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l.INTRODUCTION

The elementary rotation of a eontraetion in a Hilbert spaee is a unitary operator

extending the given contraetion. Under suitable minimality eondit ions this unitary

operator is essentially unique and it plays a central role in dilation theory' as

emphasized by P.R.. Halmos I d3] and B.sz.-Nagy and c. Foias Ix:1].

Beginning wi th . the theorem of  B.Sz.-Nagy 1801,  ex is tenee of  min imal  un i tary

dilat ions have been proved for more and more general classes of operators (ef. C. Davis

[g], p. Sorjonen tdgl) t fr is cutminating with the result of T.Ya. Azizov [5] (see atso 4l)

which states that any bounded l inear operator in a Krein spaee has a minimal unitary

dilat ion. Implieit ly, this result eontains the existenee of elementary rotations of anSr

bounded operator in Krein spaee.

Motivated by investigations in l i f t ing of operators, the possibi l i ty of using an

elementary rotation whieh ean be deseribed explieit ly in terms of the given operator

was pointed out in t6l for contraetions in Pontryagin spaees' while in t&l such a

descript ion is obtained for any operator in Kiein spaces.

The purpose of this art iele is to i l lustrate a teehnique of indueed Krein spaees

and an abstraet seattering theoretieal in.erpretation of elementarv rotations in Krein'

spaee. Brief ly speaking this means that f irst one assoeiates a certain selfadjoint

operator A to the given operator T, then eonsidering trvo dual indefinite faetorizations

of A one obtains two unitary operators O* and J1 - and lett ing 5 =Jl*.0.-1 this is un

elementary rotation of T (see Theorem 3.3 and its lemmas).

In [u, the existenee of elementary rotation fol lows as a eonseguenee of the

so-ealled l ink operators we ean show that the eonverse is also true, onee the

elementary rotation is obtained, the existence of l ink operators and their propert ies

foliow from this-

In Theorem 3.12 we have obtained a speetral charaeterization of those operators

whieh poSSesS unique eiementary rotation, up to unitary equivalence' In eontreetion with

this we shouid mention that, during a short visit  toBucharest that he payed at the end
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of July 1990, M.A. Dritsehel informed us about a geometrie eharaeterization of

op.tafots whieh have unique Julia operators, this being a result from a joint paper with

J. Rovnyak, whieh at that t ime was in preparation. Since Julia operatorq as introdueed

in W2'1, define the same object as elementary rotations, Theorern 3.12 ean be

eonsidered as a eounterpart of their result.

Elementary rotations and unitary di lat ions are elosely related. Using the

elementarv rotation R(T) we have pointed out in tFl the Sehdffer form of the minimal

unitary di lat ion. Due to the nonuniqueness of minimal unitary ditat ion (early remarked

by C. Davis [3]), the problem of eharaeterizing those minimal unitary di lat ions produeed

by elementary rotations appears as natural. We have considered this problem in Seetion

4. Here the usual diff ieult ies eneountered in the geometry of Krein spaees, i l lustrated

by the savage behaviour of shifts on Krein spaees.(seg the paper of B. MeEnnis [/F])

show up. Finally, a diseussion on eharaeterist ie funetiong from the point of view of the

approaeh used in this paper, is eonsidered.

In Seetion 2 we present prel iminary results eoncerning the geometry of Krein

spaees and their l inear operators, a boundedness eriterion of isometrie operators, the

construetion and the basie propert ies of indueed Krein spaees, as well as of indefinite

factorizations whieh produee unitary operators. For basie results eoneerning l inear

operators on Krein spaees ,r" reeormend, T. Ando 14.1, l .  Bogndr [5] and T.Ya. Azizov

and I.S. Iokhvidov [S].
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2. NOTATION AND SOME PRELIMINARY RESULTS

2.1. Geometry in Krein spaees. Let X be a eomplex veetor spaee and [ ., . ] an

inner produet on J{ (i.e. [. , . ] is l inear with respeet to the first variable and

antisymmetrie).X is ealled a Krein spaee if .one of the followingequivalent eonditions

holds

(i) There exists a l inear operator J ,K->K sueh that J-l - J and denoting

(2.1) (x,y), = [Jx,y], x,y €.K ,

( -, . )J is a positive definite inner produet onl{, sueh that (K, (. , . )J) is a Hilbert

space.

OC,

(2.2)

(ii) There exist two subspaees Xlgj{ suetr that .(= J{ * J(- , K*t 3{-

(i.e. [x,y] = 0, x € X*, v€ JC-) and ({+, [ ' , '

( i i i )  There exists a posit ive definite

( '  ,  '  )) is a Hilbert spaee and, denoting by

l), (JC, -[ '  , '  ]) are Hilbert spaees.

inner produet ( ' , '  ) on Jd sueh that

i l 'n the assoeiated norm, it holds:

l l * f l  = supI tx ,v l f ,  x€X.
llvll 5t

Let (Xr,  t . ,  -  l ) 'be a Krein spaee. An operator J:3C->X sat isfy ingthe property

( i) is ealled a fundqmental_ symmetry ( in brief f .s.). I ' { i th respeet to the Hilbert spaee

(K, ( .  ,  .  ).r) J is a symmetry, i .e. J* = J = J-1. I f  X= {* * X- ir a deeomposit ion of

JC"r in ( i i) ,  then it  is ealled a funtrmental deeorn!gg!l&! ( in brief f .d.). Fundamental

fundamental decomposit ions of the Krein space are in bi jective

If J is a f.s let J = J+ - J- be its Jordan deeomposit ion and

X* = Jk, X=,1-J{. Then X=Jf *K- is a f.d. converselv if JG X* *T it a f"d.

then define J :{+5( 6u

' r _ +

( 2 . 3 )  J ( x ' + x ) = x ' - x , " !eX! .
J is a f.s. of X.

A norm on X satisfying the property (i i i) is called a unitary norm on !f. eny

symmetries and

eorrespondenee:

unitary norm || ' i l  on 5{ is of the form



(2.4)

where J

topology

5 -

1  - n /
I xfl = [Jx,xlz , x€K ,

is  a f .s.  of  K.  Any two uni tary norms on

of the Krein spaee X ir the topology defined

J{ are equivalent. The strong

by an arbitrary unitary norm on

X .
Let X, and XrUe subspaces of the l{rein space X(i.". X, ano ff, 

"t" 
elosed

linearsubmanifolds of -.X). If XlI X, ano the algebraie sum X, *X, it direct and

elosed then we use ttre notation Xrt*lYr. tn partieular, a f.d. of J{ wil l be written

r ( . 1 + x ) = J  x r  x € W r

Y= \t*|,*jJ,C .

If X i, a subspaee of the Krein spaee 5( *u denote by {t={-e.l{l [x,y] = 0,

v€Yl the orthogonal eompanion of X and byXo=Xn*t the isgqepiq qlgpqce

of S. The subspr."  X iseal ied nondegenerate i f  Xo= 0 and degenerate i f  Xol  o.

A subspaee X is ealled nonnegative (pgg!ryg) if [x,x] ) 0, x€X([x,x] > 0,

x(X\{o} l .  The subspaee X i ,  cal}ed uJr i formly posi t ivs i f  for  some uni tary nornt

fl . l l  (equivalently, for any unitary norm) onX, there exists o(> O sueh that

(2.5) lx,xl ) "( llxll 
2, * €)e.

Similarly one defines nonposit ive subspaees, negative subspaees and vl i , forqly negative-

subspaces.

Let Y, be a nonnegative subspaee of. the Krein spaae K,Y={l+lX- be a f.d.

of Y, J the eorresponding f.s and J = J- - J- be its Jordan deeomposition. Then

0* = t1J8 is a elosed linear manifold in X) and the operator I( ( ff( &*,1C) defined

by

(2.6 )

is a Hilbert spaee eontraetion, and X i* the graph of K

Q.7) X =  c ( x )  = { x  +  x x  l x ( A - } .

The operator I( is ealled the angular operator of the nonnegative subspae 
" 

& .

i l loreover, the subspace X ir posit ive (uniformly posit ive) i f  and only i f  i ts angular
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operator K is a striet eontraetion, i,e. 1lx*ll < ll*ll , x(On (r"spuetively, K is a

uniform eontraetion, i.e. l lKll ( 1), wheru ll ' l l denotes the unitary norm assoeiated to

J. Similar statements hold for nonpositive, negative and uniformly negative subspaees.

r,iitfr the notation stated above, the nonnegative subspaee X it maxirngl

nonnegative (i.e. there exist no proper nonnegative extensions of X I if and only if

.rY = 34*. etro, X is maximal nonnegative if and only if X'i, maximal nonpositive.

A subspaee )g of the Krein sp""" .X is ealled regular it Y=XI*I Xr. e

nonnegative subspaee is regular if and only if it is uniformly positive. The subspaee X

is maximBl uniformly positive if and only if .f,=Yt*l Xt i, a f.d. aty.

uniformly positive,/is nonpositive,oilLrt/, *9 ,/ l+oll ie a"nsu in 5{. s{, is u

2.1. LEMMA. Let clL ana c/be subspaees of the Krein spaee .Ksueh thg! J{tr

Then

maxi mal uniforml@ df= r/,{t.

Proof. Let us first notiee

sueh that * b{. rnen xLe/l+/,

x = 0 .

Using the extension theore

maximal positive subspaee, and

that the subspaee &/ it negative. Indeed, let x Qrll'

henee *lX. Since X it  nondegenerate this implies

f R.;. Phil l ips [ 5 ], i t follows that there exist oy'

maximal negative subspaee sueh that ,f i.arrt{,

,frz,,t/ una rtut.
Using the sam e extension theorem of R.S. Phil l ips, there exists a f.d.

