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Elgot has considered a natural equivalence on flowchart schemes called "strong
equivalence" [9]. Roughly speaking two schemes are strongly equivalent iff they
have the same sequences of computation. In [11] it was constructed a tree model
for the classes of equivalent schemes; more precisely two schemes are strongly
equivalént iff they unfold into the same rational tree. The rational trees were
further studied in [13, 12, & 1] In particular [12] gives an equational
axioﬁwatization for the rational trees.

Turning to flowchart schemes, in [10] and [14] it is shown thaf the strong
equivalence relation may be generated using simulation via functions. The indirect

proof of this affirmation given in [14] uses Esik's Theorem [12]. An aim of the

present paper is to give a direct proof of this result.
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A flowchart scheme is a notation for a sequential computation process. The

(step by Step) behaviour of a vertex v is the unfoldment starting form v of the

scheme. The input behaviour of a scheme is the tuple of the behaviours of its input

vertices. From the computational viewpoint only the input behavibur does interest.
All the transformations on schemes we made in this paper preserves the input
behaviour."For example the accessible part of a scheme, i.e. the part obtained by
deletion of the statements which cannot be reached from an input, has the same
input behaviour as the whole scheme.

The internal behaviour of a scheme is the set of the behaviours of the internal

vertices (i.e. labeled by statements). A flowchart scheme is said to be reduced if it
has no different internal verticed having the same behaviour. If we identify in a
flowchart scheme the internal vertices having the same behaviour we obtain
another scheme which is reduced and have the same input behaviour and the same
internal behaviour as the given scheme.

Regarding the simulation [3] we prove the following results: a) two schemes are
equivalent via the least congruence relation including the simulation via surjections
if and only if they have the same input behaviour and the same internal behaviour;
b) two schemes are equivalent via the least congruence relation including the
simulation via functions if and only if they have the same input behaviour.

Another aim of this paper is to give tree models for (the surflow [3,7] of) the
reduced flowchart schemes and for (the funflow [3,7] of) the minimal (i.e.
accessible and reduced) flowchart schemes, models which are not obtained by a

factorization as in our previous papers.

1. Introduction

In this section we establish the notation and we recall some results.
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For a nonnegative integer n let [n] = {l‘,Z, e ,n} .

If S* is the free monoid on the set S, for a € $* we denote its length by {a} and
for i € [{a}] we denote by a the ith letter of a. As we use the additive notation we
havea:al +a2+...+a‘al.

Suppose r: O ~»S x S* is a function. Every o €O with r(o) = (s,s, +s, +... +sn)

g
is regarded as an operation symbol having n arguments of sort s and a result of
sort s. For beS¥, let Tro(b) be the set of all the infinite partial trees with
operétion symbols in O and variables in the S-sorted set b:[jbi]—»S. From an
algebraic viewpoint TrO(b) is the ws-continuous O-algebra freely generated by the
S-sorted set b, see [15].

As the schemes we work with are multi-input we rather work with n-tuples of
trees. From an algebraic viewpoint they form an y-continuous algebraic theory

freely generated by O {15] which is denoted by CT .. We recall that for a,b € $*

%

CTO(a,b) = {f : [jatl —*}Tro(b)if(i) has the sort a forieg [ial]} .

Let IO :0—> CTO be the standard interpretation of O into CTO, l.e. for o €0

with r(o) = (s,s1 FSytaaat sn) IO(o) € C'I'O(s,s1 F Sy ket sn) is defined by

(6]
150X = }/2/\
s o o N

The algebraic theory of S-sorted partial functions anS is embedded in CTO.
Every féanS(a,b) may by seen as the jaj-tuple of trees which maps i¢[{a}] in the
tree defined as follows:

"if (i) is not defined then the empty tree else the tree consisting from a root

labeled by f(i)."

In an ordered algebraic theory we denote by Oa b the least morphism from a to
9
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I.1. Proposition. Let T be an W-continuous algebraic theory. If ﬁc- T(a,b) fulfills

u = for every obj i ial.
Ob,c Oa,c . y object ¢ then u is functorial

Proof. For f¢ T(a,a +c) and ge T(b,b + ¢) such that f(u + IC) = ug we have to

f(n) where f(o):O
new a,C

(n) & ug(n). As for n = 0 the equality

prove that fT:ugT. Recall that fT:\/ and

f(ml) = f<f(n), IC>. We prove by induction that f

follows from the hypothesis we do the inductive step

(n+1) (n) (n ( 1
HKEL > = ug ),1C> = f(u+1)<g ”),1C> 5 ug(g(n), 1> = ug(n+ ),

(n) _

As the composition is Wy-continuous we conclude that ugT:u\/ g

new
B Vnc- Ug(n) & Vnc-wf(n) =it o

1.2. Corollary. In CT ., every partial function is functorial. II

O

When we unfold a scheme we get rational O-trees, therefore we prefer to work
with Rato the algebraic theory of rational partial O-trees. We recall an infinite
partial tree is rational if and only if the set of its subtrees is finite. Remark anS is

included in RatO. Using Corollary 1.2 we deduce Rato is a funflow [3,7].

In this paper we work with flowchart schemes having statements in a set 3. and

connections from ans. As usual i: ¥ —» s* and o: \Z*——-y $* are two monoid

morphisms. We denote by FI the flow of the flowchart scheme representations [2].

Recall that for a,be¢ S*
Fl(a,b) = {x,0)] x e £*, fePing(a + o(x), b+ i(x)}.

ans is .embedded in Fl identifying f{—:anS(a,b) with the representation.

- (€,f) € Fl(a,b) where € is the empty word of ¥ *. ¥* is embedded in FI
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identifying x 62* with the representation (x,i(X)Xo(x))6Fl(i(x),o(x)).

