
J--.;,8 -ft.3&4.L5,

INSTITUTUL
DE

MATEMATICA

INSTITT'TUL NATIONAL
PENTRU CREATIE

STI INTI,FICA St TEHNICA

I  s s lr l  0250 3638

TBEE MODEI-S FOR REDUCED AND MI{MAL

FLOWCHART SCHEMES

by

V.E. CAZANESCU and cH. STEFANESCU

PREPRINT SERIES IN MATHEMATICS

N o . 8 / 1 9 9 0

BUCURESTI



TREE MODELS FOR REDUCED AND IIINIMAL

LOWCHART SCHEMES

by

V.E. CAZANESCU*) and Gh. STEFANESCU*'r')

February, 1990

") Faculty of Mathemotics, university of Bucharest, str. Acad.emiei No, 14,

7 01 09 Buchorest, Romonio

**) 
Dewrtment of Mat\emoti"r, rNcREsr, Bd. pccfi 220, Tg6zz Bucharest,

Romania.



l:j
,1
l

i
.t
. t

TREE MODELS FOR REDUCED AND MINIMAL FLOWCHART SCHEMES

Virgil-Emil CAZAI{ESCU

Faculty of Mathematics, University of Bucharest,

70109 Bucharest ,  St r .  Academiei  l4

ROMANIA

Gheorehe STEFXNESCU
)

Department of h4athematics, The National Insti tute

for Scientif ic and Technical Creation,

Bd. PHcii 220,79622 Bucharest,

ROMANIA .

Elgot has considered a natural equivalence on f lowchart schemes called I 'strong

equivalence" [9]. Roughly speaking two schemes are strongly equivalent i f f  they

have the same sequences of computation. In [11] i t  was constructed a tree model

for the classes of equivalent schemes; more precisely two schemes are strongly

equivalent i f f  they unfold into the same rational tree. The rational trees were

further studied in l l3, 12, 8, l l .  In part icular Uzl gives an equational

axiomatization for the rational trees.

Turning to f lowchart schemes, in [10] ana [14] i t  is shou,n that the strong

equivalence relation may be generated using simulatlon via functions. The indirect

proof of this aff irmation given in [ la] uses dsik's Theorem [12]. An aim of the

present paper is to give a direct proof of this result.



j

I

',.]

'j
I

i
.l
:i'I

I
l
J

,:]
:j
x
,J
I

4

I

2
A flowchart scheme is a notation for a sequential computation process. The

(step by step) behaviour of a vertex v is the unfoldment start ing form v of the

scherne. The input behaviour of a scheme is the tuple of the behaviours of i ts input

vert ices. From the computational viewpoint only the input behaviour does interest.

All  the transformations on schemes we made in this paper preserves the input

behaviour. 'For example the accessible part of a scheme, i .e. the part obtained by

deletion of the statements which cannot be reached from an input, has the same

input behaviour as the whole scheme.

The internal behaviour of a scheme is the set of the behaviours of the internal

vert ices ( i .e. labeled by statements). A f lowchart scheme is said to be reduced if  i t

has no different internal vert iced having the same behaviour. I f  we identify in a

flowchart scheme the internal vert ices lraving the same behaviour we obtain

another scheme which is reduced and have the same input behaviour and the same

internal behaviour as the given scheme.

Regarding the simulation [3] we prove the fol lowing results: a) two schemes are

equivalent via the least congruence relation including the simulation via surjections

if and only i f  they have the same input behaviour and the same internal behaviourl

b) two schemes are equivalent via the least congruence relation including the

simulation via functions if  and only i f  they have the same input behaviour.

Another aim of this paper is to give tree models for (the surf low l3r7l of) the

reduced f lowchart schemes and for (the funflow 13,71 of) the minimal ( i .e.

accessible and reduced) f lowchart schemes, models which are not obtained by a

factorization as in our previous papers.

l. Introduction

In this section we establish the notation and we recall  some results.
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For a nonnegat ive in teger  n le t  [n ]  = { l r2r : .  .  ,n}  ,

I f  S* is the free monoid on the set S, for a € S* we denote i ts length by [al and

for i  € [at] we denote by a, the i th l"t t".  of a. As we use the addit ive notation we

h a v e  a  =  
" l  

*  u Z * . . .  *  u l u t .

S u p p o s e  r :  O - ) S  x S x  i s  a  f u n c t i o n .  E v e r y  o ( O  w i t h  r ( o ) =  ( s , s ,  +  1 2 * . . , + s n )

is regarded as an operation symbol having n arguments of sort s. and a result of

sor t  s .  For  b€S*,  Ie t  TrO(b) .pe the set  o f  a l l  the in f in i te  par t ia l  t rees wi th

operation symbols in O and variables in the S-sorted set b: t ibi l-{S. From an

algebraic viewpoint TrO(b) is the uJ:continuous O-algebra freely generated by the

S-sorted set b, see [15].

As the schemes we work with are mult i- input we rather work with n-tuples of

trees. From an algebraic viewpoint they form an U)-continuous algebraic theory

freely generated by o It-: ]  which is denoted by CTo. we recall  that for a,b € sx

CTo(a,b) = {t :  l ia11 -1Tro(b) l f  ( i)  has the sort a. for i  6 i lal]  ]  .

Let IO : O -) CTO be the standard interpretation of O into CTgr i .e. for o € O

rv i t h  r (o )  =  ( s , s l  *  s2  + . . .  +  sn )  IO(o )€  CTO(s ,s l  *  s2  + . . .  +  sn )  i s  de f i ned  by

IO(oXl)  =
|  2 . . . n

The algebraic theory of S-sorted part ial functions Pfn, is embedded in CTO.

Every f  €Pfnr(arb)  may by seen as the fa l - tup le of  t rees which maps ie [ la l ]  in  the

tree defined as fol lows:

"i f  f( i)  is not def ined then the empty tree else the tree consist ing from a root

labeled by f( i)."

In an ordered algebraic theory we denote by 0u,b the least morphism from a to

b.
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l. l .  Proposit ion. Let T be an tr)-continuous algebraic theory. I f  u€T(a,b) fulf i l ls

u0' ^ = 0_ ̂  for every object c then u is functorial.
DrC arC

Proof. For f €T(a,a + c) and g€T(b,b + c) such that f(u + I.) = ug we have to

p rove  tha t  f t=ug t .  Reca l l  t ha t  1 t=Vne* r (n )  where  f (0 )=0u , .  and

t(n+l) = f<f(n), I .).  we prove by induction that r(n) - ug(n). As for n = 0 the equali ty

fol lows from the hypothesis we do the inductive step

1(n+l) =.f<f(n),r.> = f<ug(n),t. ,  = t(u + IcXg(n),r.) = ug<g(n), I .> = ug(n*l).

