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1. INTRODUCTION

The elementary rotation of a contraction in a Hilbert space is a unitary operator
extending the given contraction. Under suitable minimality conditions this unitary
opefatof is essentially unique and it plays a central role in dilation theory, as
emphasized by P.R. Halmos [43] and B.Sz.-Nagy and C. Foias [24].

Beginning with the theorem of B.Sz.-Nagy [20], existence of minimal unitary
dilations have been proved for more and more general classes of operators (ef. C. Davis
[S], P. Sorjonen [43)) this culminating with the result of T.Ya. Azizov (3] (see also [4))
which states that any bounded linear operator in a Krein space has a minimal unitary
dilation. Implicitly, this result contains the existence of elementary rotations of any
bounded operator in Krein space.

Motivated by investigations in lifting of operators, the possibilivty of using an
elementary fotation which ean be described explicitly in terms of the given operator
was pointed out in [6] for contractions in Pontryagin spaces, while in [Z] such a
deseription is obtained for any operator in Krein spaces.

The purpose of this article is to illustrate a technique of induced Krein spaces

and an abstract scattefing theoretical inierpretation of‘ elementary rotations in Krein
space. Briefly speaking this' means that.‘ first one associates a certain selfadjoint
operator A to the given operator T, then considering two dual indefinite factorizations
of A one obtains two unitary operators (2 . and L1 and letting S =,Q.+_[L:1 this is anv
~ elementary rotation of T (see Theorem 3.3 and its lemmas).
.. In [%], the existence of elementary rotation follows as a consequence of the
so—célled link operators. We can show that the converse is also true, once the |
elementary rotation is obtained, the existenée of link operators and their properties
follow from this.

In Theorem 3.12 we have obtained a spectral characterization of those operators
which possess unique elementary rotation, up to unitary equivalence. In connection with

this we should mention that, during a short visit to Bucharest that he payed at the end



of July 1990, M.A. Dritschel informed us about a geometric characterization of
operaiors which have unique Julia operators, this being a result from a joint paper with
J. Rovnyak, which at that time was in preparation. Since Julia operators, as introduced
in [42], define the same object as elementary rotations, Theorem 3.12 can be
considered as a counterpart of their result.

Elementary rotations and unitary dilations are closely related. Using the
elementary rotation R(T) we have pointed out in [¥] the Schéffer form of the minimal
unitary dilation. Due to the nonuniqueness of minimal unitary dilation (early remarked
by C. Davis [3]), the problem of charaecterizing those minimal unitary dilations produced
by elementary rotations appears as natural. We have considered this problem in Section
4. Here the usual difficulties encountered in the geometry of Krein spaces, illustrated
by the savage behaviour of shifts on Krein spaces (see the paper of B. McEnnis [1#])
show up. Finally, a discussion on characteristic functions, from the point of view of the
approach used in this paper, is considered.

In Section 2 we present preliminary results concerning the geometry of Krein
spaces and their linear operators, a boundedness criterion of isometric operators, the
construction and the basic properties of induced Krein spaces, as well as of indefinite .
factorizations which produce unitary operators. For basic results concerning lineaf
operators on Krein spaces we recommend, T. Ando [4], J. Bognér' [£] and T.Ya. Azizov

and 1.S. Iokhvidov [4].



2. NOTATION AND SOME PRELIMINARY RESULTS

2.1. Geometry in Krein spaces. Let X be a complex veetor space and [+, ] an
inner product on I (i.e. [-,-] is linear with respect to the first variable and
antisymmetric). I is called a Krein space if one of the following equivalent conditions
holds:

(i) There exists a linear operator J :J{~>J{ such that J—1 = J and denoting
(2.1) (x,y)5 = [Ix,y], xyeX ,

(- )J is a positive definite inner product on X such that (X, (-, - )J) is a Hilbert
space. A

(i) There exist two subspaces K ~c X such that A e A A B
(i.e. [x,y] = 0, x€x+, ye€ K7) and (.7{+, [«,+ D, (X ,-[+,-)) are Hilbert spaces.

(iii) There exists a positive definite inner product (-,+) on J sueh that

(K, (-, +)) is a Hilbert space and, denoting by || 4 the associated norm, it holds:

(2.2) il = sup [[x,y][, x€I.
fivlf <1

Let (), [-, - ))'be a Krein space. An operator J : X=>J satisfying the property

(i) is called a fundamental symmetry (in brief f.s.). With respect to the Hilbert space
(9C, (-, - )p) J is a symmetry, ie. ¥ =3=01 1t K=9"+ 3 is a decomposition of

9L as in (ii), then it is called a fundamental decomposition (in brief f.d.). Fundamental

symmetries and fundamental decompositions of the Krein space are in bijective

correspondence: If J is a f.s. let J=J+ -J" be its Jordan decomposition and
& _ " _ ‘

3{+ = J+J{ . K X . Then I:JCL + X isaft.d Conversely if j(‘:j( +.7( is a f.d.

then define J 7{—*9( by

(2.3) I +x)=x -x, ceXt.

Jisaf.s of .

A norm on j( satisfying the property (iii) is called a unitary norm on 3{ Any

unitary norm |-} on K is of the form



(2.4) B xll = [Jx,x]’l‘, xeX,

where J is a f.s. of K. Any two unitary norms on X are equivalent. The strong
topology of the Krein space X is the topology defined by an arbitrary unitary norm on
X.

Let .o\f.l and %2 be subspaces of the Krein space X G.e. o . and &”2 are closed

1
linear submanifolds of 3( b1k c;fl.l. %2 and the algebraic sum o\fl +0\{)2 is direct and
closed then we use the notation c;fl[ﬂ‘]%)

WK=K,

L
If &£ is a subspace of the Krein space K we denote by L ='{x€3{| [x,y] =0,

9° In particular, a f.d. of 3{ will be written

L
yéo\f} the orthogonal companion of o€ and by L0= &’of}% the isotropic subspace

of i The subspace o is called nondegenerate if o€ © = 0 and degenerate if 580 # 0.
g Seotliciale

A subspace L is called nonnegative (positive) if [x,x]> 0, x €L ([x,x] > 0,

xééf\{()}'). The subspace ;ﬁ is called uniformly positive if for some unitary norm

il -l (equivalently, for any unitary norm) on X, there exists o> 0 such that
f)
(2.5) x,x] > JIxlf %, x€dL.

Similarly one defines nonpositive subspaces, negative subspaces and uniformly negative

subspaces.

Let of be a nonnegative subspace of the Krein space ﬂ(, 3(:}(+v[+]%— be a f.d.
of .'}C , J the corresponding f.s. and J = J+ -J  be its Jordan decomposition. Then
@+ = J+<f is a closed linear manifold in .7(: and the operator K € & o@+,%_) defined

by
(2.6) K@ =3x, x€&,
is a Hilbert space contraction, and &L is the graph of K

(2.7) L= 6K ={x+kx|x €D, 3.

The operator K is called the angular operator of the nonnegative subspace c;g

Moreover, the subspace L is positive (uniformly positive) if and only if its angular



operator K is a strict contraction, i.e. Ixxll < Il . x6@+ (respectively, K is a

uniform contraction, i.e. HK“ < 1), where i -}l denotes the unitary norm associated to

J. Similar statements hold for nonpositive, negative and uniformly negative subspaces.
With thé notation stated above, the nonnegative subspace ol is m_ézigg_l
nonnegative (i.e. there exist no proper nonnegative extensions ofS@ ) if and only if
Jﬁf =%+. Also, &L is maximal nonnegative if and only if gf‘l-is maximal nonpositive.
A subspace o€ of the Krein space J{ is called regular if K =01+] 381'. A
nonnegative subspace is regular if and only if it is.uniformly positive. The subspace &

L
is maximal uniformly positive if and only if 3{=§£[+] &L isaf.d of 3(’

2.1. LEMMA. Let & and o/ be subspaces of .the Krein space X such that A is
uniformly positive,vVis nonpositive, V“.Le(/, and M+ is dense in ,7( Then o/ is a

L
maximal uniformly positive subspace and 0(/;0{{ “

Proof. Let us first notice that the subspace A is negative. Indeed, let x 6:%/,
such that x_L(//.’ Then x.!.c/a+c//: hence x L X. Since 3\{ is nondegenerate this implies
x = 0.