From the main result in [2] we get the following proposition. If B is an
S* -biflow which includes ans and if 1: Z*-J; B is a monoid morphism such that
I(x) € B(i(x), o(x)) for every x & 5% then there exists a unique flow morphism
I;#;: Fl = B such that I#(x) :.I(x) for every x € ¥ and I#;(:f) = f for every f in ans.

By Theorem 6.4 in [6] the monoid morphisms i and o may be extended in a
unique way to ad-ssmc morphisms i:Fn_ —> ans and o:Fn_ ~—> ans,

Z 2
respectively.

Suppose (x,f) and (y,g) are in Fl(a,b). If uanZ(x,y) and f(Ib +i(u) = (Ia + o(u))g

we write (x,f) =5 (y,g) and we say (x,f) simulates in (y,g) via the function u.

If there exists u in Fn such that (x,f) = (y,g) we write (x,f) -3-5;3; (y,g). If
there exists an injection u such that (x,f) - (y,g) we write (x,f) .ﬁ—a (y,g). If
there exists a surjection u such that (x,f) = (y,g) we write (x,f) j_b’:> (y,g). If

there exists a bijection u such that (x,f) — (y,g8) we write (x,1) S8 (y,g), or
Pu VY8 8

aol_ . :
even (x,) ar (y;g) as —=%y is a congruence relation. We denote by ,lva'% 3 Nag’

and Nacf the least congruence relation including _a.[’i.;, f_)z}:;,and ﬁé:.;.,
respectively.

The quotient of FI by AN is denoted by FS. FS is a biflow and it is called the
biflow of the flowchart schemes. The quotient of FI by Afa[& is denoted AFS. It is
an inflow and it is called the inflow of the accessible flowchart schemes. The

quotient of Fl by (va}Sb is denoted by RFS. It is a surflow and it is called the

surflow of the reduced flowchart schemes. The quotient of Fl by g is denoted

by MFS. It is a funflow and it is called the funflow of minimal (accessible and-

reduced) flowcharts schemes.

Regarding the above\I# we remark that (x,f) A (y,g) implies I#(x,f) = Il#zy,g),

a

therefore I#may be thought as a biflow morphism I#:FS =2 B. If B is an inflow

then (x,f) '\é[s (y,g) implies Iﬁ?x,f) =I#(y,g), therefore I#— may be thought as an
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# » |
inflow morphism I" :AFS —sB. If B is a surflow (x,f) ~, (y,g) implies
_ ay
¥ # # . #
I (x,_f) = (y,g) therefore I" may be thought as a surflow morphism I' : RFS —»B.
: . F # #* '
If B is a funflow then (x,f) AL (y,g) implies I (x,f) = I#(y,g) then I#may be thought

as a funflow morphism I#: MFS —»B.

2. Unfoldments

To unfold a flowchart scheme we replace every statement with n entries by n

statements with one entry, therefore we define
0= {(&,0] veT, keliie)]

and the functionr: O — S x S* by
r(G k)= (i(ﬁ‘)k, o(7)) for (§,k)€& O.

To define the unfoldment we use the interpretation I of 3 in Ra*tO defined for

ez by
I(g) = <IO(0",1), s ,IO(O‘,]i(G")i)>.

and for xes™ by Ix)=2 (xj). Therefore there exists a unique flow

e lxil

morphism

U:Fl«—-}RatO

such that U(x)=1(x) for xe§5™ and U{f)=f for f in Pfn.. We recall that

5
UG8 = (@ + 16091 for (x,1) ¢ Fia,b).

As Rato is a funflow (x,f) f.é} (y,g) implies U(x,f) = U(y,g) therefore U may
be thought as defined on FS, AFS, RFS or MFS. :

For a scheme represented by (x,f) in FI, U(x,f) is by definition its input

behaviour.

et e S it o
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In the sequel we are also interested in the unfoldments from the internal

vertices of the scheme. As the roots of these unfoldments are given by the

statements of the schemes we realy work with the unfoldments from the outputs of

the statements which label the internal vertices. By definition

T(x,1) = U(x,(Ia + Vo(x))f)

is called the total unfoldment of (x,f). Remark that

(Ia + TO(X))T(x,f) ="U(x,).

By definition

Uo(x,f) = (Ta + IO(X))T(x,f)

is the unfoldment from the outputs of the statements.

2.1. Proposition. If (x,f) e (y,g) then
a) T(x,f) = (Ia + o(g))’l‘(y,g)

b) Uo(x,l') = o(U)Uo(y,g).

Proof. As

(Ia + Vo(x))f(la + l(U)) = (Ia + VO(X)O(U))g =

-

aso(x) + o(u))(la + ofu) + Io(y))(la g Vo(y))g

we  deduce  that (x,(Ia + vo(x))f) e (Ia + o(u))()./,(la +V _, Vg)

o(y)

therefore

T(x,f) = (Ia + o(u)T(y,g). The other conclusion is an easy consequence of the first

one. I

For at S* and i¢[{a]] we use the notation



xi:Ta+ s +Ia+Ta .
1 o0 i—l i . i+l+.0l+aia‘

Suppose (y,g) in FlL. For k €[iy{], we define the unfoldment from internal vertex

k by

U, (1,8 = (y,,06DU_(y,8)-

We prefer the above definition instead of Uk(y,g) = I(yk)o(xl};)Uo(y,g) to include the -

case when there exists statements without inputs (i.e. (%) is the empty word).
2.2. Lemma. If (z,f) - (y,g) then Uk(z,f) = Uu(k)(y,g) for every k e[iz{l.
Proof. From Proposition 2.1 we deduce

ok (z,1) = olx WU (1) = ok U (y,g)

therefore as 2y = Yy Ve get the conclusion. I

The internal behaviour of (x,f) is by definition

B(x,f) = { U (x,D)]ke[ix]]}.
2.3. Corollary. If (x,f) Na%_ (y,g) then B(x,f) = B(y,g).

