—X)X+Ay)=V(Z)§LV(X). (2.13)

Therefore (by (2.8)), we have either xpzpy Or ypzpx, whence, since pe{ has been ar-
bitrary, zé<x,y>. Thus, we also have the inclusion 2 in (2.10), and hence the equa—b
lity.

Remark 2.1. Since the hemi-spaces and semi-spaces in R are known (see [17]
and [5]), so are, by theorem 2o Z;eg—hemi~spaces and'T;eg—semi—spaces. In the
converse direction, from corollary 1.2 and theorem 2.1 it follows that for each
VEO(R ) and acR , the sets

Mép-{xeR lap x}={xerR" \v(x)< v(a)}, ﬁ (2143
v
C'p”{XéR lxp a}={xeR" |v (%) < v (@}, : (2.15)
v
are hemi-spaces in B , and, from [17], theorem 2.1, it follows that these exhaust

all hemi-spaces "of rank n", i.e., all semi-spaces and all camplements of semi-spa-
ces in R". However, there are also other hemi-spaces in R., which might perhaps be

encompassed by a more general theory of "multiply preordered sets". Note also that,

since the other sets occurring in corollaries 1.2 and 1.4 for P=0y, (VeO(Rn)), are
again of the form (2. 14) or. (2.15) ; ard sihce nNo acR! is minimal or maximal (for
any peC) and every non—empty antichain in R (for any pel) is a singleton, corolla-
ries 1.2-1.4 and proposition 1.5 do not yield any further results in (Rn;f).

Proposition 2.2. In (Rn;F), for any aeRp ggg x#a, the sets Da . and Dé o of
p X T Ay T

(1.18) are the open half-lines
D, X={a+k(x~a)[x>o}, Délx={a+k(x~a))k<0}. | (2.16)

r

proof. It is sufficient to consider the case when a=0, i.e., to show that, for

any x#0, we have

Dy ={at| >0, Dy, —{xxlx/o} 2.0
%
Indeed, for any a,yéR we have
3;,y:{pet\ypa}:{pgtly—apo}:3%’YTa , (2.18)
and hence, if (2.17) holds for all x#0, then, for all x#a,
= < (& = ( :/D =
D {yeR \{a}IJ ey P e {yer" [ i JO,X_a}
- 1 i _”J e 2
=a+{y'€R \iO}\]’ B }—a+DOlX_a—

=a+{\ (x-a) | \>01= {aax (x~a) | >0},
and the proof for Dé < is similar.

Thus, let x#0. Then,

35 AX={QEZWXxp0}={p€UlXpO}=§g,X: (A>0), (2.19)
SO {XXIA>O}CDO ‘
Conversely, let yé{ix|\>0}. If y=0, then % =T Thus, since x#0, taking
any veo (®RY) with v (x) >0, we obtain pve't'\O b P , whence yeD . Oon the

other hand, if y#0, then, since x#0, we have yé{%x\AZO}, which is a closed convex

set in R'. Hence, by the classical strict separation theorem, there exists a func-



tional ®€(R')* with ||®||=1, such that Ll dyn

3 (y) >0 (Ax)=)® (x) (A20) . (2.20)
Then, in particular, we obtain ¢(x)<0 (by taking k—ngand o (y) 20 (by tahng A=0). é—\
nz22, since otherwise we would obtain y=0, a contradiction), take P e(R )* with
| |9 =1, such that ¢ and y are orthogonal, and y(y)>0; if &(y)>0, take ye(R™)* satis—

. ,@n(»(Rn)*,

fying the same conditions, except the last one. Furthermore, take &
such that for v:R™>R" defined by
V()= (0(x) Y (x) 05 (%), 0 (%)) - (xeR") (2.21)

we have VeO(Rn). Then, V(X)<LO (since ¢ (x)<0) and v(y)>LO (since either ¢(y)>0 or,

Bis

if &(y)=0, then ¢ (y)>0). Thus, for oy €T of theorem 2.1, we have pveja NG e when—
7 Y 4 .
ce y§Dy . Thus, D c{Ax|A>O}, and hence D, ~{AX|A>O}

Finally, the proof of Df ={xx|A<0} is similar.
7

§3. SEQMENTTALLY CONVEX SETS IN (Zn,T')

