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Abstract. An abstract flowchart scheme [CS87b] differs from a usual flowchart
scheme by the fact that the set of arrows which connect the atomic elements is
replaced with an element from an adequate abstract structure (called support
theory). Deterministic schemes, nondeterministic schemes or other kind of
digraph-like models are instances of abstract schemes obtained by using particular
support theories.

Such an abstract scheme is obtained from atomic schemes (variables) and trivial
schemes (elements of the underlying support theory) by using three operations:
sum, composition and feedback.

The aim of this paper is to present a general result on abstract flowchart
schemes and to apply it to the study of accessibility, reduction and minimization.
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0. Introduction

There is an increasing need to find some basic algebraic structures for
theoretical computer science. The present paper deals with the algebraization of
the theory of the flowchart schemes, as was initiated by Elgot in 1970.

Elgot was interested in getting an axiomatization for the input (step-by-step)
behaviour of the deterministic flowchart schemes [El75, El76a]. Roughly speaking,
two deterministic flowchart schemes have the same input behaviour if and only if
they unfold into the same (regular) tree [EBT78]. ‘An equivalent characterization is
the property that by deletion of the inaccessible vertices and by identification of

o

the vertices with the same behaviour both schemes reduce to the same minimal one
(E177, St87al.
In this setting two algebraic structures have been proposed, namely iteration

theories, defined in [BEWS80] and axiomatized in [Es®0], and strong iteration

theories [St87al. Iteration theories are weaker than strong iteration theories in the
sense that the implication scheme used in strong iteration theories (i.e. functorial
implication for functions) is replaced by an equation scheme. So itera’pion theories
are defined using only equations. Iteration theories have been obtained from the
analysis of regular trees (the first'charaterization of the input behaviour given
above), while strong iteration theories have appeared from the analysis of
minimization (the second characterization of the input behaviour).

In the nondeterministic case the problem of axiomatizing nondeterministic
flowchart schemes is closely related to the old problem of axiomatizing the
automata behaviour (i.e. the algebra of regular events). Elgot was aware about tﬁis.
Indeed, the first algebra for flowchart schemes proposed by Elgot in [EL75], i.e.
iterative theory, uses an implication scheme (unique solution of the equation
% = I’<x,1p> for éach ideal morphism f) which may be viewed as a variant of the
implication scheme used in Salomaa's axiomatization (unique solution of the
equation X = AX + B for A satisfying the empty word property). So it is natural to

develop an algebra for nondeterministic flowchart schemes using Kleene's
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operations: union, composition and repetition. Such an algebra is proposed in
[St&7b].

In 1986 one of us introduced a new looping operation called feedback [St86a, -
St86b] and in a series of papers [CS87b, CS89a, CS87a, CS88b, C333a, CS89b] we
have tryed to develop the theory of flowchart schmes and their behaviours in the
new setting:  sum-composition-feedback. The framework of this theory is
presented in [CS87b].

The basic algebra, called biflow, gives a complete axiomatization of flowchart
schemes [St86b, Ba87, CS87a, CS88bl. A biflow is a symmetric strict monoidal
category [ML71] endowed with a feedback operation fulfilling some natural axioms.

The aim of the present paper is to extend the above result in order to obtain a
complete axiomatization for accessible, reduced and minimal schemes (with
respect to the input-behaviour), using the general result on abstract flowchart
schemes obtained in the first part of the paper.

The ﬁotion of abstract flowchart scheme we use was introduced by CH¥zdnescu
and Ungureanu in [CUS82] (and developed in [CG84, St87a, St87b, CS87b]), where we
replaced the set of arrows which connect the vertices by an element from an
adequate algebraic structure.

Beside the simplicity of the biflow structure one further benefit of the
sum-composition-feedback setting is the simplification of the study of
minimization with respect to the input behaviour. More precisely, this setting
allows to separate the study of accessibility from the study of reduction (i.e.
identification of the vertices with the same behaviour). Moreover, it turns out that
accessibility and reduction are dual phenomena and both follow from a common
general study presented here. This duality is analogous to the well-known duality
between "reachability" and "observability" which has been noticed in system theory
(see, for example [AM75)).

Finally we mention that the general study reported here may be applied (with
‘slight variations) to other classes of flowchart schemes, e.g. to input-output

minimal schemes.



1. Preiminaries

To make the reading easier we recall some things from our previous papers.

The objects of the categories we use form a monoid that we denote by
(Ob(B), + ,e) for each category B. If a ¢ Ob(B) then Ia denote the identity morphism
of a. The composite of f & B(a,b) and g ¢ B(b,c) is denoted by f-g or by fg.

The additional operations we use are:

a) sum _+_: B(a,b) X B(c,d) ~» B(a +c, b + d),
b) block traspositions axbe B(a + b, b + a),
c) right feedback _ __/ra : B(b + a, ¢ + a) =y B(b,c).

The axioms for this operation are given in Table 1. Bl-2 are the usual axioms
for the categories.
When only the sum is used as an additional operation and the axioms B1-6 hold

then the algebraic structure is called strict monoidal category (smc, for short)

[ML71, Ma76]. The nonpermutable smc (nsmc, for short) [CS8%a] is a weaker

concept as the axiom Bé is required to hold only if g or u is an identity. The
magmoids [AD78] are smc having the additive monoid of nonnegative integer as

monoid of objects.

®B1)  Ggh = i(gh) (B2) 1f=f=fl

(B3) f+g+h=1f+(g+h) (BY) Ie+f=f=f+le

(B5) Ia + Ib = Ia+b (B6) (f+g)u+v)=1fu + gv
a buc asb A a0

(B7) X =("X" + IC)(Ib dr ) (R8) “X~ = Ia

(B9) CXa(u+g)bXd:g+u for uray-yb and gsesded

(B10)  £(g4Hh=((F + 1 )glh + Ia))q‘a ®11) f+gt=G+1
(®12) ({04 + ) = (@, « g)f)Tb for f:c+a-»d+b and g:b.—a

@i PP EIT 1 BB oL

Table 1. These axioms define a biflow.
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When the sum and the block transpositions are used as additional operations and

axioms B1-9 hold then the algebraic structure is called symmetric smc (ssmc, for

short) [ML71, Ma76). The symmetric nsmc (snsmc, for short) [CS89a] is a weaker

concept as axioms B6 and B9 are required to hold only if g or u is a block
transposition (by B8 the identities are block transpositions). In an snsmc an
ax -morphisms is a composite of morphisms of the type Ia + bXC + Id' In an snsmc
if u or g are a -morphisms then B6 and B9 hold.

vThe ssmc concept is the basic algebraic structure to study acyclic flowchart
schemes. To study flowchart schemes we use feedback to model loops.

A flow [CS87a]is an sngmc having a feedba¢l< satisfying axioms B10-11, B13-15
and axiom B12 whenever g is a block transposition. A biflow [CS&8b] is a flow over
an ssmc. In a biflow B12 holds. The biflow concept is our basic algebraic structure
to study flowchart schemes.

As sometimes we prefer to use in a flow the left feedback

’(‘a_: B(a + b, a + c)~» B(b,c) instead of the right feedback, we recall that
221 = Cx32X)4® for fra+b —>a+c

The above algebraic structures form categories where the morphisms are
functors that are monoid morphisms on objects and that preserve the additional
algebraic structure. Sometimes we are interested in certain subcategories, namely
where the monoid M of objects is kept fixed in the above algebraic structures (call
them : M-smc, M-nsmc, M-ssmc, M-snsmc, M-flow, M-biflow) and where the
morphisms are object 'preserving functors (call them : M-smc morphism,. ..
...,M-biflow morphism). These subcategories are varieties in the sense of the
many-sorted universal algebra.

For a nonnegative integer n we use the notation [n] = {1, 25 sy

The biflow RelS of the finite S-sorted relations is used to build
nondeterministic  flowchart schemes. A word a€S* is written as
a=ay +ayte. +a'a; where laj is its length and a; are its letters. For a,b €S* by

-
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Relg(a,b) = {1 € iall ¥ b1 i,j) € £ implies a, = bj}.
The operations in RelS are:
fg = {6,| (3G eE and G € g},
I ={G,0}ielial},
f+g=f0{0at+1,1bl+ ]G €g) wheref:a —2b,
3P - {G,ibl + D) i eliad} U {al + i) |ielbil},
fors¢Sandfe Rels(a +S,b+s)
£9° = { (,) | G,j) €1 or [GIbl + 1) & £ and (ial + L,j) €]}

In this case ,ra is defined by induction using f’{‘}\ = f (where A is the empty word)

and B13 in Table 1. Other notation is
T, =®eRel(d,a), V, =1 Ulal+iDl]i e[lat]} € Relg(a + a,a),
1% = the Rels(a,k), I\a - IaU {G,jal + i)‘i e[[al]& eRelS(a,a £al

There are some interesting subbiflows of Rels. The biflow ans of the f{inite
S-sorted partial functions is used to build (deterministic) flowchart schemes. Bis is
the biflow of the finite S-sorted bijections and InS is the biflow of the {finite
S-sorted injections. The ssmc SurS of the finite S-sorted surjections and the ssmc
FnS of the finite S-sorted functions are not subbiflows as they are not closed under
feedback. When S is a singleton, we drop the subscript S and we identify S* to the
additive monoid of the nonnegative integers.

Passing to flowchart schemes, we explain once again our viewpoint. As atomic
flowchart schemes we use a set 3 of statements. Two functions i : L —> N and
0:3 —3 N show for each statement x, the number i(x) of its inputs and the number
o(x) of its output. A (partial) finite function f:[n] - [m] is thought as a very
simple flowchart scheme having n inputs and m outputs, without statements and

such that the flow control go from the input j to the output k if and only if (j,k) € {.

o i Y ARl U s 4
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Figure 1.

The operation used to build flowchart schemes are composition, sum and
feedback (see Figure 1). Every flowchart scheme is isomorphic to a scheme In a

normal form (see Figure 2) where X eg” is

thought as the sum of its letters and f is a i
(partial) function. Therefore a scheme with n b
inputs and m outputs may be represented as a E )

2e
pair (x,f), where X & Z* and v lﬁﬂ
f:n+ o)) = [m+ i(x)]. Here i and o are the \ ﬁ
unique monoid morphisms Lo: 3 —> (N,+,0) | l/ ,L_,_.)
which extend the given functions i and o. The ’ o
»normal form of a flowchart scheme is not unique :
as the letters of x may be permuted. Figure 2.

To define theloperations for scheme representations we use the formulas (1.1),
(1.2) and (1.3) below. To obtain the right hand sides we put in a normal form the
result of the operations from Figure ] made using the schemes representated by
the pairs in the left hand sides. Look more careful to (1.3). The right hand side may
have no sense if { is a function. This formula has sense if f is a partial function.
Working with partial functions instead of functions we pass from schemes to partial

schemes. We think it is better to work with partial schemes instead of schemes
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having a loop vertex | as for example in [BE85, Ba87]. The same idea was used to
replace the total trees using a distinguished nullary operation by the partial trees.
Remark that the partial functions as well as the partial flowchart schemes form a
biflow [CS88b].

Passing to nondeterministic flowchart schemes, remark that they may be
represented by pairs, too: the pair (x,f) represents a nondeterministic flowchart
scheme with n inputs and m outputs if and only if xe T and
feRel(n + o(x), m + i(x)). The formulas used to define operations (l.1), (1.2) and
(1.3) are the same as in the deterministic case.

Remark that in the definition of the operations for scheme representations we

use only biflow operations. All these remarks lead to a natural idea: replace f in a

scheme representation (x,f) by a morphism from an N-biflow. Using this natural -

idea we unify the study of the deterministic flowchart schemes and the study of

the nondeterministic flowchart schemes.

We prefer to work more abstract as you may see in the following definitions.

Assume B is an ssmc and (X,+,€) is a monoid. Let i:X-—>Ob(B) and
0 : X —» Ob(B) be two monoid morphisms.

For a,b € Ob(B) we say the pair (x,f) represents a flowchart scheme (see Figure
2) with input a and output b if x€X and fe&B(a + o(x), b+ i(x)). The mbrphism f
which in the usual cases gives all the arrows of the scheme will be called
connection. Let FIX’B(a,b) be the set of all flowchart scheme representations with
input a and output b. If there is no danger of confusion we omit the subscripfs X

and B in le B’ The operations in Fl are defined as follows.
If (x,f) € Fl(a,b) and (y,g)e Fl(b,c) then
i(x)y,0(y) i(y)y i(x)
(LD oDy = Gy, (o I ) + idyoylyg Ll + 7 X
' Ia =(¢g ,Ia) for every object a of B.

If (x,f) € Fl(a,b) and (y,g) ¢ Fl(c,d) then

(x) (%) d

(1.2) (X,f) ue (y,g) = (X + Y, (Ia iy CXO + Io(y))(f + g)(Ib + X+ Il(y))).




aXb =(g, aXb) for every a and b objects of B.

Endowed with the above operations Fl becomes an snsmc.

In an nsmc C, the set of its morphisms Mor(C) is a monoid having the sum as
operation. To embed X in Fl we define the monoid morphism E, : X —» Mor(F1) by
Ex(x): (x, i(X)XO(X)). To embed B in Fl we define the Ob(B)-snsmc morphism

E, : B — Fl by EB(f) = (£,f) for every morphism f of B.

B
Using these embedings we may identify X and B with subsets of Fl.

If B is a biflow we define the feedback for (x,f)€ Fl(b + a, c + a) by

(1.3) (4% = Gl + O¥x31 0+ X7,

Therefore Fl becomes a flow and E, an Ob(B)-flow morphism.

In [CS88b] we have shown that the biflow of the flowchart schemes with
statements from the monoid X and connections from the biflow .B denoted by
FSX,B may be obtained by the factorization of Fl to the least flow congruence

relation containing all the pairs

5,8 ¢ S8 ([ y)o(x)xo(y)’ i(X)Xi(y)(y + X)) where x,y € X.

From the computer science viewpoint our generalization (connections from an
arbitrary biflow instead of Pfn or Rel) has another signifiquence beside the
unification of the determinism and of the nondeterminism in the study of

flowcharts, namely the unification of the syntax and of the semantics. This

affirmation is motivated as follows: in [CS87a, CS88b] we have shown that the
basic semantic model in the deterministic case and the basic semantic model in the
nondeterministic casé [CS87b, section 2] are biflows.

From an algebraic viewpoint our generalization has another signifiquence : the
algebra of the flowchart schemes may be developed in the same way as the algebra
of the polynomials. The theorems in [CS88b] have been made having in mind this

idea.

RIS PRI Lo SO
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2. The role of functoriality rule in flowchart scheme theories

Let us consider AFS % Pfn (resp. FSZ,an), the theory of deterministic acyclic
(resp. cyclic) Z-schemes over Pfn; these schemes are precisely those built up from
atomic schemes in the double ranked set T and trivial schemes in Pfn using the
operations of separated sum " and composition "" (resp. separated sum,
composition and feedback "/r"). Let us consider ;che following rules of
identification:

(TX) Tm-x = Tn’ for x € Z (m,n);
(VX) VX = (x+x)'Vn, for x € 2 (m,n);
( X) 1" =j_m, for x ¢ ¥ (m,n).

In AFS 5 Pin some natural equivelence relations are precisely captured by the
Jeast congruence relations generated by subsets of rules in {TX, VX, .LX} For
example, the least congruence relation Eap generated by the identifications (TX)
precisely capture accessibility, i.e. two acyclic schemes F and F' are
‘:‘a -equivalent iff F and F' have the same accessible part. Do analogous results

works for cyclic schemes? The answer is "not". The following example may help the

reader to understand why.

Example 2.1 (schemes over In and one biscalar variable). Suppose @(1,1) =ix}and
@ (m,n) = @ othervise.

Every scheme in AFSG (m,n) may be represented as
k.

p r.
% Tp- 2% "¢, where ce In(m+p,n), k;>0 and r.l_>_1
1 i=1

™3

(

-
1

(by convention s Il)’ hence it is uniquely determinated by the injection ¢ and the
pair (kl""’km; ri,...,rp) of sequences of natural numbers. If Ea‘bdenotes the least
congruence relation (with respect. to sum and composition) generated by the

identifications (TX), then

44




two schemes F and F' represented by ¢ and (kl,...,km; rl,...,rp), and by c¢' and
(k‘l,...,k:,n; r'l,...,r'p,), respectively are Eap—equivalent iff k.1 = k‘i, Vvie[m] and
- o~
(Im+TP)'C = (Im+Tp,) e
That is F and F' are Eap—equivalent iff F and F' have the same accessible part .

Every scheme in FS 0 In(m,n) may be represented as
b

RN A R S
(37 x + TP-Z_ x ‘pc+9 {x ) 5 where c & In(m+p,n), kiZO, ri_>_l, s;21
i=1 i=1 i=1 :

hence it is uniduely determinated by the injection ¢ and the triple
(kl,...,km; rl,...,rpg Sl""’sq) of sequences of natural num‘bers. 1f w’ap denoted the
Jeast congruence relation (with respect to sum, composition and feedback)
generated by the identifications (TX), then
two schemes F and F' represented by ¢ and (kl,...,km; rl,...,rp; Sl""’sq)’ and by
c' and (k'l,...,k‘m; r‘l,...,r'p,; s'l,...,s'q,), respectively are -,'ya(s-equivalent iff ki =K'y
Vie[m), (Im+Tp)'c = (Im+TP,)~c‘, q=q and there exists a bijection b € Bi(q,q")
— <! 1
such that s, = s}y vielql

That is F and F' are 2 -equivalent iff F and F' have the same accessible part and

the same (inaccessible) cycles. Hence 2, does not capture accessibility. 1

The reason for the answer "not" above is the imposibility of using the
identifications given by (TX), (VX), and (£ X) in cycles. Consequently the least
congruence relation generated by certain such identifications is too strong, Le. it
identifies too few schemes.