(o d

Using the extension theorem of R.3. Phillips [ 3], it follows that there exist H

~S

maximal positive subspace, and A maximal negative subspace such that c/i?;?d{’,
027’-?04/) and u&lcﬁ’ |

Using the same extension theorem of R.S. Phillips, there exists a f.d.
K= —"<+[+] X such that M K*. Let I be the corresponding f.s. and K €x(-7<+,-7<:-)
be the -angular operator of c/?( If x€5<+@u4, then x+ Kxﬁd?nc/(("‘ hence
X+ Kx.l.f/‘(ﬂl/i Since c/ﬂ+a{72 M+ is dense in X , from here we obtain x = 0. We
have proved in this way that w‘(=3<.+ is a méxi'mal uniformly subspace. This yields

_ .
A" K is uniformly negative, in particular A 1+1e/= K, hence MM =X .8

2.2. REMARK. In order to prove that M is a maximal positive subspace in X,

the assumption in Lemma 2.1 that M be uniformly positive is essential, as it is shown



by the example of H. Langer [15] of two subspaces A and A, A positive, & negative,
MLM, oM + c/f/dense in X but neither of{ is maximal positive nor Ais maximal

negative.

2.2. Linear operators in Krein spaces. Let 3{1 and 3(2 be Krein spaces and T

densely defined in 3(1

denoted T# , as follows

and valued in 5(2. One defines the adjoint operator of T,

T# = .
(2.8) D (T%) {Y € -%2 } (T)3 x+>[Tx,y] is bounded }

[Tx,y] = [, T¥yl, xed(M, yed(T¥),

Let J1 and J2 be f.s. of 'J<1 and, respectively, 5(2. Considering T* the adjoint
of the densely defined operator T;@(T)(g 3(1) “?3(9 with respect to the Hilbert

spaces (J(l,( o, - )Jl) and (.7{ Loy )Jz), we have @(T#2 }= Jzo@(T*) and

F_ %
(2.9) TV = JlT J2 )

In the following we denote by J’(_'Z(l, 3(2) the set of bounded (with respect to

arbitrary unitary norms on the Krein spaces .’l{l and g(Z) linear operators

T: 3(1 s 3(2 An operator T € Sf(.%l, .7(2) is contractive if
(2.10) [Tx,Tx] < [x,%], x€ X

equivalently I - T#T is a nonnegative operator, i.e.

(2.11) -t¥mxxi>0 xeX .

T is ealled doubly contractive if both of T and T’gé are contractive. T is called expansive

it T#T-11s nonnegative, and it is called double expansive if both of T and T# are
expansive. -

A (possibly unbounded) operator V ) (V)& 3{1) -—)J{z is called isometry if

(2.12) [Vx, Vyl =[x, y], X,V € D).



If VG;(’(ﬂ(l, 3(2) then V is isometry- if and only if V¥V=1. An operator

1
Ue L(H 1’ 3(2) is called unitary if it is isometric and surjelctive, equivalently
vFu=1 amavu® -1,.

Let 3( be a Krein space and J<= 3(+[+]J(_ be a f.d. of :% . The cardinal numbers
\+(J<) = dim (X" and X (X)) = dim (K7) are called, respectively, the positive

signature and the negative signature of3< . They are independent on the f.d. The

cardinal member %X (X ) = min {\(+(3(), W (K )} is ecalled the rank of indefiniteness of

the Krein space X . If w (X)) is finite then X is calléd a Pontryagin space.

K Given two Krein spaces J{l and 5(2 , in order to exist unitary operators
Wz .'](1 =t 3{2 it is necessary and sufficient that K+(3(1) = K+(.7(2) and
W (X)) = WX,

2.3. LEMMA. Let V : ) (V& 3{1) "">.7{2 be an isometry with dense domain and

dense range. Assume that there exists a f.s. J, of :]/1 such that Jl‘;[) VSDWV). If at

+ -
least one of the linear manifolds JlgD(V) and Jl';b (V) is closed, then V is bounded and

thus, it can be uniquely extended to a unitary operator in o‘f(ﬂ(l, 3(2).

Proof. Let V :J) (V)(E—.J{l)—-—’?J(Z be an isometry such that J(V) is dense in 3‘/1
and R(V) is dense in _'}(2. We prove first that V is injective.

Indeed, let x € &) (V) be such that Vx =0. Then
0 =[Vx, Vyl = [x, y), vy & @(V),
“hence, since ) (V) is dense in .7{1, from here we obtain x = 0.

We can consider now the linear operator vl (e .'1{2) —> 3(1 , which is also

an isometry. Let z € R (V) and denote y = V—lz. Then we have
- o _ #1 5 )
[Vx, z] = [Vx, Vyl =[x, yl =[x, V “z], x €l (V),

hence V1 v¥ . Since v h= X (V) is dense in J(z , it follows that D# ) is also
~ dense in 3{2 , hence V is closable.

Let now J1 be a f.s. of 3(1 such that Ji@(V)ch(V). Then the following

decomposition holds



(2.13) W) =37 D) + 3. DW,

+ P 5

where J1 = J1 - J1 is the Jordan decomposition of Jq Since JI«QD e 3{; and
- - + -

Jli) (V)§3<2 , Where 3(1 = .7{1[+]J<1 is the f.d. corresponding to Jl’ then J;:() (V) is

uniformly positive, J;"b (V) is uniformly negative, and J;@ (V)L JIO’() ()

If, let us say, the linear manifold J}@ (V) is closed, it follows that V] JIJ) (V) is
bounded (since V is closable and J-{;D (V) & D). We claim that VJJ{CD (V) is a maximal
uniformly positive subspace of ,]{2.

Indeed, consider on 3{ 1 the unitary norm associated to Jl and on 3{2 we
consider an arbitrary unitary norm. Then, for any vector x € (V) we have

atevatxl = 1k ata = 1otk 2y L valxll 2,

1 1 1771 1 - HVJ+H 1
1
+ . . " ; + " ; + e .
hence \’ch@(V) is uniformly positive. Since Jl‘Z) (V) is closed and V | JIJ) (V) isisometric
and bounded it follows that VJ;.:O(V) is also closed, hence VJIJ)(V) is a uniformly

positive subspace of 3(/1’

On the other hand, since V isisometric we have
+ -
RW) = v V) + VI D),

where VJ}'D (V)L VJ;@(V) and VJ},@ (V) is negative. Since ,Q(V) is dense in 3(2 and
VJJlroD(V) is a uniformly positive subspace, application of Lemma 2.1 proves that
VJJ{JD(V) is a maximal uniformly positive subspace and, in addition,
VJI,;D (V) = (VJJ{;D(V))‘L is a maximal uniformly negative subspace. The claim is proved.

Consider now the f.d. of .7(2

(2.14) X, = V3 D) [+ va D),
and denote by J, the corresponding f.s. From (2.13) and (2.14) it follows that
(2.15) VJ1 = JZV 5

We change now the unitary norm on 3(2 to be that induced by J2. Then, using (2.15), it

follows
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W2 = (vx, V) 5 =13,Vx, Vvl =[VJ

X, Vx] =3, %,x] = 1 x 2 &N
2

1

This shows that V is bounded, hence it can be (uniquely) extended to a unitary operator

In case J;;D(V) is closed, the reasoning is similar. %

2.3. The Krein space ng. Let K be a Krein space and A € & (X) be selfadjoint,
i.e. A= A#. If J is a f.s. of X then JA is a selfadjoint operator on the Hilbert space

H, (-, - )J), hence we can consider its polar decomposition
(2.15) JA =85, 19A[,

where SJA = sgn(JA) is a selfadjoint partial isometry such that ker SJA = ker A. Then

S, is @ symmetry on the Hilbert space (R(JA), (-, - )J). We denote by XA the Krein

space (RWJA), [-, -1 where the indefinite inner product [+, ] is induced by the

symmetry SJA . '

(2.16) [x,yl=(S;,% ¥)5, xy€d, .

Let us remark that the linear manifolds R( JJA] ) and R(|JA] %) are dense in }(A and
that the strong topology on the Krein space 3€A is inherited from the strong topology of
the original Krein space J{

Apparently, the definition of the Krein space }fA depends on the f.s. J. We
postpone the proof of the fact that if a different f.s. is used, the Krein space obtained
"by a construction similar with that of B(A is actually unitary equivalent to J(A (see
Corollary 2.8), in particular, this observation justifying our notation.

A particular case of this construction is when starting with a Hilbert space &
and a selfadjoint operator A ¢ & (#). An even more particular situation is in case the
selfadjoint operator A is a symmetry. This kind of construction is usually used in the
definition of direct sum of Krein spaces.