Proof. As .va,{ is the least eqivalence relation including EX.; it suffice to

show (5%:5) ji;(y,g) implies B(x,f) = B(y,g). The last implication is an easy

consequence of Lemma 2.2, II

We recall from [7] that (x,f) is reduced if (x,f) g (y,g) where u is a surjection

implies u is a bijection.

2.4, Corollary. If the application which maps every internal vertex of a scheme

in its unfoldment is injective then the scheme is reduced. LI



2.5. Lemma. In a biflow over an algebraic theory for every h:c - b + ¢ the

following identities hold.

' a) (vh)1€ = ({1, + h)(ExP + 1, + VTS forvic+c -»c

b) <g,h>T€ = g<I., (V h) 1> forg:a—> b+ c
g g b Ve g

0) (V h1© = eI, (v ),

Proof. The right-hand side of a) is equal to

({1, + vhCXP + TN = (A + vt XPYC =

(“X(vh) 7€ + INT" = (vh)pS.

Using a) the right-hand side of b) is equal to

gty + (@ + MOXD 4 10 + VIRV, = g, + WV, A = <gh>1".
The last identity follows from‘ b) and Vch = hyhde El

For (x,f) € Fl(a,b) we use the following notation

fa‘ = (Ia + TO(X))f and fx = (Ta + IO(X

pI-

2.6. Proposition. If (x,f) € Fl(a,b) then

a) I(X)Uo(x,f_) = (Vi(x)l(x)fx)/{si(x)

b) T(x,f) = £<I, 1)U _(x,£)>

Proof. From (I_ + V_, \)f = <f,f_> using Lemma 2.5.b we deduce
C e Lol X

TOof) = <1008 1) < e, v, 160 )10,
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Using Lemma 2.5.c we-prove a)
160U ) = 1601, <L,y 160 )0 = (v 160t 1)
therefore b) follows from the above two equalities. IT
2.7. Lemma. If f ¢ Fn_z_(x,y), uelixi]and u'¢ [li(xu)l] then
HEXZ g e O+ 0D = T gy g O+ v T

2.8. Lemma. Suppose (z,f) and (y,g) in Fl(a,b), pe¢ ans(c,b wi(z)),: and
q € Ping(c,b + ily)) fulfill ‘
P<IIU (2,6)> = q<I, 1)U _(y,g)>.

If teFn 5 (z,x) and s¢ Fn s (y,x) fulfill

(VueliziD¥veliylD [Uu(z,f) = Uv(y,g) implies t(u) = s(v)]

then p(lb + i(1) = q(Ib + 1(s)).

Proof. Suppose k ¢ [c]. Remark that

Ock,b if p is not defined for k
c | b .
xkp<1b,l(z)Uo(z,f)> e if p(k) <ybl
i(z) :
xp(k)—(b1I(Z)Uo(z’f) if p(k) >ibl.

and an analogous equality holds for q.

From the first hypothesis we obtain only three cases.

1) p and q are not defined for k. In this case p(Ib + i(t)) and q(Ib + i(s)) are not
defined for k. "

2) plk)<ibl, qlk)<{by and p(k)=qlk). In this case (p(I, +i(tP)k) =

= p(k) = q(k) = q(Ib + i(s))(Kk).

L AN T R ML 5 e
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3) p(k) >ibl, q(k) >{ b} and

i(z) _Lily)
xp(k)-(b;I(Z)Uo(Z’f) = xq(k)-lbll(y)uo(y’g)'

Using the notation

pk) =ibl+ & p itz + U where ug [iz{] and u e [tz )1,

qk) =(bl+ % re [v_l]{i(yr)l + V' where ve [jyiland V' é[li(yv)l]
we deduce

i(z )

i(y,)
Xp U 2,0 = x ViU (y,g)

therefore using i(xi)l(z) & I(zu)o(xi) we obtain
oz WU (2,1) = In(y, ,v)ol6IU,_(y,g).

This equality implies

; z
| o(xu)Uo(z,f) = O(xz)Uo(y,g)
and
Io(zu,u') = Io(yv,v'), therefore z, =y, and u' = v\
As Uu(z,f) = Uv(y,g) the second hypothesis implies t(u) = s(v) therefore using
Lemma 2.7 we get

(p(Ib + 1t)k) = lbl + i(t)(’Zré [u- l]li(Zr)‘ +U') = \b\ + 'Zre [t(u)—l]‘i(xr” + U=

=|b] + 'Ere [s(v)_l]’i(xr)l + V' = |b{ + i(s)( Er(: [v_l]ii(yr)l + V') = (q(Ib +ils))k). I

2.9. Proposition. Suppose (z,f)e Fl(a,b). There exists a surjection re Fnz(z,y)

such that
(Yk,jelizi] [r(k) = r() <==> U, (z,9) = Uj(z,f)]

and (z,f) simulates via r in a reduced schemes.
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Proof. As the existence of r fulfilling the first condition is obvious we prove the
second one. We choose an injection q¢Fn I(Y’Z) such that qr = Iy, we define

(y,g) € Fl(a,b) by
g = (Ia + o(q))f(lb +i(r))
and we prove (z,f) -«;r (y,g), i.e.
f(Ib +i(r)) = (Ia + o(rq))f(Ib + i(r)).
As by composition to the left with Ia + To(z) we get an equality it suffices to show

fZ(Ib +i(r)) = o(rq)fZ(Ib + i(r)).

To do it we apply Lemma 2.8 for t =s =r. As its second hypothesis follows from

the first condition imposed on r we only have to prove its first hypothesis, i.e.
fZ<Ib,I(z)Uo(z,f)> = o(rq)fz<lb,I(z)Uo(z,f)>

equality which is equivalent via Proposition 2.6.b to Uo(z,f) = o(rq)UO(z,f).
For every né€ljzi] as r(n) = r((rq)(n)) we deduce U (z,f) = U(rq)(n)(z’f) therefore
z z .
o(xn)Uo(z,f) = o(xn)o(rq)Uo(z,f). Hence Uo(z,f) = o(rq)do(z,f).
To {finish the proof we show using Corollary 2.4 that (y,g) is reduced. For
jsk €liy{) suppose Uj(y,g) = U, (y,g).