To overcome this difficulty we combine the identifications (TX), (VX), and (1.X)
with an additional identification rule, called functoriality rule, which allows us to
use these identifications in cycles. The rule is defined as follows. We say a relation

= on a biflow B fulfills (func : y) foray eB(p,g)or ye B(p,q) is =-functorial if
(func : y) f-(1n+y) = (Im+y)-g ==> 4P = gq»q for all f:m+p .y n+p and g:m+q3Nn+q

holds. If E is a subset of morphisms of a biflow B, we say = fulfills (func : E) if =

o b S e %~ Y SN T

0
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fulfills (func : y) for all y in E. Finally, we say a biflow B satisfies the functoriality
axiom (func : E) if the equality relation on B fulfills (func : E).

In FSZ,an some natural equivalence relations, corresponding to those for
acyclic schemes, are precisely captured by the least congruence relations
genearted by subsets of {TX, VX,_LX} in the class of congruence relations
satisfying (func: E) for an adequate E included in Pfn. (Since the ciass of
congruencé relations satisfying (func : E) is nonempty and closed with respect to
intersection such a congruence relation does exists, namely it is the intersection of
all relations in this class.) For example, the. least congruence relation Vné
generated by the identifications (TX) in the class of congruence relations satisfying
(func : In) precisely captures accessibility, i.e. two cyclic schemes F and F' are
ay -equivalent iff F and F' have thé same accessible part.

In conclusion using the functoriality rule to restrict the class of congruence
relations used for generating we get weaker congruence relations (i.e. they

identify more schemes) which correspond to some naturally introducing ones.

Example 2.1 (continued). Consider three schemes F, F' and F" in FSG In(m,n)
b

represented by ¢ and (kl""’km; rl,...,rp; sl,...,sq), by (Im+TP)-C and

(kl,...,km;r; Sl""’sq)’- and by (Im+Tp)-c and (kl,...,km;r;r), respectively, where r is

1 H =y )
the empty sequence. Clearly F;:’,a F'. Since F(In+Tq) %, (Im+Tq)G where

P P
G €FS G’In(m+q,n+q) is the scheme represented by (Im+Tp)c + Iq and
(kl""’km’sl’"

F"’i’o Nap G?‘q = F!, hence FNaP‘ F". Consequently the difficulty is overcame: a

. scheme is Nalx—equivalent to its accessible part. I
3. Enriched symmetric strict monoidal categories

In a previous paper [CS89a] we have given characterizations for certain classes

of finite relations as initial abstract data types. These classes, denoted xy-Rel for

.,sq;r;r), - by - the fonctoriality  rule (func:In)  we  get.




xe{a,b,c,d} and ye{o(,P,X’,J} correspond to some natural classes of relations, e.g;
ao(-Rél = bijections, aﬁ—Rel = injections, ax’-Rel = surjections, ad-Rel = functions,
b(&-Rel = partially defined injections, bS-Rel = partially defined fun‘ctions, etc. (see
Table 6 in Section 11). The characterization involves the concept of an xy—ssr;nc,
defined below.

Suppose we are given an ssmc (B,*,1,+,X), where the monoid of the objects of the
underlying category is (Ob(B),+,e). We enrich the ssmc-structure with some
constants (zero-ary operations)

T_EBle,a) 12eBlae)

V. € B(a+a,a) /\ac«_’ Bla,a+a)
for a€ Ob(B). Now we define an xy-ssmc, for xe{a,b,c,d} and ye¢ 510(',[5,5”,‘5} as an
ssmc enriched with the Coﬁstants cvorresponding to xy specified in Table 2 and
fulfilling all the axioms in Table 3 in which these and only these constants appear.
For example, a cS—ssmc is defined as an ssmc enriched with the constants /\a, Ta’
and Va and fulfilling the axioms A, A°, B, B°, C, D°, F, G, SVI1-4, and SV3°-4°,

The acyclic algebra SCO of Bloom and Esik in [BE85] (completed with the
axiomatization [CS89a] of finite, partially defined functions) is equivalent with a
b&-ssmec.

A morphism of an xy-ssmc B is called an xy-base morphism (or shortly, xy-

—morghism) if it is the evaluation in B of a term written with "+", "", I, X, and the
constants in T,V,L,A corresponding to xy.

The xy-base morphisms of an xy-ssmc B form the least sub-xy-ssmc of B which
we denote in the sequel by Bxy' Due to the axioms that define ssmc-ies we get the

following equivalent characterization.
Observation 3.1. A morphism is xy-base if and only if it is a'composite of
morphisms of type Ia+g+lb, where g is CXd or a constant in {TC,VC, J_C, /\C}

corresponding to xy (acorrding to Table 2). 1O

The motivation we have given in Section 2 shows that we have to consider the

Ah




x| operations

a| nothing
b

c A2

d| 1% and I\a

y } operations

& | nothing

Bl T,
Y| v,

{
C Ta and Va

Table 2. Operations for xy-ssmc

A)(va+1a)va=(1a+va)va
BY Oy
a a
a a 4 a
. d a a
D)Va-J_ =15+ i

a
ELT: A0

I | a
A°) N(AN +Ia): /\(Ia+

Bo) /\a. axa : /\a

oy Ad( 2 -
CCON(L +1) =1

o e a_
D )Ta A “Ta+Ta

A

G) /\ . V :I
SV T_ =1,
V)T =T+ T,
SV3)V =1
e e

b
Sv4) Va+b & (Ia +

4
Xy Ib)(Va 4 Vb) :

svie) 6= I,
SVZO) “-La-'-b 2 f - lb
sv3e) AS = ke

svuey ARR L (a2 /\b)(xa =

Table 3. Axioms for xy-ssmc

a

X

b

+1

B

ST) Taf = Tb

SV) (f + f)Vb = Vaf

S B =2
SA) NB(E + £) = £ AP

Table 4. Axioms for strong xy-ssmc (f : a-=»b)
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stronger axioms in Table 4. They are stronger in the following sense: in an arbitrary
xy-ssmc only their restrictions to the case when f is an xy-morphism hold.

Let us consider the order <L on {a,b,c,d} given by a<b<d, a<c<d, “1(b < c)
and “(c <b), and similarly <. for Greek letters in {a',f},t,é'}. We define an

x'y'-strong_xy-ssmc, for x' SL x and y' SG y, as an xy-ssmc in which all the axioms

in Table & corresponding to x'y' hold. A strong Xy-ssmc is by definiton an xy-strong

xy-ssmc. For example, in order to define a cy-strong cd-ssmc one have to add the
axioms (SV) and (SA) to the axioms that define a cé-ssmec.
There are very important instances of strong xy-ssmc-ies. The concept of a

strong a§-ssmc coincides with the concept of an algebraic theory -- in the sense of

Lawvere —- used by Elgot, ADJ-group, etc (see [BTW85], for example). The concept

of a strong d§-ssmc coincides with the concept of an idempotent matrix theory

introduced by Elgot [E176ébJ; if the- monoid of the objects is equal to the additive
monoid of the nonnegative integers this concept is equivalent with the concept of a
theory of matrices over an idempotent semiring.

To be more exact, the above coincidences is with the extensions of the usual
concept of algebraic theory and (idempotent) matrix theory, respectively to the
case when the objects of the underlying category form an arbitrary monoid. This

extension is defined in [CS89al. Note that the concept of a matrix_theory is

equivalent to an ssmc which is a strong ad-ssmc and a strong d«-ssmc, too. Since
D, D°, E, and F follow from ST, SV, SL, and S\ it follows that in a matrix theory
all the axioms in Tables 3 and 4 hold, with only one possible exception: the axiom

G. The axiom G holds iff the matrix theory is idempotent.

H(® = 1@
H(AY) = AH®

H(Ta) = TH(a)

H(Va) a VH(a)

Table 5. Conditions for xy-ssmc morphisms.

An xy-ssmc morphism is an ssmc-morphism fulfilling all the conditions in Table
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5 corresponding to the restriction xy. Note that an xy-ssmc morphism maps an
xy-morphism to an xy-morphism. |

Sometimes we are interested to keep fixed the monoid of the objects of the
underlying categories of xy-ssmc-ies. Let M be a monoid. An M-xy-ssmc is an

xy-ssmc B such that Ob(B) = M. An M-xy-ssmc morphism H is an xy-ssmc morphism

that preserves the objects, i.e. H(a) = a, for every a ¢ M.

Proposition 3.2. If H:B—»B is an M-xy-ssmc morphism then for every

xy-morphism f' in B' there exists an xy-morphism f in B such that Bty = 11

We don't know even if the restriction of H on objects is surjective if this
proposition is valid when H is only an xy-ssmc morphism. Perhaps adding some

hypotheses such a result may be obtained.

Proposition 3.3. Suppose x & {b,d} and B is an xy-ssmc. All the morphisms f € B(a,b)

satisfying f Lb = j_a form a sub-xy-ssmc of B.

Proposition 3.4. Suppose xeledy and B Is aD . Xy=S8MC All the morphisms

f € B(a,b) satisfying £ /\b = /\a(f + f) form a sub-xy-ssmc of B.

Proposition 3.5. Suppose ye{{},,&} and B is an xy-ssmc. All the morphisms

f € B(a,b) satisfying Taf = Tb form a sub-xy-ssmc of B.

Proposition 3.6. Suppose Y& iy,&1 and B is an xy-ssmc. All the morphisms
22 P Ye ¥l

f ¢ B(a,b) satistying V_f = (f + f)Vb form a sub-xy-ssmc of B.

Theorem 3.7. 1f B is an xy-ssmc then the category of its xy-morphisms Bxy is a

strong xy-ssmc.
4. Simulation

In Section 2 we have shown that the local conditions (TX), (VX), or (1X) are not

enough to generate useful equivalence relations. In order to do so one have to use

13 |




also certain global rules, for example functoriality. The combination of
functoriality with the above local conditions leads to certain equivalence relations
which may, perhaps more directly, be introduced by using simulaton.

The using of simulation by bijective, injective, or surjective functions had
become a standard way to define morphisms of automata, or graphs; see [Ho69],
[Go74], [TWW79], for example. In the theory of multi-input/multi-output flowchart
schemes the simulation by functions was used by Elgot in [E177] to study the
complete minimization. In our theory of flowchart schemes we have defined and
studied simulation by bijective functions in [CG84], by surjective functions in
[St87a, version 1984], by injective functions in [St87a version 1985), and by
arbitrary relations in [St87b version 1985]; see also [St86al, [St86b], [St87al,
[St87b], [CS87b], [CS88b]. This study of simulation has led to an abstract setting
for the definition of simulaton, introduced in [CS88b]. Namely, since an ssmc
structure may naturally be defined on the relations used to define simulaton, we

may be more abstract and define simulation via morphisms in an arbitrary ssmc.

Definition &.1. Let Y, B be two ssmc-ies, 1,0 : Y - B two ssmc morphisms, and (e, £

(y,g) two pairs in FlOb(Y),B(a’b)' We say (x,f) and (y,g) are similar via u ¢ Y (x,y),

and write (x,f) -, (y,g), if
(s) f'(1b+i(u)) = (Ia+o(u))'g.
The relation (x,f) -7y (y,g) means (x,f) —-7j (y,g) for some je& Y(xy). The relation

>y is called simulation via Y-morphisms. I

Example &4.2. Let us consider the partial schemes obtained using atomic schemes in
a double ranked set I, i.e. the schemes represented by pairs in Fl £ pin’ Suppose
also the functions i,0:¥ —»N, specifying the input and the output number,
respectively are given.

Simulation via bijections. It is proved in [CS89a] that there is a unique ssmC
morphism i: Big—y Pin (resp. o: Biz—7 Pfn) which acts on § as the given function i

(resp. o). Given two pairs (x,1) and (y,g) in Fl & an(a,b) it is shown in [CS88b] that
9
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(x,f) and (y,g) represent isomorphic flowchart schemes iff there exists ué Biz(x,y)
such that f(Ib+i(u)) = (Ia+o(u))g. In this case we say that (x,f) and (y,g) are similar
via the bijection u. One may easily see that this definition of simulation via a
bijection is a particular case of Definition 4.1, namely when Y = Bi =

Simulation via injections. It is proved in [CS89a] that there is a unique ap-ssmc
morphism i: Ini—“:an (resp. o: In)._—-i Pfn) which acts on ¥ as the given function i
(resp. o). Given two pairs (x,f) and (y,g) in Flf’an(a,b) it is proved in Section 13
that the scheme represented by (x,f) is isomorphic to a subscheme of the scheme
represented by (y,g) iff there exists uélni(x,y) such that f(Ib+i(u)) = (Ia+o(u))g.
[Here by "subscheme" we understand that there is no arrow from an input or from a
vertex in the subscheme to a statement which is not'in the subscheme.] In this case
we say that (x,1) and (y,g) are similar via the injection u. One may easily see that
this definition of simulation via an injections is a particular case of Definition 4.1,
namely when Y = Inz_. 350

Let us turn to the abstract setting. Suppose i,0:Y~$ B are two ssmc morphisms.
We denote by v the converse of Py and by Ny the least equivalence relation
including ——>Y. Note that Ny is the transitive closure' of _—>Y U Y{—- , l.e.
Wy = (~—‘7Y U )+.,

To simplify the notation we denote the monoid Ob(Y) by X and we shall
sometime write Fl (resp. ~» , resp.a) instead of FIX,B (resp. —>ys resp. NY).

The following two results are proved in [CS88b].

Lemma #4.3. The simulation relation P is a preorder which is compatible to
summation and composition. The generated equivalence vy, may be written as
NY = (_-)Y o Yé—' ) = (Y<——-o~7Y)+. Finally, the relation Ny is also the least
congruence relation including -y i.e. it is compatible to summation and

composition. I

Consequently, summation and composition make sense in Fl/my, the quotient of

ek M A  AINL er
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Fl by Ny Let FB

EB:B -Fl, with the factorization morphism from Fl to Fl/rvy.

B -)-FI/NY be the composite of the embeddeing of B in Fl, i.e.

Proposition 4.4. The quotient Fl/mfY is an ssmc and FB is an ssmc morphism. [

We try to find an algebraic structure such that:

(i) it have sufficient properties (including the validity of the strong axioms in
Table & and functoriality) in order to make possible the study of the classes of
flowchart schemes we are interested in;

(ii) the structure is preserved by passing from B to Fl/w.

The strong axioms extend simply to Fl/x, but for the extension of functoriality
from B to Fl/a we need some technical conditions. The additional conditions are

chosen in such a way to be preserved by the passing from B to Fl/~, too.

Proposition 4.5. If B is an xy-ssmc, then Fl/.-vY is an xy-ssmc and FB is an xy-ssmc

morphism.

Proof. It is enough to see that:

a

- if certain operations from Ta, Va’ 1o or A2 are in B, then by E_ they are

B
embedded in Fl;

- if certain axioms in Table 3 are satisfied in B, then they hold in Fl, too. Il

Proposition 4.6. Let i,0:Y - B be two xy-ssmc morphisms. If B is a strong xy-ssmc,

then Fl/;vY is a strong xy-ssmc.

Proof. (a) Axiom (ST) is preserved (case ye{(b,é}): First note that B(e,a) :{Ta}.

Indeed, if f €B(e,a), then f = Ie-f = Te-f = Ta’

If (x,f)€ Fl(e,a), then (E,Ta)—> (x,f). Indeed, Ta(1a+i(TX)):T

T a+i(x) ~

X
T . of = (1_+o(T_))»f. Consequently, (x,f)~ (&,T ) for every (x,f)¢ Fl(e,a), hence
o(x) e X a

do




axiom (ST) holds in Fl/a .
(b) Axiom (S.L) is preserved (case x & {b,d}: Dual to (a).
(c) Axiom (SV) is preserved (case ye{x’,é'}): Suppose (x,f) € Fl(a,b). Note that

((x,£) + (%, )V = (x+x, g), where g = (Ia+aX°(X)+Io(x))(f+f)(Ib+i(x)Xb+I.

We show that ((x,f) + (x,f))~Vb -)V Va-(x,f) holds. Indeed,
X

3 ao(x) ayolx)
g(Ib+1(Vx)) = (Ia+ X +Io(x))(f+f)vb+i(x) = (Ia+ X +Io(x

))v

a+o(x)f

= (Ia +a+°(vx))[(va+l ))f].

o(x

(d) Axiom (SA) is preserved (case x €{c,d}): Dual to (c). I
5. Extending functoriality from connections to schemes

In this section we suppose moreover B is a biflow. We recall some results from
[CS87a, CS&8b). The simulation relation —> is compatible to the feedback,

therefore vy is the least flow congruence relation including —Pye
Proposition 5.1. The quotient Fl/rvY is an biflow and FB is a biflow morphism. I

We give in this section some conditions which assure the extension of
functoriality from B to Fl,, /w,, where X = Ob(Y).
XBY
As we already defined, a morphism j:a—»b in a flow B is called functorial if

B ) = (kg ==> 147 = gp°

for every f &€ B(c+a,d+a) and g€B(c+b,d+b).

Note that a morphism j:a < b in a flow B is functorial iff
. : a b
f'(]+1d) = (j+IC)'g ==> T f= T g

for every f € B(a+c,a+d) and gé B(b+c,b+d).

Lemma 5.2 (=> preserve functoriallity). If j:a-»b is functorial in B, then j is

160"V Hitxex)”
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—> -functorial jn FlX,B; that is
(i . s b
(@) F (]+Id) - ()+IC)'G ==> 1°F o i alle
: . L b a
(b) (]+IC) =2 F (]+Id) Loy e -, 12F

for every Fe FllX’B(a+c,a+'d) and Gé€ FlX,B(b+c,b+d).

Proof. a) Suppose F =(x,f) and G=(y,g. The simulation shows that
[£G+1 1, N0, i) = (1, , FOMWGH T el Consequently,
[0, )]G+ d+i(y)) = (j+Ic+o(x))[(lb+c+o(u))g]. Since j is functorial in B it follows
that 21 () =1, +olug), hence (120(14+i() = ([ sol(e7g).  This

means 1°F >, ’(‘bG.

b) Similar. I

Theorem 5.3. Suppose j € B(a,b). The implication
j functorial in B ==> j functorial in FIX’B/IVY
is valid provided that the following two conditions are fulfilled:

(Cl) w~v o0 =

Yy Y
(C2)F =¥ G(j+Id) ==> (3 H) such-that F = H(j+Id) and H —, G
for all c,d objects in B, F:a+c & b+d, G:a+c- a+d morphisms in le B and
9

u morphism in Y.