Let (J(i)iégf be a family of Krein spaces. Fix on each J(i af.s. Ji and consider
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the direct sum Hilbert space »ﬁ(i' Let J be the sym'metry % Ji on this Hilbert
i€y¢ : i€d -

space. We denote by [+] j{i the Krein space induced by this symmetry.
ied
A special case of this construction is the Krein space of the type 12(}() (i.e. in

case the index set ¢J is N). On each Krein space 12(.7() acts the right-handed shift S of

multiplicity %

2.4. The Krein space j{A‘ Let K be a Krein space and A € &”(3(), A= A#‘.

Define an inner product on X,
(2.17) [x,y], =[Ax, y], xyeX,

where [+, - ] denotes the inner product of the Krein space XK. Notice that ker A is the

isotropic subspace-of the inner produect space (X, [ - g ]A). Fix J a f.s. of K and

a) )

L
denote K =J( kerA)” (i.e. X is the orthogonal of ker A with respect to the inner
product (-, * )J). Then consider the Jordan decomposition of the selfadjoint operator JA

with respect to the Hilbert space (X, (+,+).)

J

(2.18) JA = (JA), - (JA)_

~ el

and denoting :l(+ = (JA)+.7( and K = (JA)ﬁ%, we have the decomposition -
A -
(2190 X=X +X .

» A
Notice that (J(Jr, [e,- ]A) and (J(_, s I ]A) are pre-Hilbert spaces and denote by

J{Z and, respectively, 3(; their completions to Hilbert spaces. Define
+ -
(2.20) X, =X mX,,

where the inner product is the extension by continuity of the inner product [ -, - ]A’

Then (J{A, Lo, ]A) is a Krein space and (2.20) is a f.d. of J‘/A'

2.4. LEMMA. Let li-ll be the unitary norm associated to the f.s. J. Then the

unitary norm on J(A , corresponding to the f.d. (2.20) is the extension bv continuity of

norm



=1

Jzax > [174] %XH . : 3

e
Proof. Let x be a veetor in ,7{ According to (2.19) we represent x = X, tXx_

~ )
where x, € X, & J{Z and x € X_& J,. Then

b

[x,, X+]A =% x_]A =((JA), %, x+)J +((JA) x x_)J =
= (@A), + GAY)x, + x),(x, +x0); = (1IAL 6+ x ) (x, + %), =

<181 e %X)J= §194] *x 1 2,

al
This shows that the unitary norm, corresponding to the f.d. (2.20), when restricted to X

RJ ~
coincides with the norm W [JA| *x !l . The rest follows from the density of % in j(A .1
We can now clarify the relation between the Krein spaces Q(A and ](A .

2.5. PROPOSITION. If A € Zf(ﬁ() is selfadjoint, K a Krein space, then the Krein

spaces ;’(A and J{ s are unitary equivalent, more precisely, if J is a f.s. used in the
o i

definitions of 3{A and X, , then the linear operator

(2.21) J(A:_}?zaﬁ—»]JAl%xe&(\JA} %)&‘: JKA,

extends uniquely to a unitary operator J{A ~—->3(’A.

Proof. Let V denote the operator defined by (2.21). We first prove that V is
isometrie, considered as an operator V : D e '%A) el J{A‘ Indeed, for anv x,y € ¥/
we have

: 3 3 3
vk, vyl = [ [JA] *x, JJA] ®y] =(Syp 19A] "x, |3A1 7)), =
= (JAXx, y)J =[Ax, y] = [x, y]A .
. A
Using Lemma 2.4 it follows that V is bounded hence, since @ (v) =.J(, is dense in J{A

1
and R(V) =X (1JAl %) is dense in ZfA , V extends uniquely to a unitary operator in

LXK, ¥, B

We record now an important result of M.G. Krein [14], W.T. Reid [48], P.D. Lax
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[46], and J. Dieudonne [40]. In this paper we shall use a slightly more general variant of
this result, equivalent with that considered by A. Dijksma, H. Lahger, and H.S.V. de

Snoo [41]. For the reader's convenience we give a proof following the original one.

2.6. LEMMA. Let _7{1 and J{Z be Krein spaces and Aéi(j(l), A=A¥
BEX(X,),B= B#, T, € LKy ), and T, ¢ LK, %) be such that

[T,%, ylg =[x, Tyyl, , x€X,, ye Ko s

or equivalently,

#, _
(2.22) Toh= B'r1 .

Then T, and T, induce uniquely determined operators "Tlé L (X ,J(B) and

"i"zé o O(B’ 3(A) such that

(2.23) Mg =l Tyyl,,  xeX,, veX,

Proof. Fix f.s. _J1 and JZ on ](1 and, respectively, 5(2. Then (2.22) becomes

(2.24) T2J1A J2BT

Considering the unitary norms associated to J1 and J2 » we shall prove that for any

X € 3{1 the following inequality holds

(2.25) TN &\ X< T B| 1S5 aTsSg gTy 17 - 119,4] *x1)
1 2

Indeed, using (2.24) and Schwarz inequality for the nonnegative operators ]JlA]

and iJzB! on the Hilbert spaces (j(l, (+,- )J ) and, respectively, (X.,(-, - )J %l
1 2
follows easily

|§[JéBl ETlxuzg o, Al x| - 13,8l iTlx I 1, BI T, J W8 5,8 1xu

Iterating this inequality it follows that for arbitrary n €N it holds

. 2n 1 2n+1
3 “J Bl T X “ < mJ A’ EXH 2”(1/2 )_ ’HJ B! 2T X“ (1/2 ).
(2.26) 1 2 1

2n+1
1-(1/2 )
|”J B] 15 J AT SJ B 1‘<n s

2
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Further, if |J2B| %T1x= 0, the inequality (2.25) is clearly true, so let us assume
1

|9,B] 5T1x #0.If J)x| <1 then we obtain (2.25) by letting n->co in (2.26). If ixfi> 1

then use (2.25) for the vector x/ ){x}{ . Thus (2.25) holds for any x &€ 5\/1 A

Now, from (2.22) it follows that T_ ker Ac ker B, hence 'I‘1 factors to an operator

1
A ~ 5

T, :5{1( & J(A) “">](2§ j(B' Using Lemma 2.4, from (2.25) it follows that ﬁl\’l extends
by continuity to an operator "\I"léf(J(A, JJB). Similarly it can be proved that Tz

induces an operator "vl“zé LA, ‘%A)’ while the property (2.23) is clear. &

2.5. Indefinite factorizations. Let A € X(D(l), A=A% anaBE 56(3(2), B=B¥

be given. We are interested in factorizations of the type
(2.27) a=cfBc,
where C Ei(%l,ﬂ(z). Under certain conditions, this kind of factorizations produce

unitary operators acting-between the Krein spaces induced by A and B.

2.7. LEMMA. Let A€ L(X)), A= A%, B¢ X(X,), B=B%, and c € L (X}, X)

be such that (2.27) holds and, in addition, assume that there exists a regular subspace

b of 3(2 such that

(2.28) RB) c LR(C).

IfJ isafs of _'J(l and J, is a f.s. ofﬂ{z such that J,5fc 3 (always exists such a Jy)

2

then:

(i) C induces a unitary operator in X(,'JZA,J(B).

(ii) There exists a uniquely determined unitary operator V& & (&, J(B) such

that
Fis
(2.29) \ {JlAS = ]JzBi 20

Proof. Let C ™! : R(C) ~'>j(1 be an operator such that cclx=x, x € R(C). &

is closed hence, from (2.28), it follows that C_I{?:(’, is bounded. With respect to the

decomposition
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Y, 2"
congider the operator X € Qf('](2, .17(1) aefined by
x=[c"Y% o]

Then CX = Peg 3(9(-7(2), “where P has the properties P# =p = p? and P.?’('z e
Multiplying on left with X# we have -

#

x"A=x%c*pc=pRC=BC.

Using Lemma 2.6 this shows that C induces an operator C € L (X, , l/B). From (2.27) it

follows that C is isometric. Also, we have
RW,B) = I, X(B) ¢ I, e X g ),

and, since R(JZB) is dense in 7(B , it follows that R (C) is also dense in X, , hence C is
unitary.

(ii) Using the identifications of the Krein spaces 3(A with J\/A and of 3(8 with
J(B (see Proposition 2.5) and also using the unitary operator Ce X(J{A, X/B), it follows
that the linear operator V : Q(]JIA] %)( c SCA) —->3{B, defined by (2.29), extends

uniquely to a unitary operator in & 3‘(’A, 3{’3). B

2.8. COROLLARY. For any operator AEY (¥), A = A#, where ¥ is a Krein

space, the induced Krein spaces j(A and J{A are unique, modulo unitary equivalence,

with respect to the f.s. J used for their definitions.

Proof. Let J be a f.s. of .7( . We first remark that ]{A can be viewed also as the
Krein- Space J(JA » induced by the selfadjoint operator JA acti‘ng in the Hilbert space
X, (-, - )J)' It follows that we have to prove that, if G is another f.s. of X , then the
Krein spaces ’VJA and J(GA are unitary equivalent.