Using Lemma 2.2. we deduce

Uq(j)(z7f) = Ur(q(j))(y’g) = Uj(y,g) = Uk(y,g) = Uq(k)(z,f)

From Uq(j)(z,f):Uq(k)(z,f) and the property of r we deduce r(q(j)) = r(g(k))

hence j = k.
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2.10. Corollary. If a scheme is reduced then the application which maps every

interval vertex in its unfoldment is injective. II

Corollaries: 2.4 and 2.10 give an equivalent condition for a scheme to be
reduced. Corollary 2.3 and the next proposition give an equivalent condition for

two schemes to be Még, equivalent.

2.11. Proposition. Assume (x,f) and (y,g) in Fl(a,b). If U(x,f) = Uly,g) and

B(x,f) = B(y,g) then (x,f) Nai' (y,g).

Proof. Using Proposition 2.9 and Corollary 2.3 it suffices to do the proof when
(x,f) and (y,g) are reduced.
As the equal set B(x,f) and B(y,g) has {x|and }y| elements, respectively there

exists a bijection j€ Fn}:(x,y) such that

(Vue [ix{Dvv eliyi) (U (x,1) = U g <==> j)=v)

therefore Uo(x,f.) = o(j)Uo(y,g)-

Using Proposition 2.6.b we deduce
E<II0U (%,6)> = T, ) = <Ux,£),U_(x,£)> = <Uly,g), o(jU_(y,g)> =
=+ o(INT(y,g) = (I + 0(j))g<1b,l(y)Uo(y,g)>.
From Lemma 2.8 fort=jands = Iy we deduce f(Ib +1(j)) = (Ia +o(jDg. I

2.12. Proposition. If (y,g) € Fl(a,b) is reduced and if (x,f) 3_&_} (y,g) then (x,f) is

reduced.

Proof. To prove (x,f) is reduced we use Corollary: 2.4. Assume Uj(x,f) = Uk(x,f)

where k,jelix{]. As (x,f) -2 (y,g) for an injection u we deduce from Proposition
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?.l.b that Uj(x,f) = Uu(j)(y,g) and Uk(x,f) = Uu(k)(y,g), therefore
Uu(j)(y,g) = Uu(k)(y,g). As (y,g) is reduced from Corollary 2.10 we get u(j) = u(k)

hence j = k as u is injective. I

3. A model for the surflow of the reduced flowchart schemes

For be S* let Wb = {(O‘,u)i FeEZ,u GRatO(o(G"),b)} . An element (&7,u) in Wb is
seen as a tree with the root labeled by ¢ and u as the remainder of the tree. For

A cW andg éRatO(b,c) by definition

b
Ag={(7,up|(G,0eA].
Before defining the model we define an ay’-flow C. For a,b €S* by definition
C(a,b) = {(f,F)]feRatO(a,b), FcC wb} .
The composite of (f,F) € C(a,b) and (g,G) € C(b,c) is defined by
(f,F)g,G) = (fg, FgUG)

It is easy to see C is a category where the identity morphism of a¢ S™ is (Ia,(b).

For (f,F) ¢ C(a,b) and (g,G) & C(c,d) we define their sum by
(£,F) + (8,G) = (£ + g, FU_+ T ) U G(T, + 1)

To show C is a strict monoidal category we do only the most difficult verification.

For (f,F) €C(a,b), (g,G) € C(b,0), (f',F") e C(a',b") and (g',G") € C(b',c') we have
((f,F) + (f',F'))((g’G) + (g',G')) =
= (4 F(Ib + Tb,)UF‘(Tb + Ib,)) (g + g, G(IC + TC,) U G'(TC + IC,)) =

=((f + f")g + g", F(g + TC,) U F‘(TC +g)u G(IC + TC,) U G'(TC + IC,)) =
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= (fg + ', FRUGNI_+ T U Fig U GNT _+ 1) =

= (fg, FgU G) + (f'g", F'g’ U G) = (f,F)(g,G) + (£, F'){g",G").

Using the following remarks

a) if fE'RatO(a,b) then (f,3)¢€ C(a,b)
 b) (£,0)(g,®) = (fg,®) for f¢ Rat 4(a,b) and g€ Rat(b,c)
c) (£,9) + (g,®) = (f + g,®) for f€ Rato(a,b) and g¢ Rato(c,d)
we may identify f¢ Rato(a,b) to (f,0) € C(a,b), therefore RatO i
Using the distinguished morphism aLXb, Ta’ Va and _La from anS one may prove
C is an ay*-strong b d-ssmc [7]. We prove only some identities.

For (f,F) € C(a,b) and (g,G) ¢ C(c,d)

(4F) + @O X% = + °x%, B, + TYUGT, +10°xY) -
= (XSg + 1), F(T + 1) U Gl + T))) =
= Xg + £, G, + T U F(T + 1)) = "X ((g,G) + (£,F)).

For (f,F) €C(a,b)

((f,F) + (f,F))Vb = ((f + f)Vb, (F(Ib + Tb) U F(Tb + Ib))Vb) = (Vaf,F) = Va(f,F).

As in the sequel we need the iteration we recall from [4] that in an algebraic
theory D the connection between feedback and iteration T:D(a,a + b)—s D(a,b) is
done by the equalitieé

’i‘a<f,g> = g<fT,IC> for f €D(a,a + ¢) and g¢& D(b,a + ¢)

1= Ta<f,Ia + T, > for £ €D(a,a + b).

b

For (<f,g>,A)€EC(a +b, a +c) where fGRatO(a,a +c) and g€ Rato(b,a +C) we
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define

13(<t,g>,A) = ('ra<f,g>,A<f*,1C>).