As the composit ion is tD-continuous we conclude that ugt - uVnurg(n) =

= Vn.*ug(n) - Vnurt(n) = t t .  I f

l.Z Corollary. In CTO every partial function is functorial. EI

When we unfold a scheme we get rational O-trees, therefore we prefer to work

with RatO the algebraic theory of rational part ial O-trees. We recall  an inf inite

part ial tree is rational i f  and only i f  the set of i ts subtrees is f inite. Remark PfnU is

included in RatO. Using Corollary 1.2 we deduce RatO is a funflow 13,7J.

In this paper we rvork with f lowchart schemes having statements in a set f and

connections from Pfnr. As usual i : ;*--+ S* and o , X*---? Sx are two monoid

morphisms. We denote by FX the f low of the f lowchart scheme representations [2].

Recal l  that  for  a ,b€ S*

Fl (a,b)  = { t " , r ) l  *  €E*,  f  ePfnr(a + o(x) ,  n  r  i (x) ) } .

Pfn, is . embedded . in Fl identif  ying f g Pfnr(a, b) with the representation

(g, f )  6  Ft (a,b)  where €.  is  t l re  empty word of  f * .  E*  is  embedded in  F l
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identifying * e f 
* with the representation (*, i(*)xo(x); e nt{ i(x),o(x)).

From the main result in [2] we get the fol lowing proposit ion. If  B is an

Sx-bif low which includes pfn, and if  I :  f**+ B is a monoid morphism such that

I(x) e B(i(x), o(x)) for every x 6 Zn then there exists a unique f low morphism
E f i h J f #
I" :  Fl -) B such that IT(x) = I(x) for every x € E* and ttr(f) = f for every f in pfnr.

t )y I  rreot.eln b'q ln L6J the monoid morphisms i  and o may be extended in a

unique way to ucf-r.rn. morphisms i : Fn, -+ pfn, and o : Fn, --) pfns,

By Theorem 6.4 l n r.6lthe monoid

respectively.

Suppose (x,f) and (y,g) are in FI(a,b). I f  uGFnr(x,y) and f( l ,  + i(u)) = (I" * o(u))e

we write (x,f) -pu (y,g) and we say (x,f) simurutu, in (y,g) via the function u.

If  there exists u in Fn such that (x,f) _9u(y,g) we write (x,t) a,6> (y,g). t t

there exists an injection u such that (x,f) _-)u (y,g) we write (x,f) .af) ,  (y,g). t t

there exists a surjection u such that (x,f) _?, (y,g) we write (x,f) 3_f, (y,g). l t

even (x,f) *3n( (y,g) as -3.*) is a congruence relation.

and ruu6. the least congruence relation including

respectively.

The quotient of FI by -u* i t  denoted by FS. FS is a bif low and it  is cal led the

bif low of the f lowchart schemes. The quotient of Fl by -"p is denoted AFS. i t  is

an inf low and it  is cal led the inf low of the accessible f lowchart schemes. The

quotient of Fl by ."tr is denoted by RFS. It  is a surf low and it  is cal led the

surf low of the reduced f lowchart schemes. The quotient of FI by ruaJ is denoted

by MFS. It  is a funflow and it  is calred the funflow of minimal (accessible and

reduced) f lowcharts schemes.

there exists a bi jection u such that '(x,f) -),  (y,g) we write (x,f) g (y,g), or

W e  d e n o t e  O t  n a ^ ,  r u f , ,

ub,, 
, 1b!> ano 9{o ,

Regarding the above.r#r"  remark that  (x, f )  -"u (y,d impl ies

therefore I#*"y be thought as a bifrow morphism F, o, -) B. If

then (x,f) -ap (r,g) irnplies lt*,f) = lty,g), therefore I# may be

tt*,tl = lty,g),

B is an inf low

thought as an
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inflow morphism I# : AFS *; B. If B is a surf low (x,f) ru"o (y,g) implies

rt*,t) = tf i(y,g) therefore I# tuy be thought as a surflow ro.pr,ir l l  I#: RFS -+8.

If B is a funflow then (x,f) -uJ (y,g) implies l#(*,r) = I#(y,g) then I#may be thought

as a funflow morphis* I#, MFS --+8.

2. Unfoldments

To unfold a f lowchart scheme we replace every statement with n entries by n

statements with one entry, therefore we define

o = [{ci ' , r<) |  v 'eZ, kc t i i (0,.) l ]

and the function r : O -> S x S* by

r(d,k) = ( i(ry )U, o(r)) for (r , t) e O.

To define the unfoldment we use the interpretation I of Z in RatO defined for

r€: .  by

I (  a)  = < lO(  t r ,  l ) ,  .  .  .  , lO(  d, l i (0 i ' ) i )> .

and for  *  e t*  by I (x)  = Ejn 
t t * , l t ( * j ) .  

Therefore there ex is ts  a unique f low

morphism

U : FI -t RatO

such that U(x) = I(x) for x eT-* and U(f) = f for f  in Pfnr. \ i le recall  that

U(x,f) = (( lu * t(x)X)t i(*) fo, (x,f) ep'113,5;.

As RatO is  a funf low (x , f )  j {>  (y ,g)  impl ies U(x, f )  =  U(y,g)  therefore U may

be thought as cJefined on FS, AFS, RFS or MFS.

For a scheme represented by (x,f) in Fl, U(x,f) is by definit ion i ts i lput

behaviour.
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In the sequel we are also interested in the unfoldments from the internal

vertices of the scheme. As the roots of these unfoldments are given by the

statements of the schemes we realy work with the Unfoldments from the outputs of

the statements which label the internal vertices. Bv definit ion

T(x,f) = U(x,(lu + Vo6;X)

is called the total gdqldqent of (x,f). Remark that

(lu * To(*))T(x,f) = U(x,f).

By definit ion

uo(x,f) = (T" + Io,*r)T(x,f)

is the unfoldment from the outputs of the statements.

2.1. Proposition. If (x,f) -)u (y,g) then

a) T(x,f) = (la + o(u))T(y,g)

b) Uo(x,f) = o(u)Uo(y,g).