Proof. Assume F ¢ FlX’B(a+c,a+d), G GFlX,B(b+c,b+d) and F(j+Id) s (j+IC)G. By (C1)

this means F(j+Id) & H— (j+IC)G_for a certain pair H. Applying (C2) to the left :

simulation we get a pair H' such that H = H‘(j+Id) and F —» H', hence TaF - ’{’aH'.
The right simulation may be written as H'(j+Id) — (j+IC)G, hence by Lemma 5.1.a

we get TaH' — TbG. It follows that 2°F —0 =5 'i‘bG, hence TaF ~ *’{*bG. 1

This easily proved theorem leads to the following problem: For a given Y find
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"reasonable" conditions on B with respect to Y such that the conditions in this

theorem hold.
6. Technical conditions
In this section we give certain conditions on B with respect to Y such that

conditions (C1) and (C2) in Theorem 5.2 hold.

We say a pair (j',k") of morphisms j'¢ B(a‘,al) and k'e B(a',az) of a category B is a

weak pullback of the pair (j,k) of morphisms j¢& B(al,a) and k € B(az,a), and write
(j',k" Wpb (j,k),

if j'j = k'k and if for every object beOb(B) and morphisms féB(b,al) and geB(b,az)
such that fj = gk there exists a morphism h € B(b,a') such that hj' = f and hk' = g.
The adjective "weak" referes to the fact that we do not require uniqueness of h

as in the analogous definition of pullbacks.

Analysis of Condition (Cl) in Theorem 5.2. Suppose i:Y —» B is an ssmc

morphism. We say B fulfills the wpb-condition (weak pullback condition) with

respect to Y and i if for every morphisms u (;Y(xl,x) and Vg Y(xz,x) there exist an
object x'€ Ob(Y) and two morphisms u' C-Y(x',xl) and v'¢ Y(x',xz) such that
| (bl) vu=v'v and
(b2) (Ia+i(u'), Ia+i(v')) Wpb (Ia+i(u), Iaﬁsi(v)), for every object a ¢ Ob(B).
This wpb-condition rests on the following three conditions:
(wpbl) Y has weak pullbacks;
(wpbz) the functor i preserves weak pullbacks;
(wpb3) addition of an object a € Ob(B) preserves weak pullbacks.
Clearly, the conditions prl-B imply wpb-condition. Due to some technical reasons

we prefer to work with this global wpb-condition.



The utility of this wpb-condition come from the following proposition.

Proposition 6.1. If B fulfills the wpb-condition with respect to Y and i, then

Condition (C1) in Theorem 5.2 holds, i.e. A, = N o

Y ¥

Proof. Since by Lemma 4.3 a=(¢—o —)" it suffices to show &= o—> is
transitive. Consequently, it is enough to prove that —jo¢= C é—o-

Suppose we are given three pairs in FIX B(b,a) such that
]
(xl’f].) ""§U (ny) v(‘-_' (X29f2)

for some morphisms ueY(xl,x) and veY(xZ,x). Since B fulfills the wpb-condition
with respect to Y and i, there exists an object x' of Y and two morphisms
u‘EY(x',xl) and v‘cY(x',xz) fulfilling (bl) and (b2) in the definition of the
wpb-condition. Since

(Ib+o(u'))f1(la+i(u)) = (Ib+o(u'u))f = (Ib+o(v'v))f = (Ib+o(v‘))f2(1a+i(v))
by (b2) we get a morphism {'€ B(b+o(x'), a+i(x')) such that

f'(Ia+1(u')) = (Ib+o(u‘))f1 and f‘(1a+1(v')) - (Ib+o(v'))f2,
i.e.. such that: {x..f )U,<- (et} = (xz,fz). Hence we have proved that

Pl

—0é= ¢ ¢—o— and the result follows. O

Analysis of Condition (C2) in Theorem' 5.2. We say two morphisms j:a -+ b and

k:c ~»d in an ssmc B are wc-connected (weak cartesianly connected), and we write

jWek if (4l I_+K) Wpb (I, +k, j+1)-

We also use the notation
€A for the set {1_+j|a<Ob(B) and j ¢A} 0 +jmeansI+yj})
A+l for the set {j+1al jeA and ae Ob(B)} (j + Imeans }jY + I) and

A WcA' for (VjeA)VkcA") (j We k),

2k
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where A and A' are sets of morphisms in B.

Lemma 6.2. If F - Gj and j Wc i(u), then there exists a pair H such that F = Hj

and H = G.
u

Proof. Suppose F = (x,f):a—c, G =(y,g) : a=>b and j €& B(b,c). Then f(IC+i(u)) =
(Ia+o(u))g(j+1i(y)). Since j Wc i(u) in B there exists he B(a+o(x), b+i(x)) such that
h(j+Ii(x)) =f and h(Ib+i(u)) = (Ia+o(u))g. Consequently, H = (x,h) obeys Hj=F and

H—>U @I

Corollary 6.3. If j+] Wc i(Y), then Condition (C2) in Theorem 5.3 holds. IT

Lemma 6.4. The implication

51,k Wpb (j,k) ==> (pj'q,pk'w) Wpb (g~ Ljt,w™ 1kt)

is valid provided that p,q w and t are isomorphisms. LI

”

Lemma 6.5. 1) jWck ==> kWcj;

2) jisomorphism ==> j Wc {, for all f;

&

3) . jWetand P Wef == jjWec i
Proposition 6.6. If 1+j Wc i(Y), then Condition (C2) in Theorem 5.3 holds.
Proof. By Corollary 6.3 and Lemma 6.5. Il

7. Extending technical conditions from connections to schemes

In this section we try to answer the question asked after Proposition 4.4. To this

aim we study the preservation of some properties by the passing from B to Fl/n .



Lemma 7.1. The implication
(',k" Wpb (j,k) in B ==> (j',k") Wpb (j,k) in F1/w

is valid provided that the following three conditions are fulfilled.

(1) Mzl 0y
(2) { >k } We i(Y).
(3) G' + Ly K+ i) WPb G+ Ty Ko+ Ii(z)) in B, for every z £X.

[The premise of the implication is a particular case of (3)].

Proof. Suppose j' GB(a',al), je B(al,a), k'e B(a',az) and keB(az,a). Suppose moreover

F = (x,f)GFl(b,al) and G = (y,g) éFl(b,aZ) satisfy
Fj ~v Gk.

By (1) there exists H = (z,h) ¢ Fl(b,a) and two morphisms uand v in Y such that

Ej e H —, Gk.
By (2) jWci(u), hence by Lemma 6.2 there exists a pair H, = (z,hl)é Fl(b,al)

such that
Fu<—- Hl and HIJ:H
and similarly from kWc i(v) we deduce that there exists a pair H, = (z,hz)G Fl(b,az)

such that

H:sz and H2 .’-va.

This means hl(j + Ii(z)) =h= hz(k + Ii(z))' By (3) there exists h' & B(b + o(z), a' + i(z))

such that
WG+ L) =h) and R+ L) =h.
For H' = (z,h") ¢ Fl(b,a") we deduce

H‘j':Hl-——>UF and H'k':szé—‘- G,

hence H'j'vF and H'K'~ G. Hence (j',k') Wpb (j,k) in Fl/a .
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Proposition 7.2. The implication

"B fulfills the wpb-condition with respect toY and i ==>

Fl/n, fulfills the wpb-condition with respect to Y and iFB"

is valid provided that I + i(Y) Wc i(Y).

Proof.. Let u eY(xl,x) and vé Y(xz,x). As B fulfills the wpb-condition with respect
to Y and i there exists u' eY(x',xl) and v'eY(x',xz) fulfilling (bl) and (b2) in the
definition of the wpb-condition. To prove (b2) in Fl/~ we apply Lemma 7.1. The
conditions (1) and (2) in Lemma 7.1 follow from Proposition 6.1 and the hypothesis
I +i(Y)Wci(Y). Therefore we only have to show condition (3) in Lemma 7.1 holds.

Let z€ Ob(Y). From (b2) in B we deduce

a i, T oy + ) Wb (1 i), 1 + i),

a#ilz Al a+i(z) a+i(z)

Using Lemma 6.4 for p=1_+ l(X')XI(Z), g=1_+ I(Z)Xl(xl), w=l_+ (z)yilx2) g

i(x)

we deduce

(Ia % i) 4 I'(z)’ Ia +: 1Y)+ Ii(

; ) Wpb (Ia + i(u) + Ii(z)’ Lt i(v) + Ii(z)) :

z)

hence condition (3) in Lemma 7.1 is valid. IJ

Lemma 7.3. Let j £ B(a,b) and k € B(c,d). The implication
jWek inB ==>jWckinFl/a.
is valid provided that the following three conditions are fulfilled.

(l) .‘\-’Y = Y(—---- [ ﬁY
(D) {1+ Kk j+ Id}wC i(Y)

(iii) jWeck + Ii(z) in B, for every z€ Ob(Y).

[The premise of the implication is a particular case of (iii)].

Proof. We apply Lemma 7.1 for (j + IC, Ia + k) Wpb (Ib + Kk, j o+ Id). El




Proposition 7.4. The implication
1+ 1Y) Wei(Y) in B ==> I + iFp(Y) We iF,(Y) in Fl/w

is valid provided that NY =y 0 =y

Proof. For every a€¢Ob(B), ueY(x,x) and veY(y,y) we have to prove

1 # (u)Wci(v) in Fl/~. To do it we apply Lemma 7.3 for I_ + i(uyWc i(v) in B. In

_our case conditions (ii) and (iii) in Lemma 7.3 becomes

{Ia+i(x) + i(v), Ia + i(u + Iy)}Wc i(Y) and
la + i(u) Weilv + IZ) for every z € Ob(Y),

therefore they may be easily deduce from I + i(Y)Wc i(Y) in B. 11

Theorem 7.5. For every biflow B if

a) B fulfills the wpb-condition with respect to Y and i,
b) I +i(Y)Wci(Y)
¢) B satisfies the functoriality axiom (func : i(Y)).
then
a') Fi/n fulfills the wpb-condition with respect to Y and iF .

b) I+ iFB(Y)Wc i ()

B

c') Fl/a satisfies the functoriality axiom (func : iFB(Y)).

Proof. Using Proposition 6.1 we deduce NY = Y{-—- o -—-}Y. Conclusions a' and b'
follows from Propositions 7.2 and 7.4 respectively. Using Proposition 6.6 we may

apply Theorem 5.3 to get the last conclusion. I

This theorem answers the question asked after Proposition 4.4. Note that all the
hypotheses in this theorem refer to the ssmc morphism i:Y —> B. In the sequel we
will give a slightly different version of Theorem 7.5 where hypotheses b and c are

replaced by stronger hypotheses on B itseli.
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Definition 7.6. A biflow over a strong xy-ssmc is said to be an xx—ﬂow if every

xy-morphism is functorial. (Note that as -flow means biflow.) T

Let B and B' be xy-flows. The biflow morphism H:B —> B' is said to be an

xy-flow morphism if H is also an xy-ssmc morphism.

Definition 7.7. An xy-ssmc B is said to be weakly cartesian if f Wc g whenever {

and g are xy-morphisms in B.

Theorem 7.8. Suppose Y is an xy-ssmc such that ny =Y. Suppose i: Y ~% B and
o0:Y —% B are xy-ssmc morphisms. If

B is an xy-flow,

B is weakly cartesian and

B fulfills the wpb-condition with respect to Y and i
then

Fl/v is an xy-flow, Fy, is an xy-flow morphism,

Fl/a~ is weakly cartesian and

Fi/~ fulfills the wpb-condition with respect to Y and iFB.

Proof. Propositions 4.5, #.6 and 5.1 show Fl/v is a biflow over a strong xy-ssmc
and FB has the required properties.

To get the other conclusions we use the following remarks

a) every morphism in i(Y) is an xy-morphism,

b) I+ fWci(Y) whenever f is an xy-morphism is B

(by using remark a and the hypothesis that B is weakly cartesian),

c) Ny = ye— ° =Dy (by Proposition 6.1).

We show Fl/w is weakly cartesian. Let j' and k' be xy-morphisms in Fl/av . Using

Proposition 3.2 we deduce j' = Fx(j) and k' = Fy(k) where j and k are xy-morphisms

&=
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in B. As B is weakly cartesian it follows jWc k. To finish we apply Lemma 7.3.

We show every xy-morphism in Fl/am is functorial. Let j' an xy-morphism in
Fl/as . Using Proposition 3.2 we get j' = FB(j)‘ where j is an xy-morphism in B. Using
remarks ¢ and b and Proposition 6.6 we apply theorem 5.3 to prove j' is functorial.

Therefore Fl/w is an xy-flow and FB is an xy-flow-morphism. :l”o show Fl/nv
fulfills the wpo-condition with respect to Y and iFB we apply Proposition 7.2 using

remarks a and b. [
8. Duality

In the sequel we shall use a duality principle based on the following idea
reverse all the arrows of a flowchart scheme. In this way we obtain from a
flowchart scheme another flowchart scheme where the inputs and the outputs of
the two schemes and even the inputs and the outputs of every statement are inter-
changed.

If Y is an smc then the dual of Y from the categorial point of view, denoted W
is an smc, too. Note that the monoid Ob(Y?) and Ob(Y) are equal.

The dual Y° of an ssmc Y is an ssmc, too. Here we have to change aXb with
b, /

The dual R° of a bilow B is a bilow, too. It is easy to see that a morphism is
functorial in B if and only if it is functorial in B°.

[Note that this duality does not work well for flows, és the concept of flow is a
nonpermutable one [CS89al. Therefore to apply the duality principle to the
flowchart scheme representations we must take some care.

Remark first that when we dualize i and o must be interchanged. Even if the

following equality holds

Fl (a,b) = Fl i@a

X,B,i,0 X,B°,0,

Fl as a category is not dual to FlX B.i.o" To see this is enough to look at
b it ]

X,B° 0,
the composition. Nevertheless we may dualize EB(j)(x,f) by (x,f)EB(j); this is the



case when one of the scheme representation have no statements.]
Passing to simulation relation remark that we may dualize (x,f) -, (y,g) in
Fl(a,b) by (x,f) &— (y,g) in FlI, o(b,a) as the equality f(I, +i(u)) = (I + o(u)g
u X,B b a

becomes g © (Ia + o(u)) = 4 iw)of inB°.

Using the duality principle for the main results in sections 5-7 we obtain the
following facts.

A pair (j',k') of morphisms j' GB(al,a') and k'(;’B(az,a') of a category B is said to

be a weak pushout of the pair (j,k) of morphisms jEB(a,al) and k €B(a,a2) and we

write
(j,k) Wpo (j',k')

if jj' = kk' and for every b € Ob(B), fEB(al,b) and gﬁfB(az,b) such that jf = kg there
exists h €1:(a',b) such that j'h = f and k'h = g. When the above h is unique we write
(j,k) Po (j',]) and we say (j',k") is a pushout of (j,k).

Suppos¢ 0: Y —»B is an ssmc-morphism. We say B fulfills the wpo-condition

~ (weak pushout condition) with respect to Y and o if for every morphism u GY(x,xl)

and v £Y(x xz) there exists x' € Ob(Y), u' (};Y(Xl,xl) and v' c—;Y(xz,x') such that
(1) u=w

() 1 =nlu), Ia + o(v)) Wpo (Ia + o(u"), Ia + o{v")) for every a ¢ Ob(B),

<

Propositin §.1. If B fulfills the wpo-condition with respect to Yo amd. o then

We say two morphism j:a-»b and k:c -»d in an ssmc B are Wcce-connected

(weak cocartesianly connected) and we write

jWeek if (+ L1+ k) Wpo (Ib +kyj+ Id).

Lemma 8.2. 'f jG -—}UF and jWcco(u) then there exists H such that F = jH and

G -——~1}UH.



Theorem 8.3. If the biflow B fulfills the wpo»éondition with respect to Y and o, if j

is functorial in B and if I + j Weec oY) then j is functorial in Fl/ev.

Proposition 8.4. If B fulfills the wpo-condition with respect to Y and o, and if

I+ o(Y)Wec o(Y) then Fl/n fulfills the wpo-condition with respect to Y and oF .

Proposition 8.5. If Ny = &~ then

Y

I+o(Y)Weco(Y)inB==>1+ oFB(Y)ch oFB(Y) inFl/w .

Theorem 8.6. For every biflow B if
a) B fulfills the wpo-condition with respect to Y and o,
b) I + o(Y)Wcc oY),
c) B satisfies the functoriality axiorﬁ (func : o(Y))
then
a') Fi/~v fulfills the wpo-condition with respect to Y anoolF,
b) I+ oFB(Y)ch oFB(Y),

¢") Fl/ns satisfies the functoriality axiom (func: OFB(Y)).

Definition 8.7. An xy-ssmc B is said to be weakly cocartesian if f Wee g whenever f

and g are xy-morphism in B.

Theorem &.8. Suppose Y is an xy-ssmc such that ny =Y. Assume i:Y~3»B and
o:Y ~»B are xy-ssmc morphisms. If

B is an xy-flow,

B is weakly cocartesian and

B fulfills the wpo-condition with respect to Y and o
then

Fl/~ is an xy-flow, Fq is an xy-flow morphism,

Fl/~ is weakly cocartesian and

Fl/~s fulfills the wpo-condition with respect to Y and oFB.

a



9. On xy-simulation

In the sequel we are interested in the study of some types of flowchart

schemes. As we have mentioned in [CS87b] the study of each type in related to a
certain type of simulation. Instead of using different categories to do simulations
and differént morphisms between these categories to compare different kind of
simulation it is preferably to use for simulation different subcategories of a unique
category Y.

This viewpoint agree.with the case when our abstract flowchart schemes
(abstract means the connections are taken from a biflow B) are build using
statements in a set %. In this case Y is a subcategory of Relz. For example (see
the last section) when we study minimal schemes Y may be FnK and we‘ may use

four kinds of simulation, namely simulation using morphisms in Bl.. , In or

Z’ 3
Fni.

The same viewpoint agree with another point of view, an algebraic one. To

understand this algebraic point of view we need some preliminaries.

