INSTITUTUL DÈ MATEMATICA INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

SOME CONSEQUENCES OF A THEOREM OF DIEDERICH
AND FORNAESS ON Q-CONVEX FUNCTIONS WITH CORNERS

by

Mihnea COLTOIU
PREPRINT SERIES IN MATHEMATICS

No. 72/1990

SOME CONSEQUENCES OF A THEOREM OF DIEDERICH
- AND FORNAESS ON Q-CONVEX FUNCTIONS WITH CORNERS

by

Mihnea COLTOIU*)

November 1990

^{.*)} Institute of Mathematics, Bd. Pacii 220, 79622 Bucharest, Romania.

Some consequences of a theorem of Diederich and Fornaess on q-convex functions with corners

by Mihnea COLTOIU

Let X be a complex space and denote by $F_q(X)$ the set of all functions $f: X \to \mathbb{R}$ such that for any $x \in X$ there exists an open neighbourhood U of x and finitely many smooth strongly q-convex functions f_1, \ldots, f_s on U such that $f|_{U}=\max(f_1, \ldots, f_s)$. These are the "strongly q-convex functions with corners" ([3], [4], [14]). The main result in [3], [4] shows that on a complex space X of dimension n for any $f \in F_q(X)$ and any continuous function $g \to 0$ on X there is a smooth strongly $g \to \infty$ function $f \to \infty$, with $g \to \infty$, such that $|f \to f| < g$ on X.

In this paper we consider only the particular case q=n.Hence the above theorem of Diederich and Fornaess asserts that on an n-dimensional complex space any strongly n-convex function with corners can be approximated uniformly by smooth strongly n-convex functions. We get easily from this last statement that any irreducible n-dimensional complex space X is strongly n-concave and, if addition X is non-compact, then X is n-complete. The n-completeness is a well known result of Ohsawa [13] (see also [2], [8]).

§1. Preliminaries

We recall some classical definitions [1] :

A complex space X is called q-complete if there exists a smooth strongly q-convex function $\varphi: \mathbb{X} \to \mathbb{R}$ such that $\{\varphi < c\}_{CC} \times \mathbb{X}$ for any $c \in \mathbb{R}$.

I is called strongly q-concave if there exists a smooth function $\phi\colon\mathbb{T}\to(o,\infty)$ which is strongly q-convex outside a compact set and

such that $\{\varphi > \epsilon\} \subset X$ for any $\epsilon > 0$.

If X is a complex space we denote by $F_q(X)$ the strongly q-convergence functions with corners on X ([3],[4],[14]) i.e. those continuous functions on X such that for any x \in X there is an open neighbourhood U=U(x) of x and finitely many smooth strongly q-convex functions f_1,\ldots,f_s on U such that $f_{U}=\max(f_1,\ldots,f_s)$. In [3] and [4] Diederich and Fornaess have proved the following:

Theorem 1. Let X be a complex space of dimension $n, f \in \mathbb{F}_q(X)$, $1 \le q \le n, \text{ and } \gamma > 0$ a continuous function on X. Then there exists a smooth strongly q-convex function \widetilde{f} on X, where $\widetilde{q}=n-\left[\frac{m}{q}\right]+1$, such that $|f-\widetilde{f}|<\gamma$ on X.

In fact in our proofs we shall need this theorem only in the particular case q=n, hence $\widetilde{q}=n$.

Let us also recall some results concerning polydiscs in complex manifolds (see [6], [7]). An open subset of a complex manifold X of dimension n is called polydisc if it is biholomorphically equivalent to the unit polydisc $U^n \subset C^n$. Fornaess and Stout [7] have shown:

Theorem 2. Any connected complex manifold has a finite covering with polydiscs.

If WCX is a polydisc in the complex manifold X, the subset $\mathbb{W}_1^{\text{CCW}}$ is said to be a concentric polydisc if for some biholomorphic map $\psi: \mathbb{U}^n \to \mathbb{W}$ there is $\mathbf{r} \in (0,1)$ such that if $\mathbf{r} \mathbb{U}^n = \{\mathbf{rz} \mid \mathbf{z} \in \mathbb{U}^n\}$, then $\mathbb{W}_1 = \psi(\mathbf{r} \mathbb{U}^n)$. In ([6], Lemma 3) it is proved: if Δ_1 and Δ_2 are disjoint polydiscs in the complex connected manifold X and if $\Delta_1^{\text{CC}}\Delta_1, \Delta_2^{\text{CC}}\Delta_2$ are concentric polydiscs, then there exists a polydisc Δ CX containing Δ_1' and Δ_2' . From this statement it follows easily:

Corollary 1. If K is a connected complex manifold and ACK a finite set then there is a polydisc WcX containing A.