J{=X*t* lX- sueh tnat"/(gX*.t  utJ be the eoruesponding f .s. and K eX(X*,K')

be the .angutar operator ot rt.  rc *€{* OJ(, then x+ Kx e"frn-4'n"n.u

x+ KxId*r,f. sin"u rll*frZrA*olf is dense inX, from here we obtain x= 0. lve

have proved in this way that cl{=J{* is a maxi.mal uniformly subspaee. This yields

,rtf  gt is unifdrmly negative, in part ieular ,r{ l* lrd=.(, hunce ,/= ol ' t"=.(-.g

2.2. REnIARK. In order to prove that v{( is a maximal positive subspaee in K,

the assumption in Lemma 2.1 that , l{A" uniformlv positive is essential, as it is shown

m o

,/f
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by the example of H. Langer [15] of two subspaees ,r{, ana ,lf, Jl. positive, c{/ negative,

,j,l tut/, o,{l+ o( aense in X but neithe, o{d is maximal positive nor ,t{i" maximal

negative.

2.2. Linear operators in Krein spaees, Let "(, and XrAu Krein spaees and T

densely defined in Y,, and valued in -(". One defines the adjoint operator of T,,- ' . 1  - Z

denoted T#. as foi lows

(2.8)
f i  $# ) = ty < xzl"00l) xHlrx,vl is bounded ]

lTx ,y l  =  [ x ,T#y ] ,  xe0 ( r ) ,  veJ rc *Y

Let J, and J, be f.s of X, and, respectively, Xr. conv dering T* the adjoint

of  the densely def ined operator T:?(TXg Xr l '>X, wi th respeet to the Fl i lbert

s p a e e s t X ' t ' , ' ) J 1 )  a n o  ( . ( r , ( ' , ' ) J r ) , w e  h a v e  T g t f  ) =  J z A ( T * )  a n d

(2 .9 )  T#  =  J1T*J2  .

In the foilowing we clenote by X.(r, Xr) tt," set of bounded (with respeet to

' arbitrary unitarv norms on the Krein spaees X I ancl Xr) l inear operators

" 
,?, -, Xr. An operator t € {(X t, Xr) is eontraetive if

(2.10) [Tx,Tx] ( [x,x], x ( (t :

equivalently I - f #t is a nonnegatile-slelglel, i.e.

( 2 . 1 1 )  t ( l - r # r ) x , x l > o  * ( X l  .

T is ealled Sloubly contraetive if both of T and T # are eontraetive. T is called expansiYe

if t#t - I  is nonnegative, and it  is ealled double expansive if  both of T and T# are

expansive.

A (possibly unbounded) operator V :2 (VXg Xrl -+X, is ealled isometry i f

Q.tz) [Vx, VyJ = [x, y], x,y ( & fvl .
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I f  v({ (J(r, X,z) then v is isometrv' i f

U(X(g , , , .Xo)  i s  ea l led  un i ta ry  i f  i t  i s
L L

u#u  =  I ,  and  uu#  =  12  .

Let { o" a Krein spaee and.(=.1*[+].(- u" a f.d. of J( ,The cardine.t numberg

\*(X) = dim (X*l and \ 
-(,X) = dim 0{) are ealled, respeetively, the positive

signature and the negative signature of g . They are independent on the f.d. The

and only if Vf v = 11. An operator

isometrie and surjeetive, equivalently

rank of indefiniteness ofeardinal member X(.J{) = min {x*t{ l, {(g )J is ealied the

the Krein spaee X .  t f  x ({)  is  f in i te

Given two Krein sp""es .(,

u ' Xr ->V,z it is neeessary

x-(Xl) =r \-(%).

2.3. LEMMA. Let V :? (VXg X,t) ->XZ be an i.q_ometrv_u/ith dense domai_n and

dense ranse. Assume that there exists a f .s.  J.  of  ?,  sueh that J,J N)SA(V).  I f  at

least one of the l inear manifolds "riJtvl 91! J;Otvl is eloseg, thel V is bounded and

thus, it ean be uniquely extended to :!-unitary operalg1 in X({f , i lr).

proof.  Let  V r0(vX g3<I)nXZbe an isometry sueh that "?(V) is dense in Xt

and R(V) is dense tn \Z. IVe prove f i rst  that .V is in jeet ive.

Indeed, let  x €3Ol be sueh that Vx = 0.  Then

0 -  [Vx,  Vy] = [x,  y] ,  ye 0(v),

henee, sinee ?ff) is dense in ,(r, from here we obtain x = 0.

We ean eonsider now thel inear operator v-1 ,  Rtvl t  i=yz)- ' i l , t ,  whieh is also

an isometry. Let z e 3,(v) and denote y = v-lz' Then we have

[Vx, z] = [Vx1 Vy] = [x, y] = [x, V-121, x 6 J { v ) ,

henee v - lq  v# .  s inee $ tv -1y  =  Qtv )  i s  dense in  { r  ,  i t  fo l lows tha t  3W# )  i s  a lso

then 9( is called a Pontryagin spaee.

and \, , in order to exist unitary operators

and suffieient that x*t(rl = x*(Xz) and

dense 
'n 

XZ , henee V is elosable.

Let now J, be a f.c of .(1 such

deeomposit ion holds

that  Jr? tv l  *&<vl .  Then the fol lowing
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(2.13) ltvl = ;t JOI + rl0 (v) ,

where .r, =;f -.1, is the Jordan cleeomposition of Jl. sinee lla tvle .{l and

.lr0tvl  
"X;,  

where {r =.{ l f - f  . ( ,  i r  the f .d. eoruesponding to J'  then,l ]"0tvl  is

uniformly positive, J;P ff) is uniformly negative, and .ll '? tvl-r;r"? fvl.

If, tet us say, the tinear manifold.ll0 tvl is closed, it foliows that VIJiJ(V) is

bounded (sinee v is etosable and ,lf0 fvl C 0(v)). we elaim that VJiJ (v) is a maximal

unif ormly positive subspaee of X z.

Indeed, eonsider on {1 the unitary norm assoeiated to J, and on 51, *"

eonsider an arbitrary unitary norm. Then, for any veetor x €& (V) we have

tv.rlx,v;lxl = lJix,Jlxl = lt.rfx tl 2 
l ., {.,tf v.rf* il 2 ,-  

l lvJr  $ '

hence vJip(V) is uniformly posit ive. Sinee,l lOfvl is elosed and v t t i4(v) is isometrie

and bounded it follows tfrut V.l l0(V) is also closed, hence VJiCI(V) is a uniformly

positive subspace of Xy

On the other hand, sinee V is isometrie we have

l,(v) = vJ1+A (v) + vJ;oD (v) ,

where v.ll3(V)IvJ;O(v) and vJ;A$) is negative. Since Qtvl is dense in -{, and

VJI+O(V) is a uniformly posit ive subspaee, application of Lemma 2.L proves that

VJ]Q N) is a maxi mal unif ormly posit ive subspaee and, in addit ion,

VJ1Jff) = (v. l ip(v)) l  is a maximal uniformly negative subspaee. The claim is proved.

Consider now the f.d. of .{o

Q.tq Xz=v.rrl0lvl t*t u;?Jil,

'  and denote by Jo the eomesponding f.s. From (2.13) and (2.14) i t  fol lows that

(2.15)  VJ1 = JZY .

We change now the unitary norm on Xrro be that indueed Uy JZ. Then, using (2.15)' i t

f  ol lows
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l lvxl l2 = (vx, u*rr, = lJrvx, Vx] ={VJrx, Vxl = [Jrx,x] = f lx [ 2, x gJ(vl.

This shows that V is bounded, hence it ean be (uniquely) extended to a unitary operator

in {t,Ir, 1r).
- A

In ease J1il(v) is closed, the reasoning is similar. &[

2.3.The Krein spaee XO. t"t XOu u l(rein spaee and A €Xq) be selfadjoint,

i .e. A = A#. If  J is a f.s. of J4. then JA is a selfadjoint operator on the Hilbert spaee

(X,  ( ' ,  '  )g) ,  henee we ean eonsider  i ts  po lar  decomposi t ion

(z.ts) JA = sro l. la1 ,

where SJA = sgn(JA) is a selfadjoint partial isometry sueh that kerSJA = kerA. Then

Sro is a symmetry on the Hilbert spaee (q6-), ( - , - )J). we denote uy Xe the Krein

s p a e e  ( Q ( , l a ) , t . , . 1 )  w h e r e  t h e  i n d e f i n i t e  i n n e r  p r o d u e t  [ " , . ]  i s  i n d u c e d  b y  t h e

symmetry 516 ,

(2 .16  ) [x,y] = (Srox, V), , x,y ( 7fa .

Let  us remark that  the l inear  mani fo lds 1(  lJAl  )  ano R(  l . la l  
* l  

are dense in  {o and

that the strong topology on the Krein space ffO ir inherited from the strong topology of

the or ig ina l  Kre in spu"u { .

Apparently, the definit ion of the Krein spaee 7(O O"p"nds on the f.s. J. We

postpone the proof of the faet that i f  a different f.s. is used, the Krein spa.ee obtained

by a eonstruetion similar with that of 7(6 is aetually unitary equivalent to ffa (tu"

Corollary 2.8), in part ieular, this observation justi fying our notation.

A part ieular ease of this eonstruetion is when start ing with a Fl i lbert spaee {

and a selfadjoint operator A€ {(X). en even more part ieular situation is in ease the

selfadjoint operator A is a symmetry. This kind of eonstruetion is usuallv used in the

definit ion of direet sum of Krein spaees.

let (.?,);a y be a familv of Krein spaees. Fix on eaeh {. a f.s. J. and eonsicler
r  r t r d
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the direet sum Hilbert spaee @J{i. Let J be the symmetry Q J, on this Hilbept
i € f l  I  "  "  

i Q A - l
space. we denote by. l lK tnu Krein spaee indueed by th issymmetry

i € t  ,

A speeial case of this eonstruetion is the Krein spaee of the typu tz(X) (i.e. in

ease the index set I is N). on each Krein space tzt{, l aets the right-handed shift S of

multipticity J{,.