Let B be an xy-ssmc and let h: X — Ob(B) be a monoid morphism. We define

an X-xy-ssmc h°(R) as follows:

h°(B)(u,v) = B(h(u),h(u)) for u,v € X,

fg = fg for £ Eh°(B)(u,v) and g € h°(B)(v,w),
IU = Ih(u) foru ¢ X, :

frg=f+g for £ € h°(B)(y,v) and g € h°(B)(u,v"),
e h(U)Xh(v) for u,v € X.

and for the additional distinguished morphisms for u ¢ X we choose according to xy
from

Tu :Th(u)’

g _ﬂ‘(”), v, - Vh(u) e L Ah(U)-

Let Eh : h°(B) —>B be the xy-ssmc morphism defined by
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EB(U) = h(u) for u € X and

ih(f) = f for each morphism f in h°(B).

For every monoid X we denote by XYy the initial X-xy-ssmc. In XYy every
morphism in an xy-morphism. We have shown in [CS89a] that xy—RelZ is a model

for XY g %

Proposition 9.1. Let B be an xy-ssmc. Every monoid morphism h : X — Ob(B) can

be uniquely extended to an xy-ssmc morphism H : XYy —> B.

Proof. As XYy in the initial X-xy-ssmc there exists a unique X-xy-ssmc morphism
H' s Xy h°(B). By definition H = H'ih. As H(u) = Eh(H'(u)) = Eh(u) = h(u) for

every u € X the xy-ssmc morphism H is the required extension of h, I

Proposition 9.2. Let Y be an X-xy-ssmc. Assume i:Y —» B and o: Y —» B are

Xxy-ssmc morphisms. If 2 XYy = B.and oY

PXYy B are the unique xy-ssmc
morphisms which extend the monoid morphisms i and o, respectively then for every

F and G in FIX’B(a,b)

F u—-‘yxy G iff there exists an xy-morphism u in Y such that F -»—’7U G.
X .

Proof. Let H: XYy =2 Y be the unique X-xy-ssmc morphism. We deduce Hi = iy

and Ho = 0™,
We prove only the more difficult implication. Suppose there exists an

xy-morphism u¢ Y(x',x") such that
F = (x',f) o G = (x",g)
Form Proposition 3.2 there exists j ¢ xy\<(x',x") such that u = H(j), therefore

11, + V() = £(1, + W) = (1 + olw)g = (I + o). 1

b

3,




We are now ready to explain the algebraic viewpoint. To build Fl £.B we use two
function i : ¥ —» Ob(B) and o : T —>» Ob(B) which give the input and the output
of every statement in 7 . These functions may by extended in one way to monoid
morphisms i: $*—=» Ob(B) and o : & —>» Ob(B), and then to xy-ssmc morphisms
iz xy—Reli._ ~% B and o : xy-Rel s~ B. The simulation is made using m’orphisms in
xy—RelZ. \

To generalize we replace ’2"_* by an arbitrary monoid X and we use two monoid
morphisms i : X =3 Ob(B) and o : X —» Ob(B) to build FIX,B as we already made in
[CS87al. In this case to simulate we use the category XYy and the xy-ssmc

morphisms W y

FXYy ~»B and o™ XYy = Bu

To generaiize we replace XYy by an X-xy-ssmc Y and we use two xy-ssmc
morphisms i:Y —» B and o:Y .—» B. Proposition 9.2 shows the simulation via
xyx—morphisms is equivalent to the simulation via xy-morphisms in Y. Hence the
algebraic viewpoint agree with the point of view from the beginning of this section.

Suppose i:Y — B and o: Y —» B are xy‘-ssmc morphisms and B is a biflow

(over an xy-ssmc). The xy-simulation, i.e. the simulation via xy-morphisms in Y, is

introduced in accordance with Definition 4.1 using the restrictin of i and o to Yx

y
and is denoted by ﬂ‘; . We denote by &Y its converce and by 'ny the least
flow congruence relation which includes XYy L As e Ny the quotient

Fl/a, 5 of FIX,B by ny is a biflow over an xy-ssmc. By Proposition 4.6 if B is a

strong xy-ssmc then Fl/a 5 is a strong xy-ssmc. The morphisms in Fl//wxy are

called xy-schemes and Fl/,ruxy is called the biflow of the xy-schemes.

Definition 9.3. A monoid morphism I: X —> Mor(B) is said to be an interpretation

of X in B with respect to i and o if I(x) € B(i(x), o(x)) for every x in X. I3
- XY, ; 4 Xy, > :
Let Ey” : X ~ Fl/.’\;xy and Eq” :B --?Fl/mxy be the composite of Ey and Ey

X

interpretation of X in Fl//uxy with respect to iEgy and oEgy. Remark Egy is an

with the factorization morphism from FIl to Fl/n,;‘(y. Remark EXY is an

biflow morphism and an xy-ssmc morphism.
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Proposition 9.4. If B is a strong Xxy-ssmc then the congruence relation Ny fulfills

XX) (z+ pe@y o) 2 i@ IM ) for t,z € X,
(1X)  ify € {8} then T, 2= T for z € X,
(vX)  ifye{§,d} then Vg2 = (2 + 2V, forzeX,
(L) i ebddien 08 =@ for'z& X and

(AX)  if x e{c,d} then z /\O(Z) E/\l(z)(z +2) for z € X.
Proof. The same proof Ias for Proposition 4.6.

Lemma 9.5. If I is an interpretation of X in B with respect to fhe Xy-SSMC
morphisms i and o such that for every z € X

T)ify ¢ {p,£} then Ty yi(z) = T,y

)ity € {$.d} then Vi i) = 1(2) + IV

L) if x & {b,d} then 1(7_)1_0(2) = \‘(Z) and

e

N if x eed) then 1 AP = AP + 1)

then 1(z)o(f) = i(f)1(t) for every fGYXy(z,t).

Proof. It is easy to show all the morphisms from Y fulfilling the above equality

form a sub-xy-ssmcof Y. Id

Definition 9.6. A congruence relation in B is said to be xy-functorial if it fulfills

(func: B_ ).
Xy

Remark 9.7. A congruence relation £ in Fl is xy-functorial if and only if every

xy-morphism from F1/2 is functorial.
Proof. Easy using Proposition 3.2. Al

Proposition 9.8. If the xy-functorial congruence relation = in Fl fulfills (XX), (TX),
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(vX), (LX) and (AX) then = includes ny'
Proof. As = fulfills (XX) we deduce F1/= is a biflow [Lemma 7.5 in CS88b] over an
Xy-SSmMC.,

Let G : FI —3 Fl/= be the factorization morphism. As EXG is an interpretation
of X in Fl/z with respect to iEBG and oEBG we deduce from Lemma 9.5 that

zo(u) = i(u) t for every u € ny(z,t).
To get the conclusion it suffices to show XYy & =. Suppose (z,f) el (t,g) in

Fl(a,b) whereu € ny(z,t). As i(u) is =-functorial and as
I + ) + i(u) = (1 + zo(u)g = (I + i(u) + g

we deduce [(Ia + z)f]Ti(Z) = [(IaL + t)g]’(‘i(t) hence (z,f) = (t,g). I
10. A vniversal theorem

Assume i:Y —> B and 0: Y — B are ssmc morphisms and & is the least
congruence relation in Fl including  —¥y,-
Let FX : X = Fl/a, be the composite of the embedding EX : X =3 Fl with the

factorization morphism from Fl to Fl/a . Note that FX is an interpretation of X in

Fi/~ with respect to iFy and oF .

Lemma 10.1. For every biflow morphism H : B ~» B' and for every interpretation I
of X in B' with repect to iH and oH if for every jie Yz

1) Ix)H(@G)) = HGEGM(y) and

2)  H(()) is functorial
then there exists a unique biflow morphism (I,H) : Fl/~ — B' such that FX(I,H) =l

and FB(I,H) = b

Proof. We have proved [Theorem 5.2 in CS87a] that there exists a unique flow
f
morphism (I,H)f : F1 — B' such that EX(I,H)f =1 and Ep(I,H)" = H. Recall that for

every (x,g) € Fl(a,b)

3%




1)) = [0 + IDHEHTE)

If (x,8) v——?j (y,h) in Fl(a,b) then using hypothesis | we deduce
[(IH(a) + I(x))H(g)](IH(b) + H(1()) =

= (1 + IR, + 6D = (L + I, + oG =

IH(a)

= (U * HEGOGIHR) = Qpyy + HEGNg ) + DHD)]

therefore as H(i(j)) is functorial we conclude (I,H)f(x,g) = (I,H)f(y,h).
As (I,H)f(x,g) = (I,H)f(y,g) whenever (x,g) a3 (y,h) there is a unique flow morphism
(I,H) : Fl/y — B' such that the composite of the factorization morphism from Fl

to Fl/~ with (I,H) is equal to (I,H)f. The other conclusions easily follows. I

Proposition 10.2. Assume i: Y=>»B and o: Y -~ B are xy-ssmc morphisms and I

an interpretation of X in B with respect to i and o. If B is a strong xy-ssmc then

1(z)o(u) = i(u)i(t) for every u @ny(z,t).
Proof. Apply Lemma 9.5. I1

Theorem 10.3. Assume i: Y —? B and 0 : Y —»B are xy-ssmc morphisms. For every

xy-flow morphism H : B —»B' and for every interpretation I of X in B' with respect

to iH and oH there exists a unique xy-ssmc and biflow morphism

(I,H) : Fi/mxy —3% B' such that FX(I,H) =-1 and FB(I,H) =Heh

Proof. To apply Lemma 10.1 for the restrictions of i and o to ny we must show
hypotheses 1 and 2 hold for every morphism j in ny.
As B' is a strong xy-ssmc we apply Proposition 10.2 to show hypothesis 1 holds.
As H(())) is an xy-morphism we deduce it is functorial, hence hypothesis 2
holds, too.

Apply Lemma 10.1 and remark the equality FB(I,H): H implies (I,H) is an

xy-ssmc morphism.

e




11. Some examples

The abstract theory written in the previous section is used in Sections 13,15 and 16
to study three classes of flowchart schemes. In Sections 11,12 and 1% we give

examples for the concepts introduced in the previous sections.

Proposition 11.1. In a biflow over a complete matrix theory every morphism in

functorial.

Proof. In [CS88a] we have proved in a matrix theory [E176b; CS89a] a morphism
] 2@ u-e»b -is functorial if and only if fj = jg implies £*j = jg* for every f:a-»a and
g:b~—#b.

In a complete matrix theory [CS88b] the repetition is defined by * = Un>0fn

for every f : awsa.

Assume fj = jg. By induction we deduce fnj :~jgn for every n > 0. Therefore
n. RETI | e
5 = Unsol = Unyol® = jg*. 1

This proposition shows every morphism is functorial in Rel(S) and in Re!s as

well as in every subbiflow of them, for example P£n(S), anS, InS, etc.

Proposition 11.2. Assume T is an algebraic theory (i.e. a strong a&-ssme). If B is an
sub-ssmc of T such that "st in B implies t in B whenever s and t are composable

morphisms of T" then jWcck for every j € R(a,b) and k ¢ B(c,d).

Proof. Suppose f¢ B(b +cu), g¢& Bla+d,u) and G+ Ic)f = (Ia g hse = <7D
where ' ¢ T(b,u) and "¢ T(c,u), and g = <g',g"> where g'¢ T(a,u) and g" ¢ T(d,u) we
deduce jf' =g and f" =kg". For h=<f,g">¢ T(b + d,u) we get (Ib +kh=1f and

G+ Id)h = g. The morphism h is in B as (Ib +khisinB. B



11.3. The sixteen sub-ssmc-ies of Relc: In [CS89a] we have studied sixteen
sub-S* -ssmc-ies of RelS formed by all the morphisms in Relg having the properties
given in Table 6.

The properties used for r¢ Rels(a,b) are:
T (total) : (vie haid(] jelibl)) Gjer,

S (surjective) : VijelbN3iela)d Ger,

P (partial function) : (Vi€ [ial)(¥ i,k € [IbID((G,j) € r and (,k) € r imply j = K),

I (injective) : V j,k € [laiDv i € [ib1D((,) & r and (k,i) ¢ r imply j = k).
Name Properties| A| B Name : Properties| A | B
" -1
aeg—RelS = B1S TR, 5,1 Yi-Y cK --RelS = SurS T.o51 YIY
-1
a puRelS = InS BRI Y| N c(&-RelS = PSurS T,I Y| N
‘a g’—RelS = Surs T5PsS g e cx‘—RelS = STRelS T,5 Y| Y
ad-Rel¢ =Fng | T,P v| Y|l c&-Relg=TRelg |T vy
= -1
beg ~RelS = InS P;S,1 N[ Y dc>(-RelS = FnS S,1 ¥elY
-1 ' 1
b p ~RelS = PlnS Pyl N| N d ‘B—Rels = anS I ¥ 1N
b g'~RelS = PSurS 2.5 NI Y d){'—RelS = SRelS S YY
d- - 8o _
bd R‘f:lS = anS P NlY d-¢ RelS = RelS | ¥l Y
' !

Table 6. Column A :Is xy—RelS weakly cartesian? (Y = yes, N = no)

Column B : Is xy—RelS weakly cocartesian?

Note that xy-RelS is a strong xy-ssmc in which every morphism is an
xy-morphism. In Column A of Table ¢ there is the answer (Y = yes, N = no) to the
question "Is xy—ReiS a weakly cartgsian xy-ssmc?" and in column B of Table 6 is
the answer to the question "Is xy—ReiS a weakly cocartesian xy-ssmc?'". We give
the proofs only for the answers in column R. The proofs for the answers in column

A are dual.



Let x € {a,b,c,d}. In the cases x§ we apply Proposition 11.2 for B = T. In the
cases xy we apply Proposition 11.2 for T = x«S—RelS'. In the cases x&¢ the proof is
an easy consequence of the following remark.

If j Gdo(-RelS(a,b), ked«—RelS(c,d), fe d&—RelS(b +CU), gé do(-RelS(a + d,u)

and (j + Ic)f = (Ia + k)g then
h = <(Ib + Tc)f, (Ta + Id)g> Gd(x-RelS(b + d,u)

The difficult part of the proof is to show h has property I. Assume (n,i) € h and
(m,i) € h. If n <|biand m <{bi then (n,i) € f and (m,i)€f hence n=m. If n >|bfand
m >|b{ then (n-|bl+{ai, i) &g and (m - bt+{af, i)€g hence n=m. The othef
cases lead to a contradiction. Suppose for example n <{b{and m >{bl. As above we
deduce (n,i) € f and (m -ib{+{al,i)€ g. As j and k have property S there exists
peliat] and q & [ict] such that (p,n) € j and (g,m -1 b{) € k. Therefore (p,i) € (j + Ic)f
and (q+ lal,i) & (Ia +Kg. As (j+ Ic)f = (Ia +k)g has property I, we deduce
p = q + {a|, a contradiction.

For the four answers '"no" we give the following contraexample: j =k = Ts’
f:g:lsandh:VS. L1

1

, PIn :

- -1 _
S InS, InS S S F‘SurS 5 S anS and

RelS there is only one feedback to make them biflows. As all of them are subbiflow

of Rels which is a complete matrix theory we deduce from Proposition 11.1 in all

these biflows all the morphisms are functorial.

In [CS&9c¢] we have proved in Bi PSur Pin

In conclusion

a) xy-Rel. is an xy-flow for xy ¢ {aat ap ;b ,bp ,by‘,ba;‘f,cp ,d‘% A % ;

8
b) xy-Rel

is a weakly cartesian xy-flow for xy ¢ {a« saf,Cp ,d]}\ ,d(i‘} :

S

c) xy-Rel, is a weakly, cocartesian xy-flow for xy ¢ {ax ,bx,b\{,bx‘f,df’] .

S

These examples motivate the neccesity of two variants: Theorem 7.8 and its
dual 8.8. In the case apy we may use only Theorem 7.8 but in the case by we may
use only Theorem 8&.8. In the case b(‘.\ Theorem 7.8 and 8.8 cannot be used. This

case will be studied in a forthcoming paper.
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11.4. The semantic models are used to interpret'statements, therefore they must
can be substitute for the xy-flow B' in Theorem 10.3.
Let S be the set of value-vectors denoting the states of the memory in a

‘computing device. Recall that the basic semantic model in the nondeterministic

case Rel(S) is defined by

Rel(S)(m,n) = {rir ¢ (mlx S) x ([n] % S)} for myn € N.

For more details see [CS87b). It is a complete matrix theory over the complete
semiring (§(S x S), U ,, - 1o)-

From Propositions 11.1, 11.2 and their duals we deduce Rel(S) is a weakly
cartesian and a weakly cocartesian d ¢ -flow.

Recall that the basic semantic model in the deterministic case P£fn(S) is defined

by
Pfn(S)(m,n) = {fif :[m]xS —>[n] XS partial function} for n,m & N.
As Pin(S) is a subbiflow of Rel(S)‘ we deduce Pfn(S) is a weakly cocartesian

b & -flow.
12. On wpb-condition (case a (,)

The study of the wpb-condition is difficult. We shall do it in this section only in

the a [>-case. Namely we shall prove the following theorem.

Theorem 12.1. Assume that the a ”},-ssmc Y fulfills

1) every morphism in Y is an a{};—morphism

2) the monoid of objects of Y is equidivisible.
If B is a weakly cartesian afy-ssmc such that every ag’-},—morphism of B is a
monomorphism then B fulfills the wpb-condition with respect to Y and i for every

afh-ssmc morphism i: Y —3» B.

We recall that a monoid (M, +) is equidivisibie [KS69] if for every a,b,c,d ¢ M



froma +b =c + done deduce

(de)a=c+e and e+b=d) or (}e)(c=a+e and b=e +d)

We mention that the free monoids and the groups are equidivisible.

Lemma 12.2. In an equidivisible monoid M if aptayte..ta = b1 + b2 +.00+b

then there exist CpsCoree el ¢ M and the integers
0:10<1l <12<...<1n_1 <1n:rand0:]0<]l <12<...<Jm_1 <Jm:rsuchthat
. . +...+c. for every k¢ [n]and

Lot 1k-1+2 I

by = £ + C, +.o.+C. foreveryk ¢[m] 1
k Jk—l” Jk—l+2 Ji

Proposition. 12.3. If the monoid M of the objects of an afy-ssmc is equidivisible

then every a‘(),—morphism may be written as
J(fl +f2+...+fn)

where j is an ae(-morphism and )fi is of type I or T, for every i €[n].