§2. The concave case

In this section we obtain, as a consequence of the approximation theorem of Diederich and Fornaess (Theorem 1), the following:

Theorem 3. Any n-dimensional irreducible complex space X is strongly n-concave.

In fact we establish a stronger result, which clearly implies the above statement, namely:

Theorem 3'. Let X be an irreducible n-dimensional complex space, $z_0 \in X$ any point and $V=V(z_0)CCX$ any neighbourhood. Then there exists a smooth function $\varphi: X \longrightarrow (0, \infty)$ which is strongly n-convex outside \overline{V} and such that $\{\varphi > E\} \subset X$ for any $\epsilon > 0$.

We first verify that Theorem 3' holds when ${\tt X}$ is the unit polydisc ${\tt U}^n$.

Lemma 1. Theorem 3' holds if X=Un.

Proof

By means of an automorphism of U^n we may assume z_0 =0=the origin. We make also the following remark: Let Ω cc be an open set, $F=F(u,t):\Omega\times [-1,1]\xrightarrow{n} \Omega \text{ a continuous function and define } F_t(u)=F(\mathcal{U},t)$ $f(u)=\int\limits_{[-t,t]^n}F(u,t)dt. \text{ We assume that } F_t \text{ is subharmonic on } \Omega \text{ for any } t.$ Then : a) f is subharmonic and continuous on Ω

b) if moreover \mathbb{F}_t is strongly subharmonic for t in a set of positive Lebesgue measure then f is strongly subharmonic and continuous on Ω

The proof of this statement is straightforward and is omnited. Let $\mathcal{E}(z)>0$ $z\in U^n\setminus\{0\}$ be C^∞ and "small" (vanishing rapidly at the boundary $\partial(U^n\setminus\{0\})$) and $\lambda\in C^\infty(\mathbb{R}),\lambda>0$ with $\sup \lambda\subset [-1,1]$ and $\int \lambda(t)dt=1$. We define

$$\varphi(z) = \begin{cases} \frac{\lambda(t_1) \cdots \lambda(t_n) dt_1 \cdots dt_n}{\max(|z_i|^2 - \mathcal{E}(z)t_1, \cdots, |z_n|^2 - \mathcal{E}(z)t_n)} - 1 \\ \frac{1}{[-1,1]^n} \end{cases} z \in U^n \left\{0\right\}$$

If $\mathcal{E}(z)>0$ is small enough (vanishing rapidly at the boundary of $U^n - \{0\}$) φ is smooth, $\varphi>0$, $\varphi\to0$ at ∂U^n and $\varphi\to\infty$ at 0.

We show that, if in addition the first and second derivatives of ϵ are small enough, ϕ is strongly n-convex on U^n , $\{o\}$ (by modifying ϕ near o we will get then the required function).

Let $z^o \in U^n \setminus \{o\}$ be any point and $L(z^o)$ the complex line passing through o and z^o . Near z^o , on $L(z^o)$, we have $z=uz^o$ with a complex parameter u in a neighbourhood of $1 \in \mathbb{C}$.

We consider first the case $|z_1^0| = ... = |z_n^0| = \infty$. Then the restriction of φ on $L(z^0)$, as a function of u, has the following form:

 $\varphi(\mu) = \int \frac{\lambda(t_1) \cdots \lambda(t_n) dt_1 \dots dt_n}{\max \left(\alpha^2 |u|^2 - \mathcal{E}(uz)t_1, \dots, \alpha^2 |u|^2 - \mathcal{E}(uz)t_n \right)} - 1$