Now we shall consider the multi-ordered set (Zn,Z”), where

T'=t] ={p| _|peT} , (3.1)
' .y s
with Tof (2.7). By (3.1), the 7'-segments in % are
<x,yzr4=znn<x,y%y (x,yeZn). (3.2)

Therefore, from theorem 2.2 we obtain

Theorem 3,1, In (Zn,T') we have

<X,y%r,:Znﬂ{(1~X)X+Ay\ke[0,1]} (x,vez™) . (3.3)

Hence, a subset G of gh is Téeg~convex if and only if we have the implication

X,v€G, Ae(0,1], (1=A\)x+\yeZ =% (1-)) x+Ay€C. (3.4)
Remark 3.1. The sets Gez™ with property (3.4) have been called, in [12], 2=con-

vex sets.

§4. SECWENTIALLY CONVEX SETS IN MULTI-ORDERED <:‘

———— SRR “"/’

“ SETS ASSCCTATED TO POSETS P

For any poset (S,$), it is natural to consider the multiordered sets (S,{<})
and (S, {£,2}); note that 2 is nothing else than §_1, in the sense of (1.4), so re-
mark 1.1 b) applies.

-Proposition 4.1. For a poset (S,<), the multi-ordered sets (S,{s}) and (S,{%,2}),

and any x,yeS, we have (with [x,y] of (2.1))

Byl Af xgy
<X, ¥>p = [x,y]Uly,x]= =<x,y> . (4.1)
i Bzl if s {5’2}

Hence, for a subset G of S the following statements are equivalent:

% o . P < o
1% @ is {:}Seg convex.

o 1 <2 —
2°. G is {:’z}seg convex.



3°, G is order convex.

Proof. Obvious from the definitions.

Some further remarks on posets and related multi-ordered sets are collected in
Remark 4.1. a) Given any multi-ordered set (S,3), where T is a family of total

orders on S, one can define an order éﬂlon S, by

ngy & XpY (x,y€S,ped) - (4.2)
However, then segmential convexity in (S,7) need not coincide with order convexity
in (S,gy) and, in fact, gq,may be the "trivial order" on S, in which

e,

xéyy & X=Y (x,v€S) ; (4.3)

indeed, in particular, if J contains p and p—1 (for example, if (S,T)=(Rn,?ﬁ, with
T of (2.7)), then we have (4.3), and hence every set in (S,éy) is order convex.

b) R. Jamison-Waldner [7] has observed that in a poset (5,5), at each aeS
there exist at most two semi-spaces; namely, if aeS is not maximal and not minimal,
then Ma<

and Még of (1.8) above (with p being £) are the only semi-spaces at a
(while if a€S is minimal or maximal, then corollary 1.3 above applies). It is an un~
solved problem to find the semi-spaces for segmential convexity in multi-ordered
sets (S,0).

by an order [6], if there exists an order < on S such that {, coincides with the fami-
ly of all order convex sets in (s,5). In [6], R. Jamison-Waldner has given necessa-
ry and sufficient conditions for an aligned space (S,%) to be determined by an order
(in terms of "natural" properties of aligned spaces). It is an unsolved problem to
extend this result to an aligned space (S,£) "determined by a family of orders"
(replacing order convex sets by O;eg~convex sets, in the above definition).
Tn connection with remark 4.1 b), let us give the following result on posets,
which may have some interest for applications.
Proposition 4.2. In any poset (S, 54 Egg_ﬁgmglz
ﬂ:{MaglaeS}U{MéélacS}US (4.4)

is an intersectional basis for the family of all order convex sets, i.e., for every

order convex set G¢S we have

G M (4.5)
MeH
GeM

Proof. Iet Ge¢S be order convex. Since the inclusion € in (4.5) is obvious, it

will be enough to show that for each a¢G there exists Me#, namely, either M=M
M—M' , such that GeM (indeed, then, by a¢M a does not belong to the right hand side
of (&.5)). Tf, a contrario, G4Ma= and G¢b g , then there exist gT,gzeG with g1§a_g2,
whence, since G is order convex, it follows that aeG, a contradiction.

Remark 4.2. It is an unsolved problem to find an intersectional basis for the
family of all segmentially convex sets in a multi-ordered set.