Proof. Remark first that every morphism of type Ia + bXC +1, or Ia + Tb + IC may

d

be easily written as above.

Then we suppose f = j(f1 + f2 oot fn) where j is an a®-morphism and

£.¢41 ,T_ Y} for i¢[n] and we show f(I_ +
1 2 ai ai-J a
same type.

b C .
X~ 4 Id) and f(1a+ Tb + IC) are of the

a) For f(I +bXC+I) as a,+a,+...+a_ =za+b+c+d there exists
a d 1 2 n

.,br(SM,O:i i, €0,€0.%€1 <in:rand1§s<t<u§rsuchthat

- 0 1 2 n-1

b
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a, = b, # B +...+bi for k & [n],
k-1"" k-1 k

+b

a=bh +...+bs,b:bs+l+...+bt,C:b P et b

t+l+...+ybuandd:bu+

In the expression of f using B5 in Table 1 and SV2 in Table 3 we may write

by



f= j(gl *Byteeet gr) where g € {Ib )T, } for k& [r] Therefore, denoting by
KTk
X,¥,z and w  the source of the morphisms By tee-t By B teertBp

i teoet 8y and g <+ 8 respectively we deduce that

+ o0
u+l

2 . 1)
a d

. Z . B
=J(IX+yX +IW)(81+"'+gs+gt+l+"'+gu+ 8o +'."+gt+gu+l+"'+gr)'

b) For f(Ia+Tb+IC) as aj +a,+...ta =a+C therz exists i&[n] and the

objects u and v such that

+Uy; @ = U+ and C=Vv+a  +...+a.

i-1 n

If. f.=1 let f'=1 and " =1 else =T and "=T.. Therefore
i~ a. u v u \Y

f(Ia+T +IC):j(f1+...+f.

[ ' i
1_1+f'+'Tb+ff +‘fi+

+...+fn). I1

b 1

Proposition 12.4. Suppose B is an afy-ssme and Ob(B) is equidivisible. If u ¢ B(a,c)
and v ¢&B(b,c) are afj-morphisms then there exists the as-morphisms

p B(d + a',a), g & B(b' + d,b) and j & Blc, b' + d + a' + r) such that

puj = T+ 1y, o+ T avi=1, o+ T, and Iy + Ta,)pu = (T, + Id)qv

Proof. First we use the previous proposition to write u and v as a composite of an
at-morphism with a sum of morphisms of type Ia or Ta. Using Lemma 12.2 and the

identities Ia+b = Ia + Ib and Ta+b = Ta + Tb we may write u= f(f1 + f2 Fin s o F fn)

and v = g(g1 F By e gn) where f and g are a~ -morphisms, Ef.l,gi \C Uci’TC}

and ¢, 4+ Catess +C .5 Ci
1 2 n

. -1 ;-1
Starting from f{ u:f1+f2+...+fn and g V=g, +8y*... +6, We use

a®-morphisms to permute simultaneously the terms of the two sums to order them

in the following way

!
il

at the beginning those that satisfy fi TC and By B Ic ;
: i i

then those that satisfy fi =g = I

c.’
{

then those that satisfy f, = IC and g, =T
i i
at the end those that satisfy fi =g = TC .

1

i AT

b



Then we group, using Ia + Ib = Ia+b and Ta + Tb & Ta+b’ the terms of the same type.
Using an induction we may suppose that there exists the ao{-morphisms p,q and

j such that puj = Tb‘ + Id+a’ + Tr + fn and qvj =1, ,+ Ta’+r +8:
B s s d+a'+ry,Cny _ .
i = TC and g =1_ then pu;(Ib, + XN=T

b'+c d+a' r
n n n

1
and (1, + Snx9quir,, + $EXM 21 S

(b'+cn)+d alsr
al Gl .o a'+ry
Iff =g = Icn then (1;+ "X )puj(l,,, 4+

and Qi 4 + Sy ]

Cny _
XN = Tb' * I(d+cn)+a' * Tr

b'+(d+Cn) 5 Ta'+r'

9

_ _ : G
Iff =1, andg=T_ then pu]ﬂb‘+d+a‘ + XN = T+ Id+(a‘+cn) 2T

n n
. Faelinn
and qVJ(Ib.+d+a. KMl # T(a’+cn)+r'

If fn oF TC thenpuj =T

a B! i Id+a' 4 T(r+cn) and qvj.= Ib‘+d + Ta’+(r+cn)'

Using the first and the second conclusion we prove the third one.

-1 -
(Id + Ta,)pu = (Tb, + Id + Ta‘+r)J = (Tb, + Id)qv. 17

Proof of Theorem 12.1. Let u ¢ Y(xl,x‘) and v¢ Y(xz,x‘). Applying Proposition 12.4

we may write

pyj = TZ + Ix+y + Tx"’ qvj = Iz+x + Ty+x" and (IX + Ty)pu = (TZ + Ix)qv

where p ¢ Y(x+y, xl), qeY(z + x,xz) and je Y(x',z + x + y + X") are a -morphisms.
For u' = (Ix * Ty)p and v' = (TZ + Ix)q we deduce u'u = v'v.

Assume f € B(b,a + i(xl)), g € B(b,a + i(xz)) and f(Ia + i(u)) = g(la + i(v)). From
-1
f(Ia +i(p ))(Ia + Ti(z) + Ii(x+y) + Ti(x")) =
:ﬂ%+u@*nz+kW+Twm=ﬂ%+um»=y%+«w»=

- g1+ iq” "

a+i(z+x) F Ti(y+x

sT_ . + T., ., is @ monomorphism we deduce
asifzexsy) " Hx")

Lo=1 =1
f(Ia + I(P ))(Ia + Tl(Z) + II(X+Y)) = g(Ia 4 l(q ))(Ia+i(z+x) + Tl(y))-

o b RN A DL n,

s



As Ia + Ti(z)WCIi(x) + Ti(y) there exists h ¢ B(b,a + i(x)) such that
' el - S
h(Ia+i(x) + Ti(y)) = (1 + i(p 7)) and h(I_ + Ti(z) + 1L (X)) - g(la +il@™ )

therefore f = h(Ia +i(u")) and g = h(Ia +i(v)). I
13. Accessible flowchart schemes

In this section we apply our abstract theorems from the first part of the paper
to study accessible flowchart schemes.

The (internal) vertices that can be reached by paths going.from inputs together
with the inputs and the exists from the accessible part of a flowchart scheme. A
scheme is said to be accessible if it is equal to its accessible part.

In this section we consider as equal two schemes that have the same accessible
part.

For the motivation we work with a flowchart scheme having statements from a
set Z and connections from Pfn, i.e. the theory of the finite partial functions. For
every ("¢ 2, i(¥) and o({") show the number of the inputs and of the outputs of 7,
respectively. The functions i,0:> — N .are extended to monoid morphism
i,o: ¥ —5 (N,+,0). For every nonnegative integers n and m, f & Pfn(n,m) if and
only if f is a partial function from [n] to [m].

Suppose our scheme is not accessible. We choose a statement & which is on no
path begining with an input of the scheme. Let y ¢ 5 * be a string containing all

the statements # in the scheme for which there exists at least a path from ¥ to

-

%’.  We mention y contains &”. Let x ¢ J* be a string containing all the

statements of the scheme which are not in y. Let (x +y, h) & Fl (a,b) be a

:,Pin
representation of the scheme. From the above choice of y we deduce

- there is no arrow from an input of the scheme to a statement in y,

- there is no arrow from an exit of a statement in x to a statement in y.

The two facts are equivalent to the next property of

hé Pfn(a+olx +y), b +ilx +y) : (j,k) ¢ h and j&la+olx)] imply k¢ [b+i(x)]



Therefore there exists fé& an(a>+ o(x), b +i(x)) such that (Ia+o(x) + To(y))h =
=f+ Ti(y)‘ Remark that (x,f) € Flz,an represents the scheme obtained from the
-initial one eliminating the statements in y and all the arrows which go from a
statements in y.

Remark that a scheme is accessible if and only if the eliminations of a group of
nonaccessible statements as above cannot be make. We prefer this definition for
the concept of accessible scheme as at an abstract level it may be easier formalize
(see Definition 13B3) than the definition using paths.

Coming back to the above example we remark in the equality

(1

siob To(y))h =f+ Ti(y) the presence of the functions having an empty source
which from a technical viewpoint leads to the concept of afy -ssmc. Extending the
morphisms i,0: Z*—-) (N,+,0) to the afs-ssmc morphisms i,o:Inz —> Pin
[Theorem 6.4 in CS89a] we remark that the above equality becomes

(Ia # o(Ix & Ty))h = f(Ib + i(IX + Ty)), ie.  (x,f) — (x + y,h). The particular

I +T
form of this simulation is due to our choice of thexrepresentation (x + y,h) where
the vertices to eliminate y are isolated. Generally wusing a bijection
ué Bi-i(x +y,z) we may replace the particular representation (x +y, h) of our
scheme by an arbitrary one.(z,g), i.e. h(Ib + o(u)) = (Ia + i(u))g [CS&8b]. i:or

V= (IX =S Ty)u €In_(x,z) we remark that f(Ib +o(v)) = (Ia seilv)lg, - Le,

z
(x,1) = (z,g). This comment shows the study of the accessibility may be made
using a particualr case of simulation (Definition 4.1) and proves some affirmations
from Example 4.2.

A simulation --%V where v in Inf is said to be a simulation via injections.
Passing to the flow congruence relation generated by the simulation via injections
we remark that two flowchart schemes are congruente if and only if they have the

same accessible part. For the more difficult implication one use Theorem 12.1 and

Proposition 6.1.

h



13A. Introduction to thé algebra of accessibility

The useful algebraic concept to study accessibility is that of weakly cartesian
ap-tlow which we name lin the sequel inflow. We have no intention to do a deep
algebraic study of the inflows as we only are interested in that aspects which are
connected to the accessibility..

First aspect we are interested in is the simplication of thendefinition of the
inflow. It is given in Propositions 13A3 and 13A4 below and it is based on the

following property.

Lemma 13Al. In an a(}-ssmc B if £ € B(a,b) is an afy-morphism then there exists

an a -morphism j € B(a + ¢, b) such that f = (Ia + Tc)j.

Proof. As the a(s-morphisms of B from the least sub-a{}éssmc of B, it suffices to

prove that all the morphisms of type (Ia + Tb)k where k is an ae¢ -morphism from a

sub-aﬂ—ssmc. O

Lemma 13A2. Let = be a congruence relation in a biflow over an a({,-ssmc. If Tu is

=-functorial for every object u of B then = is a”b-functorial.

Proof. Assume f€ B(c+a, d+a), gCB(c+b, d+b), j€ Ba (a,b) and f(Id +j) =

£

E(Ic+j)g. Using Lemma 13A]l we may write j:(Ia+TU)k where k is an

ael -morphism, therefore

- -1
(I, + TU) = (Ic+a + TU)(IC + k)g(Id +k 7).

d+a
As Tu is  =-functorial we  deduce fi[(lc+k)g(lc+k_l)]1‘u hence
b

1932 [0+ kg, + kK MYV =gt o

Recall that in an ssmc the neutral element of the monoid of objects is denoted

by e. Remark that an ssmc B is a strong afb-ssmc if and only if B(e,a) is a singleton

i



for every object a of B.

Proposition 13A3. A biflow B is ap—ﬂow if and only if for every object a of B there
exists a distinguished morphism Ta € B(e,a) such that
1) T f=T, foreveryfe¢ B(e,a)

2) Ta is functorial for every object a of B.

Proof. As by hypothesis 1 we have Te(Ta+Ie)= (Ta,+ Ie)Ia we deduce using
hypothesis 2 that T, = ’I‘ala =1_. For f €B(e,a) we deduce f = Ief = Tef =T, hence
B is a strong al’:‘,—ssmc. From hypothesis 2 and Lemma 13A2 we deduce every

a(b-morphism is functorial. IO

Proposition 13A4. An a f3-ssmc B is weakly cartesian if and only if for every

feBa,d+b)andg € Bla,b+)if f+T =T

4 * & then there exists h € B(a,b) such

thatf:Td+handg=h+TC.
Proof. The necessity follows from Td Wc Ib + TC.

To prove the converse we show jWck for every j € Baﬁ(a,b) and k & Bap,(c’d)'
Using Lemma 13Al we may write j = (Ta, + Ia)p and k = (IC + TC,)q where p and q
are a® -morphisms.

Assume u &B(m,b + ¢), v€B(m, a + d) and u(Ib + k) = v(j + Id). By composition to
the right with p-l + q—l we get
u(p_1+I Y+ T =T ,+v(I\+q—l)
G @ a a
therefore using the hypo'thesis there exists h¢ B(m,a+c) such that

-1

i .
ulp "+ Ia) =T, +h and v(Ia +q )=h+ Tc" Therefore u=h(j + IC) and

v=h{l +Kk. 1O
a

To apply Theorem 12.1 the next proposition is useful.
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Proposition 13A5. In an ac,-flow every a(&—morphism is a monomorphism.

Proof. Let jEB, (b,c). Suppose fj=gj where f:a—3b and g:a-»b. As

(>

j= (Td + Ib)k where kéBao‘(d + b, ¢) we deduce

_f(Td+Ib)zg(Td+Ib):(Td+Ia)(Id+g).

As T, is functorial we get f = 'Td(ld +g)=g. 0O

Another aspect we are interested in is the connection to other concepts and the

examples.
Proposition 13A6. Every b, -ssmc is a weakly cartesian afy-ssmc.

Proof. We use Proposition 13A4 Assume f:a-9d+b, g:a—b+cC and

f+ TC =Ty +8 By composition to the right with id + 1+ _LC we get
d ' c
f({ +Ib):g(1b+ {)ra—b
The next equalities finishes the proof
T vl +19 =0T, +, , +19=0G+TI0,  +1)=1
d petees d d+b ¢’ d+b 3

B0 )T =@ T+l )= Tyr (1% 4T J=g O

Proposition 13A7. In a biflow over an ay”-ssmc if we define
= |
=4y,

then we get a bol-ssmc.

ek L +’rbvb A (A%, + VI

baa by a _naa+b _,a+b
AP, + XTIV VI=TTTV = T
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Theorem 13A8. [Es80, CU82, St87a] Every biflow B over an algebraic theory is an

inflow.

Proof. To show B is an a“f,-flow we use Proposition 13A3, therefore we only have
to show Ta is functorial. If & B(b,c), g € B(a + b, a + ¢) and f(Ta + IC) = (Ta + Ib)g

then

o= 7+ g, (T, +1)g > =1< (1 + Tpg, £(T, +1)>=
= £, + TRy T, + 1.0 = £ 700, + Tydg + T, + 10, + X+ 10V, + V)] =
= £ 4%, + Tg + 10, + V1= €T, -Pg + 1)V = £.

Using Proposition 13A7 we deduce B is an by -ssmc, therefore from Proposition

13A 6 we get the conclusion. T

From this theorem we deduce anS, RelS, Pin(S) and Rel(S) are inflows. Other

examples of inflows are Ins, PInS, PSur—S1

and an'SI. Among them InS has a special
place as we can see from the next theorem.

A inflow morphism is by definition a biflow morphism between two inflows.

Every inflow morphism is an afy-ssmc morphism.

Proposition 13A9. Suppose B is an biflow over an ap-ssmc. If H :InS —>»B is an

afy-ssmc morphism then H is a biflow morphism.

Proof. Let f ¢ Ins(s +a,s + b) where s € S. We study three cases.
i) There exists g € InS(s +a, b) such that £ =T_+g. We deduce 2% = (T + Ia)g

and

Ok = @I ) + )T =T WTpygs) * ygayH@)] = HA®D.
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ii) there exists g € Ins(a,b) such that f = I_+ g. We get 4°f = g and
) - O+ HiE) = HiE) = HAW)

iii) There exist j € [fal] such that f(l +j) = 1. In this case there exists i € [ibt]
such that f(1)=1+1i, therefore denoting a=a'+ 3 + a" with fa'j=j-1 and
b =b'+b, +b" with Ib'f =i - | there exists g € Ins(a' +a", b' + b") such that

ol 2 058 L IS el P
s a s

]b")

hence Tsf = (a‘XS + Ia,,)(ls + g)(st' + Ib") and

+HO) ) -

sl BEREE. o O nenn PR i
H(a"),, H(s) H(s),, H(b") s

= ( X + IH(a"))(IH(s) + H(g)( 7'X + IH(b")) =H(Tf). O

The computation in the above proof may be used to see the feedback in InS is

unique.

Theorem 13A10. InS is an initial object in the category of the S*-biﬂows over an

af{y-ssmc as well as in the category of the S*-inflows.
Proof. We use Corollary 6.5 case a(}, in [CS89a] and Proposition 13A9.
13B. Abstract accessible flowchart schemes
We suppose until the end of this subsection X is an equidivisible monoid, Y is an
X-af;)—ssmc, B is an inflow, and i:Y-— B and o:Y—B are af},-ssmc

| morphisms. We require the equidivisibility of X to apply Theorem 12.1.

We have seen in the introduction of Section 13 for concrete flowchart schemes

5 |



(i.e. X is the free monoid on the set of statements and B € Rel) that (x,f) fuap(y,g)
if and only if the schemes represented by (x,f) and (y,g) have the same accessible
part. 7

As by Proposition 13A5 every a(-,‘;—morphism from B is a monomorphism we may

apply Theorem 12.1 to deduce B fulfills the wpb-condition with respect to Ya and

f

the restriction of i to Ya . Therefore from Proposition 6.1 we deduce

._.(‘__EE— _a.[s—-—>‘

~n
ap

We denote by AFS the quotient of Fl by .. From Theorem 7.8

X,B X,B ap
applied to the restriction of i to Yap we deduce AFSX B is an inflow. The
5 9

morphisms in AFSX,B are called a3 -schemes.