To this end, notice that the following relation holds

(2.30) JA = (JG)(GA) ,

and that the operator JG is the adjoint of the identity operator acting
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OL,(-, - )J) > (XK, (-, - )G). Applying Lemma 2.7 to the factorization (2.30) it follows
that the identity operator induces a unitary operator in J(’(l/GA, ](JA).
The uniqueness of the definition of the Krein space J{A follows now from the

Proposition 2.5.

We can introduce now the signatures of the selfadjoint operator A€ 3f (X) by
(2.31) wa = XX, 0, wOlAl = dimker A
: A | -

Using Corollary 2.9 it follows that these definitions are correect, i.e. they do not depend
on the f.s. J used in the construction of J(A. Also, as a consequence of Proposition 2.5

we have

(2.32) ‘ xi[A]=wi[afA],:dim ker ITS. ).

JA
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3. ELEMENTARY ROTATIONS

3.1. Existence of elementary rotations. Let ‘J<1 and .7(2 be Krein spaces and

TE £ (7(1, '}(2). An elementary rotation of T is a triplet (U; X, J{'z) where, _’]{‘1 and J('z

are Krein spaces, the operator U& Sf(J(l[ﬂ]('i, 3(2[+]J('2) is unitary and extends T, i.e.

3.1 P, U :Tyr
(3.1) %, | X,

and one of the following equivalent minimality conditions hold
(3.2) X VUJ( =X 11X, .‘7(1VU#JL’(2 =5(1[+]l"1.

We need now some more notation. Fix J1 and J2 f.s. on J(l and .7{2. Then we can

define the defect operators

h] 1

" _om¥ 2 - _ *f 7
(3.3) B = |J1 i JzTi ; D p* lJ2 TJ,T b5,
and the sign operators

= _ m¥* - ~ *
(3.4) JT = sgn(J1 T JZT)’ J’I‘* sgn(J2 TJlT Jo

Using these, one defines the defect spaces @T = R(DT) and ‘:DT* = ‘Q(DT*)’ considered
as Krein spaces with indefinite inner products determined by the symmetries
I € 20D ) and, respectively, Jix € I ( oD

Notice that, with respect to the definition of the Krein space 3" from Sectxon

1, we have :/) =& I-T#7T and '@ J(I T1¥ , when J, and J2 are the f.s. used in the
construction of the induced Krein spaces.

In the following an important role will be played by the selfadjoint operator

A €XX 1 X,)

(3:5) A=

The Krein space J(A is constructed using the f.s. J on J(l [+] J(z
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(3.6) J=

3.1. LEMMA. There exists a unitary operator Qe X3, .7(1 [+]$T*),

uniquely determined such that

(3.7) 0 lan) * &
' ' 0 e

Proof. Consider the factorization

D
I1 0 I1 0 I1 T
(3.8) A=
~TT#
T 12 0 12 TT 0 12
L%
and notice that the operator é . is invertible. Then apply Lemma 2.7 and
' 2

obtain that the relation (3.7) determines uniquely a unitary operator

Qe (K, XD ). w

3.2. LEMMA. There exists a unitarv operator Q.6 o‘((;‘{’A, QTH] ](2), uniquely

determined such that

DT 0

(3.9) R.194] o :

Proof. Consider the factorization

I # 1,-T#T 0 I 0
(3.10) A= 9

2 2 2
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- L '
and notice that the operator ['I} i ] is invertible. Then apply Lemma 2.7 and obtain
2

the unitary operator 2 el(¥,, ;Z)TH] 3(2), uniquely determined by (3.9). &

Keeping a certain analogy with the abstract scattering theory, the operators 2 _

and _Q+ can be considered as wave operators associated with the selfadjoint operator A.

Then it is natural to introduce the scattering operator S(T)é& 55(7(1[+]JZ)T* ; .7(2[+] @T)

defined by

(3.11) sTy=iy a7t .

3.3. THEOREM. The triplet (S(T); ‘DT* , ‘?JT) is an elementary rotation of T.

Proof. Let S(T) be represented by the block-matrix

S(T) = 9

with respect to the decompositions ‘YIH];DT* and J{Z[H °@T' Using this, from (3.7),

(3.9), and the definition of S(T) (see (3.11)), we obtain

. :
S11 S12 I1 T T Iz

(3.12) = )

S21 822 0. DT* ' D 0

and then, performing the product and identifying the corresponding entries in (3.12), we

obtain S11 =T and S21 = DT .

Since @, and Q_ are unitary operators, the same i$ S(T). Also, S(T) is an

extension of T since
PJ(ZS(T)I 1/1 =8,,=T,
and the first minimality condition in (3.2) holds

K, Vsm K, = X, Vs,y K, = XD K = Kyl Doy

i
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while the latter minimality condition in (3.2) is a consequence of the first, using the

fact that S(T) is a unitary operator. @

We can obtain now, as a first consequence of the existence of the unitary

operator S(T), an important relation concerning the defect signatures of T.

©

3.4. COROLLARY.' For any operator T € of( .7(1, 1/2), the following relations

hold
(3.13) WAK 1AL, - 1% )= o -1 e 3K
and

(3.14) Wl - T # 1= %O, - ¥ )

Proof. Since S(T) € £ ( 3(1[+] $T*’ .](2[+] oDT) is a unitary operator, we have
oy 3 S )
WAL I+ 0D ) = K )+ 1 1D,
and then, using the fact that
A -1 = 34D, (L, - %)= ) 5D, ad,
(see (2.32)) we obtain (3.13). As for (3.14), this follows directly form the factorizations

(3.8) and (3.10), since

Wty - 7%= AT = %%, - T#7) .8

3.2. Link operators. The elementary rotation R(T). In [2], the existence of
elementary rotations was obtained using the existence of the so-called link operators,
which, roughly speaking, are the substitutes of the classical defect relations
TDT = DT*T’ whieh are no longer true in Krein space. We show now that the existence

and the properties of the link operators can be obtained using the same pattern which

produced the elementarv rotation S(T). As a consequence, another elementary rotation,

denoted R(T), is obtained.
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We continue to consider Krein spaces :](1 and 3(2 with fixed f.s. J1 and Jz, and
an operator T€ ;{'(ﬂ(l, ._'1{2).

3.5. PROPOSITION. There exists uniquely determined operator LTE X(@T,@T*)

such that

(3:15) LDy = pT*JZT :

and, similarly, there exists an operator LT*é &'”(;DT*, @ T)’ uniquely determined such

that

¥D..x =D, J T*.

(3.16) LT T 1

Proof. We consider the Hilbert spaces (J(i, (=450 )J ) and the selfadjoint operator
i

Hed (X, ®X),

¥

11 0 J1 0 11 JIT

(3.17) H= ’
.

TJ, 12 0 Jz-T_TJlr 0 I,

and
% %

| L T 35| [J,-T JzT 0 I 0
(3.18) H=

0 I, 0 Iy I,T 1,

Using Lemma 2.7, from (3.17) we obtain a unitary operator (of Krein spaces)

w_e XL %H, J\/l[’r]o@,r*), uniquely determined such that

I1 JIT

% s
(3.19) (,Q_‘_lH, Sz ,
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and, from (3.18) we obtain a unitary  operator (of . Krein spaces)
W, € L (H’ 3’\/2[+] @T), uniquely determined such that
D 0
3!
(3.20) w,|H ®=

d T 1

2 2

Then, consider the unitary operator U € 0\8(7(1[*“] ODT*’ -7(2[+] oDT)

_ -1
Usw, W’

Representing U as a block-matrix with respect to the decompositions 5‘/1[+]"DT* and

K o[+1D.,

and then, performing the produet and identifying the corresponding entries, this imply

U..=J

11500l

DRI ) J,D *J'T* , and

2 e g T ips Lyg S sy

D,*=D.J.T*.

~UggDip* = Dpd,

Denoting LT* = -Uzze I(;DT*,@T), this proves the existence of the operator LT* 2
such that (3.16) holds, and, since D’I‘* .7(2 = @T* » We obtain also its uniqueness.
The statement concerning LT follows in a similar way, using the unitary operator

1

el N

The operators LT and LT* are called link operators associated to T, J1 and J2.

3.6. COROLLARY. The link operators LT and LT* have also the following

properties
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T
(3.21) (3 - Dpd D) Q)T-LTJT*LT,

and, respectively

gk
(3.22) (6 DT%JZDT*)I D px = Lp#do Lo

Mbreover, LT and LT* are related by the following equality

_ *
(3.23) _ L% -JTLTJ

Tt ;g

Proof. As an outgrowth of the proof of Proposition 3.5, we have the unitary
operator U & Z’(J(lh]@,r*, .7\/2[+] oDT)

J2T J Do xd %

2T

(3.24) U=

DT —LT*
g U’# T ] . .

and, since =U "= W_ W ", the following equality also holds

~ *
, olT JIDTJT

(3.25) U = :

DT*- -LT

Since U is isometry we have

* ,
T*J, D, 1[5, o J,T 3, Dpwdos J 0
Jp#Dpsdy  -Lr4 |0 I ‘ P Lo 0 I

and performing the products and identifying the lower-right handed entries we obtain
(3.22). Similarly, one obtains (3.21) by writing that U¥ is isometric and using the
representation in (3.25). |

From (3.24) and (3.25) we also have

* *

J1 0 T JZ DT J2 0 JIT JIDTJT
*
0 JT* JT*DT*JZ —LT* 0 JT DT* -LT

and from here, performing the products and identifying the lower-right handed ehtries,
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we obtain the relation (3.23).@

3.7. REMARK. The relation (3.23) is equivalent with

1 #
LT* = LT 5
which ~em phasises better the duality between LT and LT*'

3.8. REMARK. Since DT and DT* are one-to-one ‘in the spaces @T and,

respectively, 2 r¥s We have

=1 -1..%
LTQDT*TJIDT X LT* _:_DDT T J2DT* .
G -1 . : . | 5
Also, it is easy to see that DT*TJIDT is densely defined in 2,], and DT T*JZDT* is

densely defined in ‘;DT* » hence, the existence of the link operators means that the

operators DT}rTJlDT and D%IT*’JZDT* are bounded.

On the other hand, if the intertwining relation TJ. =J.T holds, then

EE )
Lp= Iy T la’DT and L = Jl'I‘* I ':DT*' In this case, the relations (3.15) and (3.16) read
simply DT*T = TDT and DTT* = T*DT*, the classical "defect relations".
As a consequencé of Proposition 3.5 and its Corollary 3.6, the operator
R(T) € o£( X [+ D px, K,1+] Do) defined by
T DT*
(3.26) R(T) = ,
Do, —LT*JT*
is an elementary rotation of T. This elementary rotation is explicitly computed in terms

of T and it plays a role in the dilation theory.

3.3. The spectral conditions (& ), and (el )_. In connection with the problem of
uniqueness of elementary rotation of a given operator, we introduce now a spectral
property. We need first to fix some terminology.

Let 3 be a Hilbert space and A€ X(X), A = A*, and let G(A) denote its

spectrum. A real number t is isolated on the left (on the righ) with respect to G (A) if
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there exists &> 0 such that (t - € ,t) N ¢(A) = @ (respectively, (t,t+ £) N §(A) = Q).
Also, in the following A = A+ - A" will always denote the Jordan decomposition

of A.

Con31der again T € J( 3{1, 3( ) and fix J1 and J f.s. on f]( and respectlvely

J{ The spectral properties (el ), and (o{)_ are introduced thus:

(0()+ 0 is isolated on the right with respect to (T(J1 - T*JzT).
(k) 0 is isolated on the left with respect to v, - T*JZT) .
3.9. LEMMA. The properties (el), and ({)_ do not depend on the f.s. J, and I
Proof. Let G1 and 62 be two others f.s. on 3(1 and 3(2. Then
* _ _mO0
(3.27) : GlJl(Jl =T JZT)— G1 T GZT 5
where T° denotes the adjoint of T with respect to G1 and Gz. Denote
X Gd, ¢ (‘%1’ (- 7(3{1,( ) and notice that X is the adjoint of
1
identity operator. Then (3.27) means that J1 - T*JZ’I‘ s congruent with G1 - TOGZ'I‘, via

an invertible opertor. The rest of the proof now is a simple exercise in spectral theory

of selfadjoint operators in Hilbert spaces. &

In view of Lemma 3.9, the properties ( ot ), and (¢)_ are associated only with the

operator T. These properties are also selfdual. More precisely, let us consider the dual

- properties
(X )I 0 is isolated on the right with respect to 0"(J2 - TJI’I‘*) 2
( d)f 0 is isolated on the left with respect to (:r(J2 - TJIT*).

3.10. LEMMA. T has the property ( )* (¢he property ( 0(): )if and only if it has

the propertv (ed) (respectively, the property (& ),)
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Proof. Consider the Hilbert spaces (J(i y (&g )J ) and the selfadjoint operator
HE J(J(IGDJ(Z) as in the proof of Proposition 3.5. Frolm (3.17) it follows that T has
the property (&£ )f (the property (X ):) if and only if 0 is isolated on the‘ left (on the
right) with respect to  (H). Using now (3.18), the latter holds if and only if T has the

property (¢4) (the property ( o ),). 8

In the following we will need other equivalent characterizations of the properties

(X ), and (¢4 )_ which are cdnsequences of spectral theory.

3.11. LEMMA. For any operator T € &( ..7(1,](2) the following assertions are

equivalent:

(i) T has the property ( & )_ (the property (of ),)

(i) (J1 - T*JZT)- (respectively (J1 ~ T*JZT)+) has closed range.

ceey = . +
(iii) JTDT (respectively JTDT) has closed range.

(iv) 0 is isolated with respeet to U’(J,},DT) (respectively U‘(J,;DT)).

3.4. Uniqueness of elementary rotations. Two elementary rotations (U; 5 .7('2)

and (v; X', .'7('2) of the same operator T € £( 3(1, .7(2) are called unitary equivalent if

there exist unitary operators (Pl _7(‘1 —_ }('1 " @2 : J(‘2 > 3{’2 such that

. 3.12. THEOREM. An operator T¢ Qa( 1/1, 12) has unique elementary rotation,

modulo unitary equivalence, if and only if T has either property ( &) _or property ( ),
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Proof. Let (U; J('l, J('Z) be an elementary rotation of T and assume that T has

either the property () or the property (d)+. Let U be represénted by the

block-matrix

T A
(3.28) U=
B C
with respect to the decomposition ‘1/1[+]j('1 and ,7(2[+].§('2. Fix f.s. I I J} and I,

on J(l, 3(2, 3('1, and respectively ,1/'2 We consider the elementary rotation R(T) (see
(3.26)) and we will prove that U is unitary equivalent with R(T).

To this end, notice first that since U is isometric we have

—n¥n
2T—B JZB'

(3.29) e
Then notice that, by the first minimality condition in (3.2), it follows that B has dense

range hence, from (3.29) it follows that
(3.30) B= ¢2DT ;

where 4}2 : R(DT)(S @T) —%‘J(;Z is isometric 'and has dense range. Since
' . : - + .
JTR(DT)Q Q(DT) and according to Lemma 3.11 exthgr JT' R(D) or JT (D) is glooed,
from Lemma 2.3 it follows that q>2 extends to a unitary operator in X(@T,J{'z), also
denoted by ¢,.
We use now Lemma 3.10 to conclude that T has either the property (d)_* or the

property (& )f and proceeding similarly as before we obtain
(3.31) A= DT* (Pl ,

where ¢ € LA I @T*) is unitary.

Since U is isometric we also have

T*JzA + B*J'ZC = 0,

whence, taking into account of (3.30), (3.31), and ¢;J'2 = JT q)z we obtain

T5 0B B D $5C=0.
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From here and Proposition 3.5 we infer

(3.32) C=- ¢oLpxdpx G, .
Putting. togetﬁer (3.30), (3.31), and (3.32) we conclude that (U; ¥! ,J{'Z) is unitary
equivalent with (R(T); 9 % Q)

Conversely, let us now assume that the operator T has neither the property (et )_
not the propety (A )+. First we prove that there exists an isometric operator
V:R (DT) R ‘;bT with dense range, éuch that V is unbounded but VDT is bounded.

Indeed, using Lemma 3.11 it follows that there exists a decreasing sequence of
values {uni nZlC Q(J}DT), 0<p < 1, such that p_ ~> 0 (n=>°2), and also there
exists a decreasing sequence/of values iv 'ﬁ n>1C 2 J D ) 0< ‘9 <1, such that

VP 0 (n =>%0), Let {en73 n>1 and {fni n>1 be orthonormal systems of vectors in

‘l)T such that

2 2 2 2
e € B, s WD X, £ €B0-92 -9 WK, n>1,

where E is the spectral measure of J1 - T*JzT.

We remark that there exists a sequence {‘).

n3n> 0< %n, <1, sueh that

')\n ~> 1(n =>°0) and

max3p., ¥
(3.33) . sup { L ng < c0.

n>1 \S1 - R

(Indeed, taking l?\nl = max { \11 - prz] , \Jl - \)rzl 3 is good).