If $\boldsymbol{\epsilon}$ and its first and second derivatives at $\mathbf{z}^{\mathbf{o}}$ are small enough then the function $\mathbf{u} \to \frac{1}{\alpha^2 |\mathbf{u}|^2 - \epsilon(\mathbf{u} \mathbf{z}^0) \mu}$ is strongly subharmonic in a fixed neighbourhood of $\mathbf{i} \boldsymbol{\epsilon}$ for any $-\mathbf{1} \boldsymbol{\epsilon} \mu \boldsymbol{\epsilon} \mathbf{1}$. For $\mathbf{t} = (\mathbf{t}_1, \dots, \mathbf{t}_n) \boldsymbol{\epsilon} \begin{bmatrix} -1, 1 \end{bmatrix}^n$ consider the function $\varphi_t(\mathbf{u}) = \frac{\lambda(t_1) \cdots \lambda(t_n)}{\alpha^2 |\mathbf{u}|^2 - \epsilon(\mathbf{u} \mathbf{z}^0) \min(t_i)}$. For any \mathbf{t} φ_t is subharmonic and for \mathbf{t} in a set of positive Lebesque measure φ_t is

strongly subharmonic. By the remark made at the beginning of the proof $\varphi|_{L(z^0)}$ is strongly subharmonic in a neighbourhood of z^0 , hence, being smooth, it is also strongly subharmonic along the lines parallel to $L(z^0)$ (in a neighbourhood of z^0).

Consider now the general case. We may assume that $|z_1^o| = \dots = |z_k^o| = \infty > |z_{k+1}^o| > \dots > |z_n^o|$. If \mathcal{E} is sufficiently small at z^o , then on $L(z^o)$ (near z^o) max($|z_1|^2 - \mathcal{E}(z)t_1, \dots, |z_n|^2 - \mathcal{E}(z)t_n$) = max($\alpha^2 |u|^2 - \mathcal{E}(uz^o)t_1$, ..., $\alpha^2 |u|^2 - \mathcal{E}(uz^o)t_k$) where $(t_1, \dots, t_n) \in [-1, 1]^n$ and u is in a fixed neighbourhood of 100. Since $\alpha^2 |u|^2 + \alpha^2 |u|^2 + \alpha^2$

 $\varphi(u) = \int \frac{\lambda(t_1)\cdots\lambda(t_k)dt_1\cdots dt_k}{\max(\alpha^2|u|^2 - E(uz^0)t_1,\cdots,\alpha^2|u|^2 - E(uz^0)t_k)} - 1$ $[-1,1]^k$

The same arguments as before show that $\phi_{L(z^0)}$ is strongly subharmonic near z^0 if ξ and its first and second derivatives at z^0

are small enough. By an exhaustion argument the conclusion of Lemma 1 follows easily.

Lemma 2. Theorem 3' holds for nonsingular X.

Proof

Let $\mathbb{W}_0,\ldots,\mathbb{W}_p$ be polydiscs in X such that $\mathbb{X}=\mathbb{W}_0\cup\ldots\cup\mathbb{W}_p$. We may assume that $\mathbb{Z}^0\in\mathbb{W}_0$ and let $\mathbb{Z}_1,\ldots,\mathbb{Z}_p$ be points with $\mathbb{Z}_i\neq\mathbb{Z}_j$ for any $i\neq j$ i, $j\in\{0,\ldots,p\}$. By Corollary 1 there is a polydisc \mathbb{W}_{p+1} containing $\mathbb{Z}_0,\ldots,\mathbb{Z}_p$. Choose open subsets $\mathbb{V}_0,\ldots,\mathbb{V}_p$ such that: $\mathbb{Z}_i\in\mathbb{V}_i$, $\mathbb{V}_i\subset\mathbb{W}_i\cap\mathbb{W}_{p+1}$, $\mathbb{V}_0\subset\mathbb{V}(\mathbb{Z}_0)$ and $\mathbb{V}_i\cap\mathbb{V}_j=\emptyset$ for $i\neq j$. For any $0\leq i\leq p$ let $\mathbb{Y}_i:\mathbb{W}_i\to(0,\infty)$ be smooth functions which are strongly n-convex outside \mathbb{V}_i and $\mathbb{V}_i\in\mathbb{V}_i$ for any $\mathbb{E}>0$ (which exist by Lemma 1). Let $\mathbb{V}_{p+1}:\mathbb{W}_{p+1}\to(0,\infty)$ be smooth, strongly n-convex outside \mathbb{V}_0 , \mathbb{V}_0 if \mathbb{V}_0 and \mathbb{V}_0 if \mathbb{V}_0 if \mathbb{V}_0 if \mathbb{V}_0 if \mathbb{V}_0 if we define \mathbb{V}_0 and \mathbb{V}_0 and \mathbb{V}_0 if \mathbb{V}_0 if \mathbb{V}_0 in \mathbb{V}_0 if \mathbb{V}_0 is and \mathbb{V}_0 if \mathbb{V}_0 in \mathbb{V}_0 in \mathbb{V}_0 in \mathbb{V}_0 in \mathbb{V}_0 is and \mathbb{V}_0 in \mathbb