2.4. The Krein spaee Xo. L"t X uu a Krein spaee and A € X( Jh, e= A#.

Define an inner produet on y,

Q.r7) fx,yJo = [Ax, y],  x,y€.X,

where [ ' , ' ]  denotes the inner produet of  the I ( re in space { .  Not i""  that  kerA is the

iso t rop ic  subspaee.o f  the  inner  p roduet  spaee (k , ,1 . , . lA ) .  F ix  J  a  f . s .  o f  - (  and

denote { = tt ker A)r (i.e. .{ is the orthogonal of ker A with respeet to the inner

produet ( ' ' ' )J) .  Then eonsider the Jordan deeomposi t ion of  the sel fadjoint  operator,rA

with respeet to the Hilbert spaee (X; ( . , . )J)

(2 .18)  JA = (JA) ,  -  (JA)
t'

a\

and denoting g+ = (JA)+X and

(2.1e) f<= rt. * fr
?

Not iee  tha t  (  X* ,  l , ' , ' )6 )  and (  X- ,  - l ' , ' lA )  a re  p re-H i lber t  spaees and denote  hy

Xf, unC, respeetively, &f tnui. eompletions to Hilbert spaees. Define

Q.20) Io =.Iir.rfl; ,
where the inner product is the extension by eontinuity of the inner produet [ - ,  - ]A.

rnen  ( Io ,  [ ' , ' 1o )  i s  a  K re in  space  and  (2 .20 )  i s  a  f . d .  o t  J ( t .

x_= (JA)_X,  we have the deeomposi t ion.

Let l l . l l  be the uni tary norm assoeiated to the f .s. J.  Then the2.4. LE[!n{4.

unitarlv norm on Io

norm

,  eorresponding to l lre f.d. (2.20) is the extension bv eontinuity of
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i, f * *> [1.rel ]* tl .

Proof. Let x be a vecto. in -{. Aeeording to
^

where ** ( f* € .}{f, and x-( .t- * X;. rhen

[x*, x*lo - [x_, *_]A = ((JA)*x*, **)J * ((.la)_x_,

= (((. le)* + (,lA)-Xx+ + x-),(x* + x-)), = ( lJAl (x+

= ( l.lal 
i*, 

l.lAl 
;*), = l| lJAl 

** 
fi 

2.

This shows that the unitary norm, eoruesponding to the f.d. (2.20), when restricted b fr.

coineides with the norm ll l.lal 
** ll . The rest follows from the density of fi, in .{o .ffi

We ean now elarif ] t  the relation between the Krein spaees

2.5. PROPOSffiON. If A ( {tX) is selfadjoint, ! a Ire!n spaee,

spaees A(e glg {^ are unjtary equivalent, more preeisel:r, if J f-q-g-1.s.-ffggg-in thg

.def in i t ions of  4o ano Xo ,  then the l inear  operator

. ! o l * l * F + l J A l * * € R  ( l J A l  * ) q  X a ,

extends uniquely  to  a uni tary  operator  XO*rXO.

Proof. Let V denote the operator defined by (2.21). We f irst prove that V is

isometr ie, considered as an operator v: A(VX CXA) -rAfe. Indeed, for anv xryefr.

we have

! r ' l t

. 
[vx, vy] = [ lJAf. zx, l,lal zyJ = (sJA lJAt 

zx, 
l,le I 

u ), =

= (Je1, V), = [Ax, yJ = [x, ylo

Using Lemma 2.4 it follows that V is bounded henee, sinee 0 tVl

and l (v )  =3 . t l . le l  * )  i ,  dunru  in  Xo,v  ex tends  un ique ly  to  a

{ (Xa,Xol .  m

(2.21)

(2.19) we represent x = x* *  x_ ,

*-)J =

'+ x_),(x+ * x_))J =

then the Kre in

r /  \ l= -t( lS dense tn .4, n
l-t

unitary operator in

I {e  record now an impor tant  resul t  o f  Nl .G.  Kre in [ ' l t t ] ,  W. f .  Reid [48] ,  P.D.  Lax
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[46], and J. Dieudon nel4|l.In this paper we shall use a slighily more general variant of

this result, equivalent with that eonsidered by A. Dijksma, H. Langer, and H.S.V. de

Snoo [4't]. For the reader's eonvenienee we give a proof following the original one.

2.6.  LEMMA. Let J( ,  and Jlz be Krein spaees and A€{({1),  A = A#,
'B (  X{Xr ) ,  B  =  B#,  11€ y (  Xy  Xr ) ,ungrze  Xt?r ,  d )  be  such tha t

lTrx, VJu = [x, TrVJo ; x € X' y (, X2,

or equivalenfly,

(z.zz) ,to= Br1 .

Then Tt and rz induee uniquely determined operators Tre X tXo,I"l and

fre { tX* Xo) sueh that

(2.23) 
. [Tr* ,  

y ]B = [x,  Trv lo e x < YA, y(  yB.

Proof. Fix f.s. J, and J, on (1 and, respectively, XZ.Thert(2.22) beeomes

Q.24:' ri;ra = JrBr, . 
.

Considering the unitary norms assoeiated to J, and J, , we shall prove that for any

x € Xf the follor,ving inequality holds

(2.2s) t i lJzBl i t r* t l  S l l l ; rnl  +rrs. l rarzs, l rnrr  
l l  

* .11"rre; **I t

Indeed, using (2.24) and Sehwarz inequality for the nonnegative operators lJrAl
and l l ze l  on  the  H i lber t  spaees (X t ,  ( . , .  )J1)  and,  respec t ive ly ,  (X t , ( . , .  ) . ,  ) ,  i to  u z
fol lows easily

I

I l . r ze l  i r r * l l  2 .  
l l l J rA l  +x  l l  - l ! l r zs l  * r r * | l+ . l l ; re l  + r rs . r ra rzs , r r " r . rx l l  + .

I terating this inequali tv i t  fol lou,s that for arbitrary n(N it  holds

t  . . ,  . l  , - ( . r t r 2 n l  . +  . r r r o 2 n + l q
, ^  A^ \  l { J J re l  ' T r *  l l  ' 5  

111 , l rA l  
u * yz - r t t z  ) .  

l t l J zB l  
uT r * l t  ( 1 / z - '  - ) .

Q.26) 
p r

J  .  h  ^  , r l - f t / z?n* l \'  l l lJzBl  
' " rarrATzs. l rRr lx 

l l -  ' - '  -  '  .
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Further, i f  lJzBl 
+Trx = 0, the. inequal i ty (2.25) is elearly true, so let us essume

f

lJzBl  
'Tr*  

10. I f  ' lx l l  s  I  then we obtain (2.2i l  by let t ing n-> oo in (2.26).  I f  I l  x f l  > t

then use Q.zi l  for  the veetor x/  l lx t i  .  Thus Q,25) holdsfor any * QX1

Now, from (2,22) it follows that TrkerAgkerB, hence T, faetors to an operator
/\ '\- z\

?, t-(rt g r{A) ->Xrg .3r. u.ingLemma 2.4, from (2.2il it follows that t, extends

by eontinuity to an operato. T'€Y(.(A,t{r). siri larly it can be proved that T,

induees an operato r\ ,e X t(u, Xo), while the property (2.23) is eiear. E

, -

2.5. Indefinite faetorizations. Let A € {(.(1), A = Af and B e * tX rl, B = B #

be given. We are interested in factorizations of the type

(2 .2n  A =  C#r "  ,

where C €{(11,{2).  Under certain eondi t ions,  th is k ind of  faetor izat ions produee

unitarv operators aeting"between the Krein spaces indueed by A and B.

z.?. LEhrtr{A. LeI A€ {(91), A = A#, B€ {(Xz), B = B#, and c e X(XL, X2)

be sueh that (2.2?) holds and, in addit ion, assume that there exists a regular subspaee

{ of .)/, sueh tlrat

(2.28) l  (B) E {sRrcl  .

If J, is a f.s. of {f glg J, is a f.s. of Xo sueh that JZX?{ (always exists srreh a Jr)

then:

(i) C induees a unitary operator in X(J/A,gB).

(i i) There exists a uniquely determined unitary operator v€ X (;fA, Jfg) ry!

that

(2 .2s \  v  l J lA l  
l  =  l . l rn1  

+c  .

proof.  Let  C-1 :  l (C) ->X, be an operator sueh that CC-1x = Xr x €R(Cl.  C-1

is elosed henee, from (2.28), it follows that C-1t*, is bounded. With respeet to the

deeom posi tion



Y2 =  X t * l  { r

eonsider the operator X € Xf .( ,, Xr) defined b}r

x = tc-llx ol

Then cX= P€ NtXr),  where p has the propert ies p4 = p = p2 and pdz =ff .
Multiptiing on left with X # we have

x # a = x # c # g c = p B C = B C .

uding Lemma 2.6 this shows that c induees an operator d g { 0( A,ffr). r.o* (z.zl) it
follows that C is isometric. Also, we have

l , t . r2B) = Jzq(B) g J2y q X g X(c) ,

and, since .R,{;rn) is dense. in Tn, it follows thatnfdl isalso dense in
unitary.

(i i) using the identif ieations of the Krein spaees 
{ with {o

{g {ru. Proposition 2.b) and also using the unitary operator de X(?o,
that the t inear operator \ '  ,  Q( l . l ra l  

*{  
t  {o)  - r7(u,  def ined by

uniquely to a unitary operator in {( Jfo, Jfr). e

? r , r , u n o u d i s

and of Jf, with

{u), it follows

e.zil, extends

2-8- coRoLLARy- For any operqtg! A€f (.{), a = A#, where _{ is a {reirl
space' the indueed Krein spaees {g gE ilo are unique, modulo unitary equiv4en-ep,

wit[ respeet to the f.s. J used for their definit ions.

Proof. Let J be a f.s. of {,. We first remark that .(O can be viewed also as the

Krein spaee Xro, indueed by the selfadjoint operator JA aeti |g in the Hilbert space

( . ( '  ( ' , ' )J ) .  I t  fo l lows that  we have to  prove that ,  i f  G is  another  f .s .  o f  X ,  then the

Krein spaees /rO and i l  

"O 

are unitary equivalent.