Finally, let us give a characterization of the family of all order segments in

a poset, which will imply again proposition 2.1, and may have some other applications.

fl



Proposition 4.3. Let S be a set and let {<a,b>}a beS be a family of subsets of
i

S. The following conditions are equivalent:

1°. There exists an order relation £ on S such that
[x,y)=<x,y> . (x,y€S) , (4.6)
where [x,y] is the order segment (2619 A0 8BS
2°%. Ve have
x,x>={x} (x€S), (4.7)
<x,y>={z€9Kx,2>#P, <z,y>#P} (x,v€S) . (4.8)

Moreover, in this case the order £ of 1° is unique, namely, it is the order de-

XSy <= <x,y>#P. : (4.9)
Proof. 19 =52°, Assume 1°. Then, by (4.6), for any xeS we have
ZE<K, X> &> XSZEX = 2=X <3 2 €e{x},
which proves (4.7). Now, let x,yeS. Then, by (4.6),
ZE<X,Y> =p XSZEY = X,2€<X,2>, Z,Y€<Z,Y>,
which proves the inclusion < in (4.8). Conversely, let z¢S be such that <X, 2>#P,
<z ,y>#@, and take any te<x,z>, se<z,y>. Then, by (4.6), we have x<t<z<ssy, whence,
again by (4.6), ze<x,y>. This proves the inclusion 2 in (4.8), and hence the equality.
20 5 1°. Assume 2° and define a binary relation € on S, by (4.9). Then, by @4.7),
we have xe{x}=<x,x> (x€S), whence, by (4.9), xsx (xeS). Furthermore, if xSy and ysx,
then, by (4.9), we have <x,y>#) and <y, x>#p, whence, by (4.8) and (4.7) we obtain
ve<x,x>={x}, i.e., y=x; thus, £ is anti-symmetric. Also, if uszsy, then, by (4.9),
we have <x,z>#@ and <z,y>#@, whence, by (4.8), we obtain ze<x,y>#0, and hence, again
by (4.9), Xsy; thus; is transitive, which proves that < is an order on S. Finally,
for any x,y,z€S we have, by (4.9) and (4.8),
ze[x,y ] x$28y & <X, 240, <z,y>¢®<¢>ze<x,y>,
which proves (4.6).
Finally, in order to prove the uniqueness statement, let £ be any order on S
satisfying (4.6). Then, for any x,ye€S, we have
XSy = X,y €[x,y]=<x,y> => <x,y>#0,
and, conversely,
<x,y>#0 < I ze<x,y>=[x,y] = x5y,
which proves (4.9).
Remark 4.3. a) Proposition 4.3 implies again proposition 2.1, by (2.4) and since

the family of all usual segments co n{x,y} in R® does not satisfy (4.8).

b) It is an unsolved problem\hg“find a corresponding characterization of the

family of all U-segments in a multi-ordered set (s,0).

§5. SEPARATIONAL MULTI-ORDER CONVEXITY

Definition 5.1. Let (S,0) be a multi-ordered set. We call a set G<S, "('—separa-

tionally convex", or, briefly, D;ep—convex, if for each erS\G there exists an order




\)
p=p(xo)60'such that (where P denotes the negation of p)
xoﬁg : (geG) . (5.1)

Remark 5.1. a) In other words, G is Oéep—convex; if every outside point xO can

be "separated from G by some order p=p(xoki7“; this motivates our terminology. Note

also that this definition is of different type from that of Ogeg—convexity, which
has involved all pe0; also, Cgep—convexity is a "one-sided" concept (see (5.1)),
while Oéeg—convexity is ‘a "symmetric" concept (see (1.5)).

b) When all pe( are total, a set GsS is O;ep—convex if and only if for each

erS\G there exists p:p(xo)eU such that
grx, (geG) . (5:2)

c) In contrast with the case of Oéeg-convexity (see remark 1.1 b)), if ¢'=

:§U{p~1}, for some pel, then ogep—convexity need not coincide with Géep—convexity
(see remark 5.2 and proposition 5.2).

d) In contrast with the case of O;eg—ccmvexity, a singleton {x}, where x¢S,
need not be G;ep~convex. Indeed, for example, when U={p} (a singleton) and xopx, XO#
#x, then {x} is not Oéeprconvex. Also, an 0~segment <x,y> need not be Oéep“convex.
Indeed, for example, if O={p} and ypx, y#x, then <x,y>={zeS|yozpx}. Hence, if X PYr

xo#y, then XO¢<x,y>,-Xé<x,y> and X _0YpX, SO (5.1) -(with G=<x,y>) is not satisfied,

arnd therefore <x,yv> is fot @ -—convex. Thus, § —convexity does not imply o -
sep seg ' - sep
—convexity.

e) Clearly, the whole set S and the empty set @ are Oéep—convex.

Proposition 5.1. For any pell, each set Ne¢S satisfying (L) i Oéep~conv§§.

Proof. Let XC§N. If (5.1) (with G=N) does not hold for the given p, then there

exists x'eN such that xopx', whence, by (1.7), we obtain erN, in contradiction with
our assumption. Thus, for any xcgN and for the given p (which .does not depend on XO),
we have (5.1) (with G=N).

Corollary 5.1. For any set A¢S and any pel, the sets (\C! ,/ﬂ\(Cé NAat),
ael ael

Y W 1 U P, p—
sggqap ' (;ejz_;/iap)uzx, éﬁfap and aQAMap r.of (1.13)=11.15), awe O . scomvex.

Proof. By the arguments of §1, these sets satisfy (1.7), and hence, by proposi-
tion 5.1, they are 0 _-—convex.
sep

Remark 5.2. The results corresponding to proposition 1.3 a) and its consequen-—

ces given in §1, do not hold, in general, for Ogep—convexity. Moreover, let us show
that if U:{p}, where o is total, then no set M (different from @ and fram S) satis-—
fying (1.6) is Ogep~convex. Indeed, if XC§M and (5.1) holds (with G=M), then, since
p is total, we have XpX for all xeM, whence, by (1.6), we obtain‘xCFM, in contra-
.diction with our assumption. Thus, M is not Géep—convex. However, for any multi-or—
dered set (S,0), we have

Proposition 5.2. If for same pelwe have 54603 then each set McS satisfying

(1.6) is 0 —convex.




Proof. lLet XO¢M. We shall show that
-
P X (xeM) , (5.3)
which, since pqe 0, will prove that M is Ofsep~convex. If (5.3) does not hold, then
there exists x'eM such that xop—1x‘, or, equivalently x'pxo. Hence, by (1.6), we

obtain erM, in contradiction with our assumption. Thus, M is Ogep—convex.

Definition 5.2. We call Oéep—hemi—space, any set M¢S such that both M and S\M

are § —convex.
sep

Corollary 5.2. If for some pe( we have pfqeOQ then, for any set AcS, (1.13)-

. =(1.15) are pairs of complementary Oéep—hemi—spaces, If, in addition, A is an anti-

chain for p, then the sets (1.16) are Oéeprhemi—spaces.
proof. By the above proofs of corollaries 1.4 and 1.5, these sets satisfy (1.6)

or (1.7), so the result follows from propositions 5.1 and 5.2.

Proposition 5.3. An arbitrary intersection of Usep-convex sets in Uéep—convex.
Proof. Let {Gi}iel be a family of Ogep—convex subsets of S and let x ¢/M\G, .
i€l
Then there exists i eI such that x ¢G. . whence, since G, is 0 _-—convex, there
o oL ko sep

exists p=0; (xo)eO'such that xoag for all geG.l , and hence, in particular, also for
o o)

all ge/ GG, .
: Sle
1lel o
Remark 5.3. We do not know under what conditions on 0 is the union of any family
of Oéep—convex sets, totally ordered by inclusion, again U;ep—convex, i.e., under
what conditions is the pair (S,%;ep) an aligned space, where %sep is the family of

all Uéep—convex subsets of S (cp. proposition 1.6). Nevertheless, proposition 5.3

permits'us to define the Oéep-convex hull COy G of a set GeS as the smallest
sep

ﬁéeprconvex set containing G.

Now we shall show that, as concerns total orders, the situation for Ogep"conve—
xity is better than the one for Oéeg-convexity, described in corollary 1.6. To this
end, we need scme preparation.

