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Abstract. An abstract flowchart $ [cs87b] otll"T- 11":^i:::":':::"tlltl:

;$ii::."'-iii= i" ;i"'"nt rrom an ad,":l*-1?:1":^::::tu:." 5l1;t ;':ooo":;nondeterminist ic schemes or other kind of
theory ) .  Determin is t i c  schemes,  nondetermln ls l l s  5Lr rs r r rsJ  v r

r i^--ntr  t i t  o mnrtcls are instances of abstraCt sChemes Obtained by using part icular
digraph-l ike models are instances
support theories.

1l:tnt:;"j;:i.u.t scheme is obtained from atomic sciremes (variables) and trivial
.  \  |  - - - : - -  + L - ^ ^  ^ n a r r l i n n q l

"h#"Jliltli l"JLit 
of the underlvinf 1"p1"* theorv) bv using three operations:

sum, composit ion and feedback'
The aim of this paper is to present a general result on abstract f lowchart

schemes and-to uppi '  i i io tfr" study of access' ibi l i ty, reduction and minimization'
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0. Introduction

There is an increasing need to f ind some basic algebraic structures for

theoretical computer science. The present paper deals with the algebraization of

the theory of the f lowchart schemes, as was init iated by Elgot in 1970.

Elgot was interested in gett ing an axiomatization for the input (step-by-step)

behaviour of the deterministic flowchart schemes [E175, El76a]' Roughly speaking'

two deterministic flowchart schemes have the same input behaviour if and only if

they unfold into the same (regular) tree [EBT78]. An equivalent characterization is

the property that by deletion of the inaccessible vert ices and by identif ication of

the vert ices with the same behaviour both schemes reduce to the same minimal one

lF'tZt, St87al.

In this sett ing two algebraic structures have been proposed, namely i teration

theories, defined in [BEw80] and axiomatized in [Es80], and slrong iteration

theories [St8Za]. I teration theories are weaker than strong iteration theories in the

sense that the implication scheme used in strong iteration theories ( i .e. functorial

implication for functions) is replaced by an equation scheme. So iteration theories

are defined using only equations. Iteration theories have been obtained from the

analysis of regular trees (the f irst charaterization of the input behaviour given

above), while strong iteration theories have appeared from the analysis of

minimization (the second characterization of the input behaviour) '

In the nondeterminist ic case the problem of axiomatizing nondeterminist ic

f lowchart schemes is closely related to the old problem of axiomatizing the

automata behaviour ( i .e. the algebra of regular events). Elgot was aware about this'

Indeed, the f irst algebra for f lowchart schemes proposed by Elgot in [Etz': ] ,  i ' " '

i terative theory, uses an implication scheme (unique solution of the equation

x = f(x, lo) for each ideal morphism f) which may be viewed as a variant of the

implication scheme used in salornaa's axiomatization (unique solution of the

equation X = AX + B for A satisfying the empty word property) '  So it  is natural to

develop an i lgebra for nondeterminist ic f lowchart schemes using Kleene's
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operations: union, composition and repetition. Such an algebra is proposed in

[stszu].

In 1986 one of us introduced a new looping operation called feedback [St86a'

StS6bl and in a series of papers [CS87b, CS89a, CS87a, CS88b, CS88a, CS89b] we

have tryed to develop the theory of f lowchart schmes and their behaviours in the

new sett ing: sum-composit ion-f eedback. The f ramework of this theory is

presented in [CSS7b]

The basic algebra, cal led bif low, gives a complete axiomatization of f lowchart

schemes [Stg6b, 8a87, CS87a, CS8Sb]. A bif low is a symmetric str ict monoidal

category [ML7l] endowed with a feedback operation fulf i l l ing some natural axioms.

The aim of the present PaPer is to extend the above result in order to obtain a

complete axiomatization for accessible, reduced and minimal schemes (with

respect to the input-behaviour), using the general result on abstract f lowchart

schemes obtained in the f irst part of the paper'

The notion of abstract f lowchart scheme we use was introduced by C6zinescu

and Ungureanu in [CUS2] (and developed in ICG84, 5t87a, St87b' CS87b]) '  where we

replaced the set of arrows which connect the vert ices by an element from an

adequate algebraic structure.

Beside the simplicity of the bif low structure one f urther benef i t  of the

sum-composit ion-f eedback sett ing is the simplif  ication of the study of

minimization with respect to the input behaviour. More precisely, this sett ing

allows to seParate the study of accessibi l i ty from the study of reduction ( i 'e'

identif ication of the vert ices with the same behaviour). Moreover, i t  turns out that

accessibi l i ty and reduction are dual phenomena and both fol low from a common

general study presented here. This duali ty is analogous to the well-known duali ty

between rreachabil i ty" and "observabil i ty" which has been noticed in system theory

(see, for example [Ah'I75].

Finally we mention that the general

sl ight variat ions) to other classes of

minimal schemes.

study reported here may be applied (with

f lowchart schemes, e.8. to input-output
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l. Preiminaries

To make the reading easier we recall some things from our Previous papers.

The objects of the cateSories we use form a monoid that we denote by

(Ob(B), + ,e) for each category B. If  a e Ob(B) then Iu denote the identity morphism

of a. The composite of. f. eB(a,b) and g e g(brc) is denoted by f'g or by f g'

The addit ional operations we use are:

a) sum -+- : B(a,b) x B(c,d) -l B(a + c' b + d)'

b) block traspositions 
txb 

€ B(a + b, b + a),

c) right feedback Jt : B(b + a, c + a) -? B(b,c).

The axioms for this operation are given in Table l .  Bl-2 are the usual axioms

for the categories.

When only the sum is used as an addit ional operation and the axioms Bl-6 hold

then the algebraic structure is cal led str ict monoiclal categorv (smc, for short)

IMLZI, Ma76]. The nonPermutable smc (nsmc, for short) [CS89a] is a weaker

concept as the axiom 85 is required to hold only i f  g or u is an identity'  The

magmoTds [AD7g] are smc having the addit ive monoid of nonnegative integer as

monoid of objects.

(Bl) (fg)h = f(gh) ( 8 2 )  I " f = f  = f l o

( e f )  ( f + g ) + h = f + ( g + h )

(85)  Iu  *  Ib  = Ia*b

( 8 4 )  I  + f  = f  = f  + l -
e  e ,

( 8 6 )  ( f  + g X u + v ) = f u + g v

(BZ) a*b+c = (uxb + I.XI' * uxt) (88) axe = Iu

( 8 9 )  t x u ( u * g ) b x d = g + u  f o r  u : a - t b  a n d  8 : c ' t d

(Bl0) f(gt")r, = ((f * Iu)g(h * Iu))ta (Bl l)

( B l 2 )  ( f ( l o + g ) ) t u - ( ( t . * d f ) t b  f o r  f  : c + a + d + b  a n d  g : b ' - | a

(B13) f tu*b = f fbt t  (Bl4) I " ta = Iu (Bl5) 4x"1" = I"

f + g t a = ( f * d t a

Table l. These axioms define a biflow'
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when the sum and the block transpositions are used as additional operations and

axioms Bl-9 hold then the algebraic structure is cal led symmetric-smc (ssmc, for

short) [ML7l, Ma75]. The symmetric nsmc (snsmc, for short) [CSS9a] is a weaker

concept as axioms 86 and 89 are required to hold only if I 9I u is a block

transposit ion (by B8 the identit ies are block transposit ions)'  In an snsmc an

ae1-morphisms is a composite of morphisms of the type Iu * 
bxt + IO. In an snsmc

if u or I are au1-morphisms then 86 and 89 hold'

The ssmc concePt is the basic algebraic structure to study acycl ic f lowchart

schemes. To study f lowchart schemes we use feedback to model loops'

A f low tcssTal is  an snsmc having a feedback sat is fy ing ax ioms Bt0-11 '  B l3-1 ' ,

and axiom B l2 whenever g is a block transposit ion. A bif low [css8b] is a f low over

an ssmc. In a bif low Bl2 holds. The bif low concept is our basic algebraic structure

to studY f lowchart schemes.

A s s o m e t i m e s w e p r e f e r t o u s e i n a f l o w t h e l e f t f e e d b a c k

Tu_, B(a + b, a + c)-+B(b,c) instead of the r ight feedback, we recall  that

t a f  = ( b x u f " x t ) f a  f o r  f  : a + b - ) a + c '

The above algebraic structures form categories where the morphisms are

functors that are monoid morphisms on objects and that preserve the addit ional

algebraic structure. SometimeS we are interested in certain subcategories' namely

where the monoid M of objects is kept f ixed in the above algebraic structures (cal l

them: M-smc,  fu I -nsmc,  M-SSmC, M-snsmc,  l rA- f low,  M-bi f low) and where the

morphisms are object  preserv ing functors (ca l l  them :  M-smc morphism" "

. .  .  ,M-bif low morphism). These 
, 
subcateSories are variet ies in the sense of the

many-sorted universal algebra'

For a nonnegative integer n we use the notation [n] = 11121" "n] '

The bif low Ret, of the f inite s-sorted relations is used to build

nondeterminist ic f lowchart schemes' A word a € S* is writ ten as

d = u l  
" *  

uZ* . .  *u fu l  where la f  is  i ts  length and at  are i ts  le t ters '  For  a 'b  CS* by

def  in i t ion
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Relr(a,b) = {t c [tat] x trurt l  $, i)Qf implies a, = b,].

The operations in Rel, are:

rg = {( i , r) [G i l t t i , ; l  n t  and ( j ,k) € 8]] ,

lu  =[ ( i , i ) l ia t ru t ] ] ,

.  f  + g = f  U f i t u t  *  i ,  l b l  +  j ) l  ( i , i l € g ]  w h e r e f  :  a  4 b ,

uxb = [ t i ,1ut  + i ) l i  s tpar i ]  U {( tat  + i , i )  l i  € t lbt l } ,

for s€ S and fc Relr(a + s, b + s)

f ts  =  { t i , ; l l ( i , j )e  f  o r  [ ( i , lb t  +  l )  6  f  an{  ( la l  *  l , j )a f ] }

In this case 1a is define-d by induction using f ?l = f (where .1 is the empty word)

and 813 in Table l. Other notation is

Tu = 0eRels(tr ,a),  vu = I"U [tut + i , i ) l i  e [ lat1] 6 Relr(a + a,a),

f  =  0€ Retr (a , I ) ,  Au = IuU [ i , la l  +  i ) l i  g t1a l1 ]  €Rel r (a ,a + a) .

There are some interesting subbif lows of Relr. The bif low Pfn, of the f irr i te

S-sorted part ial functions is used to build (determinist ic) f lou'chart schemes. Bit is

the bif low of the f inite S-sorted bi jections and In, is the bif low of the f inite

S-sorted injections. The ssmc Sur, of the f inite S-sorted surjections and the ssmc

Fn, of the f inite S-sorted functions are not subbif lows as they are not closed under

feedback. When S is a singleton, we drop the subscript S and we identify S* to the

addit ive monoid of the nonnegative integers.

passing to f lowchart schemes, we explain once again our viewpoint. As atomic

flowchart schemes we use a set Z of statements. Two functions i :  E --t N and

o :: -+ N show for each statement x, the number i(x) of i ts inputs and the number

o(x) of i ts output. A (part ial) f  inite function f :  [n] -]  [m] is thought as a very

simple f lowchart scheme having n inputs and m outputs, rvithout statements and

such that the f low control go from the input j  to the output k i f  and only i f  ( j 'k) € f.
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Figure l.

The operation used to build flowchart schemes

feedback (see Figure l) '  Every f lowchart scheme is

normal form (see Figure 7) where * € E* 
is

thought as the sum of its letters and f is a

(part ial) function. Therefore a scheme with n

inputs and m outPuts may be represented as a

pa i r  ( x , f ) ,  where  xe t  and

f : [n + o(x)] -+ [m + i(x)] '  Here i  and o are the

unique monoid morphisms i,o : 
. I*-+ (N'+'0)

which extend the given functions i and o' The

normal form of a f lowchart scheme is not unique

as the letters of x maY be Permuted'

n=fmJ
:t---

are comPosit ion, sum and

isomorphic to a scheme in a

.-*.;;'di&;d,e,,s,i '

oo

a
I

r:1
I  r l

T
b

c

J
. [ * [  =

T
d

a

J,
E
t
b

b + a

r l
, lT l

l l
c + a

Figure 2.

To deJine the.operations for scheme representations we use the formulas ( l ' l ) '

( 1 . 2 ) a n d ( 1 . 3 ) b e l o w . T o o b t a i n t h e r i g h t h a n d s i d e s w e p u t i n a n o r m a l f o r m t h e

result of the operations from Figure I made using the schemes representated by

the pairs in the left hand sides. Look more careful to ( l '3) '  The right hand side may

have no sense if  f  is a function. This formula has sense if  f  is a part ial function'

working with part ial functions instead of functions we pass from schemes to part ial

schemes. we think i t  is better to work with part ial schemes instead of schemes
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having a loop vertex -1| "r 
for example in [9E85, Ba87]. The same idea was used to

replace the total trees using a distinguished nullary operation by the partial trees.

Remark that the part ial functions as well as the part ial f lowchart schemes form a

bif low tcSSSbl.

Passing to nondeterminist ic f lowchart schemes, remark that they may be

represented by pairs, too: the pair (x,f) represents a nondeterminist ic f lowchart

scheme with n inputs and m outPuts i f  and only i f  x € E* and

f €Ret(n + o(x), m + i(x)). The formulas used to define operations (l . l) '  {1.2) and

(1.3) are the same as in the determinist ic case.

Remark that in the definit ion of the operations for schem.e representations we

use only bif low operations. All  these remarks lead to a natural idea: replace f in a

scheme representation (x,f) by a morphism from an N-bif low. Using this natural

idea we unify the study of the determinist ic f lowchart schemes and the study of

the nondetermini.st ic f lowchart schemes.

We prefer to work more abstract as you may see in the

Assume B is  an ssmc and (X,  * ,  €)  is  a  monoid.

o : X -t Ob(B) be two monoid morphisms.

For a,b € Ob(B) we say the pair (x,f),represents a f lowchart scheme (see Figure

2 )  w i th  i npu t  a  and  ou tpu t  b  i f  x€X  and  f  e  B (a+o(x ) ,  b+ i ( x ) ) .  The  morph ism f

which in the usual cases gives al l  the arrows of the scheme wil l  be called

connection. Let Ft",r(a,b) be the set of al l  f lowchart scheme rePresentations with

input a and output b. I f  there is no danger of confusion we omit the subscripts X

and B in Ft",*. The operations in Fl are defined as fol lows.

I f  (x , f )€  F l (a,b)  and (y ,g)€Fl (b,c)  t l ren

( l .  t ) (x,fxy,d = (x + y, (f + Io(u)xlu * i(x\o(v))k + I,1*;Xl. * i(v)xi(*))).

= ( E , la) for every object a of B.

(x,f) € Fl(a,b) and (y,8)e Fl(c'd) then

(x,f) + (y,g) = (x + y, { lu * txo(*) * Iolr;Xf + gXIo * i(x)*d * t ,{r;)) '

fol lowing def irr i t ions.

L e t  i : X - + o b ( B )  a n d

I
ct

I f

( t . 2 )



4 o

"xb = ( t , "xb for every a and b objects of B.

Endowed with the above operations Fl becomes an snsmc.

In an nsmc C, the set of i ts morphisms Mor(C) is a monoid having the sum as

operation. To embed X in Ft we define the monoid morphis* EX : X --> Mor(Fl) by

E*(x) = (x, i(x)*o(x)r. To embed B in Fl we define the ob(B)-snsmc morphism

E* : B -) Fl by E*(f) = (t, , f) for every morphism f of B.

Using these embedings we may identify X and B with subsets of Fl.

I f  B is a bif low we define the feedback for (x,f)eFl(b + a, c + a) bY

(1 .3 ) (x,f)fa = (x,[(Ib * o(x)"a1f (t. + uxi(*))]tu).

Therefore Fl becomes a f low and EU an Ob(B)-f low morphism'

In [C588b] we have shown that the bif low of the f lowchart schemes with

statements from the monoid X and connections from the bif low .B denoted by

FS*,U may be obtained by the factorization of Fl to the least f low congruence

relation containing al l  the Pairs

(x x) ((x * y;o(x)xo(y), i(x)*i(v)1, + x)) where x,y € X.

From the computbr science viewpoint our general ization (connections from an

arbitrary bif low instead of Pfn or Rel) has another signif iquence beside the

unif ication of the determinism and of the nondeterminism in the study of

aff irmation is motivated as fol lows: in [CS87a, C588b] we have shown that the

basic semantic model in the determinist ic case and the basic semantic model in the

nondeterminist ic case [C587b, section 2] are bif lows.

From an algebraic viewpoint our general ization has another signif iquence : the

algebra of the f lowchart schemes may be developed in the same way as the algebra

of the polynomials. The theorems in tCS8Sbl have been made having in mind this

idea.

f lowcharts, namely the unif ication of the tax and of the semantics. This
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2. The role of functoriality rule in flowchart scheme theories

Let us consider AFsf,,pfn (resp' FSr,Pln), the theory of deterministic acyclic

(resp. cyclic) E-schemes over Pfn; these schemes are precisely those built up from

atomic schemes in the double ranked set f and trivial schemes in Pfn using the

Operations Of Separated sum ft+rr and Composition tr'tr (reSp' Separated Sumt

composition and feedback "t"). Let us consider the following rules of

identif  ication:

(TX) Tm'x = Tn, for x € l(m,n);

(VX) vm'x = (x+x lVn,  for  x  €f (m,n) ;

( x) x'f =!m, for x e f (m,n)'

I nAFss ,P fnsomena tu ra lequ ive lencere la t i onsa rep rec i se l ycap tu redby the

least congruence relations generated by subsets of rules in l tX' VX' I X) '  For

example, the least con8ruence relation ="p 8"n"l.ated by the identif ications (TX)

p r e c i s e l y c a p t u r e a c c e s s i b i l i t y , i . e . t w o a c y c l i c s c h e m e s F a n d F | a r e

= -eouivalent i f f  F and F' have the same accessible part '  Do analogous results
aF

works for cycl ic schemes? The answer is "not". The fol lowing example may help the

reader to understand whY'

Example 2.1 (schemes over In and one biscalar variable)'  suppose t3(t ' t)  =lxland

$(m,n)  = @ otherv ise.

Every scheme in AFS6,rn(m,n) may be rePresented as

m k , P r i .
t f  * ' ' i  *  T" ' t '  *  t ! . ,  where c6 In(m+p'n) '  k i>O and r t ) l

Fr  PF t

(by convention x0 = Ir), hence it  is uniquely determinated by the injection c and the

p a i r ( k 1 , . . . , k * ; r i ' . . . ' r p ) o f s e q u e n c e s o f n a t u r a l n u m b e r s . l l ; a F d e n o t e s t h e l e a s t

congruence relation (with resPect to sum and composit ion) generated by the

identificallePs (TX), then
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two schemes F and F' rePresented bY

(k'lr...rk;; r\,...,r'Or), respectively are

(lrn+T')"c = (I*+TO,)'c"

That is F and F, are:"0-eguivalent i f f  F and F' have

Every scheme in FS 0,In(m,n) 
may be represented

c and (kr , . . . ,k r i  r1r" ' r r ' ) r  and by c f  and

="r-eguivalent i f f  ki = klr Vi€[m] and

(f *Ut * r; i .  *tty. * f , t*tt) , .where c€In(m+p,n), k;0, r,)1, s,)1,

i ; f  r  i= l  i= l

h e n c e i t i s u n i q u e l y d e t e r m i n a t e d b y t h e i n j e c t i o n c a n d t h e t r i p l e

(kr , . . . ,k* ;  r1r . . . r ro i  s l " " 'sq)  o f  sequences of  natura l  numbers '  t t  ouP denoted the

least congruence relation (with resPect to sum' composit ion and f eedback)

generated by the identif  ications (TX)' then

two schemes F and F ' represented by c  and (kr , " ' 'k* ;  f  1 t " ' r r ' i  
s1r" ' rs ' ) r  and by

c, and (k'r, . . . ,k[; r 'r , . . . ,rf  i  s!," ' ,s 'o') '  respectively are #u{\_"quiualent i f f  I<' = l<' i '

v i e [ m ] , ( I n . , + T o ) ' c = ( I * * T O ' ] G " 9 = q ' a n d t h e r e e x i s t s a b i j e c t i o n b € B i ( q ' q ' )

such that t i = t!(i), Vi e [q]'

That is F and F' are guF-"guiualent i f f  F

the same (inaccessible) cycles' Hence x'u,,

The reason for the answer ,,not, '  above is the imposibi l i ty of using the

identif ications given by (TX), (VX), and (tx) in cycles' conseqttently the least

congruence relation generated by certain such identif ications is too strong' i 'e'  i t

identif  ies too few schemes'

To overcome this diff iculty we combine the identif ications (TX), (VX), and (IX)

with an addit ionar identif  ication rule, calred functorial i ty rule, which al lows us to

use these identif  ications in cycles' The rule is def ined as fol lows' We say a reiation

i  on a b i f low B fu l f  i l ls  ( func:  y)  for  a  y€B(p 'q)  or  y€B(p 'q)  is  ?- functor ia l  i f

( func:  y)  f . ( In+v) ;  ( I '+y) .g  ==> f1p = gtQ for  a l l  f :m+p.+n+P and g:m+q'n+q

h o l d s . l f E i s a s u b s e t o f m o r p h i s m s o f a b i f l o w B ' w e s a y = f u l f i l l s ( f u n c : E ) i f =

the same accessible Part '

AS

and F' have the same accessible part and

does not caPture accessibi l i tY' n



fulfills (func : y) for all y in E. Finally, we say a biflow B satisfies the functoriality

axiom (func : E) i f  the equali ty relation on B fulf i l ls (func : E).