We prove C is a biflow. First we remark for fGRatO(a +b, a+c) that
22(4,0) = (1%,0) therefore Tala =1y where A is the empty word and
faaya -
=1
If (gG)ECh,b), (hH)EC(e,) and (<L,i,F)éC(a+bya+c) where
fe RatO(a,a +¢) and f' éRatO(b,a + ¢) then

L0, + (@ONKEI>F)I + (h,H))] =

= ?a[(xa +8 G(T_ + ib))(<f,f'>,F)(I 5 by BT -+ IC.))] =

= A<+ h), G + N U F(_ + h)UH(T_+1)) =

= ($%<t,gfh, (G +h) UF(L + h) UH(T_+ I )<tTh, 1,5) =

= (g(A%<,1)h, Gf'<f*,lc>h U F<f*,IC>h'U H) =

- (gf'<f‘f,lc>, Gf'<fT,.‘IC> U F<it, 1.2)h,H) =

- (g,G)( ’(‘a<f,f'>; Feft ,Ié>)(h,H) = (g,G)( 4 (<1, 15,F))(h,H).
If (<f,f‘>,F) € C(a+ b, a+c)where f¢ Rato(a,a +c)and f'¢ Rato(b,a + ¢) then
2315, F) + R AAE, B> + IpF,  + T =

= (PG> + T, FIO _+ T+ Ty JKEE> 1)1 ) =

= (PR e, Bl T 1 & T = (o<, 1, F<fT,IC>) 1y = R3(<E,1'5,F) + Lo

d’ d> e

If (<f,g,h>,A) EC(b + a + c,b + a + d) where f éRatO(b,b &+ )y
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geRatO(a,b +a+d)andh GRatO(c,b +a + d) then

aab
121 °1,g,h>,A) = 'ra(<g,h><ff,la+ >,A<fT,Ia+ Sy

d d

anb
= (%1 <f,g,h>,A<fT,Ia+ d><(g<ff,la+ d>)’f,1 e

b+a
= (T g acileall . SIS (el SW10) -

1,,b+a

= (PPt g ho AT 1) = (<f,g,h>,A>

and

Fathab IC)(<f,g,h>,A)(bXa 1)l
- tbE IC)<f,g,h>(bXa L d),A(bXa +19) =
L T R d)<(<g,f>(bXa + 11,1 ) =

b+a

= (TP, g0, A 85T, ) = 20 g h0,A).

We show that every pGanS(a,b) is functorial in C. Suppose
(<If>.Fl&Cla+c,a+d) where f ¢ Rato(a,a +d) and g¢ Rato(c,a Jedl
(<g,g">,G)€C(b + ¢, b+d) where g(:’RatO(b,b +d)  and g eRatO(c,b +d) and

(<£,1>,F)(p + Id) =(p + IC)(<g,g'>,G). We deduce
<A, i(p + Id) =(p+ IC)<g,g'> and F(p + Id) = G.

As by Corollary 1.2 p is functorial in Rato we get ’i‘a<f,f’> = ’rb<g,g'>, and from

ilp + Id) = pg we get f1 = pgl, therefore

DAL, F) = (P3¢, 10, Fit s
b 1 ¥ ab ' T b ISHE
= (7 "<g,g™>F<pghl ) = (T 7<g,8>,G<g Tl ) = B 7(<g,g™>,G).

3.1. Proposition. If for every (x,f) € Fl(a,b) we define
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Q(x,f) = (U(x,f), B(x,f)) € C(a,b)

then Q : FI = C is a flow morphism and
(,9) &a{ (8 <> QD) = Qe
Proof. Suppose (x,f) € Fl(a,b) and (y,g) € Fl(b,c). As
T((x,£)(y,g)) =

= U(x + )’a(la + vo(x+y))(f + Io(y))(Ib - i(X)Xo(y))(g + Ii(x))(lc + i(y)Xi(X))) =

i(x)xo(y))

= [(1 + I(x + y))(Ia +V ))(f % Io(y))(lb 1

a+o(x+y) o(x+y

(g + Ii(x

1 o(y)xo(x) :

= [(I + I(x +‘y))(Ia+ + o(y))[(la + Vo(x))f + Vo(y)]

a+o(x+y) o(x)

_ oly),, i(x)
= [(1 R +1i(y))[(x

Ko + I(x))(Ia + Vo(x))f % (Io(y) & I(y))VO(y)]

a+o(x)
(Ib o+ I(X)XO(Y))(g i Il(x))(lc & l(y)xl(X))] /Is i(y)?l(X) s

oly), i(x) '
= [(1 + X (1 4 I(x))(Ia + Vo(x))f + Io(y)]

a+o(x) a+o(x)

i(x)y, 0(y)+i(y) ’ (y)y 107 aily)7 mifx)

o(y),, i(x) i(x)y oly)
=[(I X9 +O(X)Jrl(x))(IaJrvo(x))fﬁulo(y)](ler X

a+o(x) *

o oadiby) i(y)y i(yq 4 i(y)q (%)
oy~ 2 M O+ Vo Je + L g )T » ST =

o(y)y, i(x) : i(x)y, o(y)
=L Yix )[(Ia+o(x)+I(x))(Ia+VO(X))f+Io(y)](lb+ XNy

(Ty,) + L 111 =
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a+o(x)

i(x)y, 0(y)yq ailx) i
a+o(x) + I(x))(la + vo(x))f + Io(y)](lb F OXIAIE N Ty p) =

=ﬂthJMWWW£)

we deduce

U_((x,1)(y,8)) = (U_(x,9) + Io(y))T(y,g) = <U_(x,)U(y,g8),U_(y,8)>

therefore

B((x,D)(y,g)) = {((x + y),,06, ™ )<U_(x, DUy, ), U (y,@)) | ke lix + yil } =

= B(x,f)U(}’,g) v B(Y7g)
hence

Q((x,£)(y,g)) = (Ulx,H)Uly,g), B(x,))U(y,g) Y Bly,g)) =
= (U(x,£),Bx,D)(Uly,g),B(y,2)) = Qlx,£Q(y,g).