Lemma3. Let X be a complex space, ACX a closed analytic subset, $f \in \mathbb{F}_q(\Lambda)$ and $\eta > 0$ a continuous function on A. Then there exists an open neighbourhood V of A and $f \in \mathbb{F}_q(V)$ such that $|\widetilde{T} - f| < \eta$ on A.

Proof

By a perturbation argument we see that there is a locally finite open covering of K (U_i) $_{i\in U}$, U_i (U_i) $_{i\in U}$, U_i and smooth strongly q-convex functions ρ_i near \overline{U}_i (which admit smooth strongly q-convex extensions to open subsets \widetilde{U}_i of $\overline{K}, \overline{U}_i \subset \widetilde{U}_i$) such that:

a) P=max{Pi} satisfies | f-P|<7

b) Pilaui Plaui

It follows easily from b) that ρ can be extended to a function for $_q(V)$ if V is a sufficiently small open neighbourhood of A .

Lemma 4. Let X be a complex space of dimension n. Then there exists a smooth strongly (n+1)-convex function $\varphi: \mathbb{K} \to (0, \infty)$ such that $\{\varphi > \xi\}$ cc X for any $\xi > 0$.

It is clear that for smooth X it is nothing to prove. For singular X the proof is by induction on dimX. Let n=dimX and assume that the lemma holds for all complex spaces of dimension \leq n-1. If we set Y=Sing(X) then there exists $\varphi_1:Y\to(0,\infty)$ which is a smooth strongly n-convex function and $\{\varphi_4>\xi\}\subset Y$ for any $\xi>0$. By Lemma 3 there is a neighbourhood V of Y and $\varphi_1\in F_n(V)$ which approximates φ_1 on Y and from the approximation theorem of Diederich and Fornaess we may assume that φ_1 is smooth strongly n-convex. Let $\varphi:X\to(0,\infty)$ be a smooth function such that $\{\varphi>\xi\}\subset X$ for any $\xi>0$ and $\varphi=\varphi_1$ near A. Clearly φ satisfies the required properties.

Lemma 5. Let $u:(o,a] \to (o,\infty)$ be any continuous function. Then there exists a smooth strictly increasing convex function $v:(o,\infty) \to (o,\infty)$ such that v < u on (o,a] and $\lim_{t \to o} v(t) = o$. The proof is elementary and is ormited.

Proof of Theorem 3'

Let Y=Sing(X). We may assume that $z_0 \in \operatorname{Reg}(X)$ and $V=V(z_0) \subset \operatorname{Reg}(X)$. Since $\operatorname{Reg}(X)$ is connected it follows from Lemma 2 that there is a smooth function $\varphi_1:\operatorname{Reg}(X)\to(0,\infty)$ which is strongly n-convex outside \overline{V} and $\{\varphi_1>\epsilon\}\subset\operatorname{Reg}(X)$ for any $\epsilon>0$. From Lemma 4, Lemma 3 and the approximation theorem of Diederich and Formaess there is an open neighbourhood U of Y, $\operatorname{Un}\overline{V}=\emptyset$, and a smooth strongly n-convex function $\widetilde{\varphi}_2: U\to(0,\infty)$ such that $\{\widetilde{\varphi}_2>\epsilon\}\subset X$ for any $\epsilon>0$. By shrinking U we may assume also that $\widetilde{\varphi}_2$ is defined near \overline{U} . By Lemma 5 there is a smooth strictly increasing convex function $\operatorname{V}: (0,\infty) \to (0,\infty)$ such that $\operatorname{V}: \widetilde{\varphi}_2<\varphi_1$ on $\operatorname{\partial} U.$ If we set $V_1=\operatorname{Reg}(X), V_2=U, \varphi_2=V: \widetilde{\varphi}_2$ then $\varphi(X)=\max\{\varphi_1(X)\mid X\in V_1\}$ is in $\overline{F}_n(X,V)$ and $\{\varphi>\epsilon\}\subset X$ for any $\epsilon>0$. Theorem 3' follows now from the approximation result of Diederich and Formaess.