Proof. As

(1" * Vo(*)X(1" + i(u)) = (1" + Vo,*;o(u))g =

= (1.*o(*) + o(u)Xlu * o(u) * Io(y)XIu * Vo(y))g

we deduce that (x,( lu + vo1*;X) 4u (lu + o(u)Xy,(la * voly;)g) therefore

T(x,f) = ( lu + o(u))T(y,g). The other conclusion is an easy consequence of the f irst

one. trI

or a f S* and i e [ lal]  we use the notationF
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* , " = T -  + l  + Tal+. . .+a._ I  a i  
" i *  l * . . .*" lu l

Suppose (y,B) in Fl. For k € [tyl], we define the unfoldment from internal vertex

! b v

uu(v,d = {yu,ok{)Uo(y,g)).

We prefer the above definition instead ot UU(V,d = l(fU)ok[)Uo(V,d to include the

case when there exists statements without inputs ( i .e. i(g) is the empty word).

2.L Lemma. If (z,f ) -)u (y,g) then uu(z,f) = uulufv,s) for every t< e [lz i].

Proof. From Proposition 2.1 we deduce

ok[)uo{z,t) = o(xf;u)Uo(y,g) = o{xl,u,)uo(v,s)

therefore as zk = yu(k) we get the conclusion. f:l

The internal behavjour of (x,f) is by definit ion

B(x,f) =. {uu(x,t) l te Ixl1J

2.3. Coroltary. If (x,f) ruu* (y,g) then B(x,f) = B(y,g).

Proof. As -tf tr the least eqivalence relation including 3Sr it suffice to

show (x,f) 3$(y,g) irnplies B(x,f) = B(y,g). The last implication is an easy

consequence of Lemma 2.2. n

We recall  from [Z] tfrat (x,f) is reduced if  (x,f) +u (y,g) where u is a surjection

implies u is a bi jection.

2.4. Corol lary. I f  the application which maps every internal vertex of a scheme

in i ts unfoldment is injective then the scheme is reduced. H
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following identities hold.
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an algebraic theory for e v e r y h : c - + b + cthe

s(lo + ((1. + tXcxb + I.XI' * v.))1c)vb = g((lb+c * h)Vg*.hc = (g,h)tc.

ih" lurt identity fol lows from b) and V^h = (h,h). Elc

For (x,f)€ Fl(a,b) we use the fol lowing notation

f". = (lu * To(*)X and f* = (Tu * Iok)X.

2.6, Proposition. If (x,f)€ Ft(a,b) then

a) I(x)U (x,f) = (V., . l(x)f 1*i(x)o  r ( x /  x '

b) T(x,f) = f<lb, I(x)Uo(x,f)).

Proof. From (lu * Vo(*))f = (frf*) using Lemma 2.5.b we deduce

T(x,f) = (f,t(xX*4i(x) = fc5,(Vi1*,1{*)t*)ti(*)>.

a) (vh) l€  - ( (1 . *  tXcxb +  I .X I ' *  v ) ) fc  fo r  v :  c+  c  - )c

b) (g,h)?c = g(16, (Vch)tc> for g : a -4 br+ c

c) (vch)Tc = h<Ib,(vch)tc>.

Proof. The right-hand side of a) is equal to

((t. + vr,Xcxb * I.))tc*c - ((r. * (uh)fcfxbtt =

fxt((un)tc * I.))f = (vh)?c.

Using a) the right-hand side of b) is equal to



Using Lemma 2.5.c we,'prove a)

I(x)uo(x,f) = I(x)f*co,(v,,*rl(x)t*)ti(*), = (V,1*;t(xX*)Ti(x)

therefore b) follows from the above two equalities. EI

2.7. Lemma. If f € Fn - (x,y), u a [t xt] and u'e [li(xu)1l then

i { tXf ,e tu_t l i (*.) l  
+ u')  = f  ,e [ f(u)_111i(v.) l+ u' .  EI

2.8. Lemma. Suppose (z,t) and (y,g) in FI(a,b), p6 Pfnr(c,b + i(z)), and

g € Pfnr(c,b + i(y)) fulf i l l

p(lo, l(z)UoQ,f")) = q(16r I(y)Uo(y,g)>.

I f  t  e  Fn 
, (z ,x)  

and s € Fn ,  
(y ,x)  f  u l f  i l l

(Vu e [ lz;](vve [tyl]) [Uu(z,f) = Uu(y,g) implies t(u) = s(v)]

l 0

then p(l '  + i(t)) = q(l '  + i(s)).

Proof. Suppose k g [c]. Remark that

(  0 . ,  
.O 

i f  p  is  not  def ined for  k
l K '

x[o<to,t(z)uo(z,r))={ .3,u, i rp(k)<tbt
I  . ,  .

t.il'/,_,', te)rroe,r) ir p(k) > i bl.

and an analogous equali ty holds for q.

From the f irst hypothesis we obtain only three cases.

l) p and q are not defined for k. In this case p(l '  + i(t)) and q(l '  + i(s)) are not

defined for k.

2) p(k) < lb[, q(t<) I lb1 and p(k) = q(k). In this case (e(lo + i(t))Xk) =

= p(k) = q(k) = q(15 + i(s))Xk).
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3) p(k) >ibl ,  q(k) ) lbl  and

.ilil,,0,t, z)rr ob,il = 
"i8-, o,r(v)uo (v, g)

Using the notation

p(k) = lbl + f r E [u- 1il i(zr)l + u' where ue [i zl] and ur6 tl i(zu)tl,

q(k)  = lb l  + I  r  e [v_ r i f i (vr) l  + v '  where ve [ ty i ]  and v 'e t l i (vu) l l

we deduce
i(z )  i (v )

*u, '  i(xf)r(z)uo (z,f) =*u,'  u' i t*|)t(y)uo(v,s)

therefore using i(xl)r(z) = l(zu)o(xf) we obtai

IO(zu, u')o (*l)uo{r, r) = Io(yu, v,)o tx})uo(v, s).

This equali ty implies

o(xl)uo(z,i) = ok|)uo(y, g)

and

I.(zrru') = I.(yu,vt), therefore zu= yu and ut = vt.

As Uu(z,f) = Uu(y,g) the second hypothesis implies t(u) = s(v) therefore using

Lemma 2.7 we get

( R ( l o + i ( t ) X k ) = i b l  + i ( t x t r e [ u _ r ] l i ( r . ) l  + u ' ) = l b l +  Z . e  [ t ( u ) _ r 1 l i ( x . ) l  + u , =

= lb l  +  Z re  [ s (v ) -111 i ( x . ) l  +v '= lb l  + i ( sX f re  
[ v - , i i i ( v r ) l  +v , )= (q ( t ' * i ( s ) ) ) ( k ) .  t r l

2.9. Proposition. suppose QrillcFl(a,b). There exists a surjection rG Fnr(z,y)

such that

( V k , j e [ i z t } [ r ( k ) = r ( j ) ( = = ) 1 I u Q , i l = U j ( z , f ) ]

and (z,f) simulates via r in a reduced schemes.
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Proof. As the existence of r fulfilling the first condition is obvious we prove the

second one. we choose an injection q€ Fn o(y,z) such that er = I_., we define'  L "  y '
(y,g) e FI(a,b) by

I = (la + o(q))f(lo + i(r))

and we prove (z,f) {. (y,g), i.e.

f( l '  + i(r)) = ( lu + o(rq)X(l '  + i(r)).

