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- INTRODUCTION

o

Category theory is now playing a fundamental role in theoretical
computer science (cf. [GogBI])e. One of the branches of category theory
which is most used in some recent developenents of theoretical compu-
ter sclence is monad theory (cf. [BR85, Gog89]).

The fundamental aim of our paper is to give a generalization of
equational logic in the categorical framework of monads. The logical
systes thus obtained is named 'monadic equational logic" and we show
that this logical system is an institu£ion (cf. [@BBi]), therefore
it fits in the general framework of ngbgtract model theory for compu-
ter science", There are also proved some completeness results for this
typo of equational logic.

As signatures for nmenadic equational logic ve take monads without
re§pect to the underlying category in which they a}e defined. This
ideea 1eads to the extension of thes classical notion of monad morphism
(see BﬂacLTi, ManT6] for the classical notion of monadvaFPhism). The
models of monadic equational logic are defined to be Eilenberg-Hoore
algebras.

A briefly exposition of the basic facts in both monad theory and
the theory of institutions are the subject of the preliminary chapter.

In the second chapter, after the formal definition of monadic in-
stitutions which is based on the generalization of the classical no-
tion of monad morphism, we discuss some examples. The example of many-
-gsorted algebras is the leading one because of its importance for the-
oretical computer science and it is exposed in great detail. This exanm-

ple clearly suggests that our more general notion of monad morphisn

corresponds to the categorical passing from the homogenuous to the he-




i

'terogenuous case.iﬁ universal algebra.

Under very mild conditions one may consider internal equations as
. gentences in monadic institutions. This can be done due to the’fact that
the "satlsfactlon conditlon" holds for 1nternal equations. We belive that
thls theorem is the heart of the second chapter. The satlsfaction condi-

. .tion for many—sorted equational logic (which was flrst proved in [GB85])
appears as a set-theoretical corollary of thig theoren.,

The third chapter isg devoted to the study of completeness of nonadic
equational logic by using the categorical generalization‘of gome fundamen-
tal notions iﬁ universal algebra like reiation, equivalence, congruence

and fully invariant congruence. We give here a general categorical con-
gtruction of tﬁe congruence and the fully invariant congruence generated
by a relation. The cbmpleteness of monadic equational logie extends the.
classical équatlonal completeness theorem which is due to Birkhoff
{cf. [Cra79]) and also the completeness of many-sorted equational 1og1c
of [GMSS] :

The appendix is dedicated to those readers which are familiar with
the abstract algebraic institutions of Tarlecki (introduced in [Tar85, 86])
There we show (without proofs) that under some mild and natural condi-

tions monadic institutions become abstract algebraic.

1. PRELIMINARIES

Throughout the paper [C| denotes the clags of objects of the catego-
ry C, while for any objects A,Bquj the set of arrows (morphisms) A—=B
ig denoted by g(A,B). Composition of arrows is written in the diagrammatic
order, i.e. if f;A—=—B, g:B——C then fg: A—=—C. The composition between
a functor and a natural transformation is the only exception of this rule

(because chasing diagrams needs the use of components of natural transfor-
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mations), for exami)le if FeClat(A,B), ¢,6'e Cat(B,C) and O:C-—’*—G' is a
natural transformation then QF:FG—-TFG'. (Here the hypercategory of all
categories is denoted by Cat).

For the basic notions of category theory (functor, natufal tfsmsfor-:
mation, 1limit, colimit, adjunction, Ken extension etec.) ’we use the same
terninology as [MacL7l].

MONADS

The role played by monads in universal algebra is well known (there
are several monographies devoted to the subject, for examble [Man76])., The
increasing role played by monads in theoretical computer science was recen-
tly the subject  of a survey [BR85] . Here we shall briefly recall some
besic facts concerning monads, an introduction to the subject being the
chapter devoted to monads in [MacL7i].

A mona}; (T,/z,nz) in the category X is a monoid in the strict monoidal
category of endofunctors of X (see [MacL71] ), otherwise said, 1% consists
of a functor T:X—sX and two natural transformations /1:'1'2—'——»-‘]3 and
f)z:{i.x—'—-z»'r which satisfies

the assoclative law: /uT/LL = ‘1‘/1/1
and the unit law: ’Qr/i = I ph = ’lT.

Each adjunctien (F;Ggfr(,g):}(__m-A gives rise to the monad (FG,GQF,’YZ)
in X and, conversely, these are 21l the monads. More precisely, glven a -
ronad (T,/u,wz) in a category X one may built Eilenberg-Moore T-algebras
category, which is denoted XT, having T-algebras (x,f) as objects (xelX|
being the underlying object of algebra, f:’l‘x___,..z;, subject to Tf-f:/,gx-f |
and qle :’ix, being the structure map of algebra) and T-morphisms
hs (x,zf)__a-(x',f') as arrows (heX(x,x') commutes with the algebraic stru-
cture, i.e, Thez'=7h). Tho forgetful functor ¢l:xl =X has a left-
-adjoint FT:X-——» XT, Frx-:('l‘x,/ux) on objects and FThz—.Th on arrows. The mo~

nad defined by this adjunction X-—»XT is just (T,/LL,’IZ).



I1f a right-adjoint functor GsA—-X behaves like a GT (modulo an
igomorphism, of course) G is said to ