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space X is ealled g-complete if there exists a snooth

convex function ¢:Il—R such that {@<C}G:K Tor any celX,
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4 48 called strongly g-concave il there exists a smooth funciion

stronsly g-convex outside a compact set and




such that {<P>6}CC 3 for any g 0.

IT. X is & couplex space we denote by Fq(K) the strongly g-convef
functions with corners on X% ([3] [4] ,EL@ ) i.e. those continuous
functionsg on X such that for any xeX there is an open neighbour-—

hood U= U(“) of' % &nd'szi ely many smooth strongly g-convex func-
tions fl"’“’ls on U such that f]U:ﬁaX(fl,..,,fs).In Ei]‘and [@]
Diederich and Pornsess have vroved the following :

Theorem 1, Let X be a complex spabe of dimension n,f€F ’“),

1éqén,nnd7><aza continuous function on X,Then there exists a smooth
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particular case g=n,hence o n.

Let ue also reecall sone results concerning polydisce in complex
mani: 07’" (qﬂﬂ[(] [7] ).4An open subset of a complex manifold X
of dinm lon'n is ealled pol"isc if it is biholomorphically equi-
valent to.the unit polydise Uq:un,Forna,ss and Stout [7] have
snown 3.
Theorem 2, any connected complex manifold has a finite cove-
ring with polydiscs.
If YicX is a polydisc in the complex manifold X, the subset | lccw
is said to be a_concénﬁric polydise 1T for sone biholomofphic map
y: U=V there is re€(o,1) such that 47 rUg{.a 7€l Y, then V= —¢(rU) |
T5 ([é] yLemma 3) it 1s proved: if151 amd.AQ are disjoint poly-
discg in the complex connected manitold X and if AI]CCAq ,A;CCA?
are concentric polydiscs,then there exis & polydisc ACE contai-
/
nlﬁf,Al andzﬁ?.From this statement it follows easily :
Corollary 1. If X is a connected complex manifold end ACK &
finite set then there is a polydisc e cont beining A,
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§?o The concave case

In th:

Ld.

ls section we obtain,as a consequence of the approximatior

theorem of Diederich and Pormaess (Theorem 1), the following:

Theorem 3, Any n-dimensional irreducible complex gpace X is
gstrongly n-concave,
"In fact we establish a stronger result,which ciearly implies
the above statement,namely:
Theorem 3'. TLet X be an irreducible n-dimensional complex

spabe,zOGX any point and V:V(ZO)CCK-any neirhbourhood, Then there
exists a smooth Tunction _@:X—e(o,mﬂ which is strongly n-~convex

outside V and such that {Q)EBCC ~ for any g0,

We first verify that Theorem 3' holds when X is the unit POly-—
disc UM,
Lemma 1.  Theorem 3' holds if i=U%,
Proof
By means of an automorphism of o™ we ey assume

We nmake also the followin@ remark: Letgzcﬁ be an open set,

.

P=Plu,d) Q?)([ 1 i]1~&P a continuous function and define Ft(u):?cu,%\

n) = S Tu,t)dt. e assune that T, is subharmonic on 2 for anv t.
n v =

ma E“i'[] o e B . ‘

Then ¢+ a) T is subharmonic and continuous orzgz

b)- if moreover I, is strongly subharmonic for t in a get

-+

of poci"x Lebesgue measure then £ is stronsly subharmo-
nic and continuous on G2
The proof of this statement is straightforward and is ormited,
Let &(z)>0 zeUN{o} bve ¢%and "small® (venishing rapidly nt

the boundary B(TA-kﬁ))qﬂd)& b (ol )/O‘Qb)iﬂwﬁ)CEl,ﬂ and
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If €(z)>0 ig small enough (vanishing rapidly at the boundary

o ik 0§ ) ¢ is smooth,9>0,9—>0 at au™ and ¢—ee at o,

Wle show that,if in addition the first and second d@fiVUbLVC of €
are small enough, ¢ is strongly n-convex on Uﬂ\{ﬁﬁ (by modifying
¢ weal o we will ged then the requirgd funection).
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Let z €U~{o] be any point and L(z"°) the complex line pagsing
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llear z ,on L(z ),we have z=uz  with a complex pas

through o and z :
ameter u in a neighbourhood of fet,

-

- : = ; o) 0 " .
de consgider first the case }zl\:..&:\zn\:d>o.Tnon the restric-

tion of ¢ on L(z°),as a function of u,has the following form :
e (Al AME A d #
(P _‘[ L max (o2 ful*- E(UZEIt ;) L2 |2 E(uzo)tn)
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IT € and its first and second derivatives at z° are anall enouzh
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strongly subharmonic in a fixed

then the function u=—>y——s—
o Hul-EU M

nei-1hourhood of €% Tor any -l<u<l, Tor t:(ti,.,,,tn)é[Fl,i]n
7\{1&‘) - A (tn) ot Ty !
For any T ¢y is sub-

congider the func on u
3 i LPJL( > dg_ L{P-«E(di")ﬂ?'”(f )
honmonic and for t in a set of positive Lebesrue measure @t is

stronzly subharmonic.ly the r@mnrk nade at the bezinning of the

prool @ -0 is stronsly subharmonic in a neighbourhood of z°
: JJ(J ) iiolog) : 9
hence,being smooth,it ig also stronsly subharnonic alone the lines
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parallel to L(z ) (in a neishbourhood of z°),
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Congider now the zeneral case.e may agssune thet fz?
: _ : i

o O s oy P :
]” ;,..>lz,!.ii E i sufficiently onsll st zo,then on L(zo)\
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(near z° ) nmax

,..,a\\u\ ~Elor )t where <t1"°-vtq>é[;lsi]ﬂ and u is in a

Tixed nei;h“ourhood of {e€,3ince Nt)at=1 1% Pollows that on
R
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Lemma3.,  Let X be a complex space,icX a closed anslytic subset,

I8 ~
open neighbourhood V of A and fGFO(V) such that ‘P Liv on A.
Proof
By a perturbation srpgunent we see that there is a losally finitd

near U, (which admit smooth strongly g-convex exten-
Nheota 17 » ~— T =47 G T \
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P:L—>(002) be a smooth function such that {%>Eﬁ;x:7 Tor

2 v
and q:@l near A.Clearly ¢ setisfies the re~uired provner

Lemme. 5, Fetnslo.a ~—>(0,00) he any continuous function

there ex

e
)

S
2
Gy
192}
O
Q

23
-

v: (0,00)—>(0,0) guch %that v<u on (0,8] and 1lim v(%)=0,
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The.proof is elenentary and is ormited,
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We show now That the method used to prove

Proof of *the theorem of "liorguet and Siu
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