Assume (x,f) € Fl(a,b) and (y,g) ¢ Fl(c,d). As

T((x,1) + (y,g)) =

Cy0(x) i(x)y d
)(Ia + X + Io(y))(f + g)(Ib e G

1()’))) =

olyheold) 1 -

a+c+o(x) * © T iely) .

= [(I + Ix + y)(

a+c+o(x+y) aie " ols)t VO(Y))

¢y 0(x) ‘ i(x),,d i(x+y) _
(1, +°X +Io(y))(f+g)(1b+ X +Ii(y))]’f‘ =

(y)y i(x) ‘ coo(x)
i +°Yxlx+5w¢%+ac+uaﬁ+umwdﬂ)x +adw+uwwdw]

a+c+o(x)
i(x),, d ily)a i)
(f + g)(Ib Poue o Ii(y))]'f * =

. o(y)xi(x))(I , Sxox)+i(x)
a

= [(Ia+c+o(x) 4 Io(y))[(la+o(x) * I(x))(la i Vo(x))f 4

[« + I(y))(IC % Vo(y))g]/ri(y)](lb . i(X)Xd)]Ti(x) :

Ic+o(y)



= (Ia + CXO(X)

a+o(x)

= (1 + X% 1 HT0 + T(y,g)
we deduce
Uo((x,f) + (y,8) = Uo(x,f) + Uo(y,g)

therefore .

. c+o(y)xi(x))[(I

20

L I(x))(Ia + Vo(x))f + T(y,g)]

B((x,£) + (y,g)) = BO, D) + T JU Bly,g)T + 1)

hence

Q(x,1) + (y,g)) = (U(x,f) + U(y,g),B(x,f)(Ib + Td) U B(y,g)(Tb % Id)) =

= Q(X,f) + Q(Ysg)'
Suppose (x,f)€ Fl(a + b, a + c). As

T 20,0) = Ul (1, + Vo ( ) 20) = U201+ Vo ) = 22T(0,0)

we deduce

U (12060)) = (T, + 1 P(P<UG, DU (0,)) =

=230 + TOUGDU (> = U (D, + TIUGGHTLL S

therefore

B(12(x,1) = Blx, )< + T)UG,HITI

hence

QUP3(%,)) = (12U, £),Bx, DL + TIUG DI ) =

- 24 3(U(x,0),B(x%,D) = T 2Q(x,1).

The last conclusion follows from Corollary 2.3 and Proposition 2.11. I

From this proposition we deduce the surflow of the reduced flowchart schemes
is isomorphic to the image of Q. Therefore, to find a model for the surflow of .the

reduced flowchart schemes we need to find the image of Q.
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For feRatO(a,b) and FC.Wb we say F contains the trees of f if for every

jeliall, (7,g) €W, and ke (o))
xjaf = IO((D’,k))g implies (G’,g)FGF.

A subset F of \Vb is said to be hereditary if for every (7 ,f) €F, F contains the
trees of f.

We begin to construct the model, i.e. the image of Q. For a,b¢ S* by definition

R(a,b) = {(f,A)GC(a,b)]A is finite, hereditary and containes the trees of f} -
3.2. Lemma. R is a subbiflow of C which includes anS'

Proof. For (f,F)€R(a,b) and (g,G)€RI(b,c) we show (fg,Fg U G)ER(a,c). As
Fg U G is finite we have to prove Fg U G is hereditary and contains the trees of fg.
To show FgU G is hereditary as G is hereditary it suffices to show Fg U G

contains the trees of ug for every (G ,u) € F. Suppose
oloe) -
X~ ‘ug = 15T KV

where (¢°,u) € F, j¢&[io(a )], (,v) € W, and k&[]i(g)]). There are two cases.
o(¢) b

If xj u=x; with re[ibj] then as G contains the trees of g from
xlr)g = IO((Z JOv we get (2,v)€ G.
If x;)(o')u:lo((z,k))v' then v'g =v, therefore as F is hereditary we get

(2 ,v") €F hence (Z,v)¢Fg.

We show Fg U G contains the trees of fg. Suppose
xg = 1,((e", )
e e

where jé&[iall, (G",u) eW_and k€[)i(¢)[]. There are two cases.
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If xjaf = xE where re[ibl] as G contains the trees of g from x?g = IO((O’,k))u we
get (¢°,u) £G.

If x?f = IO((V’,k))v then vg = u. As F contains the trees of f we get (¢°,v)¢F
hence (7,u) = (#,vg) ¢ Fg.

For (f,F)€ R(a,b) and (g,G) € R(c,d) we show that
(f + g, F(Ib - Td) UG(Tb 5 Id))GR(a e, brxud)s

To show F(Ib + Td) U G(Tb + Id) is hereditary we study two cases:

T i '
a) (o,u) €F and xJ?( )u(Ib + Td) = IO((Z,k))v wvhere jelio( o], (Z,v) wa+d and

k€[]i(z)il. From the above equality we deduce v:v'(Ib+Td) where

v'(;’RatO(o(Z ),b) and ij( c‘)u = IO((Z;,k))v'. As F is hereditary we get (g,v)EF
hence (%,v) ¢ F(Ib + Td).
g ;
b) If (¥,u)éG and x;)( )u(Tb + Id) = IO((E,k))v where je[Jo()}], (Z,v)¢€ Wi

and k €[{i(Z)}] the proof is analogous to the above one.