Consider now the regular subspaces of the Krein space QT
Y, =(Ce ®Cf)C M), " n2l,

and the isometric operators X € ?\’(fn)

X=——1——————— , n>1.

A, .
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Using these define the increasing chain of regular subspaces of °ZT
S o 2
n =1 & D), n>1,

and the sequence of isometric operators Vné Sf(ofn),

Then consider -

2)0 =-U < < R(DT)

k>1
and define V : ;Do—-b oDT by
vlsenzvn, 521.
Since V :DO_C_ ':Do and JT @OQO@O hold, we have
RO =D+ (ROPN D)
andlet V : ?(DT)( < °DT)"""DT be the extension such that
VIROP A =1] 0N DY .

Then V is isometrie, it has dense range, it is unbounded (since WD UTX)is
n>1
unbounded), and using (3.33) it is easy to see that -

B=VDpe A(X,, D).
Further, since V is isometrie it follows

J. ~TEr 7 =%

1 2 TB

and then considering the operator Ta [T B]tG af(ﬂ(l, 3(2[+] o@T) from here it follows
that Tc is isometric, in particular Q(TC) is a regular subspace of 5(2[+] °27T' Let _’7(’1

denote the orthogonal complement of ?\(Tc)

X l+1 = T Y X,



e

If R denotes the inclusion Xy —> .'f(z[+] ".DT then

J 0 :
2 i * %
Fac - i
(3.34) TJ,T,=RJR",

: 1
0 T

where J} is a fixed f.s. on J(’l Defining U€ (X [+ X}, K[+ :l)T)

U:'[Tc i R],

we claim that (U; J{‘l, oZ)T) is an elementary rotation of T.

Indeed, U is an extension of T and it is isometric since
i R&d

hold. Using (3.34) it follows that U i§ also isometric. Now the analog of the
minimality clonditionn_s (3.2) hold since B has dense range and U is unitary.

Finally, the elementary rotations (U; ‘1/'1’ ZT) and (R(T); @T*’ o@T) are not
unitary equivalent since V is not bounded. &
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4. THE ROLE OF ELEMENTARY ROTATIONS IN DILATION THEORY

4.1. Minimal unitary dilations. Let 3 be a Krein space and Té X(H). A unitary
dilation of T is, by definition, a pair (U3 K), where 3(93( is a Krein space extension of‘

¥, Ue L(X) is unitary operator, such that
(4. ng U“]3£=T“, n> 1.
Notice that if (4.1) holds then

(4.2) Pa-"(( U#lef:T#n, n>o.

A unitary dilation (U;X) of TE€ &(3) is a minimal unitary dilation (in brief,

m.u.d.) if

(4.3) ¥=\/ U”j{ .

nezZ

Begining with the theorem of B.Sz.-Nagy [20], the existence of minimal unitary
dilation has been proved for more and more general classes of operators by C. Davis [9], ;
P. Sorjonen [49], and T.Ya. Azizov [3] (see also [4]). In [7] we pointed out the Schiffer
fqr'm of a minimal unitary dilation of an arbitrary bounded operator acting in a Krein
space.

In the following we fix a Krein space ¥, an operator T € £(¥), and af.s. Jon
K. with respect to these, the defect operafor's DT and DT*, the sign operators JT anq
JT*’ and the Krein spaces @T and JT* will be considered (see Section 3). Also, recall
the definition of the Krein spaces of the type 12(35) (see 2.3 ). We begin by realizing a

minimal unitary dilation as an elementary rotation.

4.1. PROPOSITION. We consider the trivial extension of T (with 0), denoted

rf‘ﬂt[ﬂlz( $T) "93C[+]12(93T*). Then, identifving naturally the Krein spaces
D+ 1%( @) with 1D ang Dyl %D,w) with 1), the pair (R(T%X) is a

minimal unitary dilation of T, where

(4.4 K= D 214D .
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Proof. With respect to the decompositions ¥ [+] 12(1),1,) ahd X[+]12(:0T*), T has

the representation

T 0

(4.5) T =
' 0 0
hence
| _ DT 0 DT* 0
(4.6) DT = : s DT* = y
' , 2 2
0 I1%A - o 15D )

' : 2 ' 2
and then obtain ;D;]g = ;DT [+11 (JDT) and ;b;i:* = :DT* [+11 (@T*). From (4.5), (4.6), and
the uniqueness of link operators it follows that LT* is the trivial extension of LT* and
then, identifying naturally :Dﬁ,' with 12(2)T) and @7‘* with IZ(QT*), the elementary

rotation R(T) € & (X) has the representation

i eeagl g 0o 0 o0
o 1 0 0 0 0
w0 0 D T . 0 i
(4.7) R(D= | 0 0 -Loadox | Dy 0 0
0 0 0 0 1 0
0. 0 0 0 0 I
] : : ]

with respect to the decomposition (4.4). R(T) is unitary (since it is an elementary

rotation) and the axioms (4.1) and (4.3) can be readily verified.

We shall refer to the minimal unitary dilation construected in Proposition 4.1 by

the expression the canonical minimal unitary dilation of T.
The construction used in Proposition 4.1 is actually more general, more precisely
to any elementary rotation of T one can associate a minimal unitary dilation of T which

is an elementary rotation of a trivial extension of T. In order to characterize those
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m.u.d. of this type we need some more notation.
Let U¢ L (X) be a unitary operator. A subspace <X is called wandering for U

if & is nondegenerate and

(4.8) U 1U9%, ' pgezpra
‘Sinee U is unitary, (4.8) is equivalent with

(4.9) UL ez n#o.
If (U; X)) is a m.u.d. of T€ & (), one defines the subspaces of and Ly in X,
2 ¥ _n#

(4.10) £=(U-T¥, g (UT--1% )3,
and also the subspaces

(4.11) M(2)= VUe, M (2= V',
n>0 n<0

4.2. LEMMA. For any m.u.d. (U, %) of T, the subspaces X and x#, introduced

in (4.10) are wandering for U. In addition, the subspaces M+(&';) and M_(x*:) are

nondegenerate, mutually orthogonal and orthogonal to 3¢, and

(4.12) K=M_(Lg NHVW (L).

Proof. Let hke ¢ be arbitrary and consider n a positive integer. Then, using

(4.1) we have
[U™U - Th, (U - T)K] = ™ vig- [U™Th,UK] - [U™ 1h,Tk] +
+[U"Th, TK] = [T"h,K] - [T"h,k] - [T™ 1h,Tk] + (7™ T, = 0

From here we infer that (4.9) holds.

Also, for h,k €% and n > 0, we have

(U™ - Dkl = (0™ k] - (0™, = 7™ Ihk] = (7™ kg = 0,

hence

(4.13) UL nini.,
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Similarly it can be proved that the following hold

(4.14) Uy L Xy, n Z n#o0
and
(4.15) u? "Ll ¥, n>o.

Moreover, we have
(4.16) e b N )

and, using the definition of the spaces ¥ and x# , it is easy to prove that

(4.17) AVUXV..Vu"® =¥V V.. Vo™i, n>o
and ‘ |
(4.18) AV vV L vu# g =qVZ,V ... VU#(H-I)J,’# 5. N30

From (4.17) and (4.18), it follows that the minimality condition (4.3) implyes
(4.12). Then, taking into account that (4.13), (4.15) and (4.16) infer that M+(c2f),
M_(ZLg), and J( are mutually orthogonal, using (4.12) we obtain that M, (&£) and
M_(.D.‘,’#) are nondegenerate. At their turn, these  imply that & and 35# are
nondegenerate (for this we use (4.9) and (4.14)). Finally, & and x# are wandering

spaces of U since (4.9) and (4.14) hold. @&

4.3. COROLLARY. For any m.u.d (U, %) of Te X(3), the following assertions

are equivalent:

() 3 is a regular subspace.

(B) X is aregular subspace.

(%) 3¢ VUK is a regular subspace.

(X V¥ isa regular subspace.

(’Z) P?j€<V UJ{UI # VU*R isan elementary rotation of T.

Proof. Taking into account that o, Ly, and I are mutually orthogonal and



- B o

specializing (4.17) and (4.18) for n = 1, we get

HNVUH =H[+]1X

and
P.¢ VU#QC —'—3{[*']2# .
Then notice that. ‘
V(R VUK ) =K VUX .
The equivalence of the five assertions follows now easily. a

We are now in a position to characterize those m.u.d. of T which are elementary

rotations of trivial extensions of T.