'  In FSE,pfn some natural equivalence relations, corresponding to those for

acycl ic schemes, are precise{y captured by the least congruence relations

genearted by subsets of tTX, VX,1X] in the class of congruence relations

satisfying (func: E) for an adequate E included in Pfn. (Since the .ru., of

congruence relations satisfying (func : E) is nonempty and closed with respect to

intersection such a congruence relation does exists, namely i t  is the intersection of

'  al l  relat ions in this class.) For example, the. least congruence relation -up

generated by the identif ications (TX) in the class of congruence relations satisfying

(func : In) precisely captures accessibi l i ty, i .e. two cycl ic schemes F and F' are

lrz^^-equivalent i f f  F and F'have the same accessible part.
o l 5

In conclusion using the functorial i ty rule to restr ict the class of congruence

relations used for generating we get weaker congruence relations ( i .e. they

identify more schemes) which correspond to some natural ly introducing ones.

Example 2.1 (continued). Consider three schemes F, F' and F" in FS g,In(m,n)

represented by c  and (kr , . . . ,k rn;  r l , . , . , rp ;  s l , . . . ,sq) ,  by ( l *+TO).c  and

(kr , . . . ,k* ; r ;  s1, . . . 'sq) ,  and bv ( ln ,+To) 'c  and (kr , . . . ,k ,n ; r1r ) ,  respect ive ly ,  where r  is

the empty sequence. Clearly O oa* F Since F"(ln+TO) l lu'  ( lr+TO)G where

G € FS O,I6(m+g,n+g) is the scheme represented by (I, . , . ,+TO)c + IO and

(k1, . . . ,k . ,s  
1 , . . . 'sq; r i r ) ,  by the functor ia l i ty  ru le  ( func :  In)  we get

p"t0 -"p Gtq = F', hence O *"F Fr' .  Consequently the diff iculty is overcame: a

scheme is lvu,r-eQuivalent to its accessible part. tl

3. Enriched symrnetric strict monoidal categories

In a previous paper [CSSga] we have given characterizations for certain classes

of f inite relations as init ial abstract data types. These classes, denoted xy-Rel for

43
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x([a,b,c,d] and yela,pryf,J correspond to some natural classes of relations, e.g.

a(-Rel = bijections, ap-Ret = injections, af,-Ret = suriections, 
"&R"t 

= functionsr

bf5-Ret = partially defined injections, b6-Ret = partially defined functions, etc. (see

Table 6 in Section 1l). The characterization involves the concept of an xy-ssmc,

defined below.

Suppose we are given an ssmc (8,.,1,+,X), where the monoid of the objects of the

underlying category is (Ob(B),+,e). We enrich the ssmc-structure with some

constants (zero-ary operations)

Tue B(e,a)

Vu€ B(a+a,a)

J]e e(a,e)

{a€ B(a,a*a)

for a€Ob(B). Now we define an xy-ssmc, for x6{a,b,c,dJ and yel" lr | , tr"fJ as an

ssmc enriched with the constants corresponding to xy specif ied in Table 2 and

fulf i l l ing al l  the axioms in Table 3 in which these and only these constants appear.

For example, a cJ-ssmc is defined as an ssmc enriched with the constants 14, Tu,

and V^ and fu l f i l l ing the ax ioms A,  Ao,  B,  Bo,  C,  Do,  F,  G,  SVI-4 '  and SV3o-4o.
a

The acyclic algebra SCO of Bloom and Esik in [8E85] (completed with the

axiomatization [CS89a] of f inite, part ial ly defined functions) is equivalent with a

b&ssmc.

A morphism of an xy-ssmc B is cal led an xy-base morphism (or short lyr xY-

-morphism) i t  i t  is the evaluation in B of a term written with "+", t ' ' " ,  I ,  X, and the

constants in T,V,I,r\  corresponding to xy.

The xy-base morphisms of an xy-ssmc B form the least sub-xy-ssmc of B which

we denote in the sequel by Bxy. Due to the axioms that define ssrnc-ies we get the

fol lowing equivalent characterization.

Observation 3.1. A morphism is xy-base if and only if it

morphisms of type lu+g+l 'r where I is txd or a constant

corresponding to xy (acorrding to Table 2). Il

i s  a ' compos i te  o f

in {T.,v., I t ,  At}

The motivation we have given in Section 2 shows that we have to consider the
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a

b

c

d

operations

nothing

t:
nu

la and A"

operations

nothing

Ta

Va

T  a n d V

o(

p

t
cf

Table 2. Operations for xy-ssmc

A) (va + Iu)vu = (1" * va)va

B)  uxu.  Vu = v"

C ) ( T  + l  ) V  = l'  a  a ' a  a
I

D)va-  t :  =  f  .  Iu

E) Ta'  I "  = Iu

F ) V a ' A u = ( A u

A") na(,\a + Iu) = na(la * Aa)

B') na. 
oxu = Au

. c') Au(Iu + Iu) = I"

Do)  Ta '  Au  =  Tu  *  T "

* AUXI" * "xu + I"Xv" + v")

G) 44 .  v .  =  I "

SVI )  T "  =  I "

S V 2 ) T  ,  = T  + T" ' - " a + b  - a  - b

S V 3 ) V  = l' e e

t
sv4) Va+b = (la + ox" * Ib)(va + Vg)

svl.) ! t= I.

sv2') -Lu*o = i.u
' o

SV3. )  N =  I "

S V 4 " )  A u * b = ( A "

* l b

* nbXlu * axb * Io)

Table 3. Axioms for xy-ssmc

ST) T"f = TO

SV) (f + f)V5 = Vuf

.  h  . asI) fr  = l*
s A )  A a ( t * f ) = f  A b

Table 4. Axioms for strong xy-ssmc (f : a -+ b)
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stronger axioms in Table 4. They are stronSer in the following sense: in an arbitrary

xy-ssmc only their restrictions to the case when f is an xy-morphism hold'

L e t  u s  c o n s i d e r  t h e o r d e r  ( ,  o n { a , b , c , d } g i v e n  b y  a ( b ( d ,  a ( c ( d ,  1 ( b ( c )

and .t(c ( b), and similarly (C for Greek letters in {-,p,f,T}'  We define an

x'y'-strong xy-ssnlc, for x'  (,  x and Y'lC yr as an xy-ssmc in which al l  the axioms

in Table 4 corresponding to x'yr hold. A strong xy-ssmc is by definiton an xy-strong

xy-ssmc. For example, in order to define a cf-strong c$-ssmc one have to add the

axioms (SV) and (SA) to the axioms that definu a ctf-tsmc'

There are very important instances of strong xy-ssmc-ies' The concept of a

strong af-ssmc coincides with the concept of an algebraic theory -- in the sense of

Lawvere -- used by Elgot, ADJ-group, etc (see IBTW85], for example)'  The concept

of a strong dJ-ssmc coincides with the concept of an idempotent matrix theorv

introduced by Elgot lrtzeul; i f  the monoid of the objects is equal to the addit ive

monoid of the nonnegative integers this concept is equivalent with the concept of a

theory of matrices over an idempotent semiring'

To be more exact, the above coincidences is with the extensions of the usual

concept of algebraic theory and (idempotent) matrix theory, respectively to the

case when the objects of t l ' re underlying category form an arbitrary monoid' This

extension is defined in [CS89a]. Note that the concept of a matrix theory is

equivalent to an ssmc which is a strong a.5-ssmc and a strong dd-ssmc' too' Since

D,  Do,  E,  and F fo l low f rom sT,  sv,  s l ,  and st \  i t  fo l lows that  in  a matr ix  theory

all  the axioms in Tables 3 and 4 hold, with only one possible exception: the axiom

G. The axiom G holds i f f  the matrix theory is idempotent.

H(Ta) = Tn(a)

H(Va) = Vn(a)

H( la) = 1H(a)

H( Aa) = 1H(a)

Table 5. Conditions for xy-ssmc morphisms'

Anxy -ssmq-mg lp l ] lm isanssmc-morph ismfu l f i l l i nga l l t hecond i t i ons inTab le
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5 corresponding to the restriction xy. Note that an xy-ssmc morphism maps an

xy-morPhism to an xY-morPhism'

sometimes we are interested to keep f ixed the monoid of the objects of the

underlying categories of xy-ssmc-ies. Let N4 be a monoid' An U-xy-ssms is an

xy-ssmc B such that Ob(B) = M. An M-xy-ssmc morphism H is an xy-ssmc morphism

that preserves the objects, i'e' H(a) = dr for every a € M'

Proposi tion 3.2. If H : B --t B' is an M-xy-ssmc morphism then for every

x y - m o r p h i s m f , i n B ' t h e r e e x i s t s a n x y - m o r p h i s m f i n B s u c h t h a t H ( f ) = f " t l

'  
we donrt know even if  the restr ict ion of H on objects is surjective i f  this

proposit ion is val id when H is only an xy-ssmc morphism' Perhaps adding some

hypotheses such a result may be obtained'

proposit io n 3.3. Suppose x e {U,O} and B is an xy-ssmc' All  the morphisms f € B(a'b)

satisfying f !b = lu form a sub-xy-ssmc of B'

P r o p o s i t i o n S . 4 . S u p p o s e x e [ c , d } a n d B i s a n x y - s s m c . A l l t h e m o r p h i s m s

f e B(a,b) satisf ying f Ab = Aa(t * f) form a sub-xy-ssnrc of B'

Proposi t ion3.5.  Suppose y€tp '6 ]  and B is  .an xy-ssmc'  A l l  the morphisms

f e B(a,b) satisfying T.f = TO form a sub'xy-ssmc of R'

Proposit ion3.6. Suppose y€ tf 'd] and B is an xy-ssmc' Atl the morphisms

f e B(a,b) satisfying V"f = (f + f)VO Iorm a sub-xy-ssmc of B'

T h e o r e m S ' . 7 . | f ' B i s a n X y - s s m c t h e n t h e c a t e S o r y o f i t s x y - m o r p h i s m s B * , i s a

stronS xy-ssmc'

4. Simulation

I n S e c t i o n 2 w e h a v e s h o w n t h a t t h e l o c a l c o n d i t i o n s ( T X ) , ( V X ) , o r ( I X ) a r e n o t

enough to generate useful equivalence relations' In order to do so one have to use
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also certain global rules, for example functoriality' The combination of

functoriality with the above local conditions leads to certain equivalence relations

which may, perhaps more directly, be introduced by using simulaton.

The using of simulation by bi jective, injective, or surjective functions had

become a standard way to define morphisms of automatat or graphs; see [Ho69]t

[CoZ+], ITWW79], for example. In the theory of mult i- input/mult i-output f lowchart

schemes the simulation by functions was used by Elgot in [E177] to study the

complete minimization. In our theory of f lowchart schemes we have defined and

studied simulation by bi jective functions in [CGSa], by surjective functions in

[St87a, version 1984], by injective functions in [St87a version i98'] '  and by

arbitrary relations in [Stgzn version t9S5]; see also [St86a], [St86b], [St87a]'

[st87b], [cs87b], tcs8sbl. This study of simulation has led to an abstract sett ing

for the definit ion of simulaton, introduced in ICSS8b]' Namely, since an ssmc

structure may natural ly be defined on the relations used to define simulaton' we

maV be more abstract and def ine sirnulation via morphisms in an arbitrary ssmc'

Definition 4.1-

(y,g) two Pairs

and wr i te  (x , f )

(s)

Let  Y,  B be two ssmc- ies,  i ,o :  Y-)R two ssmc morphisrns '  and (x ' f ) '

in  F lon(y; ,p , (a,b) '  we say (x , f )  and (y 'g)  are s imi lar  v ia  u eY(x 'y) '

-'ru (y,g), if

f .( lo+i(u)) = ( lu+o(u)Ig.

Tlre relation (x,f) -+" (y,g) means (x,f ) -+, (y,8) for some ie Y(x,y) '  The relation

+Y is cal led simulation via Y-morphisms' [1

Example 4.2. Let us consider the part ial schemes obtained using atomic schemes in

a double ranked set E , i .e. the schemes represented by pairs in Fl Z,Pfn' Suppose

also the functions i,o :f  -4 N, specifying the input and the output number'

respectivelY are given.

Simulation via bi jections. It  is proved in [CS89a] that there is a unique ssmc

niorphism i: Bir-f Pfn (resp. o: Bir-+Pfn) which acts on ; as the given function i

(resp. o). Given two pairs (x,f) and (y,8) in Fl f , ,Pfn(u'b) 
i t  is shown in [CS88b] that
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(x,f) and (y,g) represent isomorphic f lowchart schemes if f  there exists u6Bifx'y)

such that f(l'+i(u)) = (la+o(u))g. In this case we say that (x,f) and (y,8) are similar

via the bi jection u. One may easily see that this definit ion of simulation via a

bijection is a part icular case of Definit ion 4.1, namely when Y = Bit.

Simulation via injections. It  is proved in [CS89a] that there is a unique ap-ssmc

morphism i: Inr-"Pfn (resp. o: Inr-+ Pfn) which acts on f as the given function i

(resp. o). Given two pairs (x,f) and (y,g) in Otf,Orn(u,b) i t  is proved in Section l3

that the scheme represented by (x,f) is isomorphic to a subscheme of the scheme

representeA by (y,S) i f f  there exists u€Inr(x,y) such that f( l5+i(u)) = ( lu+o(u))g.

lHere by t 'subscheme" we understand that there is no arrow from an input or from a

vertex in the subscheme to a statement which is not in the subscheme.] In this case

we say that (x,f) and (y,g) are similar via the injection u. One may easily see that

this definit ion of simulation via an injections is a part icular case of Definit ion 4.l t

namely when Y = Inr .  [1

Let us turn to the abstract sett ing. Suppose i,o:Y-* B are two ssmc morphisms.

We denote by yF the converse of -t" and by ruy the leas.t equivalence relation

including 4y. Note that nzn, is the transit ive closure of *)y U yl ,  i .e.

*y = ('?y U y{- )*'^

To simplify the notation we denote the monoid. Ob(Y) by X and we shall

sometime write Fl (resP. '+ '  resp.^/ ) instead of Fl*,u (resp. 4", resP.'v") '

The fol lowing two results are proved in [CSS8b].

Lemma 4.3. The simulation relation -)" is a preorder which is compatible to

summation and composit ion. The generated equivalence ruy may be written as

Ny=( - ) y  " y i - ) *= (y€o {y ) * .  F ina l l y ,  t he  re la t i on  n r "  i s  a l so  the  l eas t

congruence relation including I y, i .e. i t  is compatible to summation and

composit ion. EI

Consequently, summation and composit ion make sense in Fl/ru", the quotient of



Fl by rvy. Let FU:B {Fl/ru" be the composite of the embeddeing of B in Fl' i.e.

E*:B {Fl, with the factorization morphism from Fl to Fl/nr".

Proposition 4.4. The quotient Fl/dy is an ssmc and FU is an ssmc morphism. tr

We try to f ind an algebraic structure such that:

( i) i t  have suff icient propert ies ( including the validity of the strong axioms in

Table 4 and functorial i ty) in order to make possible the study of the classes of

f lowchart schemes we are interested in;

( i i)  the structure is preserved by passing from B to Fl/al.

The strong axioms extend simply to Fl lv, but for the extension of functorial i ty

from B to Fl/ru we need some technical condit ions. The addit ional condit ions are

chosen in such a way to be preserved by the passing from B to Fl/ru, too'

Proposit ion 4.5. I f  B is an xy-ssmc, then FUoy is an xy-ssmc and F* is an xy-ssmc

morph ism.

Proof. It is enough to see that:

- i f  certain operations from Tu, Vu, Ia, or Au u.e in B, then ny Eg they are

embedded in Fl;

- i f  certain axioms in Table 3 are satisf ied in B, then they hold in Fl, too' t ]

Proposit ion 4.6. Let i ,o:Y-tB be two xy-ssmc morphisms. If  B is a strong xy-ssmc'

then Fl/w" is a strong xy-ssmc.

proof. (a) Axiom (ST) is preserved (case yelp,di): First note that B(e,a) =lTul.

I n d e e d , i f  f  € B ( e , a ) , t h e n  f  = 1 " ' f  - T " ' f  = T u '

If  (x,f)e Fl(e,a), then (t,Ta) -tT (x'f).  Indeed, T"(I"+i(T*)) = T"*i(x) =
X

T-r- . r - f  =  ( l^+o(T-) ) ' f .  Consequent ly ,  (x , f )  -  ( t ,T  
a)  for  everv (x , f  )e  F l (e 'a) '  hence

O ( X '  g  A
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Iaxiom (ST) holds in Fl/ry .

(b) Axiom (SI) is preserved (case xe {r,a}: Dual to (a).

(c) Axiom (SV) is preserved (case y€if,,Jl): Suppose (x,f)aFl(a,b). Note that

((x,f) + (x,f))vo = (x+x, g), where g = (la+axo(*)*to,*r)(t*rXro*i(x)xb*tr,*;XVu*li(**n)).

We show that ((x,f) + (x,f))"Vo *u* u"'(*,f) holds. Indeed,

g0o+i(v*)) = (la*axo(x)*lo1*1xf *f)Vu*i(*) = {lu*uxo(x)+Io1*;)V"*o(*)f

= (tu*.*o(V*))[(vu+lo(x)x].

(A) Rxiom (SA ) is preserved (case xe{c,d}): Dual to (c). I l

5. Extending functoriality from connections to schemes

In this section we suppose moreover B is a bif low. We recall  some results from

[CS87a, CSSSb]. The simulation relation ->y is compatible to the feedback,

therefore ar" is the least f low congruence relation including 4y.

proposition 5.1. The quotient Fl/MV is an biflow and F* is a biflow morphism. fJ

We give in this section some condit ions which assure the extension of

functorial i ty from B to F[*,U/o" where X = Ob(Y)'

As we already defined, a morphism j:a-tb in a f low B is cal led functorial i f

f ' ( lO+j) = ( lc*j) '8 ==) f ta = gtb

for every f e B(c+a,d+a) and gcB(c+b,d+b).

Note that a morphism j:a I b in a f low B is f unctorial i f f

f ' ( j+lo) = ( j+1.) 'g ==> f 
af = tbg

for every f € B(a+c,a+d) and g€ B(b+c,b+d).

Lemma 5.2 (-) preserve functorial l i ty). I f  j :a-? b is functorial in B, then j is
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.-4 -functorial in Fl*,*t that is

(a) F'(j*la) +u (i+l.IG ==) ?"n l tbc and

(b) (j+I.)"c 4u F'(i+lo) ==) tbc +u t"r

for every Fe FI*,r(a+c,a+d) and G € Fl*r*(b+c,b+d)'

Proof. a) Suppose F = (x,f) and G = (y,g)' The simulation shows that

[f( i+lo+1,,*;)J(16*o+i(u)) = (1"*.*o(u))[( l+I.+lo(y))s] '  Consequently'

" [f(1.*o+i(u))](j*Io*i(y)) = (i*Ic*o(*;)[(lo*.+o(u))g]' Since j is functorial in B it follows

that t 
atftlu*O*itu))) = tb{{t'*.*o(u))g), hence {fatxt.*itu)) = (1.+o(u)Xtbg). This

means tur 1tbc.
b) Similai. t]

Theorem 5.3. Suppose j€ B(a,b). Tl're implication

j functorial in B ==) j  functorial in Fl* 'U/nzy

is val id provided that the fol lowing two condit ions are fulf i l led:

(C l) ruy = y* " '4yi

(C2) F 4u G(i+lO) -=) ( 1H) such that F = H(j+lO) and H -u G

for  a l l  c ,d  objects  in  B,  F:a+c - )b+d,  G:a+c? a+d morphisms in  F l* ,u  and

u morPhism in Y.