To this end, notiee that the foi iowing relation holds

(2.30)  JA = (JGXGA) ,

and that the operator JG is the adjoint of the identity operator aeting
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Ol, , ( ' , ' )J)-+(f l , ( ' "  )c) .  Apply ing Lemma 2.r  to the faetor izat ion (2.30) i t  fo l lows

that the identity operator induees a unitary operator in {({ca , Krol.

The uniqueness of the definit ion of the Krein spaee {O foito*s now from the

Proposition 2.S. E

We ean introduee now the signatures of the selfadjoint operator A€ X (.X) UV
' : - ! r

(2.31) Xlat  = f  l t {e l ,  XolAl  = dim kerA.

!' ' Using Corollary 2.9 it follows that these definitions are eorreet, i.e. they do not depend

on the f.s. J used in the eonstruetion o1 Xf. Also, as a eonsequenee of proposition 2.b

we have

(z.zzl xJtel = {J[J(^J : dim ker (r r sro, .
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3. ETEMEI.ITARY ROTATIONS

3.1. Existenee of elementary rotations. Let {, anO J(, V" Krein spaees and

T€ X {Y,r,31r). An elementaryigtation of T is a triplet (u; yi'X!) wheru, fl '1 and flt,

are Krein spaees, the operator U€ YtXrt+t{', &rt+lX!) is unitary and extends T, i.e.

(3.1) ' r l r u l Y ' = t '

and,one of the fol lowing equivalent minimality eondit ions hold

(3.2) {rVu.(, =Xrl*ll<'2, {rVuuXr= XrtqY'r.

We need now some more notation. Fix J, and J, f .s. on .3, and .3/r. f f ten we ean

define the defeet operators

Dr* = lJz -  TJlT* l  '  ,D r =  l , l r - t ' * , l r r l l ,

and the sign operators

Ig.4) J, = sgn(Jl - T* JZT), JT* = sgn(JZ - f, lrf*).

Using these, one defines the defeet spaees Ot = ?,tOrl and Jr* = Q(O"*), considered

&s Krein spaees with indefinite inner produets determined by the symmetries

JT€ { (0r) ano, respeetively, Jr'r € y(J"*)'

Notiee that, with respect to the definit ion of the Krein spaee JfO frorn Seetion

1, we rrave 0" = Xt-t#, and &T* =Xvrr# , when J, and J, are the f.s. used in the

construetion of the indueed Krein spaees.

In the following an important role will be ptayed by the selfadjoint operator

A € X(Il t  +lJ(z)

(3.3)

(3.5) [ = L: I]
XO is eonstruetedThe Krein spaee using the f.s. J on X, t+l (z
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(3.6 ) J -

3.1. LEMMA. There exists _g unitary operator

uniquely  determined sueh that

(8.?) g-t . ref  ;  = 
[ ;

(3.8)
It

0

and notice that the operator

obtain that the relation

A- e { (}fo, Irt*l Jr* ). m

3.2. LEMMA. There exists a unitarv ooerator

determined such that

fl-e {(e(^,-(, t+t CIr*),

apply Lemrna 2.? and

unitany operator

Q*€ X (Ko,O"t*l {z),g:gg.gjy

,*J
o'J 

'

zationProof. Consider the faetori

r [ ; ; ] lo  I  f r ,  r #
t l

rr-m*J L r rz

r # J
, ,  J 

is invert ible. Then

determines uniquely

Consider the faetorization

[. ', "nl f,,-r#r 'l f,, ,lr=1,  , , . |Lo , , . lL '  , , . l  '

['r
(3.7)

l , ' ; ]Q*f  le f  i  =(3.e)

(3 .10 )

Proof.
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?

and notice that the operator f : : I is invertible. Then apply Lemma 2.? and obtain'  
Lr rzl

the unitary operator J?+ €y(YA, 0r[*] J{r), uniguely determined by (3.9). g

)
Keeping a certain analogv with the abstraet seatter ing theory, the operators J?-

and f{ ean be eonsidered as wave operatprsi assoeiated with the selfadjoint operator A,

Then it is natural to introduee thasettering operat S(T)€ *tl(rl*lJ'n* , ?ot*l0r)
, I I ' I

defined bv

(3 .1  1 )

3.3. TI{EOREM. The triplet (S(T); D.,.* , ?r) is an elementary rotation of T.
l l

?roof. Let S(T) be represented by the bloek-matrix

f t,, t,rl
s(r)= |  |  ,

L tr t  t rrJ

with respeet to the deeompositions -{rt*tOt* ano .Xr[+i&r. Using thig from (3.?),

(3.9), and the definit ion of S(T) (see (3.11)), we obtain

entries in (3.12), vue

Since Jl* and fl_ are'unitary operators, the same is S(T). Also, S(T) is an

extension of T sinee

P  - s ( r ) 1 4 = s l l  = r ,' 
J1z

and the first minimalitv eondition in (3.2) holds

, 6 rA \  | t , ,  
t , r l  

f t r  
t o I_  

f t  
t r l

(3.1 2)  I\v'rg' 
1.,, ,,,J Lo Dr.l 

= 
1", ,,| 

'

and then, performing the'produet and identifying'the eorresponding

obta in S11 = T and S21 = DT .

4Vsttl Xt= XrV trr/.r=.3rr.rffi = 3{rt*t 0 r,



while the latter

faet that S(T) is

2 0 -

minimal i ty eondi t ion in (3.2) is a

a unitary operator.6

xl{rl * x !rr, m#l = xlr, - rf rl * rt1fJ{al

eonsequenee of the first, r"rsing the

we ean obtain now, as a first consequenee of the existenee of
operator S(T), an important relation eoncerning the defeet signatures of T.

3.4. COROLLARY, For any operator T € X( X,r, kr), the fol lowing relations

the unitary

hold

(3.1 3)

and

(3.14) xttlz - rr# J =,, xoll, - rf tl

Proof. sinee s(T) ( { t {rt*t fir*, .Lrf.*l J") i, a unitary operator,

l t i l r l+  x l t0r* t  = x l r . {z l  *  x lprr

and then, using the faet that

x1tl, - t#rl = xil0r], rt1tl, - rrf I = x1[J"*l ,
(see (2'32)) we obtain (3.t3). As for (3.14), this fol lows direci ly form the faetorizations
(3.8)  and (3.10) ,  s inee

xo[I2 - TTf ] = KolAl = riolll - t#r.l .g

we have

3.2. Link operators The elementary rotation

elementarv rotations was obtained using the existenee

which, roughly speaking, are the substitutes of

R(T). In [2], the existenee of

of the so-ealled l ink operators,

the elassieal defect relations
TDT = Dr*T, whieh are no longer true in Krein spaee. We show now that the existenee

and the propert ies of the

produeed the elementarv

denoted R(T), is obtained.

l ink operators ean be obtained

rotation S(T). As a eonsequenee.

using the same pattern whieh

ancther elem entary rotation,
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we eontinue to eonsider Krein spaees {, anct -?, witn fixed f.s. J, and J' and

an operator T€ X ( 51L, &,2).

Iz

l,' ;]
indefinite faetorizations

l:, ; l [:' ,, ":,,, ]
f 
t, t-rr'l 

[r-r*.rzr 
r 
I f 

r, r 
lt  i l  l l  l

L' rz .l L o ',1 Lr,' 'J
,  from (3.17) we obtain a unitarv operator

t+ lJrx) ,  un iquelv  determ!ned sueh that

* | 
t, 

.trt.l2 =  
|  |  ,

L' n".. l

[ f =

I t  J rT*

and

f l =

(of Krein spaees)Us ing  Lemma 2 .7

r^r - ( Xt J8", {,

3.5. PRoPosITIoN. There exists uniguely determined operator l"e XtJr,&r*)

sueh that

(3 .1  5 ) L''Df = Dr*,JrT r

and, silqllarly, there exisls an operator Lr*€ ;f (Or*, O r), uniquely determineod sug!

that

(3.16) L"*Dr* = DrJrT* .

Proof. We eonsider the Hilbert spaees (Xi, (. , .  )J.) and the selfacj joint operator
I

H€ y ( yL@yi,

which has two dual

(3 .1  ? ) H =

(3.1 s)

(a . re )  r_  ln l
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operator (of

that

Krein spaees)
tain a unitary

ly detbrmined sueh

o l
I

IrzJ

{ r= f " t  
u t ' l  

,
Lu' u,rl

f rom (3.19)  and (9.20)  we obta in

[u" u',.| f" ', '.J _ f', ' ' ,.;l l l l = l
Lu,  u r r1Lo nr *J  Lo ,  ,J  

'

and then, performing the produet and identifving the eorresponding

U l1  =  JZT ,UZ I=  DT  ,  U12  = . I rD r *J r *  ,  and

and, from (9.19) we ob

(d+€ Y(AH, il,rt*l Jr), unique

f D ^
. . *  |  I

@ + l H l  ' =  
|
I  rzr

(3.20)

and

U = r^l+ cdll

Representing U as a block-matrix

11 ,t*l&,

with respect to the deeompositions \rf,*lJ"f*

entr ies,  th is imply

-UrrDr* = DrJrT* .

Denoting Lr* = -u 
zzQ f(3r- , &r), this proves the existenee of the operator L-x

such that (3.16) holdq and, sinee Di, '* XZ= OT* , we obtain also its uniqueness.

Then, consider the unitary operator U ( {(qr[*],?r*, X,rVl Jrl

u*=c.l_ at*1 . a

prqperties

The statement eoneerning L" fol lows in a similar way, using the unitary operator

The operators L, and Lr* are ealled l ink operators assoeiated to T, J, and Jr.

3.6. COROLLARY. The link operators LT gg Lt* @
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(3.21) (,1, - or, lrDdl O" = l{. lT*LT,

and, lespeetively

(Jr* - DrxJrDr*)f 0r* = L{xJrL"x .