4.4. PROPOSITION. Let (U; X) be a m.u.d. of T€ 3¥(X). The following assertions

are equivalent:

(i) M_(L) is a regular subspace of X .

(i) M_( X ) is a regular subspace of X .

(iii) Modulo the identification of two pairs of subspaces, (U; %) is elementary

rotation of a trivial extension of T.

Proof. (i)¢=>(ii) If either M (&) or M_(?)#) is regular, then using Lemma 4.2 we

obtain the following decomposition

K=M_(Lp) A+ M (L),

hence both of M_(X) and M_( X) are regular.
(iii) => (i). Let T : 3 [+] }(’1 = I [+] 3{2 be a trivial extension of T, such that U is

elementary rotation of T Represent
i A
B0

with A : 3{1-—? A [+] }{2 and B : 3 [+] }{’1 - X, ’}\(A#) dense in .7(1 and R(B) dense
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in ¥ 9° Since U# is isometric we have

R\ \L N

Then representing A = (A,

AA#' 0,

#_
149 ALAS =1

2 2

Al A€ 5(’(3(1, 4 ) and A€ SC(J(I, 3{2) we have

o o ®
AAT=1-11% |

In particular, Ag is isometry, hence 'Q(A ) is a regular subspace of .7( and, since

2 (a¥ ol Q(A#) and Q(A# ) is dense in .7{ it follows that ?(A#) = R(A#)

regular subspace of J{ and

(4.19) X, = ak) 1+ RcA

is also a

On the other hand, since the m.u.d. (U,X) is obtained from the elementary

rotation by identification of two pairs of subspaces, from (4.19) it follows that with

respect of the action of U on ¥ we have

(4.20) K =X XK X+ 3,
where
(a.21) ¥, = XXy

and A is represented by the block-matrix

A1 0
A= -
0 A2
~with A1 e X .7(1,3() such that AlAfz

Ay€ ;’(3('1, 9(2) is unitary.

I—TT#', Q(Af) dense in J¥', and

Similarly, with respect to the action of U# on X we have

(4.22) X =3, M 1K, (X,
where
(4.23) = Jéz [+]3{'2

and B is represented by the block-matrix



A

with B,€ ;f(é‘(,ﬂ{z) such that BTBI ) T#T, ?(Bl) dense in 3{2, and
BZG 3(’(351,3('2) unitary. |
Further, with respect to the 'decompositions (4.20) and (4.22) of I, U is

represented by

Ao 0 0
o Bl 0 |
(4.24) U= ,
0 o O R
0 0 0 By

2 2

where A, and B, are unitary and [
here we obtain

A
1} is elementary notation of T. Then, from
B C
1
of = B =X eal
and Un,;f s 3{1 , n > 1 hence
(4.25) M (L) S, .
Similarly, from (4.24) we also have
- A¥5
&3‘5_ A1X~ 3(1 c 3(2
and then U ¥ n:c# e 3(2 , N > 1 hence
(4.26) M (Lg)SH,.

Using Lemma 4.2, from (4.25), (4.26), (4.20) and (4.21) it follows M (&) = 3, and
M_(Sﬁ# ) = S‘fz ,» hence these are'regular subspaces of X.

(i) => (iii). Assume that M. (&) is a regular subspace of X/, hence the same is
M_( &g ). Using Corollary 4.3 it follows that, with respect to the decomposition of the

domain



o

K= 0¥ M (L4 L [ 1 W2,
and the decomposition of the range
K= M_(Z ) I+ X [+] UM, (L)

U is represented by the block-matrix in (4.24), where A, and B, are unitary and

T A _ ‘ )

( o Cl : SC# , ) is elementary rotation of T. Then, modulo the identification of
1 1 ‘ -

M, (&) with UM_ () and of M_(x*) with U#M_( ZC# ), U is elementary rotation of

the trivial extension T s A [+] M+(:C) "‘>?€[+]M_(x# Jof T.8

As a consequence, we can characterize those operators T having the property

that any m.u.d. of T is elementary rotation of a trivial extension of T.

4.5. PROPOSITION. If T is an operator on the Krein space , then the following

assertions are equivalent:

(i) Any m.u.d. of T is, modulo identification of two pairs of subspaces, an

elementary rotation of a trivial extension of T.

(ii) min § W1 -7 %1, W -T7#13 = min § %11 - TT#),

+
JMI-T#T 13 =0.
Proof. (ii) =) (i) Let (U; %) be a m.u.d.’of T. Then for arbitrary h,k € 3¢ we have

[(U - T)h, (U =TI = X1 - T*T)h, k]
and

0¥ -, U # - %K) =10 - TT*)h,K.
Then we obtain from here
W= -T#1, ¥ 1=nroTT# ],

It follows that, since the hypothesis (ii) holds, either & and &,”# are definite subspaces
of the same sign, or at least one of the subspaces of and Z# is null. Taking into

account that, from Lemma 4.2, we obtain

4o
~f
Ko™,

(4.29) M_(Lg VM, (X)



g

in the first case M_(i* )VM+(§C ) is a uniformly definite subspace of % , hence both
of M_(x#. ) and M,(€) are uniformly definite subspaces. In the.latter case, either
M ( f#-) is null or M_ () is null hence, using again Lemma 4.2 we conclude that
either M+(Sﬁ) =¥nN at or M__(ZC# Yy=HN Jﬁ"' . We proved that, in any case, the
subspaces M, (£ ) and M _( L4 ) are regular. Applying now Proposition 4.4 it follows
that (i) holds. _

(i) = (ii). Assume that (ii) does not hold and we will produce a m.u.d. (U, %) of T
such that the subspaces M.+( L) énd M _( xg) are not regular.

To this end, let us first note that, as a consequence of (2.32) we have

WI-T# 1= 03D, -1 )= Wi Dot
Since (ii) does not hold, from here we obtain that there exist two vectors e € ‘DT and
fEQ)T* such that e and f are definite of opposite sign. Taking into account the
definition of the Krein Spaces @T and @T* s without'restricting the generality we can
assume that e € ;\)(DT)’ fe?R (DT*), e is positive in QT*’\f is negative in @T*’ and
(e,e)J = (f,f)J *‘ =1 (recall that JT and JT* gre f.s. on @T and, réspectively, o2

T T
We consider now the Krein space

T*).

(4.25) =15 D) 11 A 115D )
and denote /
2 2 2 w2 - @A 2
(4.26) (D) =81 Dpe1%D ), 1A D) =51 (D) 14D ps),

where S is the right shift operator (see Section 2.3). We will define now a bounded

‘unitary operator

12 <2 12 2
(4.27) V1 (D) 117D 1) =>1% Dow) [+] (D).
For any integer number k > 1 we define the vectors

th e
k™ position
e = 0[] [+1 0 [+]e [+] 0 [+] ... € 1% 2.,

kth position
f =0 [F1O I [+ 0 (+] ... € 12(@T*>,
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and using these define the vectors X V) € 1% @T*) +114(D ) by

k] k
(4.28) X, = \I2k2+2k+1(k+1fk [+] ek), ks,
i AR LR
N

and X, = 0 [+] e Yy

Consider now the subspaces

= _fl .[+] 0.

15C 4115 Ce) g 12D ) 415D )
and

den1ice g1 D o) 415D
Then define .

s e

Ve B i,
(4.30) AT

Vx k>1

k- Xk+1?
and extend V by linearity. V is isometry, with domain dense in 13( Cf) [+] 12( Ce) and
range dense in 12( Cf) [+] lf( Ce). We prove that V is bounded.

Indeed, from (4.28) and (4.29) we have

2

(2k +1)N 2k° + 2k + 1 k
0[+le, = (x, - 29 2
ek +1) NakZ + ok + 1,k
fk[+]0— 5 (—k+1yk+yk), k>2
kK + 1)

and then, using (4.30) we obtain for any k > 2

(2K +1) \I2k2+ h+1 k+2 K+l
V(0 [+] ek) = 5 (k+2 fk+1 [t]e
k2(k + 1) \2kZ+6Kk+3

2 ]
Kk k=d )

- (f [+] =—e
(c+1) \okZ-aieg <710 kKL

) -

k+1




=l

and

v, [+]0_(2k+1)\]2k2+2k+1 Codlend) g L
, K2k + 1) VokZ+6k+3  K*2 fieen 1 @y

k-1
: G il e )
“Z—Zk g L TR Thed

=

From here it follows that, with respect to the Hilbert space orthonormal basis {kaB 0,
0®ek} K>1° V has a tridiagonal matrix representation such that each diagonal is

uniformly bounded, hence V is bounded and extends uniquely to a unitary operator
2 2 D 2
(4.31) Vi 11( Cf) [+]11°( Ce) =>1°( Cf) [+] 11( Ce).