Proof .  Assume FeFlX,B(a+c,a+d) ,  G e FIX,B(b+c,b+d)  and F( j+ lO)  ru ( j+1. )G'  By (Cl )

this means F(j+lO) €- H't ( i+I.)G for a certain pair H' Applying (C2) to the left

simulation we get a pair H' such that H = H'( j+lO) and F 4 H', hence t"f - l  t"H"

The right simulation may be written as H'( i+lo) -+ ( j+1.)G, hence by Lemma 5'1'a

we get t"H, .- l  tbC. tt  fol lows that taF . i  o -?' lbc, h"nce taF ,. ' tbc' r5

This easily proved theorem leads to the fol lowing problem: For a given Y f ind
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"reasonablet' conditions on B with respect to Y such that the conditions in this

theorem hold.

6. Technical conditions

In this section we give certain conditions on B with respect to Y such that

conditions (Cl) anO (C2) in Theorem .5.2 hold. j,

We say a pair ( j ' ,k ') of morphisms j '€ B(a',ar) and k'e B(a',ar) of a category B is a

weak pul lback of  the pai r  ( j ,k )  o f  morphisms je  B(ar ,a)  and ke B(arra) ,  and wr i te

(j ' ,k ') wPb (i 'k) '

i t  i t j  = k'k and if  for every object beOb(B) and morphisms f eB(brar) and ge B(b'ar)

such that f j  = gk there exists a morphism h eB(b,a') such that hj '  = f and hkr = g.

The adjective "weak,'  referes to the fact that we do not require uniqueness of h

as in the analogous definit ion of pullbacks.

Analysis of Condition (Cl) in Theorem 5.2. Suppose i:Y-a B is an ssmc

morphism. We say B fulf i l ls the wpb-condit ion (weak pullback condit ion) with

respect  to  Y and i  i f  for  every morphisms uCY(x1rx)  and ve Y(x2x)  there ex is t  an

object  x '€Ob(Y)  and two morphisms u ' iY(xr ,xr )  and v 'C Y(x ' ,x t )  such that

(bl) u'u = v'v and

(b2) (I"+i(u'),  Iu+i(v')) rvpu (I"+i(u), I"+i(v)), for every object a e ob(B).

This wpb-condit ion rests on the fol lowing three condit ions:

(wpbr) Y has weak Pullbacks;

(wpbr) the functor i  preserves weak pullbacks;

(wpbr) addit ion of an object a e Ob(B) preserves rveak pullbacks.

Clearly, the condit ions wpbl-3 imply wpb-condit ion. Due to some technical reasons

we prefer to work with this global wpb-condit ion.
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The utility of this wpb-condition come from the following proposition'

proposition 5.1. If B fulfills the wpb-condition with respect to Y and i, then

Condition (C t) in Theorem 5.2 holds, i.e. ^'y = yF o --)O.

Proof .  S ince by Lemma 4.3 ru=(e l -o4)*  i t  suf f ices to  show 4-o-+ is

transit ive. consequently, i t  is enough to prove that -to<* c {-o-).

Suppose we are given three pairs in Fl",*(b'a) such that

(x'f  
,) 

' -Yu (x,f) 
,? 

(x,fr)

for  some morphisms ueY(x1,x)  and ve Y(xr ,x) .  S ince B fu l f i l ls  the wpb-condi t ion

with respect to Y and i,  there exists an object x'  of Y and two rnorphisms

u' € y(x,:x 
r) and vr € Y(x',xr) tutf i t t ing (b l) and (bZ) in the def init ion of the

wpb-condit ion. Since

(lo+o(u,)x r(lu*i(u)) 
= (lo+o(u'u)x = 110*o1v',v)X = (lo+o(v')xr(lu+i(v))

by (b2)  we get  a  morphism f 'e  B(b+o(x ' ) ,  a+ i (x ' ) )  such that

f '( lu+i(u')) = ( lO*o(u')X, and f '( la+i(v')) = ( lO*o(v')Xr,

i .e. such that (x'f  
,) u,r 

(x' , f ' )  -u, (x,f 
,) '  

Hence we have proved that

-+or c: <-o'-a and the result fol lows. tr

Analysis of Condition (C2) in Theorem' 5.2. We say two morphisms j:a + b and

k:c -ry d in an ssmc B are wc-connecte4 (weak cartesianly connected), and we write

j Wc k i f  ( l+1., Iu+k) WpU (l '+k, j+16)'

We also use the notation

I + A  f o r t h e s e t { 1 " +  j l a e o b ( B ) a n d  j e  n }  ( l +  j m e a n s I + l i } ) '

A  +  I  f o r t h e s e t  l i + t " l  i n A  a n d a e O U ( n ) J  ( j  +  I  m e a n s  I i )  *  I )  a n d

A Wc A'  for  (V j  cAXVkcA')  ( j  wc k) ,
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where A and Arare sets of morphisms in B.

Lemma 6.2. l f .  p iu Gj and lWc i(u), then thgre exists a pair H such that F = Hj

and H -+ G.
u

Proof .  Suppose F = (x , f ) :  d- tc ,  G = (y ,d:  a4b and je  B(b,c) .  Then f ( I .+ i (u) )  =

(lu+o(u))e(i*li(y)). Since j Wc i(u) in B there exists h e B(a+o(x), b+i(x)) such that

h ( j+ l r1 *y )= f  and  h ( l ' + i (u ) )  = ( l a *o (u ) )g .Consequen t l y ,  H=(x ,h )  obeys  H j  =F  and

H -+, G. Il

Corol lary 6.?.l t  j+l wc i(Y), then Condit ion (CZ) in Theorem 5.3 holds. I f

Lemma 6.4. The implication

( j ' ,k ' )  wpb ( j ,k )  ==> (p j 'q ,pk 'w)  wpb (q-  l1 t , * -  lk t ;

is val id provided that p,q w and t are isomorphisms. Ll

Lemma 6 .5 .  l )  jWc  k  == )  k  \ I c  j ;

2) j  isomorPhism ==) j  Wc f, for al l  f ;  
.

3)  j  \ t tc  f  and j 'Wc f  ==)  j ' j 'Wc f .  | I

Proposit ion6.6.l f  I+j Vc i(Y), then Condit ion (C2) in Theorem 5.3 holds.

Proof. Bv Corollarv 6,3 and Lemma 6.5. Ll

7. Extending technical conditions from connections to schemes

In this section we try to answer the question asked after Proposit ion 4.4. To this

aim we study the preservation of some propert ies by the passing f rom B to Fl/ru.



Lemma 7.1. The implication

(j',k') Wpb (j,k) in B ==) (j',k') VPb (j,k) in Fl/ry

is valid provided that the following three conditions are fulf i l led.

(l) *Y = 
Yk " nY.

(2) { j,k } wc i(Y).

0) (i' * Ii(r), k' + Irlr;) wpb (i * li(.), k * Ii(r)) in B, for every z &,X.

[The premise of the implication is a particular case of (3)]

Proof.  Suppose j '€B(a' ,ar) ,  jeB(ar,a),  k '€B(a' ,ar)  and k€B(ar,a).  Suppose moreover

F = (x, f )gF' l (b,ar)  and G = (y,B)e Fl(b 'ar)  sat isfy

Fj ru Gk.

By (l) there exists H = (z,h)6f ' t(b,a) and two morphisms i:  and v in Y such that

Fi u4- 
H -4u Gk.

By (2)  jWci (u) ,  hence by Lemma 6.2 there ex is ts  a pai r  H,  = (z ,h l )€Fl (b 'a l )

such that

F u F H I  a n d  H 1 j = H

and s imi lar ly  f rom kwci (v)  u ,e deduce that  there ex is ts  a pai r  Hr=(zrhr)e r l (u ,ar)

such that

H  =  Hrk  and  H ,  -+uG.

This  means hr( i  *  I i ( r ) )  =  h = hr(k  *  I i ( r ) ) .  By (3)  there ex is ts  h '6  B(b + o(z) ,  a '+  i (z) )

such that

h'( j '  + I i(r)) = ht and h'(k' + I i(r)) = hZ.

For'Ht = (z,h')e Fl(b,a') we deduce

H ' j ' =  H t  - )u  F  and  H 'k '  =  H2  u ts  G ,

hence H'j ' .vF and H'k',-v G. Hence (j ' ,k ')wpb (j ,k) in FU.+t .

\ 6
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Proposition 7.2. The implication

t 'B fulf i l ls the wpb-condit ion with respect to Y and i ==)

Fl/rv fulf i l ls the wpb-condit ion with respect to Y and iF*"

is val id provided that I + i(Y) Wc i(Y).

Proof. Let ueY(xrrx) and ve Y(x,x). As B fulf i l ls the wpb-condit ion with respect

to  Y and i  there ex is ts  u '€Y(x ' ,xr )  and v '€Y(x ' ,xr )  tu t t i t t ing (b l )  and (b2)  in  the

definit ion of the rvpb-condit ion. To prove (b2) in Fl/ru we apply Lemma 7.1. The

condit ions ( l) anO (Z) in Lemma 7.1 fol low from Proposit ion 6.1 and the hypothesis

I + i(Y)Wci(Y). Therefore we only have to show condit ion (3) in Lemma 7.i holds.

Let ze Ob(Y). From (b2) in B we deduce

(la 
* i(z) + i(u'),  Ia*i(z) + i(v')) wpb (la*i(z) * i(u), Ia*i(z) + i(v)).

us ing Lemma 6.4 f .or  p  = Ia  *  i (x ' ) * i (z) :  
9  = lu  *  i (z)x i (x l ) ,  r  =  Iu  *  i (z \ i (x2)  

uno

t = I * 
i(z)*i(x) 

we deduce
a

( lu  +  i ( u ' )  * l i ( z ) ,1 "  +  i ( v ' )  *  I i ( r ) )wpb( lu  +  i ( u )  * l i ( r ) , l u  +  i ( v )  *  I i ( r ) )

hence condi t ion (3)  in  LemmaT. l  is  va l id .  I f

Lemma 7.3. Let j  e g(a,b) and k c. B(c,d). The implication

jWc k in g ==) j  \Yc k in Fl l ' rz.

is val id provided that the fol lowing three condit ions are fulf i l led.

( i) ,ry = y(- o Jy

( i i )  
{ t o  +  k ,  j  *  I a }wc i (Y )

( i i i )  j  Wc k + I i ( r )  in  B,  for  every z  c  Ob(Y) .

[The premise oJ the implication is a part icular case of ( i i i ) ] .

Proof .  We apply  Lemma 7.1for  ( j  +  I . ,  I "  +  k)Wpb( lO + k ,  j+  IO) '  E '
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Proposition 7.4. The implication

I  + i (Y)Wc i (Y) in B ==) I  + iFO(Y)Wc iFU(Y) inFUo

is valid provided that o" = yF o {'y.

Proof, For every a € Ob(B), u eY(x',x) and v e Y(y',y) we have to prove

-- Iu + i(u)Wci(v) in Fl/ru. To do it  we apply Lemma 7.3 tor I" + i(u)IVci(v) in B. In

our case condit ions ( i i)  and (i i i )  in Lemma 7.3 becomes

flu*i(*) + i(v), Iu + i(u + Iy)]wc i(Y) and

Iu + i(u)Wc i(v + Ir) for every z dob(Y)'

therefore they may be easily deduce from I + i(Y) Wc i(Y) in B. n

Theorem 7.5.For every bif low B if

a) e tutt i t ls the wpb-condit ion with respect to Y and i,

b ) l + i ( Y ) w c i ( Y )

c) B satisf ies the functorial i ty axiom (func : i(Y)).

then

a') Fl/ru fulf i l ls the wpb-condit ion with respect to Y and iFu.

b') I  + iFB(Y) \!c IFU(Y)

c') Fl/ru satisf ies the functorial i ty axiom (f unc : i f  *(Y)).

Proof. Using Proposit ion 6.1 we deduce ,ty = y(- o dy. Conclusions a'and b'

fol lows from Proposit ions 7.2 and 7.4 respectively. Using Proposit ion 6.6 we may

apply Theorem 5.3 to get the last conclusion. 11

This theorem answers the question asked after Proposit ion 4.4. Note that al l  the

hypotheses in this theorem refer to the ssmc morphism i : Y ---) B. In the sequel we

wil l  give a sl ightly different version of Theorem 7.5 where hypotheses b and c are

replaced by stronger hypotheses on B itself.
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Definition 7.6. A biflow over a strong xy-ssmc is said to be an xy-flow if every

xy-morphism is functorial. (Note that ao{-flow means biflow.) n

Let B and B' be xy-flows. The biflow morphism H : B + B' is said to be an

xy-f low morphism if H is also an xy-ssmc morphism.

Definition 7.7. An xy-ssmc B is _said to be weakly cartesian if f Wc g whenever f

and g are xy-morphisms in B.

Theorem 7.8. Suppose Y is an xy-ssmc such that Y*, = Y. Suppose i : Y --t B and

o : Y -) B are xy-ssmc morphisms. If

B is an xy-f low,

B is weakly cartesian and

B fulf i l ls the wpb-condit ion with respect to Y and i

then

pUat is an xy-f low, FU is an xy-f low morphism,

FUn, is weakly cartesian and

Fllru fulf i l ls the wpb-condit ion with respect to Y and iFU.

Proof. Proposit ions 4.5,4.6 and 5.1 show Fl/rv is a bif low over a strong xy-ssmc

and FU has the required propert ies.

To get the other conclusions we use the fol lowing remarks

a) every morphism in i(Y) is an xy-morphism,

b) I + f Wc i(Y) whenever f is an xy-morphism is B

(by using remark a and the hypothesis that B is weakly cartesian),

c)  Ny = y f  o  4y (bY ProPosi t ion 6.1) .

We show Fl/ar is weakly cartesian. Let j '  and k' be xy-morphisms in Fl/ry . Using

Proposit ion 3.2 we deduce j '  = FB(j) and k' = FB(k) where j and k are xy-rnorphisms
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in B. As B is weakly cartesian it  fol lows iWc k. To f inish we apply Lemma 7.3.

We shor,v every xy-morphism in Fl/ru is functorial.  Let j '  an xy-morphism in

FUat .  Using Proposi t ion 3.2we get  j '=  FB( j )  where j  is  an xy-morphism in  B.  Using

remarks c and b and Proposit ion 6.6 we apply theorem 5.3 to prove j '  is functorial.

Therefore Fl/ru is an xy-f low and F* is an xy-f low-morphism. To show FI/tr

fulf i l ls the wpo-condit ion with respect to Y and iFU we apply Proposit ion 7.2 using

remarks a and b. EI

8. Duality

In the sequel we shall  use a duali ty principle based on the fol lowing idea

reverse al l  the arrows of a f lowchart scheme. In this way we obtain from a

flowchart scheme another f lowchart scheme where the inputs and the outputs of

the trvo schemes and even the inputs and the outputs of every statement are inter-

from the categorial point of view, denot-ed Yo,

ob(Y' )  and ob(Y)  are equal .

ssmc, too. Here we have to change 
axb with

bxu.

The dual Bo of a bi low B is a bi lou', too. It  is easy to see that a morphism is

functor ia l  in  B i f  and only  i f  i t  is  functor ia l  in  Bo.

[Note that this duali ty does not work well for f lows, as the concept of f low is a

nonpermutable one [CS89a]. Therefore to apPly the duali ty principle to the

flowchart scheme representations we must take some care.

Remark f irst that when we dualize i  and o must be interchanged. Even if  the

fol lowing equali ty holds

Flx ,B, i ,o(" ,b)  = F l* , *o,o, i (b 'a)

Flx,Boro,i as a category is not dual *o FlxrB,i,o. To see this is enough to look at

the composit ion. Nevertheless we may dualize E*(jXx,f) bV (x'f) EU(.i);  this is the

changed.

I f  Y is  an smc then the dual  o f  Y

is an smc, too. Note that the monoid

The dual Yo of an ssmc Y is an
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case when one of the scheme representation have no statements.]

Passing to simulation relation remark that we may dualize (x,f) --)u (y,g) in

Fl(a,b) by ix,f) u(* 
(y,g) in Fl",uo(b,a) as the equali ty f( lo + i(u)) = ( lu + o(u))s

becomes g * { la + o(u)) = ( lb + i(u)) " f  in Bo.

Using the duali ty principle for the main results in sections 5-7 we obtain the

fol lowing f ;rcts.

A pair ( j ' ,k ') of morphisms j '€B(a'a') and ft '€B(ar,a') ol a category B is said to

be a weak pushout  of  the pai r  ( j ,k )  o f  morphisms jGB(a,ar)  and k€B(a,ar)  and v, re

write

(j ,k) wpo (j ' ,k ')

i f  j j ,=  kk,  rnd for  every b4Ob(B),  f  €B(a 'b)  and gdB(a,b)  such that  j f  =  kg there

exists h €l;(a',b) sUch that j 'h = f and k'h = g. When the above h is unique we write

( j ,k)Po( j ' ,1 : ' )  366 we say ( j ' ,k ' )  is  a  pushout  of  ( j ,k ) .

Supposr  o:  Y**B is  an ssmc-morphism. We say B fu l f i l ls  the wpo-condi t ig t

(weak push:ut condit ion) with respect to Y and o i f  for every morphism u €Y(x,xr)

and v e Y(x xr )  there ex is ts  x '€Ob(Y) ,  u '  6Y(x 'x ' )  and v 'qY(x 'x ' )  such that

u t '  =  v v l

( l -  +  o(u) ,  Iu  + o(v) )wpo ( lu  + o(u ' ) , lu  + o(v ' ) )  for  every aGob(B) ,

proposit in { .1. I f  B f ulf  i l ls the wpo-condit ion with respect to Y and o then

^ , y = - - + \ " y ( - .  F

( l )

Q)

W e  s a y  t w o  m o r p h i s m  j : a * + b  a n d  k : c q d

(weak cocartesianly connected) and we write

in an ssmc B are Wcc-connected

j \ t r 'cck i f  ( j  +  I . ,  Iu  + k)Wpo( lO + k ,  j+  IO) .

Lemma 8.2. lf iG --+u F and j Wcc o(u) then there exists H such that F = jH and

G -)u H.



32

Theorem 8.3. If the biflow B fulfills the wpo-condition with respect to Y and o, if j

is functorial in B and if  I  + iVcco(Y) then j is functorial in Fl/rv.

proposition 8.4. If B fulfills the wpo-condition with respect to Y and o, and if

I  + o(y)Wcco(Y) thenFl/ru fulf i l ls the wpo-condit ion with respect to Y and oFU.

Proposition 8.5. If ru" - ,;lyo y* then

I + o(Y) Wcc o(Y) in B ==) I + oF*(Y) Wcc oFU(Y) in Ft/ru

Theorem 8"5. For every biflow B if

a) g fult i i ls the wpo*condit ion with respect to Y and o,

b) I + o(Y) Wcc o(Y),

c) B satisf ies the functorial i ty axiom (func : o(Y))

then

a') Ft/", '  fulf  i l ls the wpo-condit ion with respect to Y ano oFa'

b') I  + oFU(Y) Wcc oFu(Y),

c') FI/ru satisf ies the functorial i ty axiom (f unc : oFo(Y)) '

Definition 8.7. An xy-ssmc B is said to be rvea-kly cocartesian if f Wcc g whenever f

and g are xy-morPhism in  B.

Theorem 8"8.  Suppose Y is  an xy-ssmc such that  Y*u = Y.  Assume i :  Y-pB and

o :  Y -9 R are xy-ssmc morPhisms.  I f

B is an xY-flow,

B is rveakly cocartesian and

B fulf i l ls the wpo-condit ion with respect to Y and o

then

nl/^l is an xy-f lorv, F* is an xy-f low morphism,

P1/ru is weaklY cocartesian and

Furu fulf i l ls the wpo-condit ion with respect to Y and oF*.
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9. On xy-simulation

In the sequel we are interested in the study of some types of f lowchart

schemes. As we have mentioned in ICSSZb] the study of each type in related to a

certain type of simulation. Instead of using different categories to do simulations

and different morphisms between these categories to compare different kind of

simulation i t  is preferably to use for simulation different subcategories of a unique

category Y.