As by composit ion to the left with Io * To(r) we get an equali ty i t  suff ices to show

fr(l '  + i(r)) = o(reXr(l '  + i(r)).

To do it  we apply Lemma 2.8 for t = s.= r. As i ts second hypothesis fol lows from

the f irst condit ion imposed on r we only have to prove its f irst lrypothesis, i .e.

fr( lO,l(z)Uo(z,f)) = o(rqXr(tO,t(z)uo(z,f))

equali ty which is equivalent via Proposit ion 2.6,b to Uo(z,f) = o(rq)Uo(z,f).

For every n€[izi]  as r(n) = r((rqXn)) rve deduce Un(z,f) = U(rqXn)(z,f) therefore

okfi)Uo{z,i) = okl)o(rq)Uo(z,f). Hence Uo(z,f) = o(rq)Uo(z,f).

To f inish the proof we show using Corollary 2.4 that (y,g) is reduced" For

j ,k  e l iy l i  suppose U,(V,d = UU(y,g).

Using Lemma 2,2. we deduce

Uq(j)(' 't) = u.(q{;);(Y'g) = u,(v,g) = Uu(v,g) = uolp;(',f)

From Uq(j)(r ' t)  = Uq(k)(t, f) and the property of r we deduce r(q(j)) = r(q(k))

hence j = k.
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2.10. Corollary. If a scheme is reduced then the application which maps every

interval vertex in its unfoldment is injective. E

Corollaries, 2.4 and 2.10 give an equivalent condit ion for a scheme to be

reduced. Corollary 2.3 and the next proposition give an equivalent condition for

two schemes to be May eguivalent.

2.11. Proposit ion. Assume (x,f) and (y,g) in Fl(a,b). I f  U(x,f) = U(y,d and

B(x,f) = B(y,g) then (x,f) 
"uy 

( l ,S).

Proof, Using Proposit io n.2.9 and Corol lary 2..3 i t  suff ices to do the proof when

(x,f) and (y,g) are reduced.

As the equal  set  B(x, f )  and B(y,g)  has lx land ly le lements,  respect ive ly  there

exists a bi jection je FnE(x,y) such that

(vue [lxl]Xvv e [ryl]) (uu(x,f) = uu(y,g) (==) j(u) = r,),

therefore Uo(x,f) = o(j)Uo(y,g).

Using Proposit ion 2.6,b we deduce

f(l ' r l(x)Uo(x,f)> = T(x,f) = (U(x,f),Uo(x,f)) = (U(y,g), o(j)Uo(y,g)) =

= (lu + o(j))T(y,S) = ( lu * o(j))g<lb,l(v)Uo(y,g)).

F r o m  L e m m a  2 . 8  f o r  t =  j a n d .  =  I u w e d e d u c e f ( l '  +  i ( j ) ) =  ( l u + o ( j ) ) g .  l J

Zl2. Proposit ion. tf  (y,g)€Fl(a,b) is reduced and if  (x,f) 300 (y,g) then (x,f) is

reduced.

Proof. To prove (x,f) is reduced we use Corollary'2.4. Assume Ur(x,f) = UU(x,f)

where k,jehxl l .  As (x,f) -tr(v,g) for an injection u we deduce from Proposit ion
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1.t.b 
that U,(x,f) = Uu{;y(V,S) and UU(x,f) = Uu1p1(y,d, therefore

, Uu(j)(y,B) = Urlp;(v,S). ns (y,g) is reduced from Corollary 2.10 we get u(j) = u(k)

hence  j=  kas  u  i s i n jec t i ve .  H

3. A model for the surflow of the reduced flowchart schemes

For be S* let  wb = {(0 ' ,u)  |  o 'e 2,  ueRato(o(tr) ,b)J .  An element (d,u) in WO is

seen as a tree with the root labeled by d and u as the remainder of the tree. For

A c Wb and g e Rat.(b,c) by def init ion

Ag = { (  o ,us)  |  t  a , r )  6  A}  .

Before defining the model we define an af,-f low c. For a,b €s* by definit ion

C(a,b) = l(f ,F)lf € Rato(a,b), F c wb) .

The composite of (f ,F) € C(a,b) and (g,G) 6C(b,c) is def ined by

( f ,FXg,G) = ( fg ,  FgUG)

It is easy to see C is a category where the identity morphism of a€S* is ( la,O).

For (f ,F) € C(a,b) and (g,G)€ C(c,d) we def ine their sum by

( f ,F)  + (8,G) = ( f  +  g,  F( lO + Td)  U G(TO + IO)) .

To show C is a str ict monoidal category we do only the most diff icult verif ication.

For (f ,F) € C(a,b), (g,G) G C(b,c), (f ' ,F') € C(a',b') and (g',c') € C(b',c') we have

((f,F) + (f ' 'F')xk,G) + (g"G')) =

= ( f  1f"  F( lb + T5,)UF'(Tb + Io,))  (g *  g ' ,  G( lc *  Tc,)  U G'(Tc + I . , ) )  =

= (( f  + f 'Xg + g ' ) ,  F(g + T. , )U F'(Tc + g ' )UG(1. + Tc,)  U 6'(Tc + I . , ) )  =
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= (fg + f'g', (Fg U GXI. + T.,) U F'g'U G')(Tc + I.,)) =

= (fg, Fs U c) + (f'g', F'g' U G') = (f ,F)(g,G) + (f',F')1g',6';.

Using the following remarks

a) i f  f  €'Rat.(a,b) then (f,O)6 C(a,b)

b) (f'O)k,0) = (f I,O) for f € Rato(a,b) and g€ Rato(b,c)

c) (f,O) * (g,O) = (f + g,O) for f € Rat.(a,b) and ge Rat.(c,d)

we may identif  y f € Rat.(a,b) to (f,O) e C(a,b), therefore RatO C C.

Using the dist inguished morphism "Xb, T", Vu and la from Pfn, one may prove

C is an af,-strong b d-ssmc [7]. We prove only some identit ies.