Let A, :X —» AFS and A, :B —> AFS be the composites of

X X,B B X,B

Exy § Kotmep FIX,B and of Eg : B =) FlX,B Wlth the factorization morphism from

X

FlX,B to AFSX,B’ respectively. Remark AB

interpretation of X with respect to iAB and oAB. The next theorem is an instance

is an inflow morphism and AX is an

of Theorem 10.3.

Theorem 13Bl. If H: B — B' is an inflow morphism and if I is an interpretation
of X in B' with respect to iH and oH then there exists a unique inflow morphism
(I,H) : AFS —> B'such that A (I,H) =Tand A (I,LH)=H. 1O

X,B X i
Corollary 13B2. For every S*-inflow B and for evéry interpretation I of X in B with

respect to i and o there exists a unique S*-inflow morphism I#: AFSX‘ T B
b
S

such that AXI .= \1%

Proof. Apply Theorems 13A10 and 13Bl.

Definition 13B3. A representation Ffrom Fl is said to be accessible if and only if

an .
G .—= F imply G d\é“F. I



As F is accessible and Fr\g1 o F' imply F' is accessible, we deduce the

accessibility is a property of the schemes.
Lemma 13B&. If F is accessible and F ”ap G then F jﬂ.) G.

Proof. As Nafs E <..ié.. _.f.ﬁ‘-—g there exists F' such that F' f_&-; F and
F? jﬁ-, G. As F is accessible we deduce F' Mo F therefore F .EE;, G [l

Proposition 13B5. If F and G are accessible and F Na[s G then F NaokG' El

Proposition 13B6. If F & Fl(a,b) is accessible and if j € B(b,c) fulfills jWe i(Yaﬂ.)

then Fj is accessible.

Proof. Suppose G € Fl(a,c) and G 285 Fj. By Lemma 6.2 there exists G' € Fl(a,b)
“such that G = G'j and G' -é-ﬁ—) F. As F is accessible we deduce G' .«.,a&F therefore

G ey Fj. LI

Corollary 13B7. If Fe&Fl(a,b) is accessible and j € Bap(b’c) then Ej ..is

accessible. O

Proposition 13B8. If the monoid X is free on a set 3 then the scheme represented

by (x,f) is accessible if and only if (x,f) Mg (x',f') implies |x] < {x".

Proof. Suppose (x,f) is accessible. If (x,f) Map(x',f‘) from Lemma 13B4 we get
(x,f) 2 (x,f'), hence Ix| <{x'|.

Conversely, suppose (x',f') S (x,f), i.e. there exists uelnz(x',x) such that
(", 1) T ;1) AisoilcfY) ~ A (x,f) implies jx{ < |x'{, we deduce ueBii(x',x) hence

(%19 e (xsf). o)

5y




The biflow of flowchart schemes FSX R is the quotient of Fl by Mo As
3 9

~ o CVy there exists a unique biflow morphism

ae
AP X,B -—) AFSX,B
-a{ - ~ax k. : ;
such that EX APX,B = AX and EB APX,B = AB. The morphism APX,B is called

"Accessible Part" as it maps every concrete flwchart scheme in its accessible part.
Proposition 13B5 tell us that if two accessible schemes have the same accessible
part (i.e. the same image by APX,B) then they are equal. In other words in every
coset of the kernel of APX,B there is at most one accessible flowchart scheme.
The next proposition shows for concrete schemes that in every coset of the kernel
of APX,B there exists one accessibe flowchart sheme, therefore in the concrete

cases the aig—schemes and the accessible schemes coincide.

Proposition 1389. If the monoid X is free and if B RelS then for every F € Fl(a,b)

there exists G € Fl(a,b) such that G is accessible and F Nap, G.

Proof. To determine the accessible part of F = (x,f) we may proccgd in the
following way. We forget the sorts and the exits of the scheme, we identify all the
inputs of the scheme in one input, we identify the inputs of every statements in one
input and we identify the outputs of every statements in one output to obtain the
relation

tbi NGl _
=Wyt S enanMop L * Zncenat’ ¥ V€ Rell i)

n : . . 1 —0
where /\n and V' are define by induction /\O N /\n+1 = /\(I1 + /\n), vVi=T,,
gl (Il + VMV, The image of the relation (h /\'xl)"‘lx{ gives the accessible part of

R

Proposition 13B10. Suppose X is a free monoid on a set ¥ and BC& Rels. If

F ¢ Fl(a,b) is accessible and if F iai—) G then G is accessible.




Proof. Using the same notation as above as F = (x,f) is accessible we deduce
(h le)T\xtz Alxl' As F ii‘) G = (y,g) there exists ué Suri(x,y) such that
£(1, +i(w) = (Ia + o(u))g. As we forget the sorts all the computations we make are in

Rel. First remark that
WZ e [Iyl]/\ lo(yk)|) =(2 ¢ [ix i]/\ '(O(xk)i)O(U) and

- B i s iy
(2 e [\Xl]v k'Yu = itu)( 2 ké[’\yi]\, ):

V‘l(Yk)l) we deduce

e - {bi
For:hl= (Aial + 2 kG[\yl]AiO(yk)i)g(l +Z kellyll

o : ibi iy, )\
(Il + uh' = ( Alai ek ké[ixl]{\lo(xk)l)(l i o(udg( |’ + Z k(:.[(yl]v k') =

=l V“(Yk)')zhu

- e
b kenxﬂmouQ9ﬂlb+’m»QL + 2

kelly(l
therefore

h A1

= iyl _ v ALY
ixi lyl+u).huA _(Il+u)hl\ .

As u is functorial we deduce

v AVY YT g g Xt Il _ o pdxhaixt, o =
o AR = b N e 1 AR = DY u./\mu_/\iyi

hence G is accessible.

13C. Three characterizations of ~o p-equivalence

In [CS88b, Proposition 7.6] we have proved N is the least congruence
relation satisfying (XX) in Proposition 9.4. In this subsection we give analogous
characterizations for A~/ .
ap
Assumei:Y ~»Bando:Y —> B are a{-},-ssmc morphisms and B is an inflow.

As usual X = Ob(Y).

Proposition 13C1. If X is equidivisible then Nap, is the least ai5~functorial

congruence relation in Fl satisfying (XX) and (TX).
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Proof. As AFSXB is an inflow we deduce from Remark 9.7 that Nafb is
b

a"l.,-functorial. For the remainder we use Propositions 9.4 and 9.8.

Lemma 13C2. If a congruence relation = in Fl has the property (XX) and

(x,f) ——‘91 o X+ 8) implies (x,f) = (x +y, g)
Xy

then = includes Na

Proof. It suffices to show = includes 4_31?19 . Assume (x,f) - (y,;g) in Fl(a,b)

where u is in Ya . Using Lemma [3Al we may writeAu:(IX+TZ)k where

.

I
X

and (x + z, h) —-—-)k (y,g). By hypothesis (x,f) = (x + 2, h). As = fulfills (XX) we get

k éYad(x +2,-y) For h= (Ia + o(k))g(lb +ik™ l)) we deduce (x,f) — +TZ(x + 2, h)
2 includes Mo therefore (x + z, h) = (y,g), hence (x,f) = (y,g). I

Proposition 13C3. n, is the least congruence relation = in Fl fulfilling (XX) and

(x,1) —»; .1 & +y, g implies (x,f) =(x +y, g). 1T
L

Proposition 13C4. If B is an inflow oven an algebraic theory then Aa is the least
l.

congruence relation = in FI with the properties (XX) and Ta =z (x,f) for every (x,f) in

Fl(e,a).

Proof. It is easy to see that /\{an’ has the above properties.
l.
Let £ be a congruence relation in Fl having the above properties. To show =

includes ~, o Weuse Lemma 13C2 therefore we have to prove its hypothesis.

Suppose (x,f) 21 LT (x + y,g) inFl(a,b). By hypothesis
XY

e : i(y)
Tb+i(x) & [(Ta+o(x) & y)g”J :




Adding to the left (Ia + x)f we deduce

- ily)
(Ia + x)(f + Tb+i(x)) 2 [(1a +x + Y+ ('ra+o(x) + lo(y))g)}’r

Composing to the right with Vb+i(x) we deduce

: ily) _
(Ia +x)f 2 [(Ia +x+ yf + (Ta+o(x) + Io(y))g)(vb+i(x) + Ii(y))]’[‘ -

= i(y)
= [(Ia +x+yd + Ti(y) + (Ta+o(x) + Io(y))g)vb+i(x+y)]¢ .

Asf + Ti(y) = (Ia+o(x) + To(y))g we deduce

o i(y)
(Ia +x)f = [(Ia + Ny (Ia+o(x) 3 To(y))g’ (Ta+o(x) + Io(y))g >‘]T

-1, + x+ gl iy),

Applying TI(X) we get (x,/) = (x +y,g). I

14. On wpo-condition (cases ay- and ad)

The study of the wpo-condition is more difficult than the study of the
wpb-condition owing to the pushouts which have a more complicated construction
than the pullbacks. To overcome this difficulty we suppose the monoid of

statements is free and even more hypotheses in case ay which is more difficult

than case ad .

The study of case ad is made using the duals of conditions wpbl_3 in Section 6.

We begin to study the dual of wpb, for cases ay’ and ad .

The concept of (weak) pushout is the dual of the concept of (weak) pullback. We

use the same notation as in Section 8.

It is known that in the category of sets, denoted Set, there exist pushouts. For

p:B —»D and q : C — D, we mention that (f,g) Po (p,q) in Set implies A

A) (VdeD)N(3be B)p(b)=d or (IceC)qlc)=dl

To prove that the pushouts exist in SurS and in FnS we recall an old proposition
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from the theory of the categories.

Assume C is a category and S€ Ob(C). The definition of the comma category
CJlSis:

- (A,a) € Ob(CLS) <==> A€ Ob(C) and a€ C(A,S),

- CLS(A), (B,D) ={f€CAB) |1 = a},

- composition in C{ S is induced by the composition in C.

Proposition 14.1. Assume C is a category having pushouts and E is the subcategory
of its epimorphisms. For every S € Ob(C) the comma categories C|, S and EJ S have
pushouts and the forgetful functors from E, S to C}, S and from C{S to C preserve

the pushouts.

Proof. Suppose f € C [, S((A,a), (B,b)) and g& C L S((A,a), (R,r)).

As C has pushouts there exist pé& C(B,D) and q & C(R,D) such that (f,g) Po (p,q) in C.
As fb=a=gr there exists déC(D,S) such that pd=b and qd=r, therefore
p € C 4S((B,b), (D,d)) and q& C ¥ S(R,r), (D,d)). ’

We  ‘prove (f,g) Po (p,q) in clSs. Assume ué C s((m,b), (E,e)),
v&CLS(R,r), (E,e)) and fu= gv. As (f,g)Po(p,q) in C there exists a unique
h € C(D,E) such that ph = u and gh = v. As phe = ue = b = pd and ghe = ve = r = qd we
deduce he = d therefore h €C 4 S((D,d), (E,e)). Hence C | S has pushouts and the
forgetful functor from CJ:S to C preserves them.

To get the other conclusion, keeping the above notation we remark that if f and
g are epimorphisms then p and q are epimorphisms and if u and v are epimorphisms

then h is an epimorphism. I3

Corollary 14.2. The categories Suri and Fn)._. have pushouts. The forgetful

functors from Sur,z to Fnt and from Fn ¢ to Set preserve the pushouts. 1

The next proposition covers the dual of wpb2 in case ad.

wimslbhlitiisaiir ..
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Proposition 14.3. If T is an algebraic theory then every aé—ssmc morphism

o:Fn 5 —> T preserves the pushouts.

Proof. We assume (p,q)Po (p',q') where pcFn z(x,y), qe Fn .i(x,z), p'é Fnz(y,x')

and ¢ &€ Fn _(z,x') and we prove

2
(o(p), o(q)) Po (o(p"), o(q').

Fory ¢ z* and i & [Jyl] we use the notation

x) =T sl

i YitetYior Y

i Yty ’

i+l 1Yl
Suppose f € T(o(y),a), g € T(o(z),a) and o(p)f = o(q)g. We define the functions u and v

by u(i) = o(xiy)f for i€ [jyj],

v(j) = o(sz)g for jelizil

and we remark that pu = qv. Indeed for i €[ix|]
W(p()) = ol = ol Io(p) = ol ola)g = ol ;y)g = (ali)-

As by Corollary 14.2 we get (p,q) Po (p',q') in Set there exists a unique function w
defined on [Ix'[] such that p'w = u and q'w = v.

Denote h = <w(1), w(2),...,w(ix')>. We show h&T(o(x"), a). For every k& [ix'l] as
(p,q) Po (p',q") in Set we deduce from A there exists i & [1y!] such that p'(i) = k or
there exists j&[izl] such that q'(j)=k We deduce in the first cz;;e
wik) = w(p'(i)) = uli) € T(o(yi), a) = T(o(x'k), a) and in the second case
w(k) = w(q'(j)) = v(j) c—:T(o(zj), a) = T(o(x'k), a), hence h ¢ T(o(x"), a).

For i¢ [iyi] we deduce o(xiy)o(p')h = o(xg:(i))h = w(p'(i)) = uli) = o(xiy)f therefore
o(phh = f and for j & [iz]] we deduce o(sz)o(q')h = o(xg:(j))h = wlq'()) = v() = o(sz)g
therefore o(g"h = g. Hence (o(p), o(q)) Wpo (o(p"), o(g").

To prove the uniqueness of h suppose h' £ T(o(x"), a), o(pHh' = f and o(q)h' = g. It
suffices to show o(xf)h‘ = w(k) for every k € [ix'l]. If k = p'(i) where i & [iy|] then

Xl

O(X;S)h' = O(Xp,(i

))h' = o(xiy)o(p')h' = o(xiy)f = u(i) = w(p'(i)) = wik)




and if k = q'(j) where j € [iz!] then

O(X)':')h' = O(X::(J))h' = O(XjZ)O(ql)hl = o(sz)g = V(j) = W(ql(l)) =wik). T

The next proposition is useful in the two cases. In case ad it covers the dual of

wpb3.

Proposition 14.4. Assume T is an algebraic theory and P is a sub-ssmc of T such
that fg in P implies g in P for every pair of composable morphisms f and g from T.
If the inclusion functor from P to T preserves the (weak) pushouts then the functor

Ia+_ : P —» P preserves the (weak) pushouts for every object a of T.

Proof. Assume (p,q)Wpo (p',q') in P where p € P(b,c), q ¢ P(b,c"), p'¢ Plc,d) and
q' ¢ P(c,d) and we prove (Ia +py 1+ q) Wpo (Ia +py I+ q)inP.

Supposef € Pla+c,. d), ‘gePlaic, d) and (Ia +pMf = (Ia +q)g, therefore
(Ia + Tc)f = (Ia +7TC,)g and p(Ta + Ic)f = q(Ta + IC,)g. As (p,q) Wpo (p',q") in T there
exists w € T(d,d) such that p'ws= (Ta + Ic)f and q'w = (Ta + IC,)g. For

h = <(Ia + TC)f,w> € T(a + d, d') we deduce
(Ia +pHh = <(Ia + Tc)f, ('l"a + Ic)f> =f and
(Ia +qHh = <(Ia - TC,)g, (Ta + IC,)g> = g

As (Ia +pHhisin P we deduce h € P(a +d, d'). [I

Corollary 14.5. The functor Ia+_ - SurS — SurS preserves the (weak) pushouts for

every a € S¥.

Proof. Apply Proposition 14.4 for P = SurS and T = FnS.

Theorem 14.6. (case aé ). If T is an algebraic theory and if the ¥*-ad-ssmc Y

fulfills Y = Yaé then T fulfills the wpo-condition with respect to Y and o for every
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ad-ssmc morphism o :Y —> T.

Proof. As an is the initial Z’*—acf—ssmc there exists a unique s*-ad -ssmc
morphism O : Fni —>Y.

Suppose u ¢ Y(x,xl) and 'v € Y(x,xz)‘ As every morbhism in. Y . is:an
a § -morphism by Proposition 3.2 there exists u € Fn Z(x,xl) and v, € Fn s:(x,xz)
such that u = O(ul) and v = O(Vl)' By Corollary 14.2 there exist p € Fn z(xl,x') and
q€ Fn ;Z(xz,x') such that (ul,vl)Po (p,q)-

For u' = O(p) and v' = O(q) we deduce uu' = vv'.

From Proposition 143 applied for Oo: Fnz ——-’: T we deduce
(o(u), o(v)) Po (o(u'), o(v)). From Proposition 144 for P = T we deduce
(Ia + o(u), b o(v)) Po (Ia + o(u"), I & o(v)). I ‘
Theorem 14.7. (case ay'). Assume B is an ay*-ssmc and Y is a 3% -ay-ssmc such

that Ya\( =Y. If for every ay-ssmc morphism G:'Sur’__——) B and for every

a € Ob(B)
(u,v) Po (u',v') in Sur implies (Ia + G(u), Ia + G(v)) Wpo (Ia % G(u‘),Ia + G(v")

then B fulfills the wpo-condition with respect to Y and o for every ay’-ssmc

morphism o: Y — B.

Proof. Assume H : Sur\i —> Y is the unique i*—ag'—ssmé mor phism.
Suppose u s‘;Y(x,xl) and v eY(x,xz). Be Y o =¥ by Proposition 3.2 there exist
¥
UIESUF’Z 1
14.2 there exist p € Sur

(x,xl) and v, € Suri_(x,xz) such that H(Ul) = u and H(vl) = v. By Corollary

5 (xl,x') and q¢& Suri (x,x") such that (UI’VI)PO (p,q)-
For u' = H(p) and v' = H(q) we get uu' = vv'.

Applying the hypothesis for G := Ho we get
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(Ia + o(u), L + o(v)) Wpo (Ia + o(u"), I o(v)). I
15. Reduced Flowchart Schemes

In this section we apply our. abstract theorems from the first part of the paper
to study reduced flowchart schemes. As this concept is not as well known as the
concept of accessible flowchart scheme we give some explanations.

To reduce a scheme we identify interval vertices which aré labeled by tﬁe same
statements which have coherent continuations, i.e. the arrows going from the same
output of two statements which are identified must go to the same output of the
scheme or to the same input of two statements which are identified. The simplest
example of reduction is (x + X)Vo(x) — Vi(x)x. Remark that by reduction the
behaviour of the scheme does not change.