Moreover, L" and Lr* are related by the fol lowing equali ty

$.22)

(3.23) Lr* = JrL{Jrx

Proof- As an outgrowth of the proof of Proposit ion B.b, we have the unitary
- operator U e Yt?rt+J 0r*, Xrl*l &r)

f trt JrDr*Jr*l
$ . 2 4 )  u = l  I

L o, -Lr* J
and, sinee tf = u-l = 

"r- 
,oil, the following equality also holds

f trt* ;rnr.l" I( 3 . 2 5 )  u  = l  . l
LDr* _Lr J

Since U is isometry we have

ft-t, 
ot 

lft, o I f ;rr JrD"*J"xl [t, o I
l  i l  _ l  l  l  = l  ll.rr*or*;, -rid Lo .r"-1 Lo, -Lr* j L0 JriJ

and performing the products and identifying the lower-right hand6d entries we obtain

$,22). Similarly, one obtains (3.21) by writ ing that U# is isometrie and using the

representation in (3.2S).

From (3.2$ and (3.2S) we also have

f t, o 
l ft-'r z Dr 

l|.l, 
o 

l [t,"- 
tro"tr]

l 't l l - l l t = t l
lo rr-J Lrr.DrxJ, -ri1|lo r"J Lnr. 

-Lr 
J

and from here, performing the produets and identifying the lower-right handed entries,
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we obtain the relation (8.23).6

3.?. REMARK. The relation (S.23) is equivalent with

Lr*=Lfr ,
whieh emphasises better the duali ty between L, ahd Lr*.

3'8' REMARK' Sinee D, and Dr* are one-to-one.in the spaee, 0r and,
respeetively, 3r*, we have

r,r t orltJtD' Lr* = nrlr*.lzDr*

Also, it is easy to see that D"lxrJtDr is densely defined in 2, and nrlr*.lrrr* is
densely defined in 0r*, henee, the existenee of the l ink operators means that the
operators orlt;ro, anc nf lr ' iJrDr* 

are bounded.

On the other hand, if the intertwining relation TJ, = JrT holdg then
L, = JrT lo,  ano Lr* = JtT* I  0r* . In th is ease, the rerat ions (g. ls)  and (3.16) read
simply Dr*T = TDr and DrT* = T*Dr*, the elassieal "defeet relationsr'.

As a eonseguenee of Proposition 3.5 and its corollary 3.6, the operator
R(T) € {(.?rt+J 3r*, 7 rl*l J") ourined bv

(3.26) R(T) =

is an elementary rotation

of T and it plays a role in

3'3' The speetral eonditions (o( )+ and (o( )-. In eonneetion with the problem of

uniqueness of elementary rotation of a given operator, we introduee now a speetral

property. We need f irst to f ix some terminology.

Let 2d be a Hilbert spaee and A€ X({), A = At, and let tr(A) denote i ts

of T.

the di

f r  D r *  1l f ,
I o" -Lr*Jr* J

This elementary rotation is expliei i ly eomputed in terms

lation theory.

speetrum' A real number t is isolated on the left (on Ug_tfgh) with respeet to f (A) i f
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there exists E) 0 sueh that ( t  -  €, t )  n a(A) = @ (respeet ively,  ( t , t+ € )  0 r(A) = @).

Also, in the following A = A* - A- wil l always denote the Jordan deeompositiop

of A.

consider again T€ r( Vr, xr) and fix J, and J, f.s. on .Y, 
"no 

respectivery
I

,Xr. rr,u speetral properties (o( )+ and (d )- are introdueed thus:

(d)+ 0 is isolated on the right with respeet to g'(J1 - t*. lrt).

(o()_ 0 is.isolated on the left with respeet to g.(Jl - T*J,T).

3-9- LElttMA. The properties (o()+ and (d)_ do not depend on the f.s. Jt 4g.lr.

Proof. Let G, and G, be two others f.s on 3, and {r. ' fnun I

G.zz) c lJ l (J l  -  T*J,T) = Gt -  TocrT ,

where To denotes the adjoint  of  T wi th respeet to Gt and Gz. Denote

X  =  G t J r  '  ( { 1 ,  ( ' , ' ) . r - 1 - > ( { r , ( ' , :  ) c  )  a n d  n o t i e e  t h a t  X  i s  t h e  a d j o i n t  o f' l  t  - 1

ident i ty operator. 'Then (3.2?) means that J,  -  T*JrT !s eongruent wi th Gl -  ToGZT, v ia

an invertible opertor. The rest of the proof now is a simple exereise in speetral 6reory

of selfadjoint operators in Hilbert spaees B

In v iew of  Lemma 3.9,  the propert ies (  d )+ and ( . {  )_ are assoeiated only wi th the

operator T. These properties are also selfdual. More precisely, let us eonsider the dual

properties

("(  ) i  0 is isolated on the r ight  wi th respeet to g ' (J2 -  TJIT*) .

( o()l 0 is isolatect on the reft with re-speet to q(J2 - TJ1T*).

r.r0. LEITI^'IA. T has the property ( 
"()j (the property ( o{)l l ir r", i 

""ry 
ir it w

the property ( o( )_ tr.rp..t i""ty, tn ( o( )+).
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proof. Consider the Hilbert spaees ( Xi , ( . , . );r) and the selfadjoint operator

H€ Y(Jf  r@Xrl  as in the proof of  proposi t ion 3.S. From (3.1?) i t  fo l tows that T has
the property (x )l (tr,e property ("( )i) if and only if 0 is isolated on the left (on the
right) with respeet to (H). Using now (3.1g), the latter hotds if and only if T has the
property (4 )_ (the property (d )*). n

In the following we wil l need other equivalent eharacterizations of the properties

( o( )+ and (c{ )_ whieh are eonsequenees of spectral theory.

3.1f. LEMMA. For any operator T € Jf( X' Xr) the following assertions are

equivalent:

(i) T has the property ( d )_ (the property (o( )+).

(ii) (.1t - r*.lrr)- (rsgrylrgu (J1 - T*JzT)+) has eiosed range

(ii i) J;DT (respeetively 
"l iOrl has elosed range.

(iv) 0 is isolated with respect to s(J;Dr) (respeetively rt, lforl).

3.4. Unigueness of elementary rotations. Two elementarv rotation s 0Ji y\, .K,Z)

and (v; I'r, X|) of the sam e operator T € d( y y Xz) are ealled ullglx jggryglg$ if

there exist  uni tary operators 9f  ,  ( i  - )  X' t ,  QZ, I ,Z*+ X'Zsueh that

|.', ol f', ol
I  l u = v l  l .
lo +J [o +J

3.12. THEOREM. An operalg! T( Y( V, Xr) ,
modulo unitary equivalenee, i f  and only i f  T has either property ( 4 )_ or property ( o( )*.
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Proof' Let (u; J('1, J('z) be an elementary rotation of T and assume that T has
either the property ('( )_ or the property ( d )+. Let U be represented by the
bloek-matrix

[ ' r  AJ
( 3 . 2 8 )  u =  |  |

I '  cJ
with respeet to the deeomposit ion -{rf+t3i unO .Xrlr l / ; . f i* f .s.  Jr,  JZ, J,Iand Ji
on I1, y,2, y'L, and respeetively X'r. wu consider the elementary rotation R(T) (see
(3.26)) and we wil l prove that u is unitary equivalent with R(T).

To this end, notiee first that sinee u isisometrie we have

(3.29) J,  -  T* J rT 
= g*. lbB .

Then notiee that, by the first minimality eondition in (3.2), it follows that B has dense

range henee, from (3.29) it follows that

(3.30) B = Sro'

where fz r R(n.rxs aT) nJli is isometrie and has dense range. sinee ..
Jr3(Dr)g Qtnrl  and aeeording to Lemma 3.11 either "1" R(o) or. l f  q(D) is closed, 

' ,

f rom Lemma 2.3 i t  fol lows that Q2 "*tunds 
to a unitary operator in X(J",4;),  utro 

:

denoted by +2.

We use now Lemma 3.10 to  eonelude that  T has e i ther  the proper ty  (  o t )*  or  the

property ( 
"( ) i  and proeeeding similarly as before we obtain

( 3 . 3 1 )  A = D r x Q r ,  
'

where Ql€ f  ( . I  
t ,  Or*) is unitary.

Sinee U is isometrie we also have

T * J r A + B * J ; c = 0 ,

whenee, takinginto aeeount of  (3.30),  (3.31),  and Qi l r= Jf  $,  we obtain

T*JrDrx Q, * or. l "  Sic = o . .
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From

(3.32)

here and Proposit ion 3.5 we infer

Q=- t r l r * , l r *  q

Putting. together (3.30), (3.31), and (3.32) we eonclude that (U; {i '  &'r) is unitary

equivalent with (R(Th O.1*, 0r).

Conversely, let us now assume that the operator T has neither the property (a{ )-

not the propety (o( ),. First we prove that there exists an isometrie operator

V : ?(DT) -> ), with dense range, sueh that V is unbounded but VD, is bounded.

lndeed, using Lemma 3.11 it  fol lows that there exists a deereasing sequence of

values {unJnrrcR, l . l io r l ,  0(pn(1,  sueh that  Fn*0 (n-+oo) ,  and a lso there

pxists a deereasing sequenee,of values 
lrJ 

"2rc 
R,(.lrnr), 0 ( !n ( 1,,sueh that

!n-) 0 (n ->oo). Let {un} n>t "nd {fnl n2f be orthonormal systems of veetors in

I, sueh that

ene r((ul*1, ufit) 1, , rn€ E(t- ':, - lfl*rll q, , n ) 1,

where E is the speetral m-easure of J, - T*J'T.

We remark that there exists a sequenc" {}nin)FC' 0 < ln ( 1, sueh that

X n - ,  L ( n - > € ) a n d  ,  
'

(3.33) sup
ru* { un, lnl

zi {i r\F
< oO.

n)1

( Indeed, taking l ln l  = 'a* {{4,  t lL J isgood).