For  ( f ,F)€C(a,b)  and (g,G)€C(c,d)

((f,F) + (g,G))bxd = ((t * g)bxd, (r(to + Td) U G(To + lo))bxd) =

= (uxt(g + f), F(TO + 16) U c(lo + To)) =

= uxt{g + f, G(to + To) U rtro + Io)) = axc(k,c) + (f,n)).

For ( f  ,F)  €c(a,b)

((f 'F) + (f 'F))VO = ((f + f)Vb, (F(lb + T6) 1", F(Tb + IO))VO) = (Vaf,F) = Vu(f,F).

As in the sequel we need the iteration we recall  from [4] that in an algebraic

theory D the connection between feedback and iteration f :  D(a,a + b)--+ D(a,b) is

done by the equali t ies

fucf ,g)  = g<f t , l .>  for  f  €D(a,a + c)  and g€ D(b,a + c)

f t=  ta<f , I "  *  Tb)  for  f  €D(a,a + b) .

For  ( ( f ,g) ,A)€C(a + b,  a  + c)  whene f  GRatO(a,a + c)  and g€Rat . (b,a + c)  we
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define

ta(<f,g>,A) = ( t acf,g>,A <ft,tc>).

We prove C is a biflow. First we remark

fu(t,O) = (taf,O) therefore t"I" = 11 where

? a a X a = I .
a

If (g,c) e c(b',b), (h,H) € c(c,c') and

f G Rat.(a,a + c) and f' € Rat.(b,a + c) then

tl{t" + (g,G)X(f,f ' ) ,FXIa + (h,H))l =

= ta[(Ia + g, G(Ta + Io)x(f,f'>,Fxla + h, H(T" + I.,))J =

= 1a(<f,gf'>(t. * h), Gf'(ta + h) U F(lu + h) U H(Ta + I.,)) =

= (f "<f,gf,>h, (cf,(ta + h) UF(ta * h) U H(Ta + I.,))<fth, Ic,>) = .

= (g(tuct, f '>)h, Gf '<ft , l .>h u F<ft, l .>h.u H) =

= (gf'(ft,l.), Gf'<ftr1c> u F<ft, Ic>Xh,H)

= k,cX ?u<f,f ,>, F<ft, Ic>Xh,H) = (g,G)( t  
a(<f, f ,>,F)Xh,H).

It (<tf '>,f ') g C(a + b, a + c) where fG Rato(a,a + c) and f '€Rato(bra + c) then

tu[{<f , f '>,F) + IoJ = 1a(<f, f '> + Io,F( lu*.  + To))  =

= (ta<f,f ') + 16r F(1"*. + To)<((1" + To*oX(f,f ') + Io))t, I.*d)) =

=  (Ta<f ; f , )  + lo r  F( f t  +  Td ,  I .  +To) )=  11ac f , f ;> ,  F<f t , l c>) * lo=  rya1<f , f ' ) ,F )  + lo .

I f  ( ( f ,g,h),A)C C(b + a+ c,b + a + d) where f  €Rat.(brb + a + d),

for

L

f € R a t . ( a + b ,  a + c )  t h a t

is the ernpty word and

(<f,f '>,F) € C(a + b,a + c) where
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g€Rat.(a,b + a + d) and h €Rat.(c,b + a + d) then

t" t b(<t,s,h>,A) = ta(<g,h><f t,la*d),A(ft,l"*o)) =

= (t"T b<f,g,h>,A(ft , ta 
d)(G(ft , tu*o>)t, lo)) =

= (? b*"<f,g,h),A(ft<(g<ft,l"*o>)t,lo>,(g<ft,l"*o>)t,Io>) =

= ( tb*u<f,g,h),A((f ,g)t , ld)) = tb*a(<f,g,h),A)

and

t 
u*b[(uxb+ I.X(f,g,h>,Rxbxa + Io) l  =

= t "*b((uXb + I.Xf,g,h>(bxa + lo),n(bxa + Io)) =

= (tb*"<f,g,h>,A(bxa + IoX((g,f>(bxa + Io))f,to>) =

= (Tb*u<f,g,h),A(( f ,g) t , Id))  = tb*a(<f ,g,h),A).

We show that every p e Pfn.(a,b) is f unctorial in C. Suppose

(<f,f '>,F) e C(a + c, a + d) where f G Rat.(a,a + d) and g€Rat'(c,a + d),

( (g ,g ' ) ,G)  €C(b + c ,  b  + d)  where ge Rat . (b ,b + d)  and B '€Rat . (c ,b + d)  and

(<f , f ' ) ,FXp + IO)  = (p + I .X<g,g ' ) ,G) .  We deduce

(f,f ' )(p + IO) = (p + I.Xg,g') and f(p * IO) = G.

As by Corollary 1.2 p is functorial in Rato we get tu<frf '> = f,b(g,g'), and from

f(p + IO) - pg we get ft  = pgt, therefore

t "(<f,f '>,F) = ( t "<f,f '>,F<ft,lo))

= (t  b(g,g'>,F<pgt,to>) = (t  b(g,g') ,G<gt, la)) = tb(<g,g') ,G).

3.1. Proposition. If for every (x,f) € Fl(a,b) we def ine
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Q(x,f) = (U(x,f), B(x,f)) € C(a,b)

thenQ :  Fl  {C is a f low morphism and

(x,f) n"* (v,g) (==) Qk,f) = Q(y,g).

Proof. Suppose (x,f)6Fl(a,b) and (y,dGFl(b,c). As

T((x,fXy,d) =

= u(x + y,(la * vo(**y))(f + Iolr;xlo * i(x)xo(v)11, * Ii(*)xt. * i(r)*i(x);; =

= [(lu*o(**y) + I(x + y)XIa * vo(**y))(f + Iolr;Xlo * i(*)xo(v);

k +r, ,* ,xr .* i (v)* i {*) ) l t i (x+Y) = '

= [(tu*o(**y) + I(x + v)Xl"no1*, * o(v)xo(*) * lo,rr)[(tu * vo(*)X * vo{y;i

{ro * i(*)xo(v)xs * ri(*)xr. * i(v)"i(x))J1i(x + v) =

= [(lu*o(*) * o(v\i(x) * I,1r;)[(lu*o(x) * I(x)XIu * Vo(*)X * (lo(y) + I(r))vo,r;l

{ro * i(*)xo(v)xs * r i(*)xr. * i(v)*i(x)111i(v)gi(x) -

= [(la*o(*) * o(r\i(x)[(lu*o(") + I(x)xlu * Vo(*)x * Io(y)]