This viewpoint agree. with the case when our abstract f lowchart schemes

(abstract means the connections are taken from a bif low B) are build using

statements in a set f.  In this case Y is a subcategory of Relg. For example (see

the last section) when we study minimal schemes Y may be Fn, and we may use

four  k inds of  s imulat ion,  namely s imulat ion us ing morphisms in  Bi r_, In f ,  Sur ,  or

Fnf '

The same viewpoint agree with another point of view, an algebraic one. To

understand this algebraic point of view we need some prel iminaries.

Let B be an xy-ssmc and let h : X -> Ob(B) be a monoid morphism. We def ine

X-xy-ssmc h"(B)  as fo l lows:

h ' (gXu,u)  = n(h(u) ,h(u))

f g = f g

Iu = Ih(u)

f + g = f + g

uxu = h(u)*h(v)

and for the addit ional dist inguished morphisms for u G X we choose according to xy

from

Tu =Th(u), -f = J(u), V, = Vr,(r) und r\u = 4h(u)

an

for  u,v  € X,

for  f  Gh' (BXu,v)  and g G h"(BXv,w),

f o r u ( X ,

fo r  f  Gh ' (BXu ,v )  and  g€h" (B ) (u , , . 7 , ) ,

for  urv  G X.

Let [n : h'(B) -*B be the xy-ssmc morphism defined by
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t n ( u ) = h ( u )  f o r u € X a n d

Zh(f) = f for each morphism f in h"(B).

For every monoid X we denote by xyx the init ial X-xy-ssmc. In xy* every

morphism in an xy-morphism. We have shown in [CS89a] that xy-Rel, is a model

for  xyrx .

Proposition 9.1. Let B be an xy-ssmc. Every monoid morphism h : X -9 Ob(B) can

be uniquely extended to an xy-ssmc morphism H : xy* -> B.

Proof. As xy* in the init ial X-xy-ssmc there exists a unique X-xy-ssmc morphism

Ht : xy* -+ fr '(g). By def init ion H = H'f h. Ar H(u) = [6(H'(u)) = {n(u) = h(u) for

every u € X the xy-ssmc morphism H is the required extension of h. tr l

P ropos i t i ong .Z ,  Le t  Y  be  an  X -xy -ssmc .  Assume i :Y -+B  and  o :Y -+B  a re

xy-ssmc morphisms. If  ixy '  xyX -+ B and oxY ' xyX --r B are the unique xy-ssmc

morphisms which extend the monoid morphisms i and o, respectively then for every

F and G in  Ft" ,U(a,b)

p' --9 G if f  there exists an xy-morphism u in Y such t l ' lat F -u G._ xyX

Proof. Let H . xyX < Y be the unique X-xy-ssmc morphism. We deduce l- l i  = ixY

and Ho = oXY.

We prove only the more diff  icult implication. Suppose there exists an

xy-morphism u€ Y(x ' ,x" )  such that

F = ( x ' , f )  € u G = ( x " , 9 ) .

Form Proposit ion 3.2 there exists j  € xy*(x',x") such that u = H(i), therefore

f ( l o  +  
' xY1 j ) )=  f ( l b+  i (u ) )=  ( l a  +o (u ) )g=  (1 "  +o*v ( j ) ) .  I f
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We are now ready to explain the algebraic viewpoint. To build Fl ErB 
*" use two

function i zf -*t ob(B) and o : f  -> ob(B) which give the input and the output

of every statement in f .  These functions may by extended in one way to monoid

morphisms iz y**,, Ob(B) and o, f1-+ Ob(B), and then to xy-ssmc morphisms

i :  xy -Re l  
Z -+  B  and  o :  xy -Re l r+  B .  Thes imu la t i on  i s  made  us ing  morph isms  in

xy -Re l , .

To'general ize we replace f,* by an arbitrary monoid X and we use two monoid

morphisms i :  X4ob(B)  and o:  X -*ob(B)  to  bui ld  ot* ,u  as we a l ready macle in

[cSsza]. In this case to simulate we use the category xy* and the xy-ssmc

morphisms ixy : xy* --|  B and o*y , *y* *y B.

To generalize we replace xyx by an X-xy-ssmc Y and we use two xy-ssmc

morphisms i :  Y ---9 B and o : Y.-g B. Proposit ion 9.2 shows the simulation via

xyx-morphisms is  equiva lent  to  the s imulat ion v ia  xy-morphisms in  Y"  Hence the

algebraic viewpoint agree with the point of view from the beginning of this section.

suppose i :  Y - l  B and o : Y ;r B are xy-ssmc morphisms and B is a bif low

(over  an xy-ssmc).  The xy-s imulat ion,  i .e .  the s imulat ion v ia  xy-morphisms in  Y,  is

in t roduced in  accordance wi th  Def  in i t ion 4.1 us ing the rest r ic t in  of  i  and o *o 
"* ,

and is denoted by *Yt 
. we denote by aJ-I- its converce and by -*u the least

f low congruence relation which includes J, .  As *uot C ru*,  the quot ient

Fl/n,*, ot Ot*,U O, Nxy is a bif low over an xy-ssmc. By Proposit ion 4.6 i f  B is a

strong xy-ssmc then Fl/rv 
*y ir u strong xy-ssmc. The morphisms in Fl/zv*, are

called xy-schemes and Fl/nz*u is cal led the bif low of the xy-schemes.

Definit ion 9.3. A monoid morphism I :  X .-9 Mor(R) is said to be an interpretation

of X in B with respect to i  and o i f  I(x) a B(i(x), o(x)) for every x in X. I:

f,et f.{y : X -+ p1/:rrxy and f [y : B -i, Flla,*, be the composite of E* and EU

with the factorization morphism . from Ft to nl/rvxy Remark Uit is an

interpretation of X in Ft/ruxy with respect to iEi ly and oE[y. Remark E[y is an

bif low morphism and an xy-ssmc morphism.
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Proposition 9.4. If B is a stronS xy-ssmc then the con8ruence relation ru*, fulfills

(xx) (, * t)o(')xo(t) = i(z)*i(t)1, * ,; for t,z G x1

(TX) if y € lp,$J th"n Ti(r) z = T oe) 
for z QX'

(vx) lt y € {f ,S} th"n vi(r)z = (z * t)Vo(r) tor z Gx,

( t x )  i f x € [ u , o ] t h e n x f ( ' ) = J ( z )  r o r ' z G X a n d

(AX)  i f  x€ { . . , d }  t hen  z11o(z )  = f t ( ' ) { " * ' )  f ' o rze  x '

Proof. The same proof as for Proposit ion 4'6'

Lemma 9.J. I f  I  is an interpretation of X in B with respect to the xy-ssmc

morpl-risms i and o such that for every z G X

r) if y e tP'f] then Trlr;l(z) = T op1,

V) i f  y e tt ,S] then V,,rr l(z) = ( l(z) + I(z))Vo(z)'

.L) i f  x e {u,a} then I(z)., ,o(z) = l j( ' )  "no

A) i f  x e {c,d} then l(z)r ' to(z) = 71i(z),t ,  z) + t(z))

tn'en I(z) o(f ) = i(f  ) I(t) for every f e Y*u(z,t) '

proof. I t  is easy to show all  the morphisms from Y fulf i l l ing the above equali ty

form a sub-xY-ssmc of Y. If

Definit ion 9.6. Acongruence relation in B is said to be xy-functorial i f  i t  fulf i l ls

(f unc : B*r).

Remark g.7. Acong,ruence relation: in Fl is xy-functorial i f  and only i f  every

xy-morphism from Fl/:  is functorial '

Proof. Easy using Propositio n 3'2' n

Proposit ion 9.8. I f  the xy-functorial congruence relation I in Fl fulf i l ls (XX)' (TX)'



(VX), (IX) and ( AX) then = includes **,

proof. As: fulf i l ls (XX) we deduce FI/: is',a bif low llemma 7,5 in csssb] over an

xy-ssmc.

Let G : Fl -4 Fl/s be the factorization morphism. As E*G is an interpretation

of X in ft /= with resPect to 1EUG and oE*G we deduce from Lemma 9'5 that

z o(u) s i(u) t for every u G Y"u(z,t).

To get the conclusion it suffices to show 
*Yo C n . Suppose (z,f) -+u (t,$ in

FI(a,b) where u € Y*r(z,t). As i(u) is i:-functorial and as

(1" + z)t(lo + i(u)) = 0" * zo(u))g : (la * i(u)Xlu + t)g

we deduce [(1" * =)t]t '( ') ; [(13 * t)e]t '(t) hence (z,f) = (t 'g)' tr

10. A universal theorem

Assume i :  Y - - )  B and.o:  Y - - r  B are ssmc morphisms and ru is  the least

congruence relation in Fl including -+y'

Let F" : X -4 Fl/.ry be the composite of the embedding E* : X --+ Fl with the

factorization morplr ism Jrom Fl to Ft/ru '  Note that F, is an interpretation of X in

Fllw with respect to iFU and oFU.

Lemma t0.1. For every bif low morphism I- l  :  B -+ B' and for every interpretation I

of X in B' with repect to iH and oH if for every j  e Y(x'y)

l) I(x)H(o(i)) = u(i( j)X(v) and

2) H(i( j)) is functorial

then there exists a unique bif low morphism (l,H) : Fl/ ' . t  a B' such that FX(I 'H) = I

and FU(I ,H)  = H.

Proof. \Ue have proved [Theorem 5,2 in CS87a] that there exists a unique f low

+ +

morohism (l,H)f :  Fl --r B' such that E*(l,H)f = I and EB(I 'H)' = H' Recall  that for

"uur, 
(x,g) e Fl(a,b)

3?
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(t,nf(*,e) = [(lH(") + I(x))H(g)rfl(i(x))

I f  (x,g) -f,(V'h) in Ft(a,b) then using hypothesis I we deduce

[( lH(") + I(x))H(s)](lr-r(u) * H(i(j))) =

= (lH(u) + I(x))l-{(g(lo + i(i))) = (ls(") + I(x))H((lu + o(j))h) =

= (rH(") + H(i(j))l(y))H(h) = (lH(u) + H(i(j)))l( ln(a) * I(v))H(h)l

therefore as H(i(j)) is functorial we conclude (t,H)f(x,8) = (l,H)f(y;h).

As (t,H)f(x,g) = (i,H)f(y,g) whenever (x,g)n}(y,h) there is a unique flow morphism

(l,H) : Ft/ru -* B' such that t lre composite of the factorization morphism from Fl

to FI/.,v with (I,H) is equal to (l,H)f. The other conclusions easily follows. t l

Proposi t ion l0 .2.Assume i :  Y,*98 and o:  Y*98 are xy-ssmc morphisms and I

an interpretation of X in B with respect to i  and o. I f  B is a strong xy-ssmc then

I(z)o(u) = i(u)l(t) for every u €Y*r(z,t) '

Proof. Apply Lemma 9.5. n

Theorem 10.3.  Assume i :  Y *+B and o:  Y - }B are xy-ssmc morphisms.  For  every

xy - f l ow  morph ism H :  B  - *B 'and  fo r  eve ry  i n te rp re ta t i on  I  o f  X  i n  B 'w i th  respec t

to iFt and oH there exists a unique xy-ssmc and bif low morphism

( l ,H ) :  F t / ruxy  - tB ' such  tha t  FX( l ,H )  =  I  and  FU( l ,H )  =  H '

Proof. To apply Lemma l0.l  for the restr ict ions of i  and o to Y*u we must show

hypotheses I and 2 hold for every morphism j in Y*r '

As B ' is  a  s t rong xy-ssmc we apply  Proposi t ion lO,2 to  show hypothesis  I  ho lds '

As H(i( j)) is an xy-morphism we deduce it  is functorial,  hence hypothesis 2

holds, too.

Apply  Lemma l0. l  and remark the equal i ty  FB(I ,H)  = H impl ies ( l ,H)  is  an

xy-ssmc morphism.
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I l. Some examPles

The abstract theory written in the previous section is used in Sections 13, 15 and l5

to study three classes of f lowchart schemes. In Sections Il,12 and 14 we give

examples for the concepts introduced in the previous sections.

Proposition ll.l. In

f unctorial.

a bif low over a complete matrix theory every morphism in

proof. In [CS88a] we have proved in a matrix theory l f l leV;, CS89al a morphism

j  z  a+b is  funcror ia l  i f  and only  i f  f j  =  jg  impl ies f * j  =  i8*  for  every f  :  a- la  and

g :  b - t b .

In a complete matrix theory [CSS8b] the repetit ion is defined by fn = Un>0f

f o r e v e r y f : a - + a .

Assume f j  =  jg .  By induct ion we deduce fn j

f * j  =  Un>ofn j  =  Un;6 jgn= jg* .  I f

This proposit ion shows every morphisrn is functorial in Rel(S) and in Re[, as

well as in every subbif low of them, for example Pfn(S), Pfn5' In' etc'

proposit ion 11.2. Assume T is an algebraic theory ( i .e. a strong a5-ssmc). I f  B is an

sub-ssmc of T such that "st in B implies t in B whenever s and t are composable

morphisms of T" then jwcc k for every j  6 B(a,b) and k € B(c,d).

p r o , o f .  s u p p o s e  f g B ( b + c , u ) '  g € B ( a + d , u )  a n d  ( j  + l . x = ( l u + k ) g .  A s  f  = ( f " f r ' )

where f '  c  T ib,u)  and f "  G T(c,u) ,  and g = (g ' ,g" )  where g '  g  T(aru)  and g"  c  T(d 'u)  we

deduce j f '=  g '  and f "  =  k8" .  For  h.= ( f ' ,gr ' )  G T(b + d,u)  we 8et  ( lO + k)h = f  and

, n .-  jg "  fo r  every  n  )  0 .  There fore

( i  + IO)h = g. The morphism h is in B as ( lO + k)h is in B' t l



L lo

ll.3.The sixteen sub-ssmc-ies of Relr. In [CSS9a] we have studied sixteen

sub-S*-ssmc-ies of Rel* formed by al l  the morphisms in Rel, having the propert ies

given in Table 6.

The properties used for rc Relr(a,b) are:

T  ( to ta l ) :  (v i  e  [ la l ] ) (  I  je [ ib l ] )  ( i , j )e r ,

S  ( s u r j e c t i v e ) :  ( v j e t  b l X S  i  € [ a ]  ( i , j )  e  r ,

P  (par t ia l  func t ion) :  (v ic [ ta t ] (v  j , k6 t tb t ] ( ( i , j )Gr  and ( i , k )  e  r  imp ly  1=  k ) ,

I  ( in jec t i ve) :  (V  j , ke  t la l lXv i€ t ib l l x ( j , i )&r  and (k , i )e  r  imp lv ;  =  k ) '

Name Properties A B Name Properties A B

a€-Rel, = BiS

a p-Rel, = Int

a f,-Rel, 
- Surt

uJ-nut, - Fns

T,P ,Sr l

T,P, I

T rP ,S

T 'P

Y

Y

Y

Y

Y

N

Y

I

ca( -Rel, = Su.rl

cp-Rel, = eSurjl

cf,-Relt = STRelS

.,f-R"t, = TRel,

T,S, l

T ' l

T q.  t r

T

Y

Y

Y

Y

Y

N

Y

Y

bu -Rel, = tnll

b p - R e l r = P I n t

b f,-Rel, = PSUrS

u $-Ret, = Pfn,

P ,S t l

P, I

P ,5

P

N

N

N

N

Y

N

I

dct-Rel ,  = Fnl l

d i\ 
-Ret, = efnll

df,-Rel, = SRelt

o$-net,  = Rel .

S ' l

I

S

Y

Y

Y

Y

Y

N

Y

Y

Table 6. Colurnn A : Is xy-Rel, u,eakly cartesian? (Y = yeSl N = no)

Column B : Is xy-Rel. weal<ly cocartesian?
J

Note that  xy-Rel ,  is  a  s t ron8 xy-ssmc in  which every morphism is  an

xy-morphism. In Column A of Table 5 there is the answer (Y = 1les' N = no) to the

question "ls xy-Rel5 Q weakly cartesian xy-ssmc?" and in column B of Table 6 is

the answer to the question 
." ls 

xy-Rel, a weal<ly cocartesian xy-ssmc?"' We give

the proofs onl,v for the answers in column B. The proofs for the answers in column

A are dual .



Let x e [a,b,c,dJ. In the cures *<f we apply Proposition l l.2 for B = T. In the

cases xf, we apply Proposition l l.2 for T = xr5-Relr. In the cases xt{ the proof is

an easy consequence of the fol lowing remark.

I f  j6do( -Re l r (a ,b ) ,  k€d<-Ret r (c ,d ) ,  f  cdo t -Re l r (b+c ,u) ,  g€dd, -Re l r (a+d,u)

and (j + I.X = (lu + k)g then

h = ((15 + T.X, (T" * IO)g> 6dot-Relr(b + d,u)

The diff icult part of the proof is to show h has property I.  Assume (n,i) e h and

(m, i )  e  h .  I f  n  <  l b l  and  m <  l b l  t hen  (n , i )  G  f  and  (m, i )€ f  hence  D  =  fo .  I f  n  ) l b l  and

m  ) l b i  t h e n  ( n - | b l + i a i  ,  i ) e  g  a n d  ( m - l b l + [ a [ ,  i ) c g  h e n c e  n : m .  T h e  o t h e r

cases lead to a contradict ion. Suppose for example n ( lbt and m >tbl. As above we

deduce (n, i )  G f  and (m -  ib i  +  la l , i )  G g.  As j  and k have proper ty  5 there ex is ts

p€[ ia t ]  and q e [ tc t ]  such that  (p ,n)  e  j  and (q, r  - lb i )  e .  k .  Therefore (p ' i )  6  ( j  +  I .X

As (.i + I.X = (1" + l<)g has property I, we deduce

I'no" we give the fol lorving contraexample: j  = k = Trt

Rel, there is only one feedback to make them bif lows. As al l  of them are subbiJlow

of  Rel ,  which is  a  complete matr ix  theory we deduce f rom Proposi t ion l l . l  in  a l l

these bif lor,vs al l  the morphisms are functorial.

In conclusion

a )  x y - R e t ,  i s  a n  x y - f l o w  J o r  x y  6  [ a u . , a p , b * , b l i  , b F , b c J " , c p , d i \ , d J  ] ,

b )  xV-Re l ,  i s  a  weak ly  ca r tes ian  xy - f l ow  fo r  xye  i a *  ' ap  ' cp ,d1 l  , d ,5 l ,

c)  xy-Rel ,  is  a  weakly .  cocar tes ian xy- f  low for  xy t  lax,b* ,bf , ,bJ,dJ1 .

These examples motivate the neccesity of two variants: Theorem 7.8 and its

dual 8.8. In the case ap r" may use only Theorern 7.8 but in the case bf we may

use only Theorem 8.8. In the case bfi  Theorem 7.8 and 8.8 cannot be usecJ. This

case wil l  be str-rdied in a forthcorning paper.

\ 4

and (q + lal, i)  € ( lu + k)9.

p = q + ial,  a contradict ion.

For the four answers

f  = B = l r a n d h = V s .  t r

In [CS89c] we have proved in Bi' In' In-rl, PIn5r PSur' esurfl, Pfn5, rfnll and



+!,

11.4. The semantic models are used to interpret statements, therefore they must

can be substitute for the xy-f low B' in Theorem 10.3.

Let S be the set of value-vectors denoting the states of the memory in a

computing device. Recall  that the basic semantic model in the nondeterminist ic

case Rel(S) is defined by

Rel(SXm,n)  =t r l r  c  [mJx S)  x  ( [n ]  xS) ]  ror  m,n € N.

For more detai ls see [CS87b]. I t  is a complete matrix theory over the compiete

semir ing (9(s x S), U ,0, -  , lS).

From Proposi t ion5l l . l ,  l l .2  and the i r  duals  we deduce Rel (S)  is  a  weakly

cartesian and a weakly cocartesian d cj-f low

Recall that the basic semantic model in the determinist ic case Pfn(S) is defined

by

P fn (SXm,n )  =  t f  l f  :  lmJxS  - -+  [n ]XS  pa r t i a l  f unc t i on ]  f o r  n ,m 6N.

As Pfn(S) is a subbif low of Rel(S) we deduce Pfn(S) is a weakly cocartesian

u t l- i tow.