Consider now the regular subspaees of the Krein spaee .f ,

Y n = ( c e n O c f n ) c q ( D r ) , '  n ) 1 ,

and the isometr ie operators Xn( {(%)

Xn
I'
1,"

- x"l

, j  '
n ) 1 .
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using these define the inereasing ehain of regular subspaees gt &r

4 = til Y-' Rt0P' n ) 1'n  k = l  K  "  : '

and the sequenee of isom etrie operators Vn € { ( Xn),

v ^ = r l t  X , ,  n ) 1 .n  
k = l  K '

Then consider

1 = U q,EX(n-)
. { o k > r ^ r

and define , . 1o* J, Ot

U l Y " = V n ,  n Z 1 .

Sinee u 0 o€ Aoand J,  A oEJ hoto,  we have

?, rorl = 0 o+ (l (Dr) n "?:)

and let v ,  R(DrX g Ad *&rbe the extension such that

vlx(Dr) nAl= r I  l (Dr) n A; .

Then v is isometrie, it has dense range, it is unbounded (sinee roff) 2 V r(Xn) is
n ) l  

r l

unbounded), and using (3.93) it is easv to see that

B=VDr (  y ( { 1 ,  J r ) .

Further, sinee V is isometrie i t  fol lows

J 1 - T * J , T = B * J r B

and then eonsidering the operator T" = [T Blt€ ;f(9{ 
,, Xrl-+1Jr) from here it follows

that ro is isometrie, in partieular Q{r"l is a regular subspaee of IrL*J0r. ret y,,

denote the orthogonal eomplement of l(Te)

Xrt*l ?r = 3(re)l+lXi.
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If R denotes the inelusion {i + Xrt*3{1 then
\

F r  o  ll " z  |  .
( 3 . 3 4 )  |  |  - r J . T * = R J ' - R * .

I  I  e r e  I  '
l 0  J - l
L  

. I ' J

where Ji is a fixed f.s. on .X'r. oefining Ue Y( ,Xrlt lI i , J( {+l Ar)

f J = [ T c  - R J ,

we claim that (U; J{'.,; 0 -) is an elementary rotation of T.' 1 .

Indeed, U is an extension of T and it is isometrie since

F r  n  1  [ . ,  0  Il u z  u  I  l u z  I
R * f  

'  
I  R = J , - .  R * '  l '  |  ,  = f i .

l ^  -  I  
- L '  r L  

I  r  e
I o JrJ Lo JrJ
L

hold. Using (3.34) it follows that U is also isometrie. Now the analog of the

minimality eonditions (3.2) hold sinee B has dense range and u is unitary.

: 
"t"*"ntu.y 

rotations (U; Z,'1,2T) and (R(Th Jr* , &r) are notFinally, the

unitary equivalent sinee V is not bounded.!
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4. THE ROLE OF ELEMENTARY ROTATIONS IN DILATION THEORY

4.1- Minimal unitary dilations. Let { be a Krein spaee and T € X(m. A unitary

dilation of T ig by definit ion, a pair (u;J{), where KaX is a Krein spaee extension of

U , tJ e y(.X ) is unitarv operator, such that

(4.1)

Q.2)

n # u t f X = r n ,  n ) 1 .

Notice that i f  (4. t )  holCs tnen

, # .u *n lX= r tn ,  n2o .

A uni tary di lat ion (u;J{ l  of  T( {({)  is  a minimal uni tary di lat ion ( in br ief ,

m.u .d . )  i f

(4.3) X= V ung .
n e z

Begining with the theorem of B.Sz.-N agy 1101, the exisienee of minimal unitary

dilat ion has been proved for more and more g'eneral elasses of operators by C. f lavis [g],

P. Sorjonen [,f tJ, and T.ya. Azizov [3] (see also t4l). In I l l  we pointed out the Sehdffer

form of a minimal unitary di lat ion of an arbitrary buunded operator aeting in a Krein

spaee.

In the fo l lowing we f ix  a  Kre in spaee X,  an operator  T € X(?f  ) ,  and a f .s  J  on

{. t l t i t f ,  respeet to these, the defeet operators D, and D"*, the sign operators J, and

Jrx, and the Krein spaces J, anO Jr* wil l  be eonsidered (seeSection 3). Also, reeall

the definit ion of the Krein spaees of the type t2(I) (see . l3 ). We begin by realizing a

minimal unitary di lat ion as an elementary rotation

4.1. PRoPosITIoN. we eonsider the tr ivial extension of T (with 0), dm9l9g

T :[t+1121 Ar) +l| t+]t2(Or*). Then, identif :ying naturan]z the Krein spaees

frrl*lftar) gr! ftap and 0rx[ +]r2(&r*.) wrtn r2(sr*), llr pglr (n(f);X) is a
minimal  un i tar :q  d i ia t ion of  T,  where

(4 .4 \ J1= t2( 0r*) l+l J{ t*l 12(3 
")



f o '  o 1
ot = 

Lo rl,rrarrJ 
' o'*.=

and then obtain OT = 3, t*lr2t31) and Si* = 3r* t*lt2(gr*). From (4.s), (4.6), and
the uniqueness of l ink operators i t  fol lows that Lr* is the tr ivial extension of L"x and

then, identifying naturallv O6 with rztOrl ano 3i* witn t2( Jri, the elementary

rotation R(T) e ;f ({) has the representation

- 3 2

:lH l"tt =lo

f,'. ,,,',lr.,l

:
0 0 0 \

0 0 0

T 0 0

D - 0
I

O I

0 0

0

0

0

0

I

0

I

0

. . . 0

Q,7) R(T) = 0  . . .

0

I

-Lr*Jr*. . . 0

0

0

to

is

Proof- with respeet to the deeompositions Jc t+l tz{or) and {[+112{or*), T has,
the representation

(4.5)

hence

i+.0)

with respect to the decomposit ion (4.4). R(T) is unitary (sinee it  is an elementary

rotation) and the axioms (4.1) and (4.3) ean be readilv verif ied.

, We shall  refer to the minimal unitary di lat ion construeted in proposit ion 4.L bv

the expression the eanonieal * inimal unitary di lat io. d T.

The eonstruetion used in Proposit ion 4.1 is aetually more generai, more preeiseiy

any elementary rotation of T one ean assoeiate a minimal unitary di lat ion of T which

an elementarv rotation of a tr ivial extension of T. In order to eharaeterize those



(4.10) x= (u - r)lc , gg $# " _ rtF )7( ,
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mru.d of this type we need some more notation. 
4"

Let u€X(X) ue a unitary operator. A subspaee YcX is ealled wandering for U
if X is nondegenerate and

(4.8) up{ t ugx , 
' 

p,g €, z, p * q.

Sinee U is unitary, (4.8) is equivalent with

( 4 . 9 )  u t f r X ,  n € z , n l 0 .  
:

If (U;.( ) is a m.u.d. of T € X (lC), one defines the subspaees f, and Xp in J( ,

and also the subspaees

(4.1r) M+(t) = vu1f, , w_( Yst = Vunx*n)0 n(0

4.2. LEMIIIA. For any m.u.d. (U,y,) of T, the subspaees X and Sp introdueed
in (4.10) are wander ing for u.  In addi t ion,  the subspaees M+()3) and nq_(y*)  are
nondegenerate, mutually orthogonal and orthogonal to X, and

U.tD X=M_(f# )V](fm*(J).

Proof' Let h,k € 7C be arbitrary and eonsider n a positive integer. Then, using
(4.1) we have

tun(u - T)h, (u - T)kl = [un*1h,ur] - lunrn,ukJ _ [un*:lh,TkJ *

+ [uhn, Tk] = [tnh,k] - [Tnh,k] - [Tn*lh,TkJ + ltn+lnrTk] = g .

From here we infer that (4.g) holds

Also, for h,k € Jf and n ) 0; we have

[un(u - T)h,k] = [rrn+1h,kl - [unrn,k] = [Tn+1h,kJ - [Tn+lh,k] = 6.

henee

( 4 . 1 3 )  u k . t ? C ,  n ) 0 .
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Similarly it ean be proved that the following hold

U . 1 4 )  U n X * J I * ,  D  Z ,  n l O

and

( 4 . 1 5 )  U f ,  n t s l X  
,  n ) 0 .

Moreover, we have

(4.16) UpX t u* cyf , P,9 ) o,

and, using the definition of the spaees y and &g , it is easy to prove that

(4.r?) t(vurc V... vu*a =tV xv... Vun- 1y, n : 0

XVu#fV  . . .  Vu tnX=?(VXrV  . . .  Vu f (n - t )g * ,  n l  0

From (4.17) and (4.18), it follows that the minimality eondition (4.3) implyes
(4.1i l .  Then, taking into aeeount that  (4.13),  (4.15) and (4.16) infer that  M*(J),

M-(XS), and ]( are mutually orthogonal, using (4.1D we obtain that M*(J) and

, M-( )f#) are nondegenerate. At their turn, these imply that X and X6 are

nondegenerate (for this we use (4.9) anC (4.14)). Finaliy, f and *g are wandering

spaees of U sinee (4.9) anO (4.14) hold.t

4-3. coRoLLARy. For any m.u.d $t,X) of T e,x,eo, the foilowing assertions

are equivalent:

("() X is a regular subspaee.

,u,"uG.
( t )  ?(Vu{ is a reg.ular subspaee

(6)l(. Vufa( is a reg.ular subspaee
. " 1 . / . L(? ) o#v Lre( u I x vr'#a is an elementarv rotation of r.

Proof. Taking into aeeount that Y, Y6r and ?C aremutuallv orthogonal and

and

(4.18)
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speeializing (4.1?) and (4.18) for n = 1, we get

1(VuX =Xl+ lY

and

il vu*z(. = Jil.+lx#

Then notiee that

U(XVUSTC ) = ?(VUJC,

The equivaienee of the five assertions follows now easily. r

We are now in a position to eharaeterize those m.u.d. of T whieh are elementarv

rotations of trivial extensions of T.

4.4. PROPOSITION. k! (U;3{) be a m.u.d. of T ( X(e(). The following assertions

are eguivalent:

(i) [,]+(J) is a regular subspaee of fl .