[(ro * i(x)*o(v)+i(t)ttto,r, + r(v))vo1r; * r,1*;)xs * ri(*)xr. * i(v)*i(x),r1i(x)1ti(x) -

= [(lu*o(*) * o(v\i(x))[(lu*o(*) + I(x)xlu * vo{*;)t * Io{y;l(lo * i(x)*o(v);

' [(ru*o(y) * i(x)*i(v))[(ru*o(y) + r(y)xro * vo(y))B * ri(*)](r. * i(v)*i(x)y11i(r)1ti(x) -

= [(13..s(x) * o(v\i(x))l(I"*o(*) + I(x)xlu * vo{*;x n lo(y)](lu * i(x)*o(v);
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I

t
i
I

t =[(I"*.*o(*) * o(v)*i(x)xt" * c*o(x)+i(x) * Iolry)t(ta+o(x) + I(x)xl" * vot*;x *

= [(rs6(x) * o(v\i(x)[0"*o(*) + r(x)xr" * vo(*)x * ro(y)](ru * i(x)xo(r))l ti(*)r(y,s) =

= (T(x,f) + Io,r/T(v,s)

we deduce

Uo((x,fXy,g)) = (Uo(x,f) + Iolr;)T(y,g) = (Uo(xrf)U(y,g),Uo(y,g))

therefore

B((x,fXy,g)) = [((x * v)u,ok[*v)<uo(x,t)u(v,$,uo(y,g)>)lk€ [ix * yt] ] =

= B(x,f)U(y,g) U B(y,g)

hence

Q((x,fXy,d) = (U(x,f)U(y,g), B(x,f)U(y,dU n(y,g)) =

= (U(x,f),8(x,f)XU(y,g),8(y,g)) = Q(x,fF(y,g).

Assume (x,f)€FI(a,b) and (y,d G FI(c,d). As

[(rc*o(y) + r(r)xr. * voly;)slf i(v)](ru * i(*)xd)lti(x) -
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= 0" * c*o(x) + Io1r1[(t"+o(x; + c+o(y)*i(xh{t"* 
,*, 

+ I(x)XI" * Vo(*)X + T(y,d]

tro * i(*)xd,r1i(x) -

- (t" * c*o(x) + IolryXT(x,f) + T(y,g))

we deduce

Uo((x,f) + (y,g)) = Uo(x,f) + Uo(Y,g)

' therefore

. B(k,f) + (y,g)) = s(x,fXlb + TO) U B(y,gXTU * Ia)

hence

n 
Q((x,f) + (y,g)) = (U(x,f) + U(y,g),8(x,f)(l '  + T6) U B(y,gXTo + Io)) =

= Q(x,f) + Q(y,g).

Suppose (x,f)e Fl(a + b, a + c). As

r(f a(x,t)) = u(x,(lo * vo(*/(t af)) = u(t a(x,(la*b * Vo(x)X)) = taT(x,f)

we deduce

uo( ta(x,f )) = (Tu * Io("))( 1a<u(x,f),uo(x,f ))) =

= tu((I" + TO)U(x,f ),Uo(x,f)) = Uo(x,fX[(lu + TO)U(x,f )1t,1.)

therefore

B( Ta(x,f)) = g(x,fX[(l" + To)u(x,f)]t, l .>

hence

Q(ta(x,t)) = (tau(x,f),n(x,f){(I" + To)u(x,f)lt, l .)) =

= 1a1u(x, f ) ,8(x, f ) )  = 1aq(x, f  ) .

The last conclusion follows from Corollary 2.3and Proposition 2.11. trl

From this proposition we deduce the surflow of the reduced flowchart schemes

is isomorphic to the image of Q. Therefore, to f ind a model for the surflow of the

reduced flowchart schemes we need to find the image of Q.
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For f€Rat.(a;b) and FCWb we say F contains the trees of f  i f  for every

je  [ la l ] ,  ( r ,g)  €  wo and k€ t l i ( r ) l l

*ft = I,.(( Ir,k))g irnplies (6d e r.
J v

A subset F of WO is said to be hereditary i f  for every (f, f)e F' F contains the

trees of f.

We begin to construct the model, i .e. the image of Q. For a,b ( S* by definit ion

R(a,b) = [(f ,A)€C(a,b)ln is f inite, hereditary and containes the trees of f  ] .

3.2. Lemma. R is a subbiflow of C which inchrdes Pfnt.

Proof .  For  ( f ,F)€R(a,b)  and (g,G)eR(b,c)  we show ( fg ,FgUG)CR(a,c) .  As

Fg U G is f inite we have to prove Fg U G is hereditary and contains the trees of fg.

To show Fg U G is hereditary as G is hereditary i t  suff ices to show Fg U G

contains t l ' re trees of ug for every (Ciru)€F. Suppose

*9(r)u* = I^((z,k))v
J " \ r

where (c,u) € F,  jG [ io(r  ) l ] ,  (a ,v)  € $ ' .  and k e t l i (z ) l l .  r r rere are two cases.

If *f(f ), = *! with re [ibi] then as C contains the trees of g from
, l

*!c = Io((a,k))v we get (? ,v)€ c.

I f  *?(O)u = IO((?,k))v' then V'8 = v, therefore as F is hereditary we get
J L

(A ,v ' )  G  F  hence  (  z , v )e  rg .

We show Fg U G contains the trees of fg. Suppose

*ftg = tn((r,k))u
l "  L

where je tlall, (0-,u) € W. and k C Ui(0|, )l l . f here are two cases.
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rr xft =xf *h"re re [tut] as G contains the trees of g from {, = Io((f ,k))u we

get (tr ,u) €G.

It xft = IO((f ,k))v then vg = u. As F contains the trees of f we get (O',v)€F

hence (tr ,u) = ( n,vg)€ Fg.

For (f,F)€ R(a,b) and (B,G)G R(c,d) we show that

( f  +  g,  F(1,  + Td)  UG(TO + Id) )CR(a + c ,  b  + d) .

To show F(lU * Td) U G(TO + IO) is hereditary we study two cases:

a) (4u) € F and *f(s )u( lo + T6) = Io((3,k))v where ie t lo(  r ) l l ,  i  6,v)  Gwo*o and

k€tli(Z)i l. From the above equality we deduce v = v'(lo + To) where

v'6Rato(o(e),b) uno *,o(o)u = Io((6,k))v ' .  As F is heredi tary we get (A,v ' )€F

hence (E,v) € F( lb + TO).

b) I f  ( r ,u)e G uno *f(o )u(ro + Io)  = Io((U, l<))v where je t lo(  r ) l l ,  f fc ,v)e wo*o

and k €tl i(Z)l l the proof is analogous to the above one.