12. On wpb-condition (case a p)

The study of  the wpb-condi t ion is  d i f f icu l t .  Ve shal l  do i t  in  th is  sect ion only  in

the a / i -case.  Namely we shal l  prove the fo l lowing theorem.

Theorem 12.1. Assume that the a p-ssmc Y f ulf i l ls

l )  every morphism in  Y is  an af r -morphism

2) the monoid of  ob jects  of  Y is  equid iv is ib le .

I f  B is  a  weakly  car tes ian a l l -ssmc such that  every a i } -morphism of  B is  a

monomorphisrn then B fulf i l ls the wpb-condit ion rvith respect to Y and i for every

af t -ssmc morphism i  :  Y *1 B.

\ \ 'e  recal l  that  a  monoid (M,  +)  is  equid iv is ib le  [K569]  i f  for  every a,b,c ,d G [ , {
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4 j

f r o m a + b = c + d o n e d e d u c e

( l e X a = c + e  a n d  e + b = d )  o r  ( : l e X c = a + e  a n d  b = e + d ) .

We mention that the free monoids and the groups are equidivisible.

Lemma l2 .2 . In  an  equ id i v i s i b le  mono id  M i f  a ,  +  aZ+ . . .  *  un  =  b l  *  b2* . . .  *  b *

then there exist . lrr2r. .  .  ,c. G M and the integers

0  =  i O  <  i l  <  i Z ( . , . ( i n _ l  (  i n  :  r  d n d  O  =  i 0  a  i ,  a  i 2 < . . .  <  j m - t  <  j ,  =  r  s u c h t h a t

+  f . r+ . . .  +  fn )  where  j  i s  an  a r . \ -morph is r r  and
l r n

show f(1" + "X- + IO) and f( lu + TO + I .)  are of the

a S  a l * u 2 + . . . + u n = d + b + C + d  t h e r e  e x i s t s

u u  =  t r u - l * l  *  t i u - r * 2 + ' ' '  + t , u  t o t  e v e r y  k c [ n ]  a n d

b , . = c ,  . r  * c ,  . . + . . . + c .  f o r e v e r y k € [ m ] .  t l*  l k - l * t  ) k - I * '  J p

Proposit ion. 12.3. I f  the monoid M of the objects of an ap-ssmc is equidivisible

then every af i -morphism may be wr i t ten 'as

l ( f r + f Z * . . . + f n )

where j  is  an a, :c-morphism and f  .  is  o f  type Iu  or  T"  for  every i  € , [n ] .

Proof. Remark f irst that every morphisrn
h n

of  type  I^  +  "X-  +  I ,  o r  I ^  +  T"  +  I ^  may
a o a D c

be easily writ ten as above.

Then we suppose 1 = j(f  
1

t ,  e  i l -  ,T  ]  f o r  i , i [ n ]  and  we
I  L  a . ' ,  a , j j

t l

same type.

a)  For  f ( lu  + bxc *  Io)

b l , b 2 , . . . , b r  e  N 4 ,  0  =  i O  (  i t <  i Z

d , . = b ,  . ,  + b ,  . . + . . . + b .  f o r k C [ n . ] ,
*  t k - l * t  t k - I * '  t k

a  =  b l  + . . . +  b r ,  b  =  b s * l  * . . . +  b r ,  a  =  b t * l  + . . .  +  b u  a n d O  =  b u * ,  + . . . +  b r .

In  the  express ion  o f  f  us ing  85  in  Tab le  I  and SV2 in  Tab le  3  we may wr i te
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f  =  j ( g ,  * 8 2  . . . * B r )  w h e r e  g k e  U h , T n \  f o r  k € [ r ] .  T h e r e f o r e ,  d e n o t i n g' u k  ' k *

x t y&  and  w  the  sou rce  o f  t he  morph isms  8 l  * . . .  +  8s ,  gs * l  * . . .  *

g t * l  * . . .  *  8u  "nd  
gu* l  + . . .  +  g r '  r espec t i ve l y  we  deduce  tha t

f(lu * bxc * Io) =

=  i ( l x  * Y x t  +  I * ) k l  + . . .  *  B ,  *  B t * l  * . . .  *  B u  *  B s t l  + ' . . . .  +  B t  *  g u * l  + . . .  +  g r ) .

b )  F o r  f ( l u + T O + 1 . )  a s  ̂ l * ^ 2 + . . . + u n = u + c  t h e r e e x i s t s  i e [ n ]  a n d  t h e

objects u and v such that

u = " 1  + . . .  +  u i _ l  * u ,  d i  =  u  +  v  a n d  c = v  + u i * l  * . : . *  d n .

If f i  = I". let f '  = Iu and f" = Iv else f '  = Tu and f" = Tv. Therefore
I

f ( 1 "  +  T O  +  I . )  =  j ( f  
I  

+ . . .  +  f i _ l  *  f ' +  T O  +  f "  +  f i * l  * . . .  +  f n ) .  | J

Proposi t ion 12.4.  Suppose B is  an ap-ssmc and Ob(B)  is  equid iv is ib le .  I f  u€B(a,c)

and v €B(b,c)  are a 1. i -morphisms then there ex is ts  the a ' : \ -morphisms

p a B ( d + a ' , a ) , q d B ( b ' + d , b ) a n d j t B ( c , b ' + d . r . a ' + r ) s u c h t h a t

p u j  = T 6 , * l d * u ' * T . ,  9 v l  = 1 5 , * 6 * T u , * . a n d ( l o +  T " , ) P u  = ( T b , +  I o ) q v

Proof. First rve use the previous proposit ion to u'r i te u and v as a composite of an

ac\-morphism wi th  a sum of  rnorphisms of  type Iu  or  Tu.  Using Lemma i2.2 and the

i d e n t i t i e s  l a * b = 1 " * l b  
" n d  

T u * b = T u * T O  u ' e  m a y  w r i t e  u = f ( f  l * f 2 + . . . + f n )

a n d  v = g ( g t  * g 2 * . . . * B n )  r v h e r e  f  a n d  I  a r e  a " q - m o r p l r i s m s ,  t t r , t , 1 C t l c . , T c . ]
T I

a n d c l * c Z + . . . + c n = C .

S t a r t i n g  f r o m  f - l u =  f . r + t r + . . . + f n  a n c i  8 - l u =  8 L * 8 2 * . . . + 8 n  w e  u s e

ad-morphisms to perntute s i rnu l taneously  the terms of  the two sLlms to order  them

in the fo l lorv ing u 'ay

by

8tt

-  a t  the beginning those that  sat is fy  f i  =

-  then those that  sat is fy  f i  = .8 i  =  Ic . ,
I

-  then those tha t  sa t is fy  f i  =  I . .  and  g ,  =
I

-  a t  the end those that  sat is fy  f i  =  8 i  =  T

T  a n d e . = l  !
-  u t  a '

l l

T
I

C .
I

I



Then we group, using I" + IO = Ia*b and T" + T, = Ta*b, the terms of the same type.

Using an induction we may suppose that there exists the ad-morphisms p,q and

j s u c h t h a t p u j  = T O , + l d * u , * T ,  * f n  a n d  q v j  = l b , * d * T a , * ,  * B n .

I f  fn =ran"nog = I .nthen puj(15'  *  d+a'+r*cn;= Tb,+cn * Ia*u,*  T.

(lo, * cnxd)qnj(lo, * d+a'+r*cn) = I(b,*.n)*d + Ta,+r.

then (ro * tnxu')puj(lb,*d * a'+r*cp; = To, + I(d*cn)*", * T.

I f  f  = l  a n d q = T
n c cn n

qvi(lb,*d * a'+r*cn, = Ib,*{d*"n) * Ta,*r.

then puj(Ib,*d*a, * rxcn; = To, + Id*tu,*an) * T,

gvi(lg,*6*", * rxcn; = Ib,*d * T{u,*.n)*r.

If fn = 8n = T.^ then puj = To, + Id*a, * T{.*.n) and qvj = Ib,*d + Ta,*(r+cn).
n

Using the first and,the second conclusion we prove the third one.

(lo + T",)pu = (Tb, + Io + Ta,*r)j- l = (Tb,+ Io)qv. IJ

Proof  of  Theorem 12.1.  Let  u  € Y(x, ,x ' )  and v(Y(x" ,x ' ) .  Apply ing Proposi t ion 12,4
l '  z .

we may wr i te

p u j  = T r * I * * y * T * , , ,  g u j  = l r * * * t r * * , ,  a n d ( l * + T r ) p u  = ( T z + l  ) q v

where p GY(x+y,  xr ) ,  Q eY(z+ x,xr )  and j  GY(x ' ,2  + x  + y  + x")  are aot-morphisms.

For u' = ( l* + Tr)p and v' = (T,+ I*)g we deduce u'u = v'v.

Assume f € B(b,a * i(xl)),  g € B(bra + i(xr)) and f( lu + i(u)) = g(lu + i(v)). From

f ( tu  +  i ( n - l ) ) t l u  *T ie ) *  I i { * * y )  *  T i1 * , , ; )  =

= f ( la  + i . (p- l tTr* l **y  *  Tx, , ) ) )  =  f ( la  + i (u j ) )  =  8( lu  + i (v j ) )  =

= g( lu  + i (q- l )XIu* , , r ** )  *  T i (y*x, , ; )

as Ia*i(z*x*y) * Ti1*,,,  is a monomorphism we deduce

f( t "  +  i {p- t ) )0"  *  T i ( r )  *  I i { **y) )  = g( lu  + i (q- l ) )0"* . , r ** )  *  T i {y ; ) .

hr

and

I f f n = 8 n = I .
n

and

and
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As I" * Ti(r)W.li(*) * Ti{y; thu." exists h 6

h(I"*i(*) * Ti(y)) = f(la + i(p- l)) ana r,(tu

therefore f = h(1" + i(u')) and g = h(la + i(v')).

B(b,a + i(x)) such that

* T i ( . )*  I i (*))  = g(t"  *  i {q-  l ) )

13. Accessible flowchart schemes

In this section we apply our abstract theorems from the f irst part of the paper

to study accessible f lowchart schemes.

The (internal) vert ices that can be reached by paths going. from inputs together

with the inputs and the exists from the accessible part of a f lowchart scheme. ,A

scheme is said to be accessible i f  i t  is equal to i ts accessible part.

In this section we consider as equal two schemes that have the same accessible

part.

For the motivation we work rvith a f lowchart scheme having statements from a

set 
'E 

and connections from Pfn, i .e. the theory of the f inite part ial functions. For

everv f  €  t ,  i ( , l i )  and o( i i )  show the number of  the inputs and of  the outputs  of  f ,

respectively. The functions i,o : f  ---r N are extended to monoid morphism

i,o: f* --*r (N,+r0). For every nonnegative integers n and m, f ' j  Pfn(n,m) i f  and

only  i f  f  is  a  par t ia l  f  unct ion f rom [n]  to  [m] .

Suppose our scheme is not accessible. We. choose a statement { i  u'hich is on no

path begining with an input of the scheme. Let y € f 
* be a str ing containing al l

the staternents { in the scheme for which there exists at least a path frorn f to

F. \\re mention y contains 0'.  Let x € I* be a str ing containing al l  the

statements of the scheme which are not in y. Let (x * y, h) { Ft 
f  ,pfn(a,b) 

be 
"

representation of the scheme. From the above choice of y we deduce

-  there is  no arrorv  f rom an input  o f  the scheme to a s tatement  in  y ,

- there is no arrow from an exit of a statement in x to a staternent in y.

The two facts are equivalent to the next property of

h i P f n ( a + o ( x  +  y ) ,  b  +  i ( x  +  y ) )  :  ( j , k ) d h  a n d  j  € [ a * o ( x ) ]  i r n p l y  k e  [ b +  i ( x ) ] .

tr
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Therefore there exists f € pfn(a + o(x), b + i(x)) such that (1"*o(*) * To(y))h =

= t * tr,rr. Remark that (x,f) € Fl Z,pfn rePresents the scheme obtained from the

initial one eliminating the statements in y and all the arrows which go from a

statements in y.

R.emark that a scheme is accessible if and only if the eliminations of a group of

nonaccessible statements as above cannot be make. We prefer this definition for

the concept of accessible scheme as at an abstract level it may be easier formalize

(see Definit ion l383) than the definit ion using paths.

Coming back to the above example we remark in the equali ty

(lu*o(*) * To(y))h = f * Ti{y) the presence of the functions having an empty source

which from a technical viewpoint leads to the concept of ap -ssmc. Extending the

morphisms i ,o  :  7*-> (N,+,0)  to  the ap-ssmc morphisms i ,o  :  In ,  -> Pfn

lTheorem 6.4 in CS89a] we remark that the above equali ty becomes

( l - + o ( 1 . . + T . . ) ) h = f ( l * + i ( l - + T . . ) ) ,  i . e .  ( x , f )  - - | ,  
* ,  

( x + y , h ) .  T h e  P a r t i c u l a r' - a  ' x  y '  ' D  ' x  y  - x  y
form of this simulation is due to our choice of the representation (x + y,h) where

the vert ices to el iminate y are isolated. Generally using a bi jection

u € Big(x + y, z) we may replace the part icular representation (x + Y, h) of our

scheme by an arbitrary one 
. 
(z,g), i .e. h(l '  + o(u)) = ( lu + i(u))g tCSSSbl. For

v - (I* + Tr)u e In, (x,z) we remark that f(IO + o(v)) = (1" + i(v))S, i .e.

(x , f )  *  uQ,g) .  This  comment  shows the s tudy of  the accessib i l i ty  may be made

using a part icualr case of simulation (Definit ion 4.1) and proves some aff irmations

f rom Example 4.2.

A simulation -+u where v in In - is said to be a simulation via injections.

Passing to the f low congruence relation generated by the simulation via injections

we remark that two f lowchart schemes are congruente i f  and only i f  they have the

same accessible part. For the more diff icult irnpl ication one use Theorem l2.l  and

Prooosi t ion 5.1.
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l3A. Introduction to the algebra of accessibility

The useful algebraic concept to study accessibility is that of weakly cartesian

a p-f low which we name in the sequel inflow. We have no intention to do a deep

algebraic study of the inflows as we only are interested in that aspects which are

connected to the accessibi l i ty.

First aspect we are interested in is the simplication of the definit ion of the

inflow. It  is given in Proposit ions l3A3 and 13A4 below and it  is based on the

following property.

Lemma l3Al.  In an ap-ssmc B i f  f  €B(a,b) is an ap-morphism then there exists

an ao(-morphism j e g(a + c, b) such that f = (la + T.)i.

Proof. As the ap -morphisms of B from the least sub-ap-ssmc of B, , it suffices to

prove that all the morphisms of type (1" + TO)k where k is an ao(-morphism from a

sub-aB-ssmc. t l

Lemma 13A2. Let 3 be a congruence relation in a bif low over an ap-ssmc. If  Tu is

l-functorial for every object u of B then i is ap-functorial.

P r o o f .  A s s u m e  f  € B ( c + a ,  d + a ) , 8 € B ( c + b ,  d * b ) ,  j G B u U ( a , b )  a n d  f ( l . +  j ) :

= (Ic * j)g. Using Lemma l3A I

ao(-morphism, therefore

we may write j  = ( la + Tr)k where k is an

f( ld*u + Tu) = (1.*u + TrXI. + k)g(lo * L-l).

As Tu is i-functorial we deduce f : [( lc + k)g(I. * t 
- l)]t '  

hence

ft" :  [ ( t .  *  k)g( l .  *  t - l ) ] t "*u = gtb.  t ]

Recall that in an ssmc the neutral element of the monoid of obfects is deno'ted

by e. Remarl< that an ssmc B is a strong ap-ssmc if and only if B(e,a) is a singleton
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for every object a of B.

Proposition 13A3. A biflow B is ap-flow if and only if for every object a of B thene

exists a distinguished morphism Tu c B(era) such that

l) Tef = Tu for every f € B(e,a)

2) T ais functorial for every object a of B.

Proof. As by hypothesis I we have T"(T" * I") = (T" +

hypothesis 2 that T" = f 
aI" = I.. For f € B(e,a) we deduce

B is a strong ap-ssmc. From hypothesis 2 and Lemma

a(!-morphism is functorial;  EI

I ) Ie - a

f  = l  fe

t3A2

we deduce using

- T"f = Tu, hence

we deduce every

Proposition 13A4. An ap-ssmc B is weakly cartesian if and only if for every

f € B(a, d + b) and g 6 B(a, b + c) i f  f  + T. = Td + I then.there exists h eB(a,b) such

t h a t f = T d + h a n d g = h + T . ,

Proof. The necessity follows f rom TO Vc IO + T..

To prove the converse we show jWck for  every j€  Burr (a,b)  and k€ BuU(c,d) .

Using I  emma i3Al  we may wr i te  j=  (Tu,  + Iu)p and k -  (1 .  *  T. , )9  where p and q

are ad -morphisms.

Assume ueB(m,b + c) ,  vCB(m, a + d)  and u( l '  +  k)  = v( j  +  IO) .  By composi t ion tcr

the right with p- t * o- 
I we get

u(p- l  *  I . )  +  T. r  = T" ,  +  v(1"  *  q-1)

therefore using the hypothesis there exists

u(p-l + Iu) = Tu, + h and v(1" + q-l) = h + T.,.

v = h ( I  + k ) .  I f
a

\

h C B(m, a + c) such that

There fo re  u=h( j  +1 . )  and

To apply Theorem 12. I the next proposit ion is useful.
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Proposition 13A5. In an ap-flow every ap-morphism is a monomorphism'

Proof .  Le t  i€B^^(b ,c ) .  Suppose f i  =g j  where  f  :a*?b  and g :a- )b '  As
a [5

j = (Ta + IO)k where k cBao((d + b, c) we deduce

f(Td + IO) = 8(TO + IO) = (TO + I.XIO + S).

As T, is functorial we get f = fdtl. + g) = g. tr
o

Another aspect we are interested in is the connection to other concePts and the

examples.

Proposition 13A6. Every bp-ssmc is a weakly cartesian ap-ssmc.

P r o o f .  W e  u s e  P r o p o s i t i o n  1 3 A 4 .  A s s u m e  f  : a ' { d + b ,  g : a " + b + c  a n d

f + T. = TO + g. By composition to the right with 1|d * IU * It we get

f(td * Io) = 8(16 * Ic) : a -tb

The next equalities finishes the proof

Td * g(Io + it) = (To + sXlo*b * Ic) = (f + T.XId*b *It) = t

. A  A  A

f ( ld  * lO)  +T.  = ( f  +  T.XI"  *  Ib* . )  =  (Td + gXt"  + IO*. )= 8 '  I l

proposition 13A7. In a biflow over an af-ssmc if we define

.Lu = tuv"

then we get  a  bd-ssmc.

Proof. !" = t"V" = V" = Iu.

I" * Ib = !t *tbuu =tb[(bxu + IbX{uu" * Vo)1 =

=f bt"[(lu * bx" + I,XV" + v5)l = Tu*bV"*b = J:*b' tr
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i
Theorem l3AE. [Es80, CU82, St87a] Every biftow B over an algebraic theory is an i

inflow. i

Proof. To show B is an ap-flow we use Proposition 13A3, therefore we only have

is functorial.  I f  feB(b,c), g €B(a + b, a + c) and f(Ta * I.) = (T" + IO)S

.  t "g= tu  (  (1"+ Tb)g,  ( t "+ lo)g > =tu< ( lu+ To)g,  f (T"  +1. )  )  =

= f -ta( (t" + To)g, Tu + I. ) = f -?"t{{t" + To)g + Tu + IJ(la * cxd + I.XV" + v.)l =

= f .ta[(0a + To)g + I.XI" + v.)1 = f(Tb't"g * I.)v. = f.

Using Proposition I3A7 we deduce B is an bp -ssmc, therefore from Proposition

l3A5 we get the conclusion. E

From,this theorem we deduce Pfn5r ReI5r Pfn(S) and Rel(S) are inf lows. Other

examples of inflows are In5r PIn5r PSurrl and PfnlI. Among them In, has a special

place as we can.see from the next theorem.

A inf low morphism is by definit ion a bif low morphism between two inf lows.

Every inf low morphism is an ap-ssmc morphism.

Proposition 13A9. Suppose B is an biflow over an ap-ssmc. If H : In, ir B is an

ap -ssmc morphism then H is a bif low morphism.