§3. The convex case

We give now a short proof of Ohsawa's theorem [13] using convex functions with corners.

Theorem 4. Let X be an irreducible n-dimensional noncompact complex space. Then X is n-complete.

Proof

Let $\pi:\widetilde{\mathbb{X}}\to\mathbb{X}$ be a resolution of singularities [9] ,Y=Sing(X) and $\widetilde{\mathbb{Y}}=\pi^{-1}(\mathbb{Y})$. By Greene and Wu result [8] (i.e. Theorem 4 holds for nonsingular spaces) there is a smooth strongly n-convex exhaustion function $\widetilde{\varphi}:\widetilde{\mathbb{X}}\to\mathbb{R}$.

Also it is easy to verify that any complex space Z of dimension k is (k+1)-complete (the proof is identical with the proof of Lemma 4). Hence we deduce from Lemma 3 and Theorem 1 (since dimY(n) that there is an open neighbourhood V of Y and a smooth strongly n-convex function T on V such that Ty is an exhaustion function. Shrinking V we may assume that au is defined near $\overline{ ext{V}}$ and $au_{\overline{ ext{V}}}$ is proper. We choose a function $g: \mathbb{X} \to [-\infty,\infty)$, $\mathbb{Y} = \{g = -\infty\}$, with g smooth outside Y and such that g is locally the sum of a plurisubharmonic function and a smooth function (the existence of such a function is proved by M. Peternell in [15]). We may assume also that g=0 outside V.Let $\alpha \in \mathcal{C}^{\infty}(\mathbb{R})$ be a strictly increasing convex function such that $d\circ\widetilde{\varphi}>\tau\cdot\pi$ on $\pi^{-1}(\partial V)$ and $d\circ\widetilde{\varphi}+g\circ\pi$ is strongly n-convex outside Y. We set $V_1 = \mathbb{K} \setminus Y_1 = \mathbb{K} \setminus Y_2 = \mathbb{K} \setminus Y_3 = \mathbb{K} \setminus Y_4 = \mathbb{K} + \mathbb{K} \cdot \varphi_1 = \mathbb{K} + \mathbb{K} \cdot \varphi_2 = \mathbb{K} + \mathbb{K} \cdot \varphi_3 = \mathbb{K} + \mathbb{K} \cdot \varphi_4 = \mathbb{K} + \mathbb{K} + \mathbb{K} \cdot \varphi_4 = \mathbb{K} + \mathbb{K} +$ $\varphi_2: V_2 \to \mathbb{R}$. We define $\varphi(x) = \max \{ \varphi_i(x) \mid x \in V_i \}$. Then φ is an exhaustion function and $\varphi \in \mathbb{F}_n(\mathbb{X})$. From the approximation result of Diederich and Fornaess X is n-complete.

Remark

Let X be a complex space and WP(X) the weakly plurisubharmonic functions on X,i.e. those upper semi-continuous functions $\varphi: X \to [-\infty, \infty]$ such that for any holomorphic map $u: D \to X$ (DCC is the unit disc) it follows that $\varphi \circ u$ is subharmonic on D.We denote also by WSP(X) those $\varphi \in WP(X)$ with the following property: for any $\theta \in C_0^\infty(X)$ there is $\varepsilon_0 > 0$ such that $\varphi + \varepsilon \theta \in WP(X)$ if $|\varepsilon| \leqslant \varepsilon_0$.

Norguet and Siu [12] have proved the following result(see also [5]):

Theorem 5. Let X be a complex space and assume that there exists $\phi \in SP(X) \cap C(X)$ such that $\{\phi < c\} \subset X$ for any $c \in R$. Then X is Stein.

We show now that the method used to prove Theorem 4 of Ohsawa gives also a short proof for the theorem of Norguet and Siu.