To show F(lO + Td) U G(TO + IO) contains the trees of f + I we suppose

* f * t t t +g )= lo ( ( r , k ) ) u

where je [ ta + c l ] ,  (0 ' ,u)e $ 'o*o and ke t t i (0-) l l .

I f  i  S1a1 then r f r t lo + To) = Io(( t r ,k))u therefore * f t  = to((r ,k))u '  and

u'(l '  + T6) = u. As F contains the trees of f we deduce (f,,u') g F therefore

( f , u ) G F ( l b  +  T O ) .

I f  i  > la l  then * i - , " t*( to + Io)  = Io((r ,k))u theretore x lc-1a,8 = Io(( t r ,k))u '  and

u'(Tb * IO) = u.  As G contains the t rees of  g we deduce ( t r ,u)€G(TO + IO).

F o r  ( ( f , g ) , F ) e R ( a + b ,  a + c )  w h e r e  f e R a t . ( a , a + c )  a n d  g € R a t . ( b r a + c )  w e

show (t  a<f,g>,F<f t , t .>)€ R(b,c) .

To show F<f t, lc> contains the trees of 1a<f,g> we suPPose
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*ft1"<t,g1) = Io(({I  ,k))h where je [ tur] ,  (o,h) €w. and k€f i i (a.) l l ,  therefore

h r -
xi8<f t,t., = Io(( c',k))h.

We study the two possible cases:

"l  
*fS = IO((f,k))h'.  We deduce h = 6'11t,1.). As F contains the trees of (f,g)

"no 
*ffi?;<f,g) = Io((o',k))hr we get (f ,h,)d F hence (cr,h)€ F<ft,tc>,

b) rfs = *l*t and ig e tia1l. As xltt = Io((f ,k))h there exist n ) 0,, ) 0 v ) 0 -

i 1, i2,. .  .  , jn c [ lal]  and h'€ Rato(o(f ),a + c) such that

*3 f  =  x?+c for  r€  [n ]  and * f  t  =  Io( ( f ,k) )h ' .
J r - l  J r  J n  O "

As *3 t t  = *3 f<ft . t  )  = x9 f t  =.. .  = *3 t t  = x? f<ft . lc> = Io((c/,k))h'<ft , t .> we
l g  1 6  ' c  

1 1  J n  
- - J n - ' - ' -

get h - h'<ft, l;>. As F contains the trees of (f,g) from xf*b(f,g) = Iar((dt,k))h' we
J n v

get ( Qi,h') € F, hence ( c ,h) € F<f t, lc>

To prove F<f t , lc> is  heredi tary  we suppose (Cr ,h)€F and we show F<f t , lc>

conta ins the t rees of  hcf t , l .> .  Assume

*f( r)n<rt,r., = ro(( z,k))u

where i€[ lo(0 ' ) l ] ,  (  Z,u) CW. and ke[ l i (7 )1] .  We study the two possible cases:

u) *f(r)r, = Io(( Z,k))u'. We deduce u'(ft, lc) = u. As F is hereditary we get

(  E ,u ' )  € F,  hence (6 ,u)  € F<f t , lc>

n) * f ( r )h = *3*t  and j , . ,gt iat l .  As x3 f t  = I ,^ , , ( (Z,k))u there exist  n )  0 and
I  ) 0  ' u  - '  

l 0  u " - '

) yi2,. . . , jn C [lal] such that

*3 f  = x3+c for r  € [n] and *f  t  = Io(( a,k))u' .
J r -  I  ) r  J n

As xl  t t  = Io((Z,k))u '<1t,1.)  we get u = u ' ( f t , l . ) .  As F contains the t rees of  ( f ,g)
lg \-/ L -

we ge t  (Z ,u ' )  €  F ,  hence  (Z ,u )€F< fT , l c> .  E
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3.3. Theorem. R is a model for the surflow of the reduced flowchart schemes.

Proof. we show the image of e is included in R. As for every (x,f) € Fl(a,b),

(x, f )  = (( lu + I  je[ t* t ]* jX)t i (*)  and as pfn,  is  inctuded in R, using Lemma 3.2 i t

suffices to show e(x,i(x)*o(x)1 n R(i(x), o(x)) for every x € Z. As

T(x,i(x)*o(x); = u(x,(I11"; * vo,*r)i(*;*o(x); =

= ((l i(*) * (lo(*) + I(x))Vo1*,)i(x)xo(x),1i(x) -

= 1i(x\o(x)*t(*){ato,*;,t(x)) * I,1*;))f i(x) - i(x)*o(*)<to,*r,t{x)) = c(x),Io(x))

we deduce e(*,i(*\o(*)) = (t(*), { (*,to(*))} ) e R(i(x),o(x)).

We prove R is included in the image of Q. Assume (g,G)e R(a,b). As G is f inite

we may wr i te

G = l(  t rr ,ur) ,  ( t ,ur) , .  .  .  , (  ru,uu) ]  .

We denote y  = f , l  *  t2* . .  .  *  fk  €  f *  and s = (u 
r , ,u2r , . ,uk)eRatO(o(V) ,b) .

We def ine (y,f)C Fl(a,b) as fol lows

a )  f o r  j e [ t a t ]

a bl l x j  g = x v

it rfS = Io( tro,r)uo

i f  x3s = 0
I  "  u j ,o

f  v e Itbl1
I

t( j) = { iul + 2, e [q_ l l i i (  cr,) l  * r
l
I  nondef ined

b) for s€ [k] and n 6[io( a'r)11

fvei lu l ]  
t . : :u l 'u,=* l

f( a + Ete[r- 11lo(r,) l*nl ={fut * 2te[q-111i(c,r) l*, i f  *o(r ')u, = ro{tr ' , .)uo
I o(r")
[rondefined if  xn' " 'u, = 0o( 

.,r)n,b
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We prove f < Ibr I(Y)u> = (g,u).