Proof. Let f G Inr(s + a, s + b) where s € S. We study three cases.

i) There exists g€ Inr(s + a, b) such that f = T. + g. We deduce ttf  = (T. + I")g

and

to show T
a

then

tH(t)n(t) = 1H(s);nlgxTn(s) * Iu(u))l =1e[(tn1r) * IH(u))H(e)] = H(tsf).
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ii) there exists B€ Inr(a,b) such that f = I, * g. We get t'f - g and

tH(t)n(t) = tH(t)(tn,r, + H(d) = u(g) = H(tsf).

i i i) There exist j € [lal] such that f(l + j) = 1. In this case there exists i € [lbl]

s u c h  t h a t  f ( l ) = l + i ,  t h e r e f o r e  d e n o t i n g  E = 6 r + a , + a "  w i t h  l a ' l = ; - l  a n d

b=  b '+  b ,  +  b "  w i th  l b ' [=  i  -  I  t he reex i s t s  g  € In r (a '+  a " ,  b '+  b " ) such tha t

f - (ls * "'xt * I",,Xsxs + gXI, * txb' + I5,,)

hence ttf = (u'xt * Ia,,XIs * gXtxb' + Io,,) and

1H(s)p111y =

= tH(ttttn(r) * "(u')*H(s) * ln,u,,rxH(t)*H(s) + H(g)xlH1r, * ntt'*"(b') * I"1',,y'i =

= 1H(a'\H(t) * I"1",,)xrr-r(r) * H{g)xH(s)xH(b') * IH(b,,)) = H(tsf). tl

The computation in the above proof may be used to see the feedback in Int is

unlque.

. Theorem f3Al0. In, is an init ial object in the category of the S*-bif lows over an

af5-ssmc as well as in the cateSory of the S*-inf lows.
l -

Proof. We use Corollary 6.5 case ap in [CSS9a] and Proposit ion 13A9.

l3B. Abstract accessible flowchart schemes

\I,e suppose unti l  the end of this subsection X is an equidivisible monoid, Y is an

X-a1}-ssmc,  B is  an in f low,  and i :  Y ' - -+ B and o:  Y -4 B are ap-ssmc

morphisms. We require the equidivisibi l i ty of X to apply Theorem i2' l '

We have seen in the introduction of Section l3 for concrete f lowchart schemes
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(i.e. X is the free monoid on the set of statements and B c Ret) that (x,f) ru.'(y,g)

if and only if the schemes represented by (xrf) and (yrB) have the same accessible

part.

As by Proposition l3Ai every ap-morphism from B is a monomorphism we may

applyTheorem l2.l to deduce B fulf i l ls the wpb-condition with respect to 
""p "nO

the restriction of i to Yap. Therefore from Proposition 6.1 we deduce

ai }  a0 .
A , r = € < .

a F

we denote by AFSXTB th" quotient of Flx,B by -up. From Theorem 7.8

applied to the restr ict ion of i  to Y"U we deduce AFS*,U is an inf low. The

morphisms in  AFS*,U are ca l led a i i -schemes.

Let A* : X -+AFSX,B and AU : B 4 AFSX,B be the composites of

E* : X .---) FIX,B and of E* : B 4 Ot"rU with the factorization morphism from

Ot*,U to AFSX,B, respectively. Rem.ark A* is an inf low morphism and A" is an

interpretation of X with respect to iA* and oA*. The next theorem is an instance

of Theorem 10.3.

Theorem l3Bl. I f  H : B --+ B' is an inf low morphism and if  I  is an interpretation

of X in B, with respect to iH and oH then there exists a unique inf low morphism

( l ,H) :  o t t * ,u  -+ B '  such that  AX(I ,H)  = I  and AB(I 'H)  = H.  I l I

Corollary l3BLFor every S*-inflow B and for every interpretation I of X in B with
t+-

respect  to  i  and o there ex is ts  a unique S*- in f low morphism I r :AFS*, rn.**

,i*
such that  A. , l  "  =  l .

.1\

Proof .  Apply  Theorems l3Al0 and l38 l .

Definition 1383. A

c . jj+ 
F imply G

representation F'from

,t,l F. ff,
aG(

Fl is said to be accessible i f  and only i f
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As F is accessible and F -ud F' imply Fr is accessibler w€ deduce the

accessibility is a property of the schemes.

Lemma 1384. If F is accessible and F N^^ C then F "Ff C.
afi

proof. As *"{, = <:fi- . uS 
f there. exists Fr such that n' r-0+ p and

F' -a ($ 
, G. As F is accessible we deduce F' ."d F therefore f 3'F-, 6. Il

Proposition t3B5. If F and G are accessible and F -"n G then F -u^ G. trl
t-

proposition 1386. If F 6 Fl(a,b) is accessible and if i eB(b,c) fulf ills iWc i(Yu,, )

then Fj is accessible.

proof. Suppose G € Fl(a,c) and G 3(| 
) Fj. By Lemma 6.2 there exists G' € FI(a,b)

such that G = G'j and G, & F. As F is accessible we deduce G' .wuoaF therefore

G aru* Fj. LI

Corollary 1387. If F € Fl(a,b) is accessible and j € Ba 
U 

(b'c) then Fj is

accessible. E

proposition 1388. If the monoid X is free on a set f then the scheme represented

by (x,f) is accessible i f  and only i f  (x,f) ru". (x'rf ' )  implies lxl( lx ' i ..P

Proof. Suppose (x,f) is accessible. If (x,f) z'"au'(x',f') from Lemma l3B4 we get

(x,f)  3e+ (x' , f ' ) ,  hencel* lSix'1.

Conversely, suppose (x', f ' )  3$ 1*,11, i .e. there exists u&In"(x',x) such that

(x', f ' )  4u (x,f).  As (x', f ' )  .w^., (x,f ) implies ixl i  lx ' f ,  we deduce u € Bil  (x"x) hence
o15

(x',f') ,*un (x,f). tr
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The biflow of flowchart schemur FSX,B is the quotient of Fl by

ruao. a-"p there exists a unique biflow morphism

^t* ,UTFSX,B 4 AFSX,B

such that fftqAn*,. = AX anO EfidnO*,U = AB. The morphism AP*,g is cailed

t'Accessible Parttf as it maps every concrete flwchart scheme in its accessible part.

Proposition l38i tell us that if two accessible schemes have the same accessible

part ( i .e. the same image by APX,B) then they are equal. In other words in every

coset of the kernel of AP*,U there is at most one accessible flowchart scheme.

The next proposition shows for concrete schemes that in every coset of the kernel

of APX,B there exists one accessibe f lowchart sheme, therefore in the concrete

cases the ap-schemes and the accessible schemes coincide.

Proposition 1389. If the monoid X is free and if B c Rel, then for every F € Fl(anb)

there exists G e Ft(a,b) such that G is accessible and p -"F G.

Proof. To determine the accessible part of F = (x,f) we may procced in the

fol lowing way. We forget the sorts and the exits of the scheme' we identify al l  the

inputs of the scheme in one input, we identify the inPuts of every statements in one

input and we identify the outputs of every statements in one outPut to obtain the

relation

h = (Arar * rr .6[ ;xr1A1o{*u)rx(fot  *  2r.et t* t ]v l i (xu) l)e Ret( i  + lx l , lx l )r

where nn

vn* l  -  { t ,

F . t r

and vn are def ine by induct ion Ao = J,  An*i  = A(t l  *  An);  v0 =Tl ,

+ Vn)V. The image of the relation (fr1ixt l4xi gives the accessible part of

Proposition 13810. Suppose X is a free monoid on a set E and B e: ReIr' If

lrr"6 ' AS

F€ Fl(a,b) is accessible and if  F uf 
,  G then G is accessible.
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Proof. Using the same notation as

(n N*btt* l  = A,*, .  As F " t> c =

f(16 + i(u)) = (1" + o(u))g. As we forget

ReI. First remark that

above as F = (xrf) is accessible''we deduce

(y,g) there exists u € SurA(x,y) such that

the sorts all the computations we make are in

least congruence

we give analogous

and B is an inf low.

l3C. Three characterizations of "4,^ 
U 

-eguivalence
ole

In [CS88b, Proposit ion 7.6] we have proved -"o( is the

relation satisfying (XX) in Proposit ion 9.4. In this subsection

characterizations for nru 
U.

Assume i :  Y  - {B  and  o :  Y  ' 4  B  a re  ap -ssmc  morph isms

A s u s u a l X = O b ( Y ) .

Proposit ion l3Cl. I f  X is equidivisible then -u[t is the least ap-functorial

congruence relation in Fl satisfying (XX) and (TX)'

u(f re ttvrtA to(rp)l) 
= (2 *eti*l. lA io{*u)l)o(u) and

( f r.e [t*11vti(*r)l)u 
= i(ux 7 *eiir l]ult(tu)l).

For h,= (A,",  *  zue t tv i lAiotyu)t)B(Io'  
*  E retryirv l i (vt) l ;*"deduce

(t ,  + u)h'= (A,u, *  2*et ixt lAto(*u)txl  u + o(u))B(iJol  *  2u*t ly l lu l i ( t tJ\  =

= (Ag"r *  2r.etrxr l l \ lot*u)rx(I  b * i (u)xl tbt  *  7ke lry,rvl i (v*) l )  
= t 'u

therefore

.  h  n t* l (u  *  I1*1XI lv ,+ u)  = h u AlYl  =  (1 ,  +  u)h '  l tv l '

As u is functorial we deduce

(h '  l lY ly l tYl  = (n ht* ' (u *  l i *1))d* l  = G'  {* l ld* t 'u = Ai*ru = A l r ,

hence G is accessible.
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Pr@f. As AFS*', is an inflow we deduce from Remark 9.7 that

ap-functorial. For the remainder we use Propositions 9.4 and 9.8.

Lemma IKZ If a congruence relation = in FI has the property (XX) ana

(x,f) --1, 
*, 

(x + y, g) implies (x,f) = (x + y, t)
x y

then i includes -up.

Proof. It suffices to show 5 includes -34) . Assume (x,f) -)u (yrg) in Fl(a,b)

where  u  i s . in  
" "p .  

Us ing  Lemma 13Al  we may wr i te .u - ( l x  +T. )k  u ,here

k €Yuoa(x + z, y). For h = (la + o(k))g(I, + i(k-l)) *" deduce (x,f) -*r* 
*r.(*+ z, h)

and (x + z, h) -{u (y,g). By hypothesis (x,f) = (x + z, h). As = fulfills (XX) we get

! includes Nad,, therefore (x + zr 6) : (y,g), hence (x,f) = (y,g). n

Proposition 13C3. -"p tt the least congruence relation = in Fl fulfilling (XX) and

(x'f) *)t 
*T 

(* + Y, 8) implies (x,f) = (x + y, g). trl
x y

Proposition 13C4. If B is an inflow oven an algebraic theory then A/".r is the least

congruence relation 5 in Fl with the propert ies (XX) and T^ : (x,f) for every (x,f) in

FI(e,a).

Proof. It is easy to see that -ufi nu. the above properties.

Let 3 be a congruence relation in Fl having the above propert ies. To show 3

includes n,.n we use Lemma 13C2 therefore we have to prove its hypothesis.
dl-)

Suppose (x,f) dt *T 
(x + y,g) in Fl(a,b). By hypothesis

x y

[(Tu*o(*) * v)s]f(Y)

-''t, is



Adding to the left (lu + xX we deduce

(t" + xXf * Tb*i(*)) 3 [(13 + x + yXf * (T"*o(*) * to,rr)s)]ti(v)

Composing to the right with Vn*i(*) we deduce

(lu + xX 3 [(16 + x + yXf * (Tu*o(x) + Iolr;)SXvb+i(x) * Ii(v))]ti(v) =

. ,  \

= [(la + x + yXf * Ti(y) * (Ta*o(x) + Iolr;)e)vu*i{**r;1fi(v)'

As f + Ti(y) = (lu*o(*) * To(y))g we deduce

(t" + xX ; [(t6 + x + y) ( (tu*o(*) * To(y;)8, (T"*o(*) * Io(y))B > 11i(r) =

^ i (y)
= [( la + x + y)g] ' l ' '

Applying t i(*) *" Bet (x,f) !  (x + Y, 8). F

14. On wpo-condition (cases ay" and atf )

The study of the wpo-condit ion is more diff  icult than the study of the

wpb-condit ion owing to the pushouts which have a more complicated construction

than the pullbacks. To overcome this diff  iculty we supPose the monoid of

sratements is free and even more hypotheses in case aS which is more diff icult

than case ad .

The study of case aJ is made using the duals of condit ions wpbr-, in Section 6'

We begin to study the dual of wpb, for cases ag and ad '

The concept of (weak) pushout is the dual of the concept of (weak) pullback. We

use the same notation as in Section 8.

It is known that in the category of sets, denoted set, there exist pushouts. For

p : B -tD and q : C -+ D, we mention that (f ,g) Po (p,q) in Set implies

A )  ( v d e D ) t (  I  b e  B ) p ( b )  =  d  o r  ( l c e C ) q ( c )  = d l '

To prove that the pushouts exist in sur, and in Fn, we recall an old proposition

1ri



""*i.rie-e$*J.,-,.

, . . . ,59

from the theory of the categories.

Assume C is a category and S€ Ob(C). The definition of the comma category

C J S  i s :

- (A,a) € ob(c 1,5) <==> A € ob(c) and a € c(A'S)'

- c.l, S((A,a), (B,b)) = lt e c(R,e) itu = a),

- composition in CCS is induced by the composition in C'

Proposition 14.1. Assume C is a category having pushouts and E is the subcateSory

of i ts epimorphisms. For every SeOb(C) the comma categories Cf S and E.LS have

pushouts and the forgetful functors from E0S to c{,S and from c!S to C preserve

the pushouts.

Proof. Suppose f. G Cl,S((A,a), (B'b)) and g€ CtS((A,a), (R'r)).

As C has pushouts there ex is t  pGC(B,D) and q€C(R,D) such that  ( f 'g)po(p 'q)  in  C.

As f[ = s = gr there exists d€ C(D,S) such that pd = b and qd = r, therefore

p e c !S((B,b), (D,d)) and q e c l ,  S((R,r), (D,d)).

we 'prove (f ,g) Po (R,q) in c J S. Assume u € C ' .1 S((B,b)'  (E'e)),

v€C*LS((R,r ) ,  (E,e))  and fu  = gv.  As ( f '8)Po(p,q)  in  C there ex is ts  a unique

h6C(D,E)  such that  ph = u and qh = v .  As phe = u€ = b = pd and qhe = ve = r  = qd we

deduce he = d therefore h eC-US((D,d), (E,e)). Hence C!S has pushouts and the

forgetful functor from CJ.S to C preserves them.

To get the other conclusion, keeping the above notation we remark that i f  f  and

g are epimorphisms then p and q are epimorphisms and if  u and v are epimorphisms

then h is an epimorphism. tf

Corollary 14.2. The categories Sur, and Fn, have pushouts. The forgetful

functors from Sur, to Fn, and from Fn, to Set preserve the pushouts. n

The next proposit ion covers the dual of wpb, in case a.5.
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Propositionl4.3. lf T is an algebraic theory then every 
"J-ur.. 

morphism

o : Fn 
f + T Preserves the Pushouts.

Proof. We assume (p,q)Po (p'rq') where p€Fnr(x,Y), qe Fn 
'(xrz), 

p'C Fn 
Z(Y,x')

and q' E Fn 
= 

(z,x') and we Prove

(o(p)' o(q)) Po (o(p'), o(q')).

For y 6 f* and i e tlyll we use the notation

'  x . Y = T  + l  + T --- i  -  
Y1+.. .+yt_ t  Yi  Yi* l* . . .*Yly l

Suppose t e T(o(y),a), g € T(o(z),a) ana o(pif = o(q)g. We def ine the f unctions u and v

by u(i) = o(xf)r for i € fiy i],

v(j) = okl)z for j€[rzll

and we remark tnat pu - qv. Indeed for i e l ixi]

u(p(i))'= o(*vo1i)X = o{x,x)o(nX = okf)o(q)g = oklti/s = v(q(i))'

As by Corollary 14.2 we get (p,q)Po(p',q') in Set there exists a unique function w

defined on [fx' l ]  such that P'w = u dDd qrw = v.

Denote h = (w(1) ,  w(2) , . . . ,w( lx ' l ) ) .  We show h€T(o(x ' ) ,  a) .  For  every k€[ ix ' l ]  as

(p,q)Po(p',q') in Set we deduce from A there exists i  e [ lyt] such that p'( i)  = U.:.

there exists j  g l izi l  such that 9'( j)  = k. We deduce in the - f irst case

w(k) = w(p'(i)) = u(i) € T(o(Vr), a) = T(o(x'U), a) and in the second case

w(k) = w(q'( j)) = v(j) €T(o(2,), a) = T(o(xi.),  a), hence h € T(o(x'),  a) '

For i e tiyll we deduce okf)o(p')rr = o(x$1i))h = w(p'(i)) = u(i) = o{xf)r therefore

o(p)h = f and for j€ [izl] we deduce otxf)o(a')r, = ot*[i1,y)n = w(q'(j)) = v(j) = o(*f)s

therefore o(q')h -.g. Hence (o(p), o(q))wpo (o(p'), o(q')).

To prove the uniqueness of h suppose h' ( T(o(x'), a), o(p')hr = f and o(q')h' = g. It

suff ices to show o{x[ ')n'= w(k) for every k € [ lx ' l ] .  I f  k = p'( i) where i e [ iyl ]  then

ok[')rr' = ot*f,,,,)rr' = okf)o(R')h' = okfX = u(i) = w(p'(i)) = w(k)
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and if k = q'(j) where j € [izl] then

o{*[')r,' = otll,,,lr,'= okf)o(c')h' = oft,z)g = v(j) = w(q'(j)) = w(k). n

The next proposition is useful in the two cases. In case uf, it covers the dual of

wpb3.

Proposition 14.4. Assume T is an algebraic theory and P is a sub-ssmc of T such

that fg in P implies g in P for every pair of composable morphisms f and g from T.

If the inclusion functor from P to T preserves the (weak) pushouts then the functor

I"+ : P --' P preserves the (weak) pushouts for every object a of T.

Proof. Assume (p,q)wpo(p',q') in P where pg P(b,c), q e P(b,c'),  p'G p(c,d) and

q' € P(c',d) and we prove (lu * p, Iu + q) lVpo (lu * p', Ia + q') in P.

S u p p o s e  f  € P ( a + c ,  d ' ) ,  g € P ( a + c ' ,  d ' )  a n d  ( 1 " + p X = ( l u + q ) g ,  t h e r e f o r e

(lu + T.X = ( lu *.T.,)g and p(T" + l .X = g(T" + I. ,)g. As (p,q)wpo(p',q') in T there

exists w 6 T(d,d') such that p'w = (T. + I.x and q'w = (Tu + I.,)g. For

h = (( lu + T.X,w) € T(a + d, d') we deduce

(Iu + p')h = <(la + T.X, (Tu + I.X) = f and

(lu + q')h = <(la + T.,)8, (Tu + I.,)B) = B.

As (lu + p')h is in P we deduce h € P(a + d, d'). tr

Corollary 14.5. The functor I"+_ : Sur, --ir Sur, preserves the (weak) pushouts for

every a € S*.

Proof. Apply Proposit ion 14.4 for P - Sur, and T - FnS.

Theorem 14.6. (case arl ).  l t  T is an algebraic theory and if  the E*-aJ-ssmc Y

fulf i l ls Y = Y^-1 then T fulf i l ls the wpo-condit ion with respect to Y and o for everyao
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" 
6 -rr*. morphism o :Y -t T.

proof. As Fn - is the initial f -"cf-ssmc there exists a unique f -uJ-ttt.
L

morphism O : Fn* -"+ Y.
. L

suppose u e Y(x,xr) and v c Y(x,xr). As every morphism in Y is an

a$-morphism by Proposi t ion 3.2 there exists ur€ Fn'(x,x1) and vr€ Fn 
t(x,xr)

such that u = O(u1) and v = O(vr). By Corollary 14.2 there exist p €Fn t(xrx') 
and

9 €. Fn 
'(xr,x') 

such that (ur,vr)Po (P,q).