To show F(Ib + Td) U G(Tb + Id) contains the trees of f + g we suppose
x)?”c(f +g) = 155,k

where j& [la + ci), (T,u) €W and k€ [{i(T){].

b+d
: a a :
If = j <jal  then X; f(Ib + Td) = IO((G',k))u therefore xjf = IO((T,k))u and
u'(lb + Td)': u. As F contains the trees of f we deduce (% ,u)¢F therefore
(’.T,u)(':F(Ib 4 Td).

: & c " 1
If j>lal then T g(T + 1) = I5((&",K)u therefore X jarB = ‘IO((J JkK)u' and

1a
u'(Ty + 1) = u. As G contains the trees of g we deduce (7 ,u) € G(T, + 1y

For (f,g>,F)&€R(a +b, a + c) where feRatO(a,a +c) and gé Rato(b,a +C) we
show (1 %<f,g>,F<t1 >)e R(byc). ‘

To show F<ff,] > contains the trees of Ta<f,g> we  suppose
e
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x})('l‘ad,g)) = IO((G',k))h where j € [ibi], (&,h) ewc and k €[i(¢°)]], therefore
el B> = TGl
jg e ©F e

We study the two possible cases:

a) xjpg = IO((iJ',k))h‘. We deduce h = h'<fT,IC>. As F contains the trees of <f,g>

a+b : -
and x 2 <£,8> = I (07, kD' we get (¢,h)€F hence (7 ,h)€ Fethl >,
b) xpg e in €llajl. As x2 T =1 ((¢,k)h there exist n >0,
j o 0 Iy =8 -

jl’jZ’ cens ’jn c liajland h'¢ RatO(O(G‘ ),a + c) such:that

x2 f=x2"C forren]andx® f = IO((O‘,k))h'.
Jr-l r In
As xJ? gl e xja reall > x;f" filig . = o x? g xj? 1<fh1 > = 1,0 et > we
0 0 | n n
get h = h'<fT,IC>. As F contains the trees of <f,g> from x?+b<f,g> = IO((O‘,k))h' we

n
get (9°,h") €F, hence (¢ ,h) & F<f1,lc>.

To prove F<ft,IC> is hereditary we suppose (9°,h)&€F and we show F<fT,IC>

contains the trees of h<fT,IC>. Assume

old) ..+ &
X; h<f ,1C>_IO((Z,k))u

where j € [{o(F){], (Z,u) eW _and kelfi(Z2)(]. We study the two possible cases:

a) x9(7)
J

(%,u) ¢F, hence (z,u)eF<fT,IC>.

h :IO((Z,k))u'. We deduce u‘<fT,IC> =u. As F is hereditary we get

b) xf)("f)h =x:"" and i ellall. As x> £ =1 ((Z,k)u there exist n>0 and
jl’jza"-’jn C [lau such that

x&  f=x3*C for reln]and x? fo= IO((G KU,

Jr-l r n

As xJ.a il = IO((Z,k))u'<fJ‘,IC> we get u = u'<f7,IC>. As F contains the trees of <f,g>
0
we get (T ,u') € F, hence (Z,u)¢ F<fT,IC>. |
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3.3. Theorem. R is a model for the surflow of the reduced flowchart schemes.

Proof. We show the image of Q is included in R. As for every (x,f) € Fl(a,b),

(1) = (@, + 2 x.)E) 1! L Pfng is included in R, using Lemma 3.2 it

jelixiTs

suffices to show Q(x,l(X)Xo(x)) € R(i(x), o(x)) for every x € . As

T(X,i(X)XO(X)) 2 (X (Il(x) i Vo(x))l(x) O(X))

1(x) o(x)y ailx) _
= ((II(X) b (IO(X) + I(X)) ( )) )T

i(x)y 0(x)+i(x) i(x) x(x) o(x)
o (et (<Io(x),l(x)> i Ii(x)))’r <o ),I(x)> = <I(x),] S

we deduce Q(x,i(x)Xo(X)) = (I(x), {(X,IO(X))})ER(i(X),O(X)).
We prove R is included in the image of Q. Assume (g,G) € R(a,b). As G is finite

we may write
G0 B0 0 e ,(o*k,uk)}.
We denote y = O"l + 0‘2 $ 4o (T’k € 2‘_* and u = <ul,u2, v .,uk>é Rato(o(y),b)-

We define (y,f)e Fl(a,b) as follows

a) for je&[iat]

- o d b
v e[ibl] if xj g =X,
s Ry
f(G) ={ibji+ % 2 ¢ e lge ]lx(o't)hr if xJ.g:IO( (;‘q,r)uq
nondefined if x;:ig = Oaj,b
b) for s¢ k] and n ¢[jo(a)l]
(@)
velib)] if x: Sus :xs
o(gs)
(a= Ete[s l]io(g’)hn) ={Ib{ + "'t [ ]1(Q't)i+ r if xn S US = IO(G‘q,r‘)Uq

o(Ts)

nondefined if X s oo( @) ,b
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We prove f <1, I(y)u> = <g,ud.

For je[iall:

-ifx’g=0_ b then xa+°(y)f<l J(y)u> = 0 x2+00eq
j ajs j L DA
- if xJ gL= xs then X; +o(y)f<l J(y)ud = xb“(y) ,I(y)u> = xs = x?+°(y)<g,u>

e a+o(y) __
- if X;'g = IO( ,r)u then X; £<Iy Jyuw =
b+1(y) I(y)u> X (o'q)l(a’ )u =1 (G’ ,r)
“Ibis Zielq il )+ :

And for s€é[k]and n€ [XO(G'S)U:

if sl 0 th
6o L o o(«"'s)n,b o

<g,u>.

a+o(y)
J

a+o(y) f<1b,I(y)u> =0 _ xa+o) {g,u>

(a[+ Ztels- 1]10( G )l+n of Us)n’b i xia(+ zte[s-l]lO( Urpi+n
f xO(ds)u
n s

= xb then

v
a+o(y) J
al+ olor )l+n b,I(y)u)
t LTS 1]1 t

b+i(y)

g o)y -zl

n S la“lté[ l]{o(O't)hn

{g,u>

b,I(y) =X

e BEOT)
sl X U = 10( U’q,r)uq then .