For concrete schemes (statements in a set T and connection in Rel) we show

that (x,f) ¢ Fl s ,Rel(a’b) can be reduced to (y,g) ¢ Fl

i,Rel(a’b) if and only if there

exists u ¢ Surz (x,y) such that (x,f) e (y,8).

Let (x,f) ¢ FlZ,Rel(a’b)' To identify vertices having common labels we may use
an equivalence relation = on [{x|] such that j = k implies x}. = X,; OF equivalently but
more useful in the sequel we may use a surjection u eSurz(x,y) to identify the

vertices j and k if and only if u(j) = u(k). For j ¢ [i1x{] we use the notation

he =T +1 +T
j O(Xl+'"+xj-l) o(xj) o(xj+

lJ-“"+Xin)

Remark that v and w in [[b + i(x)i] become equal after identification if and only if

(Ib + Hu)(v) = (Ib + 1(w)(w). To understand this the following lemma is useful.

Lemma 15.1. Assume o : Surz — SurS is an ay"-ssmc morphism where 2 and S

are sets. If u ¢ Suri (x,y), i € [ixiland j € [(o(xi)l] then

€3




o(u)( z k e[i- 1]|O(Xk)‘ + )) =2 k¢ [U(l)- IJ(O(Yk)l + jo

n
2
h s
re[l)’!]vyr where g 1s In

Bi_ and n >1 for reflyi. As gfi) = iré[u(i)-l]nr+q where qéeln gyl from

Proof. By Theorem 3.1 in [CS89a] we may write u = gf

Corollary 2.4 in [CS89a] we deduce

ogl 2 . - 1]\O(XkH )= 2 (i) 1]nr\o(yr)H (g- 1)\0(yu(i))\ +

therefore

o(u)( Zk é[i- l]io(xk)l +j)=

n
r P 3
=02, [iyl]VO(Yr))(Zr & [u(@)- 110 I+ (a- Bioly gt + 1=

M)
= E i l]lO(yr)l +V

o(yu(i)

r e [u(i) )((q - l)fO(Yu(i))l +3) =

= Teenafeies g

The identification may be made only if the identified statements have coherent

continuations, that is we must have
L. (Ta + hj)f(lb + i(u)) = (Ta + hk)f(lb + i(u)) whenever u(j) = u(k).

This condition is equivalent to
- P :
1. (Ta + o(uu ))f(Ib + i) = (Ta + Io(x))f(lb + i(u)
for every u' € Inz (y,x) such that u'u = Iy'

We prove 1 implies II. Assume u' € In .i'(y,x) and u'u = Iy' For je [ixi] as
u((uu")(j)) = u(j) we deduce from I that
(1% h(uu,)(j))f(lb + (W) = (T_ + hj)f(Ib + i(u))
therefore as by Lemma 15.1 hjo(uu) = huu'(j) we get

hj(Ta + o(uu'))’i(lb +i(u)) = hj(Ta + Io(x))f(lb +-5a)):

Hence Il is proved.

.“‘.




We prove II implies I. Assume u(j) = u(k). We may choose u' € In 5 (y,x) such that

u'u = Iy and u'(u(k)) = j. Form II we deduce composing to the left with hy

(T, + hpouuDi(l + itw)) = (T + h JE(, + i)
therefore ('I'a + huu‘(k))f(lb +i(u)) = (’I'a + hk)f(lb + i(u)) hence L.
As (Ia + To(x))(la + o(uu'))f(Ib + i(u)) = (Ia + To(x))f(lb +i(u)) we deduce the

identified statements have coerent continuations if and only if

111, (Ia + o(uu'))f(Ib +i(u) = f(Ib + i(u)) for every u' € In T):(y,x) such that u'u = Iy.

The reduction of (x,f) is (y,g) where g = (Ia + o(u'))f(lb +i(u)), u' ¢In 7_:(y,x) and

u'u = Iy. It does not depend on u' as if u" € In 5 (y,x) and u"u = Iy we deduce

(Ia + o(u"))f(Ib + i(u) = (Ia + o(U"))(Ia + O(UU'))f(Ib +i(u)) = g.

Moreover as (Ia + o(u)g = (Ia + o(uu'))f(lb +i(u)) = f(Ib +i(u)) we deduce that
(x,1) - (y,g).
Suppose u & Surz(x,y) and (x,f) = (y,g). We deduce for every u' € In.i_.(y,x)

such that u'u = Iy that
(Ia + o(u'))f(Ib + i) = (Ia +olu'u)g = g,

therefore as Il holds we may use u to reduce (x,f) and its reduction is (y,g).
By definition a scheme represented by (x,f) is said to be reduced if

(x,£) = (y,g) and u ¢ Sur{ (x,y) imply u & Bi 5 (%)
15A. Introduction to the algebra of reduction
The algebraic structure we use to study reduction, called surflow, consists in a

weakly cocartesian ay’-flow B such that for every set S, for every ay -ssmc

morphism G : SurS —> B and for every a ¢ Ob(B)

J1
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(u,v) Po (u',v") in SurS ==> (Ia + G(u), Ia + G(v)) Wpo (Ia 3 G(u'),Ia + G(v)).

Proposition 15A1. Suppose P is a sub-ay'-ssmc of an algebraic theory T such that
fg in P implies g in P for every pair of composable morphisms f and g from T. For

every set S, every a¥’-ssmc morphism G : SurS —» P and every a € Ob(T)

(u,v) Po (u',v") in Sur_ ==> (Ia + G(u), Ia + G(v))Po (Ia + G(u"), It G(v"))

S

Proof. Assume F : Fng > T is the unique ad -ssmc morphism such that F(x) = G(x)
for every x ¢ S*. As the restriction of F to SurS is equal to the composite of G with
the inclusion of P in T we deduce F(f) = G(f) for every morphism f in Surg.

Suppose (f,g)Po (p,q) where f€ Surs(x,x‘), ge Surs(x,x"), péSurS(x',y) and
qé SurS(x",y)‘ Using Corollary 14.2 and Proposition 14,3 we deduce
(F(f),F(g)) Po (F(p),F(q)). By Proposition 14.4 we get
(Ia + G(f), Lo G(g)) Po (Ia + G(p), Dow G(q) in T. If u¢ P(a + G(x'), b),
véP(a + G(x"),b) and (Ia + G(f)u = (Ia + G(g))v then there exists a unique

he T(a + G(y),b) such that (Ia + G(p)h =u and (Ia + G(g)h = v. Note that from

hypothesis we get hisin P. IT

Corollary 15A2. Let £ and S be sets. If G : Sur{—'; SurS is an ay’-ssmc morphism

then G preserves the\pushouts. Il

Proposition 15A3. If B is a biflow over an algebraic theory and if every

ay’-morphism is functorial then B is a surflow.

Proof. As every algebraic theory is a strong ay’-ssmc we deduce B is an ay -flow.

The conclusion follows from Propositions 11.2 and 15A1. T




From this proposition we deduce Rei(S), Pin(S), Relg and Pin. are surtlows.
Another example of surflow is PSurS as follows from Subsection 11.3 and
Proposition 15A1.

A surflow morphism is by definition a biflow morphism between two surflows

which is also an a y’-ssmc morphism.

Proposition 15A%4. In an ay-flow B if we define la :TaVa then B becomes a.

b X’—ssmc such that

a,,n+l na
=l eer and L

Proof. By Proposition 13A7 B is a be{ -ssmc.
We show pib = J_a for every ay-morphism p: a —» b. Using Theorem 3.7 we
4 5 oo de g
deduce V_p = (p + Ia)(Ib + p)Vb. As p is functorial we obtain A°V_ = T ((Ib + p)Vb)
hence &= pj_b.
Therefore Vb_Lb = J_b+b = _Lb + _Lb hence B is a by -ssmc.
The last conclusion is proved by inductin on n:
Al a g 0a
4 Va: % Ia_le_ A= eand
a,,n+l a n n. @ na
A v =4 [(Ia+va)va]:VaL =il e
If H:B —» B'is a surflow morphism then for _La defined as above H becomes a
by§’-ssmc morphism.

Remark in PSurS that La = /taVa is an identify.

Theorem 15A5. Let B a surflow. If H :PSurS ~» B is a by’-ssmc morphism then H

is a surflow morphism.

Proof. It suffices to show H' preserves the scalar feedback. Assume

fé PSurS(s +a,s +b)wheres €S.



Iff= f + g where g ¢ PSurS(a,s +b) then 1 =g(ji°+ Ib) and

) - AR O 1 k) = 2% MO ) = ras,
If £(1) = 1 using the standard representation of f [CS89a] we may write
f = (I + W) + g)(V_ + h)

‘where w is in Insl, g istin BiS, n>l:-and. h is.in Surs, therefore

15 = wg( _j_(n_ Ds, h) hence

MOt = g (TN mm) = By L) L By - H2Ss),

VHes) *
In the other cases we use again the standard representation of f to write

B (I + \V)g Vn + EIC. [ibup)

where w is in InS1 g is in Bi, g(l)>n> 1 and p, = Vbl with n, > 1 for i & [Ib{]. As
i

g)=n+ 2 + 1 where i € [Ibi] there exists h in Big such that

ieli=11"
g+ SR D@
where b'= Ejé[i—l]njbj and - b" ={(n -l)s 0 byt +n(blblbl' Using the
notation q= w(X> + Id)(IS +h)y . p= ’Ejé [i—l]pj’ p" = Piop *ee" * Pipi and .
U= ZJC[I 1]bJ we deduce

n.
q)[ ns+b V +p+l ) + Ib,,]( T VS1 +p') =

n.
= (1 + LU+ VE+ pPXTT L+ V4 pY)

therefore
. nj
Ap q[(V: £ pxY . )N + vsl + p")
hence

Ay - H(q)[H(Vn+p)(’f'H His)yHis+u)) | g

b,,)]H(I + V s p") =

= H(q)[(v,’fl(s) H(py) eI HW) + H(I,)H{ + v:1 + P = H(1%). I




The computations in the above proof may be used to see the feedback in PSurS

is unique.
Theorem 15A6. PSurS is the initial S* -surflow.

Proof. We use Corollary 6.5 case by in [CS89a] and Theorem 15A5.

15B. Abstract Reduced Flowchart Schemes

We suppose until the end of this section that X is a free monoid on a set Z_, Y is
an X-ay'-ssmc, B is a surflow, and i:Y—»B and o:Y-=B are ay’-ssmc
morphisms.

By Theorem 147 B fulfills the wpo-condition with respect to Yag" and the
restriction of o to Yaﬁ" From Proposition 8.1 we deduce Na'.\f = f—l—f-) (-.ig; ‘

We denote by RFS the quotient of Fl by ~ _. From Theorem 8.3
X,B X,B

o

83
applied to the restriction of o to Ya\( we deduce RFSX B is a weakly cocartesian
9

<

ay -flow. The morphisms in RFSX p are called ay’ -schemes.
9

Let RX 3 X =D RFSX,B and RB 4B ~-~3»RFSX’B be the composites of

Ey: X %?FIX,B and of EB B> RFSX,B with the factorization morphism from

FlX,B to RFSX,B’ respectively. Remark RB is an ay -flow ‘morphism and Ry is an

interpretation of X in RFSX,B with respect to IRB and oRB.

Proposition 15B1. RFSX B is a surflow.
9

ey




Proof. We only have to show the last condition in the definition of the surflows.

Suppose G : Sur —» RFS is an ay’-ssmc morphism, a¢ Ob(B) and (u,v)Po (u',v')

X,B
where u eSurS(b,c'), Ve SurS(b,c")', u'e Surs(c',d) and v'¢ SurS(c",d). We have to show

(Ia + G(u), Lot G(v)) Wpo (Ia + G(u"), Lot G(v").

Let E :SurS —> B be the unique ay’-ssmc morphism such that F(b) = G(b) for

every b € S*. Remark that FRB =G,

Assume (Ié + F(u))(y,g) rvaY (Ia + F(v)Xz,h) where (y,g) €Fl(a + G(c'),d") and
(z,h) EFl(a + G(cM),d"). As Na\l' =g (_?i—- there exists (x,f) ¢Fl(a + G(b),d")
such that :

(%+Fm»w@)jﬁ;(&ﬂamu%+Fw»@myﬁ$u¢x

Applying Lemma 8.2 twice, there exist (x,f") ¢ Fl(a + G(c"),d") ‘and

(x,f") e Fl(a + G(c"),.d’) such that
(y,g) .,.a_g.>(x,f'), (z,h) 2 (x,f") and (Ia + F(u)(x,1") : (x,f) = (Ia + F(v))(x,f").
As B is a surflow we deduce

(Ia L Bl Io(x)’ Ia + F(v) + Io(x)) Wpo (Ia + F(u') + Io(x), Ia + F(v') + Io(x)).

a " 3
_therefore as (Ia + F(u) + Io(x))f' = (Ia + F(v) + Io(x))f there exists

r ¢B(a + F(d) + o(x), d' + i(x)) such that
(Ia + F(u') + Io(x))r = f' and (Ia + Elv)s Io(x))r =1

We deduce (x,r)¢Fl(a + F(d),d), (Ia + F(u'))(x,r) = (x,f') and (Ia + F(v))(x,r) = (x,f")

therefore

(y,0) 2% (1_+ Fudxr) and. (z,h) 255 (1 + FOx0)
hence '

(Ia + Fu))(x,r) ~, (y,g) and (Ia + F(v))(x,r) A%Y {zh). &l

it

The next theorem is an instance of Theorem 10.3.

?0‘




Theorem 15B2. If H: B — B' is a surflow morphism and if I is an interpretation of
X in B' with respect to iH and oH then there exists a unique surflow morphism

(LH) : RFSX,B —> B' such that RX(I,H) =1 and RB(I,H) =H. I

Corollary 15B3. For every S*-surflow B and for every interpretation I of X in B
with respect to i and o there exists a unique S*-surflow morphism
#

_ # .
: RFS —>» Bsuchthat R, I =1.

ks X,PSur X

Proof. Apply Theorems 15A6 and 15B2. [I

Definition 15B4. A representation F from FlX B is said to be reduce if and only if
9
F 2%, G implies F gy G

As F is reduced and F Na& F' imply F' is reduced, we deduce the reduction is a

property of the schemes.

Lemma 15B5. If F is reduced and if F ~ . G then G 285 F.

i

Proposition 15B6. If F and G are reduced and F Nax’G then F Nao<G'

Proposition 15B7. If jGBa{(C’b) and if FEFI, ,(b,a) is reduced then jF is

X,B
reduced. [

Proposition 15B8. If B is a surflow over an algebraic theory, j¢B(a,b) and

FeFly B(b,c) is reduced then jF is reduced.
9

Proof. Suppose jF 3-25 G. By Proposition 11.2 and Lemma 8.2 there exists H such

that G = jH and F 2%, H.AsF is reduced we get F i H hence jF & G. O

Proposition 15B9. The scheme represented by (x,f) is reduce if and only if

(x,1) fvav(y,g) implies |x| < {yj.

ey




Proof. If (x,f) is reduced w§ get (y,g) f..g_.y (x,f) by Lemma 15B5, therefore

ixi <1yl
\J-

~ Conversely, suppose (x,f) 23, (y,g), i.e. there exists u€Surz(x,y) such that
(x,f) =¥ (y,g). As (x,1) Naq' (y,g) implies {x|< |yl we deduce ueBi z(x,y) hence

15C. A characterization of A Y—equivalence

15Cl. Theorem. ~~ is the least a\r-functorial congruence relation in Fl

ay
satisfying (XX) and (VX).

Proof. As RFSX R is a surflow we deduce from Remark 9.7 that /va is
)

a y-functorial. For the remainder we use Proposition 9.4 and 9.8. Tl

¥

16. Minimal flowchart schemes (with respect to the input-behaviour)

For the motivation of this Section we sent to the introduction of Section 7 in

[CS87b] and to [E177] where the simulation by functions was introduced.
16A. Introduction to the algebra of minimization

The algebraic structure used in this section is an a(g~flow, which is called in
the sequel a funflow. The concept of strong iteration theory was introduced in
[St87al. In [CS88a] it is proved that the concepts of funflow and strong iteration

theory coincide. As examples of funflow we mention Pfn(S), Rel(S), anS and RelS.

Lemma 16Al. In an ad-ssmc B if fEBaé(a,b) then there exists p ¢ Ba%_(c +a, b)

such that f = (TC 3 Ia)p.

(23




Proof. As BauS is the least sub-a&-ssmc of B, it suffices to prove that all the

morphisms of type (TC + Ia)p where p is BaX' form a sub-ad-ssmc of B. 1

Lemma 16A2. In an ad -ssmc B if pE Bay_(a,b) there exists u GBa rb(b,a) such that
Up = Ib-
bXC +1

esD
Proof. If p:Ia+ 7ok p=Ia+vb+Ic we take u:Ia+ X +Id or

U= Ia - Tb + Ib+c’ respectively. If p = PPye--Pp where every p; Is of one of the

above types then we take u, as above andu =u_...u5u,. a

Proposition 16A3. B is a funflow if and only if B is a biflow over an algebraic

theory such that every a'\z—morphism is functorial.

Proof. On implication is obvious. Suppose B is a biflow over an algebraic theory
such that every ay’-morphism is functorial. We have to show every acf—morphism
is functorial. Suppose f € Bla+c, a+d), g €Bb+c, b+ d), ve Ba(S(a’b) and
flv + Id) =(v+ Ic)g. By Lemma 16Al1 we may write v= (Tr + Ia)p where
DG Ba\;;(r +a, b). By Lemma 16A2 there exists u € Ba(b(b’ r + a) such that up = Ib.
Let

h= <(Ir + Ta+c)(p + Ic)g(u + Id), f(Tr + Ia+d)> ¢B(r+a+cr+a ",d)'

As (Tr + Ia+c)h = f('l"r + Ia+d) and as by Theorem I13A8 T_+ I is functorial we

deduce 7T2f = T”ah. As
hip + Id) = <(I-r + Ta+c)(p + Ic)g, flv + Id)> =
= <(Ir + Ta+c)(p + Ic)g, (Tr + Ia+c)(P + Ic)g> =(p+ Ic)g

we deduce from hypothesis 1" h = Tbg. Hence 4°f = ’I’bg. Iz

Proposition 16A4. Every funflow is an inflow and a surflow. If B is an inflow and a

surflow such that (Ta + Ia)va = Ia for every a € Ob(B) then B is a funflow.

el




W |

Proof. The first statement follows from Theorem 13A8 and Proposition 15A3.
The last conclusion follows from Proposition 16A3 and the folloWing remark: if
C is a strong afy-ssmc gnd a strong ay’-ssmc such that (’I'a + Ia)va = Ia for every

a € Ob(C) then C is an algebraic theory. I

Proposition 16A5. In a funflow B if we define _\_az ’raVa then B becomes a

b &-ssmc.
Proof. Using Proposition 15A4.