( i i )  M-(Y6) is a regular subspaee of  { .

( i i i )  Modulo the ident i f ieat ion of  two pairs of  subspaees, N;Jl)

rotation of a trivial extension of T.

proof. ( iX=)(i i)  I f  either M+(X) or M_(Jg) is regular; then using Lemma 4.2 we

obtain the fol lowing deeomposit ion

X= m_( Y') t+l 7(t+l r\4+(X ) ,

henee both of M+(X) and 1\'l_( Yp) are regular.

( i i i ) : ) ( i ) .  Le tT ,X t+ lX r  ->7 { t+ lXZbe  a  t r i v i a l  ex tens iono f  T ,  sueh  tha t  U  i s

elementary rotation of T. nepresent

is  e lementarv

r r =  [ t  
^ l

L, "J 
,

with A , {, -t X t+l XZ and B : ?f [+] K t-,
y2' ? le# ) derse in ?, una ?,(n) censu
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in J(, 2.Sinee uf is isometrie we have

I  -Tif  = AA#

Then representing O = [A1 AZJ, AIe,

ArAf;= 0, erAf = \,
In partieular, Al is isometry, henee

? tefl I ?(af) ano ?ra# ) is dense
'regular subspaee of X, and

X (XL, JC ) anc A2€ *( J1r, X; we have

o r o f = I - r r #

?te!l is a regular subspaee of J(, and, sinee

in X, it fouows that I?41 = Rrall' is atso a

from the elementary

it fol lows that with

(4.1 e) Xr=Qrefr r.r Gr
'  on the other hand, sinee the m.u.d. (u,a ) is obtained

rotation by identif ieation of two pairs of subspaeeg from (4.tg)

respect of the aetion of U on -{ we have

U.2o')

where

G.2r)

X = X\t*t ,J{, f+t JI"*l 7\ ,

Xr= Xrt*lJli

X t = V z t + l q ;

and A is represented by the bloek-matrix

r  = 

[ , '  : , ]

with A1 ( y( X,X) sueh that orot = I - TTf , Qtaf I dense in Jd,r, and
A2€ X(3\, X(z) is unitary.

Similarly, uri th respeet to the aetion of U# on J( we have

\ = Xrt+1il t+l X rf*lX;G.22)

where

@.23)

and B is  represented bv the b loek-matr ix
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[ n ,  o  I
B- |  

' '  
I

[ o  t r j

with nr€ f,( e(,yz) sueh that ufr, = I - Tf T, R{nr) dense in %r,
B2€ x( Jf 1'x'r) unitary.

'  
Further, with respeet to the deeompositions |4.20) and (4.22) of Jl ,

represented by

and

U i s

Az

0

Q.24)

where A, and B, are unitary and

here we obtain

if = qR = lzc ?Cl

{ J =

M+(I)  g ?r1 .

from (4.24) we also have

Yr=&= i l r .Tz

1

1 
is elementary notation of T. Then, from

c

0

[ ; ,

B

0

A

c

a n d t h e n U *  n X *  C  X z ,  n  )  t  h e n e e

Q.26) m _ ( J 1  ) € e f z .

Using Lemma 4.2, from (4.25), (4.26), (4.20) and (4.21) i t  foltows M+(Y) = t,  and

M-(Sp ) = &r, henee these are regular subspaees of J/.

( i )=) ( i i i ) .  Asst rme that  v t* (S)  is  a  regular  subspaee of  J l ,  henee the same is

M-(J6 ). Using Corollary 4.3 i t  fol lows that, with respeet to the deeomposit ion of the

domain

a n d u l f c A ( 1 , n ) l h e n e e

(4.25)

Similarly,
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J(= ur u-( X1 )t+l )E* t+lJ( [+] rvr+(X ),

and the deeomposition of the range

X= M_(Xg ) t+l a(t+lX t+l uvr*(X)

U is represented by the bloek-matrix in (4.24), where Ao and Bo are unitary anri

( T  A r
Bt  c r ,  &t ,X) is elementary rotat ion of  T.  Then, modulo the ident i f ieat ion of

M+(X) wi th Un{+(Y) and of  M_(&g) wi th U#tu_( / -S),  U is elementary rotat ion of

the trivial extension i : ?( [+] M+( X ) -+?( t+lvl_( g*) of T. !

As a consequenee, we ean eharaeterize those operators T having the property

that any m.u.d. of T is elementary rotation of a trivial extension of T.

4.5- PROPOSITION.If T is an operator on the Krein spaee , then the fol lowing

assertions are equivalent:

( i) Any m.u.d. of T is, modulo identif ieation of t@, an

elementary rotation of a tr ivial extension of T.

( i i )  m i n  { r t - t r - r # T l ,  x * [ r - r r t ] l - m i n l t t - t l - " . p # ] ,

, t ' t r - t # t  l J  = 0 .

Proof. (ii)=)(i) Let N;xo be a m.u.d. of T. Then for arbitrary h,k€ JC we have

lG - T)h, (u -'T)kl = XI - t#t)rr, tl

and

t(u# - T*)n, (u * - rtr )kl = t(I - TTtr)h,kl.

Then we obtain from here

XttX l= rtJU - r# Tl,  Xtt  V* I  = Xtlr  -  TT# I .  ,

I t  fol lows that, sinee the hvpothesis ( i i)  holds, either X and Vg are definite subspaces

of the same sign, or at least one of the subspaees J and y,# is null .  Taking into

aeeount  that ,  f rom Lemma 4.2,  we obta in

Q.24)  r r_ (X*  ) \u /n , r * {X)=  Xf i }e r ' ,



in the first ease M-(xp tVu*(f, ) is a uniformly definite subspaee of t( , henee both
of M-(Y* ) and M*(J ) are unifornrlv definite subspaegs. In the latter ease, either
M-(Yg ) is null or M*(Y) is null henee, using again Lemma 4.2 we eonelude that
either M+(X)=%n?Cr or M_(E* )=.]dn 2e" .  we proved that,  in any case, the
subspaees M+(X )'and w-(Y6) are regular. Applying now proposition 4.4 it follows
that (i) holds.

(i):)(i i). 4rrurl tf 'ut (i i) does not hold and we wil l produee a m.u.d, (U,y,) of T

sueh that the subspaees I!T*( X) anO U_( yg ) are not regular.

To this end, let us first note that, as a eonsequenee of (z.BZ) we have

xt t r  - r#r l  = XJI  | r j ,  xJt l  -TTf i  ]  = t t lOl*

Sinee (i i) does not hold, from here we obtain that there exist two veetors e € ./, and
f €0r* sueh that e and f are definite of opposite sign. Taking into aecount the
definit ion of the Krein spaees 0.1 ano Qr* , without restrieting the generalitv we ean

a s s u m e t h a t  e € Q ( D r ) ,  f € R ( n r * ) ,  e i s p o s i t i v e  i n  ? " * , , f  i s n e g a t i v e i n  ? r * ,  a n d

1e,e)Jr = (f,f)Jr* = 1 (reeall that J, and Jr* are f.s onQ'1 and, respeetively, 0ri.

We eonsider now the t(rein sDaee

X= t2( lri ft j x tt f (0 ,)

r l t?r l= sl2( Qr)c12{Q p, r l t  Ar. l= sl2( 0r*)c12{Jr*),

where S is the right shift operator (see Seetion 2.3). We wil l define now a bounded

unitary operator

U.zl) v : {( ?r*) t+l 12( 2 ,) 
->r2( Ari f+l l?( J ,) .

For any integer number k ) 1 we define the veetors

kth posit ion .

u k  =  0  [ + J . . .  t + ]  0  [ + ] e  I + l  0  [ + ] . . .  €  t 2 {  J r ) ,

k th pos i t ion

fk  =  0  [+ ] . . .  [ + ]  0  [+ ] f  [+ ]  0  t+ l  . . .  (  121 .0 r * ) ,

G.2s)

and denote

@.26)



k + 1
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the veetors xLr vp€ lzt Or*) t+ltz(Or) byand using these define

U,28)

U,29],

and

Then define

(4.3 0)

v k =

rftcrl [+] 12( ce) €rft Or*) t+l 12(O r)

rfr cn t+t r?( ce) E t2(9r+) [+t rfrOrl .

=  v k - l  ,  k )  2 ,

t<?k * r)

v(o t+l u,,, = ,ru *t}ttr[il k + z .r!'1 r* kffiffiffirp*1 [+len*r)-

' ,
k -

(k+1)  
!2k"-2k+3

(f,.-r t*l f eu-r)

,#tn [+1 e/, k2 z,

( fn t+l#un,,  k) 2 ,

andx.  = 0 [+J e.  r  V.  = f .  [+J 0.
r  l ' - r  l .

Consider now the subspaees

and extend v by l inearity. V is isometry, with domain dense in rft cf) t+l 12( ce) and
, t

range dense in l"( Cf) t+l l i( Ce). We prove that V is bounded

Indeed, f rom (4.28) and (4.29) we have

o r+l er =,ru -lll 
11j ,u (xn - pfivu), k: z

t r#un+vn) ,  k )z

t<2(t< + t)

fn t+ l  o=(?!*rl tlz

and then, using (4.30) we obtain for any k ) 2
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and

v(fn [+l o =
r2(x + r)

k (fk-l t+l Yun-r)

From here it follows that, with respeet to the Hilbert spaee orthonormal baeis {fnOO,
O@unJ Uar, V has a tridiagonat matrix representation such that each diagonal is

uniformly bounded, henee V is bounded and extends uniquely to a unitary operator

(4 .31) v : l?( cf) t+l 12( ce) +12( cf) I+l rft cel .

We remark now that Ce is a regular subspaee of 0, anC Cf is a regular

subspaee of 0"* so let f,c0, ano .7.cJ"* be their orthogonal eomplements,

Ce [+J = 
T and Cf [+] ,F = .,.*. Then we have the natural identif ieations

tzt ?.rl = 12( ce) t+l 12(Jf ), f (A 
,i = 12( cf) t+l 12( /*) .