For je ftal1:

- ir *fs = ou,,b *,en xf*o(y)r<lo,t(v)u> = 0a,,b = *3*o(Y)<g,u>

- if *fc = *f ,n"n *3*o(v)rar6,l(v)u> = *b+i(Y)a,o,l(l)u> = xb = *f*o(v)<s,u>

- it *,"s = Io( fq,r)uo then *3*o(Y)iclo,l(v)u>

= -i;1'1, 
* tq-,rri( 0.-)r + ,(lo,l(y)u) 

= {t 
oo"t 

oo)uo = Io( do'r)uo = *f*o(t)t*'u''

And for s e [k] and n e fio( 0-r)t]

- it *l(t ')u, = oo(f,r)n,o then

fi:?l e [s- r]ro( o,)t*nr<ru'I(Y)u) 
= 0o'

- if xo(ds)u, = *f ,h"n

{i:El q [s- r ]ro(.,. t)l*nr(ro'r(Y)u) 
=

= *b*i(y)11s,r(v)u) = *o(7r)r, = .,ilEle 
[r_ r]io(at)i*n(s,u>

- it xfl( ot)us = Io( do,r)uo then

1:i:11 e r,- r rro(r1)l*nr<rb'r(Y)u) 
=

= ,.loil?r* 
,o- ,,,,, r1)l*r<lb'l(v)u> 

= *( dq)rt to)uo =

= Io( do,r)uo = *l(c"", = *,1i1?1. 
,r_,1ro( rt)r+n(g,u)'

we prove f( to +Q(v)u)vo = ((g,u),G). nsQ(v) =7iu;p1(l(rr ,) ,  [(cr; , lo(",1)]  I  =

=  ( t ( y ) ,  l (  t i ,To ( r , * . .  +  \ - r )  
*  I o (0 . , )  *  To (  o j * r * . . .  * cp ) ) l i e  t r t t l l

c,)n,b = ,.;;:El.r,- 
rrro( r1)l*n<s'u>
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we deduce Q(y)u = (I(y)u'G) therefore

f(lo + Q(v)u)vo = f(Ib + I(y)u, G(To + Ib))Vb = f(<lo,l(V)u),G) = ((8,u),G).

We prove I(V)Uo(y,f) = I(y)u. From Proposition 2.6.b we get

I(V)Uo(V,f) = I(VXT" + Iolr;)T(r,f) = I(v)(Ta * Ioly;X<l',l(v)Uo(v'f))' From

f{Orl(y)u) = (g,u) we get I(VXT" + IolryX<15,1(y)u) = I(y)u. As there exists a unique

h € Rato(o(y),b) such that I(vXTu * Io(y)X<ln,h) = h we obtain l(y)Uo(y'f) = I(y)u.

From Proposition 2,6.b we deduce

t(y,f) = f(lb,l(V)Uo(y,f)) = f(IO,I(y)u) = (g,u) therefore U(y'f) = I and

Uo(y,f) = u.

Hence Q(y,f) = (u(y,f),n(y,f)) = (g,l( r,,o(*f)uotv,t)lil e trttl)= (g,G)'

4. A model for the funflow of the minimal flowchart schemes

4.1. Lemma. If  (y,f)e FI(a,b) is accessible then g(y,f) is the least hereditary

subset of WO which contains the trees of U(y'f).

proof. As e(y,f) = (U(y,f),  3(y,f))e R(a,b) i t  fol lows that B(y,f) is hereditary and

contains the trees of U(Y'f).

A s s u m e F c w b i s h e r e d i t a r y a n d c o n t a i n s t h e t r e e s o f u ( y , f ) . T o P r o v e

n(y,f) c F we suPpose ke [ iyl]  and we show

t!u(v,f) = {yu,o(x{)uo(v,f))c r.

As (y , f )  i s  access ib le  there  ex is t  je  [ ta tJ ;  r  )  l ;  j l , " ' , j r -1 , ! ,  =  k  in  [ ry l ] ;

t -G [ i i (y '  ) l ]  for  m € [ r ]  and u* e t lo(v i  ) l l  for  m 6 [ r  -  l ]  such that
r i l  J m  r m
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f ( i )  = lb l  *  Zn€ t j l - r1 l i (vn) l  
*  t ,

f ( la l  + zn e t i *_t1b(vn) l+ u*)  = lb l+ zn e[ i . *1
m € [ r  -  l ] .

As F contains the trees of U(y'f) we deduce from

*,uutv,r) = *3*o(Y)T(y,f) = *.a*o(v)1115,1(y)uo(y,ty> = *rf.ti(v)ato,,{r)uo(y,f)> =

i(v)= *'I; 
e [i 1-,1ii(vp)l* 

1,'(v)uo(v'r) =

= 41, r)l(v,,)oof,)uo(r, r) = to((v,,,t,))o(xf,)uo(v, r) that u,,(v, r) e r'.

The proof go on by induct ion on me[r- l ] .  Assume u,rn(v, f )€F. As F

hereditary and as (y, ,o{xf )uo(y,f))€ F we deauce from

*o(vim)o{*1 ,uo,l,r, =' 
,

m ' m

= 
1:i:y:.ti,n- rrio(v,.,)l*u*r<rb'I(v)uo(v'r)) 

=

= 
itoll!". [j * * r - 1 1ri(vn)l +t* *, 

<lb'l(v)uo(v' r)>

= .'g:e 
[),n*,- r] l i(vn)l * tr*, '(v)Uo(v'r) 

=

i (Y i r * l ) . ,
= .,;1T' t(rj**,,o,*l 'n*,)uo(v,f) = ro((yj,n*l

*nu, uj,n* 
r(l,f 

) e F.

In conblusion UU(v,f)G F. tI

4.2. Theorem. Suppose (x,f) and (y,g) are in Fl(a'b).

a) If  U(x,f1 = u(y,g) then (x,f) -uct (y'g)

for_,rl i(vn)l*  tm* l

,tn.' *, ))o(xl* 
* r'uott"'

b) -a,J = d.CI- -"f , ( 
uf,. uP* .
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Proof. Let (x,rf,) and (y',g') be the accessible parts of (x,f) and (yrg),

respectively. As U(x',f') = U(x,f) and U(y',g') = U(y,g) we deduce U(x',f') = U(y',g').

From Lemma 4.1 we deduce B(x',f ') = B(y'rg'). By Proposition 2.l l we get

(x',f ') lv"r(y',g'). As (x,f)e?g (x',f '), %f = jJb *ig and (y',g') '"F, (y,g)

we deduce the conclusions.

4.3. Theorem. RatO is a model for the minimal E-flowchart schemes.

Proof. Using Theorem 4.2.a we deduce that the model Fl/n u6 
for the minimal

f -f towchart schemes is isomorphic to the image of U. Therefore i t  suff ices to

show the image of U is RatO.

Suppose gGRat.(a,b). As the trees in g are rational the least hereditary subset

G of WO which contains the trees of g is f inite, therefore k,G) €R(a,b). As R is the

image of Q there exists (x, f  ) e nt(a,b) such that Q(xi f) = (8, G) hence U(x,f ) = g' H
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