Karoly) £<1,,I(y)u> =
“ap+ % ¢ [s- 1Ol D0 L

- <D+ <A ly)u> = ‘( q)I(o* )u =
Ib[+'ité[ ]h(Jt |+r
Jils s-50(0c) a+o(y)
= IO( o‘q,r)uq =X u_ =

n s
(a1+ Ztc e 13(0( 7 4)j+n

g,u>
We prove (I, + QUu)Vy = (<g;u>,G). As QW) = T e 0gle), 1t 7olo 7_))} ) =
J

= 1y 4 (o5, Toftgi g ) Io(G'j) + TO(G_j+l+ e +G‘k))‘j elk1h)
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we deduce Q(y)u = (I(y)u,G) therefore

f(Ib + Q(y)u)Vb = f(Ib + I(y)y, G(Tb + Ib))Vb = f(<Ib,I(y)u>,G) = (Kg,u>,G).

We  prove I(y)Uo(y,f) =I(y)Juu From  Proposition 2.6.b we get
Iy)U (y,f) = Iy)(T, + Io(y))'l'(y,f) = IyNT, + Io(y))fqb,l(y)u oy D>, From
f<Ib,I(y)u> = {g,u> we get I(y)(’l'a + Io(y))f<lb,l(y)u> = I(y)u. As there exists a unique
h ERatO(o(y),b) such that I(y)('I'a + Io(y))f<lb,h> = h we obtain I(y)Uo(y,f) = I(y)u.

From Proposition 2.6.b we deduce

T(y,f) = f<Ib,I(y)Uo(y,f)> = f<1b,I(y)u> = <g,u> therefore U(y,f) = g and
Uo(y,f) =

Hence Qly,f) = (Uly,1),B(y,f)) = (g,{(a‘j,O(xjy)Uo(y,f))U € [k]} )=(g,G).. O

4. A model for the funflow of the minimal flowchart schemes

4.1. Lemma. If (y,f)¢ Fl(a,b) is accessible then B(y,f) is the least hereditary

subset of W which contains the trees of U(y,f).

Proof. As Q(y,f) = (U(y,), B(y,f)) ¢ R(a,b) it follows that B(y,f) is hereditary and
contains the trees of U(y,f).
Assume FcC Wb is hereditary and contains the trees of Uly, ) To -prove

B(y,f) ¢ F we suppose ke [jy{] and we show
Uk(Y’f) = (Yk,O(Xl{)Uo(y,f)) ¢ F.

As (y,f) is accessible there exist jelaly r> 13 jl"”’jr—l’jr:k in [ivil;

t ¢ [ii(yj M formélrlandu € [io(yj )] for mé [r - 1] such that
m m



£(j) = b + Zné [jl_l]\i(yn)! +1,

f(ia] + in ¢ []m'l]b(yn)l+ Um) = lb‘ Bk in &[]

mé[r- 1]

97

lity I
m+l~ 1 n

As F contains the trees of U(y,f) we deduce from

a a+o(y)
x; Uly,f) = x; g xja+°(y)f<lb,1(y)uo(y,f)> = X

xi(y)

Znefj-1i0nle 1

i(yjl)l
L

The proof go on by induction on me¢[r-1]. Assume Uj

(yjl

y .
ot U, :8) = (0

I(y)Uo(y,f) =

1

hereditary and as (yj ,o(xjy )Uo(y,f))G F we deduce from

that Uj

O(ij)

u
m

(aj+ £

__ xb+i(y)

Ibi+3

¥ xi(y)
Ena [jrml—l]ll(yn)l el

0y

tm+l

ne[jm

m

b 2
o(xjm)Uo(u,f) =

2 xa+o(y)

ne[jm+

+]

Iy, o)
m+1 I+

(y,f) € F.

m+1

1 ]]o(yn)hum

- 1]li(yn)]+t

m

1

1

f<Ib,I(y)U o(y,f)> =

<Ib,1(y)U°(y,f)> =

m+!

I(y)Uo(y,f) =

W, lyt) = 150y,

In conclusion Uk(y,f)(f BAET

m+l

V.
’tm+1))o(xj
m+1

4.2. Theorem. Suppose (x,f) and (y,g) are in Fl(a,b).

a) If U(x,f) = Uly,g) then (x,f) N g (y,2)

(A

b) 1

s ay
‘3_(._.‘_5.~

ST

ag-

7K

+ 1
m+!

ft()}-;l (Y)<Ibal(y)Uo(Y7f)> =

,t NolxY U (y,f) that U, (y,f) € F.
1 i, o 1

m

)Uo(y,f)

for

(y,f)€F. As F is
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Proof. Let (x,f') and (y',g'") be the accessible parts of (x,f) and (y,g),
respectively. As U(x,f') = U(x,f) and U(y',g") = U(y,g) we deduce u(x,f") = U(y",g".

From Lemma 4.1 we deduce B(x'f')=B(y,g). By Proposition 2.11 we get

ag

(x',f") A (y,g). As (x,1)¢—= (x',f"), Aé‘i’ = _i‘f'_; 4_53”: and (y',g" _a_;s/) (y,g)

¥

we deduce the conclusions.

4.3. Theorem. Rat _ is a model for the minimal Z-flowchart schemes.

O

Proof. Using Theorem #4.2.a we deduce that the model Fl/wag for the minimal
3 -flowchart schemes is isomorphic to the image of U. Therefore it suffices to

show the image of U is Rat ..
Suppose geRatO(a,b). As the trees in g are rational the least hereditary subset

G of W, which contains the trees of g is finite, therefore (g,G) €R(a,b). As R is the

b
image of Q there exists (x,f) & Fl(a,b) such that Q(x,f) = (g,G) hence U(x,f) =g.
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