Let us recall that an order p, On a set S is said to be an extension of an or—
der 01 on Spoif

Yooy (y,y'€S, yp¥'),  (5-4)

and that, by a classical theorem of Szpilrajn [21], every order relation p on a set

S admits a total extension T on S

ILemma 5.1. Let p be an order relation on a set S and let Ge<S and erS\G satis—

fy (5.1). Then there exists a total extension 1 of p on S,‘such that
gTx (geG) . (5:.5)

Proof. Let
[c)={xes| 3geG, xpg} - - (5.6)



Then,by (5.1), x eS\JG] By Szpilrajn's theorem, there exist total order re—
lations Tyr Ty O LG] and S\[G], respectively, extending the restrictions of p to
these sets. Let us define a binary relation T on S, by saying that xty, if one of
the following conditions holds:

a) x,yelG] and XT,Yi

b) x,yeS\[G] and XT,Yi

c) xe[G] and yeS\[G] -

Cclearly, T ls a total orderon.5. Furthermore, if x,yeS are such that xpy, then
we cannot have xeS\[G] and ye[G], since otherwise, by ve[G], there would exist geG
~ such that ypg, whence Xpypd, contradicting xeS\[G]. Therefore, if xpy, then we have
the following three possibilities:

1) x,y€lGl; in this case, XT.Y (since T extends the restriction of p to[@},
whence Xty. ‘ v

2) x,yeS\[G]; in this case, XY (since Ty extends the restriction of p to
S\[G]) , whence x1Y.

3) xelGl, yes\[G], whence, again, xTy.

This proves that T is an extension of p. Finally, by G¢[G) and xOéS\iG], we have
(5.5}

Now we can prove the result on total orders, announced above. Namely, in con-

trast with corollary 1.6, we have

Theorem 5.1. For each multi-ordered set (S,0) there exists a family T of total

orders on: S, such that 3:ePrconvexity in 8§ coincides with 0;60~convexity in S.
fel .’L

proof. The family T defined by
=t 4 B

pell P
where, for each pe(,

J ~the family of all total extensions of p, (5.8)
has the required property. Indeed, each ﬂ“ ~convex set G is 0’ p—convex, since if
X ¢b and 1eF satisfy x 19 (g¢G) , then for pcO’such that Icﬂv , we have (5.1). Conver-—
sely, if£ G is an @’ p—convex‘%ﬁg %q% ifax ¢G and peO’satlsfy (5.1), then, by lemma
5.1, there exists [eﬁ ¢T3 Yand hénce, by remark 5.1 b), G is 3 e CONVEX.

Remark 5.4. By theorem 5.1, in the study of 0' p—convex1ty it is no restriction

of the generality to assune that each pel is total

Theorem 5.2. Uéep—convux1tv implies U g—convexity

25992 Let G be an 0"p~convex subset of g, and assume, a contrario, that G is
not Ggeg~convex, i.e., that there exist x,y€G and xoc<x,y>, such that x ¢G Then,
since G is 0’ p—convex, there exists p=p(x cO satisfying (5.1), whence, in parti-
cular; X px and x py (since x,y€G). But, by X e<x,y> for this p we must have either
X0X Y s Wthh contradlcts X 0Ys or ypx pX, whlch contradicts X oOX-

Remark 5.5. The converse implication need not hold, even when each pe(is total,
as shown by remark 5.1 d). However, theorems 2.2, 6.1 and, respectively, proposition

4.1 and theorem 8.1, show two important cases when O;ep—COHVQXlty coincides with




0;eg—convexity. In the general case, we do not know under what conditions onl is

every 0 _-convex set 0 -convex.
seg sep

§6. SEPARNTTONALIY CONVEX SETS IN (RV,7)

Let us consider the multi-ordered set (Rnft), with 7 of (2.7) (so every p
is total).

Theorem 6.1. Uéep-convexity in R* coincides with the usual convexity in B

proof. If GeR" is Oéeprconvex, then, by theorem 5.1, G is Oéeg—convex, and hen-
ce, by theorem 2.2, G is convex.

Conversely assume now that GeR" is convex, and let xoeRn\G. Then, by the lexi~
cographical separation theorem ({151, p. 256), there exists VéO(Rn) such that

v (g)<1j/(xo) (geG) « (6.1)

Iet p=pVeT’of theorem 2.1. Then, by (6.1) and (2.8), we have 9n%, for all geG,

and therefore, by remark 5.1 b), G is 0;ep—convex.

Remark 6.71. Actually, theorem 6.1 is equivalent to the lexicographical separa~

tion theorem.