Theorem 16A6. 1f B is a funflow and H : ans ~>»Bisabd-ssmc morphism there H

is a funflow morphism.

Proof. It suffice to show H preserves the scalar feedback. Suppose
fe ans(s +a, s+b)wheres €S.

= u g where g € Pfn.(a, s + b) then f = g( 2 Ib) hence

S

AHE) g o pHEY B DHE) = T (H(g) 1HS) 1 o meSs),

H(a H(b)

If f = T_+ g where g€ Png(s + a, b) then 11 = (T +1_)g hence

)

e S
H(f) = H(g)(TH(S) % IH(b))) =1 ((TH(S)+ IH(a))H(g)): HES 1),

In the other cases using the standard representatioh [CS89a] of f we may write

s B
f= (Is + w)g(.\/S 4 L‘i{;[}bl]pi)
E i
where w is in InS - g.is.in BiS, n> 1 and p; = Vb where n, >0 for i €[ibi]. We study
i
two cases.

a) If g(1) = 1 then g = I_+ h therefore 1°f = wh( Jols 2_p;) hence

ko) = HemPHEND 4 Hzp) -

- H(wh)( 2= DHE) | H(Zp)) = H(? ).




b) If g(l1) >1 we deduce from the properties of the standard representations
there exists i€[{b|] such that n, >land g(l)=n+ ijé[i-l]nj +1, therefore there
exists h in BiS such that

p €S s, ns+b'
g-(Is+ X +Id)(125+h)(x +Ib,,)

where b'= 3. nb and b" —(n Dsaen. . b

jeli-117 AL B i T
1 = = { ] S
Using the notation q = w( %+ ld)(Is % h), pli= ije ol B = Py trertly, and

u=b, +...+b. , we deduce
1 i-1

Sy Ns+b' : n. '
f=0 + QCX™ (VT +p + 1)+ LM+ Vs pY =

b"

S\ S+U n.
= (IS + q)((ls + Vr; +p)X b Ib,,)(I + Vs1 +p")

therefore

n.
T = q(vg + p)°X" + L), + V(] + p")

hence

TH(S) H(s) H(s)xH(s+u)

HIE) = H@HOD + p)(Y + H{ DH( + Vol + p) =

H(s)y H(u)

2 H(q)(H(V 4 p) + HUDHA + Vi + p) = HE °0). T

b"

The computations in the above proof may be used to see the feedback in anS is

unique.
Corollary 16A7. anS is the initial S* -funflow.

16B. Abstract minimal flowchart schemes

We suppose in the sequel X is a free monoid on a set z , Y is an X—acf—ssmc, B.

is a funflow, andi: Y —>Bando:Y —> B are asS-ssmc morphisms.

Theorem 14.6 shows B fulfills the wpo-condition with respect to YaJ and the

g 5
restriction of o to Yaé . From Proposition &1 we deduce LA Es ¢ e

Remark that Nap, C et and fvag,C ~E

) : e 3
We denote MFSX,B the quotient of FIX,B by Mg As by Proposition'11.2 every

7 |




funflow is weakly cocartesian we may apply Théorem 8.8 to deduce MFSX B is a
: 9
funflow. The morphisms in MFSX p are called a(f-schemes-
9

Let M, : X — MFS and MB :B —» MFSX B be the composites of
b

X X,B

e X —> ; :B —%
EX : X FlX,B and EB B FIX,B

to MFSX B’ respectively. Remark that M
?

with the factorization morphism from le B
9

B

interpretation of X with respect to iMB and oMB.

The next theorem is an instance of Theorem 10.3.

X

Theorem 16B1. If H : B — B' is a funflow morphism and if I is an interpretation of
X in B' with respect to iH and oH then there exists a unique funflow morphism

° 1 = s
(I,H) : MFSX,B_'—‘) B' such that MX(I,H) =1 and MB(I,H) = H.

Corollary 16B2. For every S*-funflow B and for every interpretation I of X in B

with respect to i and o there exists a unique S* -funflow morphism

1
I 'Mrsx,anS‘”’> B

#
such that MXI =1.

Proof. As by Corollary 16A7 anS is the initial S*-funflow there exists a unique

S* -funflow morphism H : anS —> B. It suffice to apply the above theorem. I
{
Proposition 16B3. =<, C ﬂ; 2Py

Proof. Suppose (x,1) and (y,g) in Fl(a,b), u € Ya '(S(x,y) and f(Ib + i) = (Ia + o(u))g.

z

is the unique Z*—ac)’-ssmc morphism. By Proposition 3.2 there exists u' in Fnz

We prove u = vw where v GYa{(x,z) and w C—Ya(b(z,y). Assume F:Fn_ — Y

such that u = F(u'). As there exists v'(:Sur.Z.(x,z) and w' € Inz(z,y) such that

u' = v'w' for v = F(v') & Ya \}(x,z) and w = F(w") éYa{b(Z’y) we obtain u = vw.

We show r Eyaé (x,x) and rv = v imply

is a funflow morphism and M,, is an

76|




(@ + oD, + i) = 501y + V)
From _
(la + o(r))f(lb + i(v))(Ib +i(w)) = (Ia + o(r))f(Ib +i(u) = (Ia % o(r))(Ia +olu))g =

= (I + o(rvw))g = (I + o(u)g = £(1, + (VI + itw))

as I+ i(w) is a monomorphism (cf. Propositions 16A4 and 13A5) we deduce the
above equality.
As vEYa{(x,z) by lemma 16A2 there exists JEY (z,x) such that jv = 1. As

(vj)v = v we deduce

(I, + o(viDE(ly + i(v) = £1, + i(V)).

For h= (Ia + o(j))f(Ib +i(v)) € B(a + o(z),b + i(z)) we deduce (z,h) ¢ Fl(a,b) and

(Ia +o(wh = f(Ib +i(v)) therefore (x,f) By (z,h). As B is a surflow from
' s . -

(v',v) Po (IZ,IZ) we deduce applying Fo that (Ia + o(v),Ia + o(v)) Wpo (Ia+o(z)’la+o(z))

hence Ia + o(v) is an epimorphism. From

(Ia + o(v))h(Ib + ilw)) = f(Ib + ilvw)) = (Ia +i(u))g = (Ia - o(v))(Ia1 + o(w))g

cas I+ olv) is an epimorphism we deduce h(Ib +i(w)) = (Ia +o(w))g hence’

(z,h) 2y (y,8).
Theorem 16B4. ¢ = —3s ol 2By L20.

Proof. As an inclusion is obvious we prove the other one. As ’%J = Sy &5 we
et from Proposition 16B3 f.g_. _?.E,-a (.39—'-— Qf:‘:- . At the beginnin
g ad > 8 8
: ap 3)3 1
- .

of subsection 13B we proved o = As
{

by L2P- ¢ Na(” - L AP s we deduce
g €20 BB 2B, B |

Definition 16B5. A representation F-from Fl is said to be minimal if F is accessible
and reduced.
As F is minimal and F Moo G imply G is minimal the minimality is a propoerty

of the schemes.

o



Lemma 16B6. If F is minimal and if F v, ¢ F' then F Af O

Proof. Using Theorem 16B4 there exist F1 and Fz such  that
F —E—t% Fl <_iﬁ—» F2 S <-E£- F'. As F is reduced from F i{-"p F1 we deduce

F~auFl therefore Fqﬁﬁ F2 i@.—) 4_3-3:- F'. As F is accessible from

F 4313’/ F2 we deduce F 'Nao( F2 therefore F _E-E» 4-EL F. @

Proposition 16B7. If F and F' are minimal then F Lo F' implies F o Ft

Proof. From Lemma 16B6 we deduce F 285 F"(—QX- F'. As Eiis reduce we get
F" n  F'therefore.:F 2Py F'. As F' is accessible we get F n,  F'.
ad a

Proposition 16B8. The scheme represented by (x,f) is minimal if and only if

v

(x,1) Mg (x',') implies {x| <{x'{.

Proof. 1f (x,f) is minimal and if (x,f) & ( (x,f') we get (x,f) Aps A e
1%
therefore x| < [x'].
Conversely, suppose (x,f) N (x',f") implies {x} < {x'l. To show (x,f) is accessible

and reduces we use the same proofs as in Propositions 13B8 and 15B9.
16C. A characterization of "~ g -equivalence

We assume the same hypotheses as in Section 16B.
Proposition 16C1. g is the least aJ-functorial congruence relation in Fl such »
that (XX), (TX) and (VX) hold.
Proof. As MFSX B is a funflow we deduce from Remark 9.7 L is a §-functorial.
) “

For the remainder we use Propositions 9.4 and 9.8.
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16D. A comment on iteration theories

Theorem 16B1 shows that a correct interpretation of an ad -scheme may be

given in a funflow. If we restrict the class of schemes to those over an S* -funflow

T satisfying:

(p) for every € T(a,b + c) there exists £° € T(a,b + c + d) such that

(i) there exists u€ Fng(d,c) with f = £°(1, + < ),

(ii) for every geT(a,b+c +d)and ve Surs(c + d,c) such that

f“(lb +V) = g(Ib + V) there exists V'€ FnS(c + d,c + d) with v'v = v and

£ f.o(Ib + V')
then Theorem 16B1 may be made a bit stronger: a correct interpretation may be
given in all iteration theories.

As in the sequel we use a right iteration _Jf : B(a,b + a) = B(a,b) we recall some
computation rules. From [CS88a] we know a biflow over an algebraic theory is
equivalent to an algebraic theory where an iteration is defined and satisfies some

axioms. Moreover if f:b—c+aandg:a —> c + a then
4 T
ool = f<IC,g Ya

If H: T —» B is an S*-biflow morphism and I is an interpretation of X in B with

respect to iH and oH then the behaviour of (x,f)éFlX T(a,b) is
i(x) ‘
(1 + IGNHENT™ = HI + TO(X))’f)(Ib,(I(x)H((Ta + IO(X))f))‘f>.

An iteration S-sorted algebraic theory may be defined as a biflow over an

S-sorted algebraic theory satisfying Esik's commutativity axiom
= el b b +
u(f(@_ + u)l = <xu(1)f(lc . ul),xu(z)f(lC U, ’xu([ai)f(lc + Uial)>

where f:b—c+a, uéSurS(a,b) and uiéFnS(a,a) satisfies uu=u for every

- . b
i€ fiajl. (We recall that xj - Tb e Ib. s Tb. g for every
1 j-1 j j+1 ib{

j e ibt])



Proposition 16D1. .Suppose Z is a one-ranked alphabet, i.e. i(6°)&S for every
0 €2, and T is an S*-biflow over a strong ad-ssmc satisfying (p). Assume B is an
iteration S-sorted algebraic theory, H: T— B is an S* _biflow morphism, and I is
- an interpretation of ¥ in B with respect to iH and oH. If F and G in FI Z,T(a’b) are

similar via a surjection v then F and G have the same behaviour in B.

Proof. Suppose F = (x,<f',f>) and G = (y,(g',g>) where x,ye1*, feT(a,b +i(x)),

f € T(o(x), b + i(x)), g'e T(a,b + ily)) and g & T(o(y), b + i(y)). Assume

i RS IR YRR ’lel> where f, GT(o(xk), b + i(x)) for ke [ix1] and g = <818y eee ,g'y‘>

where gj ¢ T(o(yj), b + i(y)) for jeliyil.

From F =¥ G where veSurz (x,y) we deduce
f’(Ib +iv)) =g and f(Ib +i(v)) = o(v)g.
With the above notation the last equality is equivalent to

£, + i) = By for allkelxil
Our first aim is to prove the following statements
A) Thereiexis_t w ¢3*, ueFn z(w,x) and hj (;T(o(yj), b+ i(x + w))
for j ¢ [iy}] such that:
1) <h1,h2,...,hm> (1, + 1(<1x,'u>v)) =g and |
2) for every k €[ix{] there exists thFnS(i(x + w), i(x + w)) such that
tki(<Ix,u>v) = i(<IX,u>v) and f, + Ti(w) = hv(k)(lb % tk). |

Asv eSurz(x,y) there exists q ¢ lni(y,x) such that qv = Iy.
For every je[jyi] applying (p) for fq(j)ET(o(yj), b + i(x)) we get

(cj,i(x)) such that

fj° GT(o(yJ.), b+i(x) +c)and U ¢ Fng

e ]
fq(j) = fj (Ib + <Il(x)’ u >).

For jeliyi] we denote w, = x

CX e X L and we remark i(w.):cJ and
i 7 Tu() ) w(ic’y) J

Jo




k2

uJanz(wj,x). Let w=w1+w +“'+w()’l and u=<u,u ,...,u‘y‘>anz(w,x).,

2
For je[iy|] we denote

haicdodl T : : -
) l( b+i(x) cli.aci-l . ICJ - Tc1+l+...+c‘yl)

and we deduce

<hl’h2’ h '>(I + i(<1 ,u>v)) =

0 X 1 0 5 0 g
= <301, + AT ,ul>v)), 1501+ 1(<Ix,u2>v)), So el g 1(<Ix,um S =

iyi b

= <fq(1)(1b + i(v)), fq(Z)(Ib +i(v))y ... ’fq(lyl)(lb + i) =

= <By(q(1)yBv(q(2) ** **Bulqliy)” = BByt iBy)” T 8

For every ke [ix{] as v(g(v(h))) = v(k) we deduce . that

fq(v(k))(lb +i(v)) = fk(lb + i(v)) hence

(k)(l + i« ,uv(k)>v)) % (/fk + ch(k))(lb + i(<IX,uv(k)>v)).

v(k)

Applying (p)(ii) there exists r. € Fns(i(x) $o6r M) cv(k)) such that

v(k) v(k)

fv(k)(l i ) = f +T and 1(<Ix,u V) = rk1(<Ix,u >v).

(k)

12 vk)-1 v+l iy

Using the notationc'=c'c"...cC andeel'='¢
we define
c‘ CV(k) cv(k) C
= (I ( ) X + I,C")(rk 7 IC'+C")(I:1(X) + X7 + IC").
Therefore
tki(<1x,U>V) =
p vlk) L ; .
= (Ii(x) ey + IC,.)(rk 3 Icv+cn)i(<1 ,uv(k),u R ,uv(k) l,uv(k)+l couYy) =
il
= (Ii(x) . E%E + IC|,)<rki(<Ix,uv(k)>v), i(<u1, S ,uV(k)— l,uv(k)+1, i ,u‘y’>v)> =

= i(<IX,u>v) and

Cv(k) o

) + X" +1W=f +T

ho o + 1) = bl e ey

(k)(Ib i rk) : Tc'+c:"
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The proof of A) is finished.

Now, we apply ésik’s commutativity axiom for
I(y)H(<h1,h2, P ’hlyl>)‘ €B(ily), b + ilx + w)), H(i(<Ix,u>v))€ Surs(i(x +w), i(y)) and
H(tk)EFnS(i(x +w), i(x + w)) for k €[jx{] to obtain

HG(I ,udV)Iy)H(<h b, o hyy ‘>(1b + 1(<1x,u>v)))]T &
=<y, Hh, D+t Do ,I(yv(lx‘))H(hv“X')(Ib + tm)), ol =
= <I(x H(E| + Ti(w)), T ,I(x'x')H(f‘X‘ + Ti(w)), sz

= IGH() + Ty v e ST = <Ux)HENT, ... >

(w)y

where in the last equality we used the next property of the iteration
(Ia+ Tb)<.f & Tb,g>T —flforf:a—yc+aandg:b-sc+a+h
Therefore (Ix)HENT = HGEW)I(y)H ()T hence

HOE),, AGOH(N T = KL, + KT, ()HEIT = Hg) 1,ap)HE)T. 1

Corollary 16D2. An iteration S-sorted algebraic theory T which satisfies (p) is a

funflow.

Proof. By Proposition 16A3 it suffices to show every ay’ -morphism is functorial.
Suppose f €T(c,b + ¢), g&T(a,b +a), ve SurS(c,a) and f(Ib +V) = vg.

We work in Fl build for i = 0 = 1.x. Note that (c,(Tb + Ic,f>) ¢ FIS* T(C,b)
9

ST S

and (a,<T, + Ia,g>) ¢ Fl (a,b) fulfill

b SET
(C,(Tb + Ic’ ) —3, v(a,<Tb & Ia,g>).

‘ Applying Proposition 16D1 for H = 1. and 1(a) = k. for every a ¢ S* we get
(T, + L)<, UINT> = (T, + v, (I(a)g)t>

hence £V = vgl. 1J
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Collecting all the above facts we get the following theorem.

Theorem 16D3. If T is an iteration theory fulfilling condition (p), then Fl & T/ ~S
9
is an iteration theory which is the coproduct of T and of the free iteration theory

génerated by 3. - E
Observation 16D%. The condition (p) holds in Pfng.

Proof. First note that (ii) holds if fo(_Lb + Ic+d) is an injective partial function.
Such an £° obeying (i) may be obtained from f using the following procedure:

Start with £° := f. For i := 1,...,{c| do

if {jelialjiG)=1bj+i}= {nl,nz,'...,ns} with s > | then

replace f°:a —yb+c+dbyf':a —> b+ c+d+ (s-1)c; defined by

ib+c+d|+tifj:ntandte[s—1]
Bl

£°(j) otherwise.

Clearly there is an u éFnS(d,c) such that f = fo(Ib + <Ic,u>). [l

Corollary 16D5. Fl $ Pfn /Naé is the free iteration theory generated by 2. I
7

S
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