For ut = O(p) and vt = O(q) we deduce lgr = vvr'

From Proposit ion I4.3 applied for Oo : Fn 
t 

n T we deduce

(o(u), o(v))Po (o(u'), o(v')). From Proposition 14.4 for P = T we deduce

(lu + o(u), Iu + o(v)) Po (lu + o(u'), I" + o(v'))' n

Theorem 14.7. (case af ). Assume B is an af-ssmc and Y is a l*-ug-ssmc such

that Y"* = Y. If for every af,-ssmc morphism G : surr --'2 $ and for every

a e ob(B)

(u,v)po (u,,v,) in Sur, implies ( lu + G(u), Iu + G(v))Wpo (1" + G(u'), lu + G(v'))

then B fulf i l ls the wpo-condit ion with respect to Y and o for every af-ssmc

m o r p h i s m o : Y - t B .

proof. Assume H: Sur, --+ Y is the unique a*-af -ssmc morphism.

suppose u eY(xrx1) and v €Y(x,xr). Ot Yafr = Y by Proposit ion 3.2 there exist

u l€ -Surz (x , x r )  and  v r6Sur r ( x , x r )  such  tha t  H (u r )  =  u  dnd  H(v r )  
I  

u 'By  Coro l l a ry

14.2 there ex is t  p€Surr (xr ,x ' )  and qcSur,  (x ,x ' )  such that  (ur 'vr )Po (p 'q) '

For u' = H(p) and v' = H(q) we get ssr = VVr.

Applying the hypothesis for G :- 'Ho we get
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(1" + o(u), I" + o(v))Vpo (la + o(u'), I + o(v')). EX

15. Reduced Flowchart Scheme

In this section we apply our abstract theorems from the first part of the paper

to study reduced flowchart schemes. As this concept is not as well known as the

concept of accessible flowchart scheme we give some explanations.

To reduce a scheme we identify interval vert ices which are labeled by the same

statements which have coherent continuations, i.e. the arrows going from the same

output of two statements which are identif ied must go to the same output of the

scheme or to the same input of two statements which are identif ied. The simplest

example of reduction is (x + x)Vo1*) + Vi(*)*. Remark that by reduction the

behaviour of the scheme does not change.

For concrete schemes (statements in a set E and connection in Rel) we show

that (x,f) G'Fl Z,Rel(a,b) can be reduced to (y,g) € FlZ,R"l(a,b) i f  and only i f  there

exists u € Sur= (x, l) such that (x,f) -7u (y,d.

Let (x,f) e Flr,Rel(a,b). To identify vert ices having common labels we may use

an equivalence relation f on l lxl ]  such that j= k implier * i  = xk, or equivalently but

more useful in the sequel we may use a surjection u e Sur=(x,y) to identify the

vert ices j  and k i f  and only i f  u(j) = u(k). For j  e [txi]  we use the notation

h . = T ,  r + 1 ,  . + T ,  \ .
J  o(x l+. . .+x;_ 

l /  o tx j /  o(x ;+11. . . *x ix i /

Remark that v and w in [ iU + i(x)i ]  become equal after identif ication i f  and only i f

( lO + i(u)Xv) = ( lU + i(u)Xw). To understand this the fol lowing lemma is useful.

Lemma 15.1. Assume o : Sur, --t  Sur, is an af,-ssmc morphism where I and S

are sets. I f  u e Sur, (x,y), i  6 [gxtJ and j € [ io(x,) l l  trren
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o(uX f re [i-r1lo(xp)t + i) = Zu u[u(i)-r1to(rp)l + i.

Proof. By Theorem 3.1 in [CS89a] we may write u =gZrettlflvlj where g is in

Bi t  and n,  )  I  for  re [ ly t ] .  Rs g( i )=  Zrg[u( i ) - t f r *9  where e€ lnu1,y '  f rom

Corollary 2.4 in[CSS9a] we deduce

o(gX Z ke[i-11F(xu)l + j) = ) re tu(i)_,frto(vr)l* 
(q- l)to(vr1,/ l  * i

therefore

o(uX fu eti_ r l lo(*x)l + j) =

n
= ( tr.utryrlvoL.)XEre [u(i)-1in.lo(v.) l* 

(q-l) lo(vu11;)l .+ j) =
I

= z r eru(i)- rlto(y,,1 . t:,:,t:1,/,,0 - r)fo(v,,,/l + j) =

The identif ication may be made only i f  the identif ied statements have coherent

continuattons, that is we must have

I. (Ta + h,X(tp + i(u)) - (Tu + huX(lo + i(u)) whenever u11; = u(k).

This condit ion is equivalent to

II.  (Ta + o(uu')X(lo + i(u)) - (Tu * Io(*)X(lu + i(u))

.  for  every u '6  In-  (yrx)  such that  u 'u  = Iy .

We p rove  I  imp l i es  I I .  Assume u '€  InZJy ,x )  and  u 'u  =  I y .  Fo r  j e  0x l l  as

u((uu'Xj)) = u(j) we deduce from I that

(T" * h(uu,Xj)X(lo + i(u)) = (Tu + h.X(lo + i(u))

therefore as by Lemma l5.l hro(uu') = huu,(j) we get

nj(r" + o(uu')X(lO + i(u)) = h,(Tu * Io(*)X(lU + i(u)).

Hence II is proved.

= 2 r e[u(i)-  t ] lo(Yr)f  * i '  t l
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We prove II implies I. Assume u(j) = u(k). We may choose ur € In , 
(y,x) such that

u'u = I, and u'(u(k)) = j. Form II we deduce composing to the reft with hu

(T" + huo(uu')X(to + i(u)) - (T" + huX(tg + i(u))

therefore (T" + hur,1k;X(I, + i(u)) = (T" + hU)f(tg + i(u)) hence I.

As (1" * To(*)XIu + o(uu')X(t' + i(u)) = (tu + T.(*)X(IU + i(u)) we deduce the

identified statements have coerent continuations if and only if

I I I . ( l a + o ( u u ' ) X ( l o + i ( u ) ) = f ( l b + i ( u ) ) f o r e v e r y u ' G I n r ( y , x ) s u c h t h a t u , u = l y .

The reduction of (x,f) is (y,g) where g = (I" + o(u,)X(lb + i(u)), u' e In 
,(y,x) 

and

u'u = Iy' It does not depend on ur as if ut' e In , 
(yrx) and u'u = I, we deduce

(1" + o(u")X(l' + i(u)) = (1" + o(u"))(I" + o(uu'))t(l' + i(u)) = g.

Moreover as (I" + o(u))g = (la + o(uu')X(l' + i(u)) = f(tb + i(u)) we deduce that

(x,f) -yu (y,g).

Suppose u € Sur, (x,y) and (x,f) ->, (y,d. We deduce for every u' € In ,(yrx)

such that uru = I thatv
(1" + o(u')X(l '  + i(u)) = (ta + o(u'u))g = g,

therefore as II I  holds . i l /e may use u to reduce (x,f ) and its reduction is (y,g).

By def init ion a scheme represented by (x,f) is said to be reduced if

(x,f) -+u (y,g) and u € Sur, (x,y) imply u € Bi, (x,y).

l5A. Introduction to the algebra of reduction

The algebraic structure we use to study reduction, cal led surf low, consists in a

weakly cocartesian arj '- f low B such that for every set S, for every af,-ssmc

morphism G : Sur, -) B and for every a € Ob(B)
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(u,v)Po (u',v') in Sur, ==) (1" + G(u), I" + G(v))Wpo (1" + G(u'),I" + G(v')).

Proposition l5Al. Suppose P is a sub-a$-ssmc of an algebraic theory T such that

fg in P implies g in P for every pair of composable morphisms f and g from T. For

every set S, every af,-ssmc morphism G : Sur, -{ P and every a€Ob(T)

(u,v) Po (u',v') in Sur, ==) (I" + G(u), Iu + G(v))Po (1" + G(u'), I" + G(v'))

Proof. Assume F : Fnr 4 T is the unique u6-src morphism such that F(x) = G(x)

for every x€ Sx. As the restr ict ion of F to Sur, is equal to the composite of G with

the inclusion of P in T we deduce F(f) = G(f) for every morphism f in Surr.

Suppose (f ,g) Po (p,q) where f € Surr(x,x'), g € Surr(x,x"), p e Surr(x'ry) and

q e Surr(x",y). Using Corollary 14.2 and Proposit ion 14.3 we deduce

(F(f ),F(g)) Po (F(p),F(q)). By Proposit ion 14.4 we get

( lu  + G(f ) ,  Iu  + G(S))Po( lu  *  G(p) ,  lu  + c(e))  in  T.  I f  ucP(a + G(x, ) ,  b) ,

v € P(a + G(x"),b) and (1" + G(f))u = (1" + G(g))v then there exists a unique

heT(a + G(y),b) such that ( lu + G(R))h = u and (lu + G(q))h = v. Note that from

hypothesis we get h is in P. tr

Corol lary 15A2. Let I and S be sets. I f  G :Surr-* Sur, is an a5I-ssmc morphism

then G preserves the'pushouts. E

Proposition liAl. If B is a biflow over an algebraic theory and if every

af-morphism is functorial then B is a surf low.

Proof. As every algebraic theory is a strong af-ssmc we deduce B is an af,-f low.

The conclus ion fo l lows f rom Proposi t ions I1 .2 and 15A1.  t ]
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Another example of surf low is PSurU as fol lows from Subsection I1.3 and

Proposit ion l5A l.

A surf low morphism is by definit ion a bif low morphism between two surf lows

which is  a lso an af -ssmc morPhism.

, t '

proposition liA4. In an a f-f low B if we def ine jl = t"V" then B 'becomes a

:b y-ssmc such that

t " v n * l =  l n t  f o ,  n ) 1 .
r a .;L,

Proof. By Proposition I 3A7 B is a bo(-ssmc.

h  A -
\Ue show plo = 1" for every af,-morphism p: a ? b. Using Theorem 3.7 we

^ F

deduce V"p = b + I.XIO + p)VO. As p is functorial we obtain tuVu = tD((lb + p)VO)

^ k

hence ;|-. = PI".
b =  t b * b =  , b *  l b h e n c e B i s a b f , - s s m c .ThereforeV,I = I = J- + l- hence b ts a D\

The last conclusion is proved by inductin on n:

t a v l = t a l  - r  -  r € - , 0 a . n d
r  a  - a = I " = I = . ! " * a n d

tuul*l =,lu[(ru + v:)va] = u: t' = fu. t:

If H : B --a B, is a surflow morphism then for f OetineO as above H becomes a

bf,-ssmc morphism.

Remark in PSur, that f = tuv" is an identify,

' Theordm tiAS' Let B a surflow' If H : PSur. '-t B is a bf,-ssmc morphism then H
J

is a surf low morPhism.
a-

Proof. It suf f ices to show H preserves the scalar feedback' Assume

f € PSurr(s + a' s + b) where s €S.
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If f = It * g whereg 6PSurr(a,s + b)then tsf = g(is + Io) and

1H(s)n111 = 1H(s),, -LHG) + r*1u;)H(e)) = te(n(sx t H(s) * rH(u))) = H( tsr).

I f  f( l)  - I  using the standard representation of f  [CS89a] we may write

f - ( l s * w ) ( l s + d ( V ! + h )

where w is in tr,!I, g is in Bi5r n ) I and h is in Sur5r therefore

tsf = *g{ 1(n- 
l)t * n) hence

UH(s)n(t)  = H(wg;11H(s)un,r ,  + H(h))  = u(wg)(1(n- l )H(s) + H(h))  = H(f  sf) .

In the other cases we use again the standard representation of f to write

f  - ( l s * * ) s ( { *  E i e  t t u i l p i )

- t  n .
where w is in In!^,  g is in Bi '  e( l )  > n )  I  and pi  = Vnl  wi th n,  )  I  for  ie [ lb l ] .  As

I

8( l )  =  n  *  Z le [ i - l ] n j  *  I  where  i  €  [ l b l ] t he re  ex i s t s  h  i n  B i ,  such  tha t

g = (ls * txt + I.XI2, * hXsxns*b' * I5,,)

where o '  -  I  j€  [ i -  l ]n jb j  
and b"  = (n i -  l )s  + n i+ lb i * l  * .  .  .  +n161brb l .  Us ing the

nota t ion  q  =  * (cx t  +  IOXI ,  +  h ) ,  p '=  E j€ [ i_ l ]p j ,  p "  =  p i+ l  + . . .  *  p lUt  and

u =  )  j€ t i - t lb i  * "  deduce

f - (ls * q)[txnt*b'{u1 * p' + Ir) * Ig,,J(lr*u * vni + p") =

= (1, * s)[(1, + vl * p')txt+u * I',,l(lr*u + vni + p")

therefore

ttf = q[(vn+ p')sxu + Io,,)J(lu * vni * o";

hence

tH(t)r-r(t) = H(e)iH({ * p'x tH(s) H(s)*H(s*u)) * H(rb,,)rH(ru * vni * o,'; =

= H(a)t(v[,r, + H(R'))H(s)*H(u) + H(I',,)lH(ru * vli + p") = H(tsf). H
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The computations in the above proof may be used to see the feedback in PSurt

is unique.

Theorem 15A6. P5ur, is the initial S* -surflow.

proof. we use corollary 6.5 case bf, in [cs89a] and Theorern 15A5.

l5B. Abstract Reduced Flowchart Schemes

We suppose unti l  the end of this section that X is a free monoid on a set f,  Y is

an  X -a f , - ssmc ,  B  i s  a  su r f l ow ,  and  i :Y * )B  and  o :Y -48  a re  a f , - ssmc

morphisms.

By Theorem 14.7 B fulf i l ls the wpo-condit ion with respect to Yu* and the

restr ict ion of o to Yur. From Proposit ion 8.1 we deduce -u,f,  = -3f; 4-3g- .

We denote by RFSX,B th" quotient of Fl*rU bY n'u* '  From Theorem 8'8

applied to the restr ict ion of o to 
"".r 

*" deduce *asr,u is a weakly cocartesian

af-f low. The morphisms in *OS*,8 are cal led af -schemes'

Let R* : X -) RFS",U and RU ; B -4 RFSX,B be the composites of

E* : X * Flx,B and of E* : B.-) RFSxoS wit6 the f actorization morphism from

O r * , U t o R F S * , U , r e s p e c t i v e l y . R e m a r k R * i s a n a f - f l o w ' m o r p h i s m a n d R * i s a n

interpretation of X in RFS*., with respect to iRU and oR*'
' - r -

Proposition l5Bl. RFSX,B is a surflow'
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Proof. We only have to show the last condition in the definition of the surflows.

Suppose G:Surrr*OS*,U is an at/-ssmc morphism, ae Ob(B) and (u,v)Po(u',v')

where u €Surs(b,ct), v6Surr(brct'), u'e Surr(ct,d) and.v'€ Surr(c",d). We have to show

(tu + G(u), Iu + G(v))\[po (1. + G(u'), I, + G(v')).

Let F:Sur, -t B be the unique af-ssmc morphism such that F(b) = G(b) for

every b€S*.  Remark that FR, = G.

Assume (1" + F(u)Xy,g) ruaT (1" + F(v)Xz,h) where (y'g) €Fl(a + G(c') 'd) and

(z,h) e Fl(a + G(c"),d'). As *uf = " f,r *3$- there exists (x,f) eFl(a + G(b)'d')

such that

(lu + F(u)Xy,g) j9+ (x,f) and (1" + F(v)Xz,rr) '$r(x,f).

Applying Lemma 8.2 twice, there exist (x,f ')G Ft(a + G(c'),d') 'and

(x,f") e FI(a + G(c"),d') such that

(v,g) j4(x,f '), (z,h) -3L (x,f") and (lu + F(u))(x,f ') = (x,f) = (1" * F(v)Xx,f").

As B is a surf low we deduce

(1" + F(u) * Io(x), I" + F(v) * Io(*))wpo (lu + F(u') * Io(x), Iu + F(v') * Io(*))

therefore as (1" + F(u) + Io,*rX' = ( lu + F(v) + Io(x)X" there exists

r €B(a + F(d) + o(x), d' + i(x)) such that

(lu + F(u') + Io,*r)r = f '  and (lu + F(v') + Io,"r)r = f".

We deduce (x,r) cFI(a + F(d),d'),  (tu + F(u'))(x,r) = (x,f ')  and (1" + F(v'))(x,r) = (x,f")

therefore

(v,d .ig, (1. + F(u'))(x,r) and . (z,h) l4 (1" + F(v')Xx,r)

hence

(lu + F(u'))(x,r) ,v"* (y,g) and (lu + F(v'))(x,r) n'"* (z,h). E

The next theorem is an instance of Theorem 10.3.
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Tlreorem l5BZ. If H : B -t Bt is a surflow morphism and if I is an interpretation of

X in Br with respect to iH and oH then there exists a unique surflow morphism

( l ,H): ROS*,, --+ B'such that RX(I,H) = I and RU(I,H) = H. EI

Corollary 1583. For every S*-surflow B and for every interpretation I of X in B

with respect to i and o there exists a unique S* -surflow morphism
- #  : - -  #
I " : RFS*,pSur, ---> B such that R*l 

' 
= I.

Proof. Apply Theorems l5A5 and 15F12. n

Definition 1584. A representation F from Ot*,, is said to be reduce if and only if

P af 
I  G implies a -uf 

"
As F is reduced and F -"o( F' imply Fr is reduced, we deduce the reduction is a

property of the schemes.

Lemma lrBt. I f  F is reduced and if  F -^.- G then C 3f,> n.otr

Proposition lJB6. If F and G are reduced and F ^,^.-G then F nr^ .G.aX- aq

Proposit ion 1587. If  j  € Ba 
O(c,b) 

and if  F G Fl*,U(bra) is reduced then jF is* I

reduced. El

Proposition 1.588. If B is a surflow over an algebraic theory, je B(a,b) and

F€FlXrB(b,c) is reduced then jF is reduced.

Proof. Suppose jf .  "fo G. By Proposit ion 11.2 and Lemm a 8.2 there exists H such

that G = jH and F l.$a H. As F is reduced We get F -"a H hence jF ..r,"U G. trl

Proposition 1589. The scheme represented by (x,f) is reduce if and only if

( x , f )  rw  , " ( y ,g )  imp l i es  l x l 5 lV l .sY
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Proof. If (x,f)

tx l  s lv l .

,Conversely,

(x,f) -+, (l,B).

(x,f) n", (y'g)'

I

is redticed *g get

suppose (xrf) s (y'g)' i.e. there

imp l i es  t x lS l v t

exists u€Sur-(x,y) such that
z-

we deduce u € Bi ,(xry) hence

(y,d -1-f .) (x,f) by Lemma 1585, therefore

As (x,f) -ag (y,g)

Irc. A characterization of rv -equivalence
aY

: '
the least af,-functorial congruence relation in Ftlrcl. Theorem. *uf is

satisfying (XX) and (VX).

Proof, As *O5*,,

a f,-functorial. For

is a surf low we deduce from Remark 9.7 that N^v.
- . o

the remainder we use Proposit ion 9.4 and 9.8. H

16. Minimal flowchart schemes (with respect to the"input-behaviour)

For the motivation of this Section we sent to the introduction of Section 7 in

tCS8Tbl and to lEl77l where the simulation by functions was introduced.

16A. Introduction to the algebra of minimization

The algebraic structure used in this section is an ucf-f lo*, which is cal led in

the sequel a funflow. The concept of strong iteration theory was introduced in

[5t87a]. In [CS88a] it is proved that the concepts of funflow and strong iteration

theory coincide. As examples of funflow we mention Pfn(S), Rel(S), Pfn, and Relr.

Lemma 16Al .  In  an a,S-ssmc B i f  f  €8" . I (a ,b)  then there ex is ts 'p  €8"*(c  + a,  b)

s u c h t h a t f = ( T . + 1 " ) P .
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Lemma 16A2.ln an ud-rrrc B if peB"*(a,b) there exists uGBalb,a) such that

uP = Ig.

Proof. As Bu6 is the least sub-a6-ssmc

morphisms of type (T. + Iu)p where p is Baf

of B, it suffices to prove that all the

form a sub-ad-ssmc of B' t]

t a k e  u = 1 " * c x b * l o  o r

every pi is of one of the

tl

P r o o f .  I f  p = l a * b x c * l o  o r  P = l a + V o + 1 .  w e

u = I "  +  TO + Ib+c,  respect ive ly .  I f  p  = PPZ. . .Pn where

above types then we take u. as above and u = un... u'r l .

propition 15A3. B is a funflow if and only if B is a biflow over an algebraic

theory such that every arf,-morphism is functorial.

proof. On implication is obvious. Suppose B is a biflow over an algebraic theory

such that every ay-morphism is functorial.  We have to show every af-morphism

i s  f u n c t o r i a l .  S u p p o s e  f  € B ( a + c ,  a + d ) ,  8 € B ( b + c ,  b + d ) ,  v G B " 5 ( a , b )  a n d

f(v + IO) = (v * I .)g. By Lemma l5Al we may write v * (T, + Iu)P where

p G Bu*(r  + a,  b) .  By Lemma 16A2 there ex is ts  u € Bup(O'  .  +  a)  such that  up = IO.