We remark now that Ce is a regular subspace of 1) and Cf is a regular
subspace of ;D * so let fCeD and Y, C "DT* be their orthogonal complements,

Cel+] = pandCfl+] = r*- Then we have the natural identifications

HDp=1%cami?r), ADw=1denmi Y.
With respect to these, we extend V to a unitary operator as indicated in (4.27) by letting
(4.32) Vy 10 =sFy sk, xa1d), yer(F.)
. 9 y y 1 : 24

We extend now V to a unitary operator in (X)), where X is given in (4.25). To

do this, note first that as a ecnsequence of (4.26) we have the decompositions
2 - 2 2 " 2
(D = Dt D), 12D ) = Do 115D ),

and then extend V to the whole J{ be letting

(4.33) V| Dpx [41%=R(T).

From the construction of the unitary operator V it follows easily that (V, ) is a
m.u.d. of T. It remains to prove that M+(£) is not a regular subspace of . To this

end, note first that, using (4.30), (4.33), and (4.33) we obtain

M) =12V ex,
k>1
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Now M_(L) is not regular since (x,» x,) = 1 but

2k + 1

5 =0 (k—=> o0) ,
(2k“+2k+1)

[Xk’ Xk] =
Finally, using Proposition 4.4 it follows that (i) does not hold. @

As a consequence of the preceeding result it is possible to investigate the
uniqueness of m.u.d. of a given operator T. In order to do this we need first to recall
some definitions.

Two m.u.d. (Ul, _'J(l) and (U2, 3(2) of the operator T € () are unitary
equivalent if there exists a unitary operator W [ 3(1, '3(2) such that W acts as the

identity operator on 3 and WU, =T, W.

- 4.6. COROLLARY. The operator T € (3€) has unique m.u.d., up to unitary

equivalence, if and only if T is either doublv contractive or doubly expansive.

Proof. If the operator T is either doubly contractive or doubly expansive, any
m.u.d of T is unitary equivalent with the canonical m.u.d of T (see Proposition 4.1), e.g.
as indicated in[ 8 , Theorem 4.4].

Conversely, if T is neither doubly contractive nor doubly expansive then one of

the following statements hold:

(a) Either ;DT or J) r* are indefinite.

(b) T satisfies the eondition (ii) in Proposition 4.5.
In the first case, we can follow the pattern used by C. Davis[9] to construct a m.u.d of
T which is not unitary equivalent with the canonical m.u.d of T. In the latter case we use
Prop.osi‘tion 4.5 to produce a m.u.d. (U,X) of T such that M ( &) is not a regular

subspace of ¥ . Then this is not unitary equivalent with the canonical m.u.d. of T. @

4.2. Characteristic functions. Let (U; 3{) be a m.u.d. of the operator T € ¥ ( %),

such that the subspaces SC and :5#. , introduced in (4.10), are regular. Then, for



arbitrary integer n > 1, we can define the regular subspaces

5 -

n+l n

2 #k n < k

(4.34) M=\ v¥e, MZe)=\/ v
k=-nt1 k=-n
Denoting by P% the selfadjoint projection onto the regular subspace Mn(af#; );
MY (L)

we can introduce the operator Q€ §f(Mn(:€ ), MY Lg))
(4.35) anpxn M ().

M (L)

c (n) . p2n+1 n
onSIdemng now the unitary operators £ 38# —> M (Ly ),

(N y2n+1 k-n- 1
(4.36) 0 G Z:U

and Il(n) : 12n+1__> M (L),

2n+1
2nde k-n
(4.37) Bl = Zn=1 s A

(recall X" denotes the Krein space direct sum of n copies of I ), we can introduce the

operator @n : x2n+1 - xfnﬂ ;
(4.38) ®, = om# QL2 -

On the other hand, since <& and x# are regular subspaces, according to -
A
Corollary 4.3, (U; x;,x) is elementary rotation of Ty where

A
‘U = P?([+]:CU | 9(’[+]35* . Consider the representation

(4.39) U=

4.7. PROPOSITION. With respect to the canonical decompositions of the Krein

spaces £2n+1 and 0\82n+1’ ® , has a lower triangular Toeplitz block-matrix

representation, @ = (( @n)”)?r; 11, where




A -

it o i-j<o,
© (4.40) (@)= il =3

A¥ pFO-Dp# S,

Proof. For arbitrary k and p, -n<k<nand -n+1<p<n+1, as a consequence

of the definition of the operator ® , we have
# =
1@, 07,05 QWP 0P = (0¥ P, 1), reXy , ge .
From here, using the definition of A, B, and C we obtain the formulae (4.40). @

From the preceding result it follows that the "symbol" of ®n is the 2n+ 1 - th
polynomial approximant of the Taylor expansion, in a neighbourhood of the origin, of

the operator valued function
(4.41) oM =-cF+rafa- 28", aea,

where AT = { Necl - AT¥ s invertible} . This operator function plays the role of

a characteristic function associated with the m.u.d. (U; X) of T.

Using the fact that U in (4.39) is unitary, it can be proved that
1-9(MF @w=0-3pse- A a-w¥e*, AueA,,
which is a property usually fulfilled by this kind of funections.

In the remaining part of this section we will show that the approach used in
constructing the elementary rotation (S(T), JDT*’ @T) as in Theorem 3.3 leads also to
the definition of a characteristic function.

We consider the selfadjoint operator e:f(?(nﬂ) defined by the

An+1

block-matrix

B o ey e
sty o gl
T2 I #n-2
(4.42) A=
Tn Tn—l Tn—2 I ]
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If J denotes a fixed f.s. of ¥ then let I+t be the direet sum of n+ 1 copies of J. Jn+

1
isaf.s of ™1,
4.8. LEMMA. There exist unitary operators _Q‘_nﬂ) : J(A Hi+ DT and
n+1
Q_inﬂ) : Jf’A —> :’D'II]‘ [+1d¢ , uniquely determined such that
I T# .. T¥D
0 DT* DT*T#n-l
(n+1) 3 _
(443 Q779 A |7 = . ,
' 0
DT*
- r
and
-
D 0
T 0
DTT DT
(n+1) 1
CX VRN Faiing ARV SUOY I
n-1 n-2
DT'I‘ DTT DT 0
| " il I
Proof. We consider the factorizationsof An+1
r - .
I o "1 1 r® T# D
0
T I -TT¥ 0 0 I
_ n iv .
A= i SR 0
s L. -TT#| | 0 I

and ‘



(1ot Lt [t g 11[:
0 I 4 0 e 0
An+1= . g Tz T
0 I-t# 7 :
0 I A

: S -1 b . I J =l T I J
Applying Lemma 2.7 to these factorizations we obtain the unitary operators _anﬂ)

and _Q_inﬂ) as in (4.43) and (4.44).

Using the preceding result we can introduce a unitary operator
n n
S : XD x => D7 [+1 K by

- oD . (1)
(4.45) St :

Note that with respect to the definition (3.11) we have S(T) = SI(T) and consider its

representation

(4.46) S(T) = .

4.9. PROPOSITION. With respect to the natural decompositions of 2{’[+]:{)¥*

and j),r]‘, B Sn+l(T) has the following block-matrix representation

B C 0 W 0]
BT BA
(44D s, (-
B! BT 24 BrRA L B
B iy o WAR TR A

Proof. The unitary operator Sn+1(T) is uniquely determined with the property



I ol o ol Dy 0 e
#£n-1
0 DT* R DT*T DTT DT
Sn+1(T)= 3 . =1 .
3 n-1
D’I‘T DT 0
i n n-1 ‘
L' O : DT* J L T T eeeo I J

By direct computation it is easy to verify that Sn+1(T) has the block-matrix

representation as indicated in (4.47). @

The nxn lower triangular Toeplitz block-matrix in (4.47) leads now to the

definition of an operator valued function of the type.considered in (4.41).

4.10. REMARK. If one uses the canonical m.u.d. of T (see Proposition 4.1) then

the analog of the definition in (4.41) is the operator valued function ®T

‘ ik a1
(4.48) @T(M~ Lid, 4 )\DT*(I AT Dig. s + M/\T,

(where D, € X(X, :Z)T) and D € Df’(Z)T*,é‘C)) which was introduced in [7] as the
characteristic function of T. One can obtain this function by generalizing the pattern
used in Proposition 3.5 as suggested by Lemma 4.8 and Proposition 4.9. |

On the other hand, since elementarly rotations are not unique in general, the
results from this section show that the same geometric properties (e.g. minimal unitary

~dilations or scattering theoretical interpretation) lead to possibly non-unitary

equivalent characteristic functions.
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