Proof of the theorem of Morguet and Siu

Replacing X by its irreducible components [lo] we may assume that X has finite dimension and let n=dimX. By induction on dimX we may assume that Y=Sing(X) is Stein and by Richberg theorem[16] we may also assume that there is an open neighbourhood V of Y and a continuous strongly plurisubharmonic function au on $extsf{V}$ (in the usual sense with local extensions [11]) with $\{x \in V \mid \tau(x) < c\} \subset \mathbb{X}$ for any ceR.Shrinking V we may suppose also that τ is defined near \overline{V} . Let $g: X \to (-\infty, \infty)$ be a function with $\exp(g)$ continuous, $Y = \{g = -\infty\}$ and g is locally the sum of a smooth function and a plurisubharmonic function [15]. The function g may be easily obtained as follows: we choose D_{i} cc D_{i} cc D_{i} cc D_{i} Stein open subsets and $\varphi_{i}:D_{i} \to [-\infty,\infty)$ plurisubharmonic functions with $A \cap D_i = \{ \phi_i = -\infty \}$, $\exp(\phi_i)$ continuous and such that a) $\{D_i\}_{i\in\mathbb{N}}$ is locally finite and $\mathbb{X}=\bigcup_{i\in\mathbb{N}}D_i''$ b) $\varphi_i - \varphi_j$ is bounded on $D_i \cap D_j' \setminus A$ (e.g. we may define $\varphi_i = \log \sum_{k} |f_{k,i}|'$ where $\{f_{k,i}\}_k$ if a finite set of generators of \mathcal{T}_A on D_i). We choose also functions $p_i \in C_0^{\infty}(\mathbb{T}), p_i > 0$, supp $p_i \subset D_i'$ and $\varphi_i + p_i < \varphi_j + p_j$ on $\partial D_i' \cap D_j'' \wedge A$. If we define $g(x) = \max\{\varphi_i(x) + p_i(x) \mid x \in D_i'\}$ then g satisfies the required conditions. It is clear that we also may assume gso on [v.

We choose a strictly increasing convex function α which is piecewise linear with $\alpha \cdot \phi > \tau$ on ∂V and $\alpha \cdot \phi + g \in \text{WSP}(X)$, so $\alpha \cdot \phi + g$ is strongly plurisubharmonic on $K \cdot Y$ because $K \cdot Y$ is smooth. Then $\max(\alpha \cdot \phi + g, \tau)$ defines a continuous strongly plurisubharmonic exhaustion function on K, hence K is Stein [11].

References

- 1. A.Andreotti and H.Grauert: Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90(1962), 193-259.
- 2. J.P.Demailly: Cohomology of q-convex spaces in top degrees, to appear in Math.Z.
- 3. K. Diederich and J.E. Fornaess: Smoothing q-convex functions and vanishing theorems, Invent. Math. 82(1985), 291-305.
- 4. K. Diederich and J.E. Fornaess: Smoothing q-convex functions in the singular case, Math. Ann. 273(1986), 665-671.
- 5. J.E. Fornaess and R. Narasimhan: The Levi problem on complex spaces with singularities, Math. Ann. 248(1980), 47-72.
- 6. J.E.Fornaess and E.L.Stout:Polydiscs in complex manifolds, Math.Ann. 277(1977),145-153.
- 7. J.E. Fornaess and E.L. Stout, Spreading polydiscs on complex manifolds, Amer. J. Math. vol. 99, No. 5 (1977), 933-960.
- 8. R.E.Greene and H.Wu: Embedding of open riemannian manifolds by harmonic functions, Ann. Inst. Fourier 25(1975), 215-235.
- 9. H.Hironaka: Desingularization of complex-analytic varieties, Actes Congrès int. Math. 1970, 2, p. 627-631.
- lo. R. Harasimhan: A note on Stein spaces and their normalizations, Ann. Scuola Horm. Sup. Pisa 16(1962), 327-333.
- 11. R. Marasimhan: The Levi problem for complex spaces II, Math. Ann. 146(1962), 195-216.
- 12. F. Horguet and Y.T. Siu: Holomorphic convexity of spaces of analytic cycles, Bull. Soc. Math. France 105(1977), 191-223.
- 13. T.Ohsawa: Completeness of noncompact analytic spaces, Publ. R.I.M.S. Kyoto Univ. 20(1984),683-692.
- 14.M.Peternell:Continuous q-convex exhaustion functions, Invent.

 Math. 35(1986),249-262.
- Raume, Math. Z. 200(1983), 547-581.

16.R.Richberg:Stetige streng pseudokonvexe Funktionen, Math. Ann. 175(1968), 257-286.

Mihnea COLTOIU

Institute of Mathematics of Romanian Academy Bd. Păcii 220, Bucharest, Romania