§7. SEPARATIONALLY CONVEX SETS IN (Zn,T')

Iet us consider now the multi-ordered set (Zn;?") of §3 (so every peT' is to-
Eal)s

Theorem 7.1. For a subset G of Zn, the following statements are equivalent:

19,6 a3s Tl —convex:
== "sep ——— "
2°. There exists a convex subset C of R, gggg_that

G=z"nc. i (7.1)
3% We heave
G=z"nco G, (7.2
n
R
where co . denotes the (usual) convex hull in Rn.
R
4°, For each erZn\G there exists V=VX éO(Rn) gggb;thag
(@)
v{g)< v () (geq) . (7:3)

Proef. :1° =»4°, Tf 1° holds and erZn\G, then, by remark 5.1 b); there exists
pzp(xo)(f't'i such that we have (5.2). By (3.1), let poef’be such that p=p0] . and, by
Z

theorem 2.1, let.v:6~1(po)eO(Rn). Then, Joy (B.2), - {2:8) and XO¢G, we have (7.3).
4% = 3% Since the inclusion ¢ in (7.2) is obvious, it is enough to show that

4° implies the inclusion 2 in (7.2). Assume 4° and let XernAco G- If x _¢G, then
R

by (7.3), we obtain x _¢co B a contradiction.
R
The implication 3°=»2° is obvious.




2° = 1°. Assume 2° and let xogzn\G. Then, by (7.1), we have XO¢C, and, by
theorem 6.1, C is’(‘_;ep—convex.Hence, by remark 5.1 b), there exists B (xO)G'C' such
that ‘

Xp X (xeC) . (7.4)

Consequently, for p=po‘ néfd we have (5.2) (since GcC by 17.1)), and thus, by remark
7

5.1 b), G is T -convex.
sep

Remark 7.1. a) The sets Ger™ satisfying (7.2) have been called, in [12], strong
convex sets. Moreover, by [12], proposition 3.1, condition 2° is equivalent to

5°. G is p-convex, where p=dim G+1, i.e., we have the implication

'O

55 p
1XixieZ :@iz1kixieG. (7:25)

Also, by [12], example 1.3, the subset o=l 13) 10,2, (2.1) Fiof 7% is 2-convex,

X

qrece

D
> =
s Ap20s ¥ A=ty

X €GN
P i=1 i

il o~

SRR : . 2
but not 3-convex; hence, by the above, G is ?éeq—convex, but not‘réep—convex, i g 8

For other related results, in a more general framework, see (12].

b) The equivalence 1°¢e= 4° means that a subset G of 7" is Téeprconvex if and
only if each outside point XOGZD\G "can be separated from G by a linear isometry
veO(Rn)". Iet us recall the similar concept of "W-convexity" (due to Ky Fan 31, . dn
which one separates (strictly) X and G by real-valued functions (instead of opera—
tors V:Rn+Rn): Tf WgR(Rn) (where R(Rn) is the family of all functions ¢:Rn+R), a
subset G of 7P is said to be W-convex, if for each erZn\G there exists a function
w=W_ € W such that

o

sup w(G)<w(XO). ‘ {7.5]

In particular, for W:(RD)* (the dual of Rp) one can show, similarly to the
above, that @z ds (Rn)*-convex if and only if
c=z'nco G, (7.7)
R

where co , -denotes the closed convex hull in R®. Hence, since co G is convex, from
R R
theorem 7.1 (implication 2° =19%) it follows that every (Rn)*—convex subset G of e

is Téep—convex. However, the converse is not true, as shown by simple examples (of

infinite sets).

§8. SEPARATTONALLY CONVEX SETS IN MULTI-ORDERED <
CepTs ASSOCTATED TO POSETS

For a poset (S,5), let us consider again the multi-ordered sets (s,{s}) and

(5,{5,2}) (see §4).
Theorem 8.1. Let (S,<) be a poset. Then, a subset G of S is {é,z}sep"convex

if and only if it is order convex.

Proof. Assume that G is {£,2}-convex, but not order convex, sO there exist

g1,g26G and erS\G, with g1§xogg2. Then, since G is {g,2}-convex, we have: (5:0) ei—



st ol

ther for p being £, or for p being 2, i.e., either xo$g (geG) , which contradicts
X 59, 1 OF xoig (g€G) , which contradicts g, <x .

Conversely, assume now that G is order convex, but not {<,2}-convex, so there
exists erS\G such that neither xoﬁg (geG) , nor xoig (geG) . Then, there exist
q1,q2eG such that g1§x0§g2. Hence, since G is order convex, we obtain erG, which
contradicts our assumption on X -

Remark 8.1. By theorem 5.1 and proposition 4.1, every {é}sep~convex set is or—

der convex. However, the converse is not true, as shown e.g. by remark 5.1 d):
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