With respeet to these, we extend V to a unitary operator as indieated in (4.2?) by letting

(4.32) v(y t+1 x) = s#y [+] sx , X( t?(J ), ve rft Y*) .

we extend nowv to a unitary operator in Y(X), where X is given in (4.25). To

do this, note first that as a ccnsequenee of (4.26) we have the deeompositions

rzt 0"1 = ?rt+t l?( 1rt, f  {3 ri  =?r* t*t l?( 0 r ' ' , ,
and then extend V to the whole { Ue lett ing

(4.33) v | 0r* t*l ?(,= R(r) .

From the construetion of the unitary operator V it  fol lows easily that (V,X) isu

m.u.d.  o f  T.  I t  remains to  prove that  M*(*)  is  not  a  regular  subspaee of  X.  To th is

end.  note f i rs t  that ,  us ing (4.30) ,  (4 .J3) ,  and (4.33)  we obta in

N,r+(X ) = 12(Y ) t*l 
X "-u 

.

k(k + 2) ,[# tu*, [+t eu*r) +
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Now M*(I') is not regular sinee. (xn, xn) = 1 but

txk, xkJ = ._-.'f ! 
t 

. -+o (k-> oo).^ (zko+zk+1)

Finally, using Proposition 4.4 it follows that (i) does not hold.n

As a eonsequenee of the preeeeding result it is possibte to investigate the

unigueness of m.u.d. of a given operator T. In order to do this we need first to reeall

some definit ions.

Two m.u.d.  (U1, 5{t)  and (Vz, yz\  of  the operator T€y(X) are uni tary

equivalent if there exists a unitary operator t{ CY( X' Yr) suen that W aets as the

identity operator on A( and WU, = UzW.

4.6,  COROLLARY. The operator  T €Y(f f )  has unique m.u.d. ,  up to  uni tary

equivalenee, i f  and onlv i f  T is ei lher doublv eontraetive or doubl:t expansive.

Proof- If the operator T is either doubly eontraetive or doubly expansive, any

m.u.d of T is unitarv equi ' iralent with the eanonieal m.u.d of T (see proposit ion 4.1), e.g;

as ind ieated in  [  8  ,  Theoren 4,41.

Conversely, i f  T is neither doubly eontraetive nor doubly expansive then one of

the fol lowing statements hold:

(a) Either 0, o. fr r" are indefinite.

(b) T satisf ies the eondit ion ( i i)  in proposit ion 4.S.

In the f irst ease, we ean fol low the pattern used by C. Davistgl to eonstruet a m.u.d of

T whieh is not unitary equivalent with the eanonieal m.u.d of T. In the latter ease we use

Pnoposi t ion 4.5 to  produce a m.u.d.  (U,1)  o f  T sueh that  M+(S)  is  not  a  reguiar

subspaee of J{. Then this is not unitary eguivalent with the eanonieal m.u.d. of T. 6

4.2. Charaeteristie funetions. Let (U; J{) be a m.u.d. of the operator T e V (?(),

streh that the subspaees X anc V4l , introdueecl in (4.10), are regular. Then, for



43

arbitrary integer n ) 1, we ean define the regular subspaees

n+l 
<

( 4 . 3 4 )  M n ( X ) = . V , u # k X ,  v r n ( V r ) = V  u k
k=-nk=-n*l kj-n

Denoting uv pX- the selfadjoint projeetion onto the regular subspaee ntn(V# ),M"(J ;  )
we ean introduee the operato. en € y(Mn()f ), Mn(yg ))

(4 .3s)  q-  =  pX-  lnrn tX) .' n  
Mn{811r '

Considering now the unitary operator, ,a(n) , X?;*t-> mn{X# ),

(4.86) o (n)rr. 12n+1 = 
'ts 

uk-n-lr.rs  . . k rk= l  
fu "  

rk

"nd &n) , X2n*1-> Mn(y ),

(4.3?) CI, .(f. ).2n11 = qt uk-nf,, ,.ll(n).^k'k=1 - 
ts, 

-k

'  (reeall  J(n denotes the Krein spaee direet sum of n eopies of 3f ),  we ean introduee the

operator %, X2n*

(4.38) @- = O(n)# e--0. .'  ' - ( n ) '
r  \ t r y

On the other hand, sinee X, and X* are regular subspaees, aeeording to

Corollary 4.3, (0; Y.S,Y) is elementary rotation of T, where

u = nr([*]{u I Xt+l&* ' consider the representation
l

f t  a l
( 4 . t 9 )  u =  |  I

r l
T B  C  J

4-?- PROPOSIIION. With respeet to the eanonieal deeomposit ions of the Krein
-  

9n* ' l  9n-L  1
spaees X" " '  and X; ' ' ' ,  @n has  a  lower  t r iangu lar  Toep l i t z  b loek-mat r ix

representat ion,  0 =((  0 ) . . )?n*1j t  \Yn - \ \  vn/ i ; / i , i=1 '  wnere
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(4.40) ( @n),, =

.1 f (i-ilrg 
,

Proof .  For  a rb i t ra ry  k  and p ,  -nSk ln  and -n+ L lp jn*  1 ,  as  a  eonsequenee

of the definit ion of the operator @, we have

r O" O[)ukg,l](n)# uPrl = [uk-Ps, f], raf.t , s€ Y

From here, using the definit ion of A, B, and C we obtain the formulae (4.40). !

From the preeeding result it follows that the "symbol" of @n is the 2n + 1 - th

polynomial approximant of the Taylor expansion, in a neighbourhood of the origin, of

the operator valued funetion

(4.41) O ( I ) = - c f ,  * l a f  ( l -  l r f  ) - l s r  ,  l € r 1 "  ,

where A, = { I  <Clr -  Xrf,  is invert ibleJ. rrr is operator funetion plays the role of

a charaeterist ie funetion assoeiated with the m.u.d. (U; {) of T'

Using the faet that,U in (4.39) is unitary, it ean be proved that

r  -  @ ( l ) f  @ ( u ) = ( 1  -  T p ) B ( r - l r l - l t l  - l , r ) f , e #  ,  l , F €  4 1 ,

whieh is a property usually fulfilled bv this kind of funetions.

In the remaining part of this section we wil l show that the approaeh used

eonstructing the elementary rotation (S(T), Ar*r0rl ,t in Theorem 3.3 leads also

the definit ion of a eharacteristie funetion.

We consider the selfadjoint operator A^*1 € Y( 7( n*1) defined by the

bloek-matrix

rf, rf,.z

I  T #

T I

[ 0 ,

{ " '

Lor

i - j ( 0 ,

i = j ,

i - j < 0 .

l n

to

I

T

I
T"

:

TN

T f n

.p# n-1

7# n-2

A =
n+ l

'U.42\

Tn-1  Tn-z  I
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If J denotes a fixed f.s of { tnen let Jp+1 be the direet sum of n + I eopies of J. Jnal

is a f.s. of tn*l.

4.8. LEMM.A. There exist unitary operators -09*1) , lf^'  'An+l

J}f*t) , Z( t-, A+ Flt( ,uniquely determined sueh that

1# T#n

(4.43) n9*t) l tn*re*rl 
l  =

Dr* Dr*T#n-1

Jf t*t Jnr* and

D r o

T # n

Dr*

and

A =' - n+1

Dt

DrT Dt

u.44) n*(n*t)lJn*r4n*rl * =

Tn-1

Proof. IVe consider the faetorizatiornof Anal

t-rr#

0 ,

TN

o"tn-t ortn-'

I-TTf

I T *

O I

I O
0

T I

T n T

: '

T nr I

and
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... Tf, n

An+l=

l - r#r

Applying Lemma 2.? to these factorizations

ano 1f+1) u, in (4.4i land (4.44). g

Using the 
. 
preeeding result we ean

sn*1(t) 'Jft*l$l- *Of t.t }( uy

(4 .45) tn*r{t; = nf*t)O!n*tl*

Note that with respect to the definit ion

representation

introduee a unitary operator

(3.11) we have S(T) = S1(T) and eonsic1er i ts

I

T
,

I

^n
I

Ir-rr rI T f

O I I O

T

I

we obtain the unitarv operators n!n*
1 )

(4.46)

4.e. PRoPosIrIoN. Af t*10 $.
gtg 0+ t+l X, sna1(r)

0

G.47) sn*r(T) =

S(r)= 
f: I

BTn-1

TN

BTn-2A Brn-3A BA

rZa rA

c

BA

B

BT

Tn-1A

Proof. The unitary operator Sn*1(t) is uniquely deterrnined lvith the propert5r
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sn*r(T)=

I  T i l  . . .  Tf ,n

0 Dt* . . .  DT*Tf n- l

D - 0 . . . 0
I

D-T D-
l l

:

n - 1
D - T " '  D ^  0

I I

Tn Tn- l  .o .  IDr*

By direct eomputation i t  is easy to verify that Sn*1(f) has the bloek-matrix

representation as indieated in (4.4?).I

The n x n lower tr iangular Toepli tz block-matrix in (4.47) leads now to the

definit ion of an operator valued funetion of the type.eonsidered in (a.41).

4.10. REMARK. If  one uses the eanonieal m.u.d. of T (see Proposit ion 4.1) then

the analog of the definit ion in (4.41) is the operaton valued funetion @,

(4 .48 )  Or t l )= -L rJ "+  lo " * ( r -  l r# t - to f , .  I €4 r ,

(where DrC-X(X,0r)  and D"*€ X(0r* , i l ) )  whieh was in t rodueed in  [?J as the

eharacterist ie funetion of T. One ean obtain this funetion by general izing the pattern

used in Proposit ion 3.5 as suggested b1r Lemma 4.8 and Proposit ion 4.9.

On the other hand, sinee elementary rotations are not unique in general, the

results from this section show that the same geometrie propert ies (e.g. minimal unitary

dilat ions or seattering theoretieal interpretation) lead to possibly non-unitary

equivalent eharacterist ie funetions
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