Let

h  = < ( l r + T u * . X p  + I . ) g ( u  + l o ) ,  f ( T r + I " * d ) )  C B ( r + a + c '  r +  a + d ) '

As (T, * Iu*.)h = f(Tr * I"*d) and as by Theorem l3A8 Tr + Iu is functorial we

deduce Tuf = f 
t*ah. 

As

we deduce from hypothesis tt*uh = tbg. Hence tur = tbg' I:

proposition 16A4. Every funflow is an inflow and a surflow. If B is an inflow and a

surf low such that (T" * Iu)Uu = I" for every a€Ob(B) then B is a funflow.
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Proof. The first statement follows from Theorem l3A8 and Proposition 15A3.

The last conclusion follows from Proposition l6A3 and the following remark if

C is a strong ap-ssmc and a strong a\f-ssmc such that (T" + Iu)V" = I" for every

a € Ob(C) then C is an algebraic theory. tr

Proposition 16A5. In a funflow B if we define f = ?"Vu then B becomes a

b 6-ssmc.

Proof. Using Proposition 15A4.

Theorem 16A6. If B is a funflow and H : Pfn, -) B is a b6-ssmc morphism there H

is a funflow morphism.

Proof. It suffice to show H preserves the scalar feedback. Suppose

f  GPfnr(s  + a,  s  + b)  where s  GS.

I f  f  =  t '  *  g  whereg  €P fn r (a ,  s  +  b ) then  f s f  =  g ( I t  +  IO)hence

t H(t)n(r) = 1H(s),,rn(t) * rH(u))H(g)) = t"(H(gx iH(s) * rH(u))) = H( Tsf ).

I f  f  = T, * g where g€Pfnr(s + a, b) then tsf = (T, * I")g hence

tH(t)H(r)= tH(t)(H(sxTn1rl * rn(u))) = te((TH(r)* rr-r("))H(g))= H(Tsf).

In the other cases using the standard representat ion [CS89a] of f  we may wri te

f  - ( t s+w)g (v f  *  f , iC lu t l p i )

where w is in lrr!1, S is in Bi' n ) I and O, = ull where n, 2 0 for i € [ibr]. ure study
I

two cases.

a ) l t g ( t ) =  I  t h e n g = t s + h t h e r e f o r e  t s f  =  w h ( f n - l ) s  *  f p i ) h e n c e

tH(t)H(t) = H(whx tntt)uil,r, + H( I n,)) =

= H(whX ln- l )H(s) * H(Ep,)) = u( tsr).
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b) If g(l) ) I we deduce from the properties of the standard representations

there exists idt tbt l  such that n,  )  I  and g( l )  = n + f jet i - l ln i  *  l ,  therefore there

exists h in Bi, such that

g = (ls * txt + Ioxlr, * hxsxns*b' * 16,,)

where  O '  -  L j€ [ i_ l ]n jb j  and b ' t -  (n i - t )s  +  n , * rb i+ l  + . . . *n lU lb lU l .

Using the notat ion Q = *(cxs + IOXI,  *  h) ,  P'= 2 j€[ i - l ]p i ,  P" = Pi* l  * . . .  *Plbl  
"nd

u  =  b ,  + . . .  +  b i _ l  * "  d e d u c e

f - (Is * qXsxn'*o'({ * p' + Ir) * lb,,Xlr*u + vli + p") =

= (I. * e)((t, + f + p')sxs*u * Io,,)(Ir*u i vli * R")

therefore

f tf = q((vn + p')sxu + Io,,XIu * vfi * 0",

hence

tH(t)g(t) = H(qXH(vn + p,X *H(s) 
H(s\H(s+u) * H(t6,,))u(ru * yni * 0,,;  =

= H(qXH(vl * p')H(t)xH(u) * H(tb,,))H(tu * vni * p") = H(! sf ). r)

The computations in the above proof may be used to see the feedback in Pfn* is

unique.

Corollary 16A7.Pfn, is the initial S*-funflow.

t6B- Abstract minimal flowchart schemes

We suppose in  the sequel  X is  a  f ree monoid on a set  Z rY is  an X-ad-ssmc,  B

is a funflow, and i 3 f -;  B and o : Y -€ B are uJ-rr..  morphisms.

Theorem 14.6 shows B fulf i l ls the wpo-condit ion with respect to Y.g and the

restriction of o to Y"6 . From Proposition 8.1 we deduce -"J = -1Lt #{-

Remark that nu^ ^ C .*^ . i  and N^,uC .N^ t.ap adi as' ao

We denote f,tFSX.B the quotient of Fl*.* by ,vad. As by Proposit ion'11.2 every
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funflow is weakly cocartesian we may aPply Theorem 8.8 to deduce MFS*'U is a

funflow. The morphisms in MFSX,B are called ad-schemes

Let M* : X -i MFSX,* and MU : B --; MFS*,U be the composites of

E* : X * Ot",a and EU : B 4 tt*r* with the factorization morphism from Ft*,,

to MFS*rgr respectively. Remark that MB is a funflow morphism and M* is an

interpretation of X with respect to iMU and oMU.

The next theorem is an instance of Theorem 10.3.

fn*or.- l6Bf. If H : B --t B' is a funflow morphism and if I is an interpretation of

X in B' with respect to iH and oH then there exists a uniqi.re funflow morphism

(l,H) : MFS- - -t  B' such that M.,( l ,H) = I and M.(lrH) = H.' 
ArlJ 2\ ti

Corollary 16P,2. For every S*-funflow B and for every interpretation I of X in B

with respect to i  and o there exists a unique S*-funflow morphism

I# : MFSX,pfnr-> B

#
such that M*l = I.

Proof. As by Corollary l6A2 Pfn, is the init ial S*-funflow there exists a unique

S* -funflow morphism H : Pfn. *> B. It  suff ice to apply the above theorem. tr l

Proposition 1683. JrC 3-f,r "Pr .

Proof, Suppose (x,f) and (y,g) inFl(a,b), u €Yad(x,y) and f( l '  + i(u)) = (1" + o(u))g.

W e  p r o v e  u  =  V W  w h e r e  v e Y " " ( x , z )  a n d  w G Y u  
g Q , y ) .  

A s s u m e  F : F n I  *  Y

is  the unique Z*-a,5-r . r .  morphism. By Proposi t ion 3.2 there ex is ts  u ' in  Fng

such that  u  = F(u ' ) .  As there ex is ts  v '€Surr (xrz)  and w'€ Inr (z ,y)  such that

ut  = vrwr  for  v  = F(v ' )  €  
"^  f (xrz)  

and w = F(w' )  €Yu^(zrY)  we obta ip s  = VW-

we show r  €Ya6 (x ,x)  and iV = v  imoly
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(t" + ok)11(lo + i(v)) = f(lb + i(v)).

From

(1" + o(r)X(l' + i(v)XIO + i(w)) = (la + o(r)X(l' + i(u)) = (1" * o(r)XI" + o(u))g =

= (I" * o(rvw))g = (1" * o(u))g = f(lu + i(v)Xlg + i(w))

as IO + i(w) is a monomorphism (cf. Propositions 16A4

above equality.

.  As vu""f  (x,z)  by lemma 16A2 there exists ieY a

( v j ) v = v w e d e d u c e

(1" + o(vi)X(lo + i(v)) = f(lo + i(v)).

*3.L> ,',uD - c = (3.B- 
aP >

and l3A5) we deduce the

(z,x) such that jv = lr. As

For h - (ta + o(j)X(tb + i(v)) € B(a + o(z),b + i(z)) we deduce (z,h) € FI(a'b) and

(lu + o(v))h = f(lb + i(v)) therefore (x,t) -S-+ (z,h). As B is a surflow from

(v,,v,) Po(lr, lr) we deduce applying Fo that ( lu + o(v),I" + o(v))VPo(la*o(z), la*o(z))

hence Iu + o(v) is an epimorphism. From

(1" + o(v))h(l' + i(w)) = f(Ib + i(vw)) = (lu * i(u))g = (lu + o(v)XI" + o(w))B

as I" + o(v) is an epimorphism we deduce h(lU * i(w)) = ( lu + o(w))e hence

(z,h) 3L'> (y,g).

Theorem 1684. ,ut = -g-, <J0- 
uD ) 1.3L '

Proof. As an inclusion is obvious we prove the other one. As tu", i  = d, CuJ *9

get from Proposition 1683 *u6 C 
j-t> uP 

I 43lL €3I- . At the beginning

of subsection 138 we Proved
a D  1 ! .  A s-"F = (--

we deduce

ryu.J C 5, 4*- j.l1+ a f . I f

Definition 1685. A representation F from

and reduced.

FI is said to be minimal i f  F is accessible

As F is minimal and F t"* G imply G is minimal the minimality is a propoerty

of the schemes.

a p



Lernma t686. If F is minimal and if F v-r F' then F -4> *g F"
ao

Proof. Using Theorem l5B4 there 
'exist 

Ft and F Z 
such that

F 3J; rr13g- Fz 3, nJf- F'. As F is reduced from F rf+ F, we deduce

ao 3A) e{' F" As F is accessible fromF-"oF l  there fore  F+> FZ

R tuF F, we deduce F *unF, therefo." F . aF 
r *3L Fr' tr l

Proposition 1687. If F and F' are minimal then F nzu5 F' implies F ..n F'.

proof. From Lemma 1685 we deduce F jg> p'"43-L F'. As F' is reduce we 8et

F', ̂ a: F' therefor" F u P > F'. As F' is accessible we get F ^uoa F'.

Proposition 1688. The scheme represented by (x,f) is minimal if and only if

(x,f) ,r,u, (x' , f ' )  implies 1x[ ( lx ' l  .

Proof. If (x,f) is minimal and if (x,f) rv 1 (x',f') we get (x,f) -9-L1 
"3L 

(x',f')' a 0

therefore lx l  <  lx '1 .

Conversely, suppose (x,f) nru5 (x', f ' )  implies 1xl( ix '1. to show (x,f) is accessible

and reduces we use the same proofs as in Proposit ions l3B8 and 1589.

l6C. A characterization of aud -equivalence

We assume the same hypotheses as in Section 168.

proposit ion l6Cl. ru"5 is the least aJ-functorial congruence relation in Fl such

that (XX), (TX) and (VX) hold.

proof. As MFS*,U is a funflow we deduce from Rem ark 9.7 ."J is a J-f unctoriai.

For the remainder we use Proposit ions 9.4 and 9.8.

?8
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l6D. A comment on iteration theories

Theorem 168l shows that a correct interpretation of un uf,-r.heme may be

given in a funflow. If we restrict the class of schemes to those over an S*-funflow

T satisfying:

(p) for every f cT(a,b + c) there exists fo€T(a,b + c + d) such that

(i) there exists ue Fnr(drc) with f = f 
o(lo 

+ (1., u)),

( i i )  for every g€T(a,b + c + d) and veSurr(c + d,c') such that

f"( lo + y) = g(lo + v) there exists v'€Fnr(c + drc + d) with vrv = v and

g = f o ( l ' + v ' )

then Theorem l5Bl may be made a bit stronger: a correct interpretation may be

given in al l  i teration theories.

As in the sequel we use a r ight i teration -t :  B(a,b + a) + B(a,b) we recall  some

computation rules. From ICSSSa] we know a bif low over an -algebraic theory is

equivalent to an algebraic theory where an iteration is defined and satisf ies some

axioms. Moreover i f  f  :  b-) c + a and g : a -) c + a then

(f,g.)fa = f( l . ,gt>.

If  H: T -+ B is an S*-bif low morphisrn and I is an interpretation of X in B with

respect to iH and oH then the behaviour of (x,f)EFl*.r(a,b) is

((I" + I(x))H(f))t i(x) = H{{lu + To1*;X)<lo,( l(x)H((T" + Io1*;X))t>.

An iteration S-sorted algebraic theory may be defined as a bif low over an

S-sorted algebraic theory satisf ying €sik's commutativity axiom

u(f( l .  * u))t = .*l(r;f(1. + ur),*l ,r, t t l .  + ur),. . . ,* l(t" i)f(1. + utal)>t

where  f  : b - r c+a ,  u€Sur r (a ,b )  and  u .eFnr (a ,a )  sa t i s f i es  u iu=u  fo r  eve ry

i  € [ iat] .  (we reca[ that r l  = tor+.. .+b,_, * toj  * to,* l  *. . .  *brb{ for every

j e ltbl].)
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Proposition l6Dl. Suppose Z is a one-ranked alphabet, i.e. i(f)€S for every

O €:, and T is an 5*-biflow over a strong acf-ssmc satisfying (p). Assume B is an

iteration S-sorted algebraic theory, H: T*l B is an S*-biflow morphism, and I is

an interpretation of E in B with respect to iH'and oH. If F and G in Fl 2,1(a,b) are

similar via a surjection v then F and G have the same behaviour in B.

Proo f .  Suppose  F=(x , ( f ' , f ) )  and  G=(y , (g ' , g ) )  where  x ry€Lx ,  f ' €T (a rb+ i ( x ) ) ,

f e T ( o ( x ) , b + i ( x ) ) ,  g ' e T ( a , b * i ( y ) )  a n d  g e T ( o ( y ) , b + i ( y ) ) .  A s s u m e

f = ( f y f Z , . . . , f l * l ) w h e r e f U c T ( o ( x U ) , b + i ( x ) )  f o r t < e [ l x t ] a n d g = < g y g 2 t . . . , g l y l )

where e,  e T(o(v.) ,  b + i (v))  for  je l tyt ] .

From F €u G where v6Sur, (x,y) we deduce

f'(l' + i(v)) = I' and f(l' + i(v)) = o(v)9.

With the above notation the last 6quali ty is equivalent to

fU(lO + i(v)) = Bulp; for al l  k e [txl] .

Our f irst aim is to prove the fol lowing statements

A) There ex is t  w Et* ,  ue Fnr(w,x)  and h.  e  T(o(V,) ,  b  + i (x  + w))

for j  € [ ly|]  such that:

l )  ( h 1 r h 2 , . . . , h i y l )  ( l o  +  i ( < I * , u ) v ) )  =  g  a n d

2) f.or every k €[lxl]  there exists tU€Fnr(i(x + w), i(x + w)) such that

tUi(( l*ru)v) = i(( lx,u)v) and ft * Ti(*) = hu(t 
)( lU 

+ tp).

As v  €Surr (x ,y)  there ex is ts  g €, Inr (v ,x)  such that  qv = Iy .

For  every je [ iv t ]  apply ing (p)  for  fq( j )€T(o(v, ) ,  b  + i (x) )  we get

t i  e r(o(v,), b + i(x) * cj) 
"nd 

uj e rnr(cj, i(*)) such that

f  -r ,r  = f  l ( t ,  *  <lr ,*r,  uj>).qu ,  J  D  l ( x / '  

:
Fo r  j e  [ i y t ]  we  deno te  * j  =  *u j ( t ) *u j ( z ) . . ' * r j ( t . j i ,  and  we  remark  i (w , )  =  c r  and
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u i rFn r (wr , x ) .  Le t  *  =  * l  +  w2+ . . .  * * t y l  and  u  =  <u l ,u2 r . . . ru lY l>eFnr (wrx ) .  .

For j€ ftIl we denote
a

hj = f ; ( lb+i(x)  + T. l* . . .* . j - l  *  I . i  *  T. i* l+. . .+cryl)

and we deduce

<hl,h2, .  . .  'h ly l>( lo + i ( ( l * ,u>v))  =

= <f  ; ( tb 
+ i (cx,ul)v)) ,  t i ( ro + i (<tx,u2>v)) , . . . , f ; t ( lb *  i (< l* ,u lv l>v)))  =

= (fq(l)(lb * i(u)), fq(2)(lo + i(v)), " ' ,fq(fyt)(lo + i(v))) =

= <8v(q( l ) ) ,8v(q(2)) , ' ' '  ,8v(q( lyt))> = <8y82, ' "  r81r,)  = g '

For every kG [lxl] as v(q(v(h))) = v(k) we deduce that

fq(u(t 
))(lu 

+ i(v)) = fk(lb + i(v)) hence

' 
f;k)(tb * i(<t*,uv(k)>u)) = 

Itu 
* T.u{x)XIu * i(<l*,uv(k)>u)).

Applying (pXii) there exists rue Fnr(i(*) *.u(k), i(x) +.v(k); such that

ful.l(ro 
] 

.u) = fk * T.u(k) und itcl*,uu(k))v) = rui((l*,uu(k)>u)'

Us ing  the  no ta t i on  c '  =  . r . 2  , . . . v ( k ) - l  and . "  -  . v ( k )+ l  . .  c l y l

we define

' t  = ( l i (*)*  c '*cu(k)+ 
f . , 'xrp + I . ,* . "XI i ,* ,*  tu(k)* t '

Therefore

+ Ia") '
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The proof of A) is finished.

Now, we apply €sik's commutativity axiom for

I(y)H(<h ,h2,... ,hlyt))€B(i(v), b + i(x + w)), H(i((l*,u)v))6Surr(i(x + w), i(y)) and

n(tU)€Fnr(i(x + w), i(x + w)) for k e [lxl] to obtain

H(i((l*,u)v))l l(v)r-r((l.r I,hz, .. .,hfylXIo + i((l*,u)v)))lf =

=<t( lqr;)H(hu(r)( lu + tr)) ,  .  . .  , l (vu1,*. ;)H(hu(t*t)( lu * t1*1)),  . .  .  >t =

= ( t (xr )H( f  
,  *  t , ( * ) ) , . . . , t (x , *g)" ( t t * l  *  T i ( * ) ) , . . . ;1

= < lk)H( f )  *  t , , rur , . . .  ) t  =  <( t (x)H( f ) ) t ' . .  ,  >

where in the last equality we used the next property of the iteration

(1" + ToXf *  To,g)t  = f t  for  f  :  a - ;c +.aand I  :  b -+c + a + b.

Therefore (I(x)H(f))t = H(i(v))[l(v)H(e)]t hence

H(f')<tb,(t(x)H(f))t> = H(f'( lb + i(v))xl6' (l(v)H(d)t) = H(g') <lo,(l(v)H(8))t>. If

Corollary L6DL An iteration S-sorted algebraic theory T which satisfies (p) is a

f unf low.

Proof. By Proposit ion l6A3 it  suff ices to show every af -morphism is functorial.

Suppose f €T(c,b + c), 86T(a,b + a), v€Surr(c,a) and f( lb + v) = v8'

We work in Flr*,1 build for i  = o = lS*. Note that (c,(TO + I., f)) € FI5*,1(.,b)

and (ar(TO + Iu,B)) C Flrx,1(u,b) f ulf i l l

(c,(TO + I.r f)) .-tv v(a,(TO + I",8)).

Applying Proposit ion l6Dl for H = I, and I(a) = Iu for every a G s* we get

(To + Ic)<Ib, ( l(cX)t> = (Tb * vXI5, ( l(a)g)t>

hence 1t = vgt. u
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Collecting all the above f acts v1's g€t the. following theorem.

Theorem 16D3. If T is an iteration theory fulfilling condition (p)' tnen Flz,T/-".I

is an iteration theory which is the coproduct of T and of the free iteration theory

generated by E. trl

Observation t6D4. The condition (P) holds in Pfnt.

proof. First note that (ii) holds if f 
o( 

!b + I.*6) is an injective partial function.

Such an f 
o 

obeying (i) may be obtained from f using the following procedure:

S t a r t  w i t h  f  
o  

: =  f .  F o r  i  : =  1 r . . .  r l c l d o

i f  l i e t ra f l f r ( i )  =  l b [+  i ]=  {n 'n2 , . . . , n r }  w i th  s  )  I  t hen

replacefo :  a +b * c + d by f r  :  a -1 b + c + d + (s- l )c,  def ined by

f  
i O . c + d l + t i f  j = n , a n d t G [ s -  l ]

f'(j) = 
{
I  + " t : \  n t l r a r r r r i ca
u. r j) otherwise'

Clearly there is an u €Fnr(d,c) such that f = f 
' ( lb 

+ (1.,u)). n

corollary 16D5. Fl zrpfrr./*"d 
ir the free iteration theory generated by E. rJ
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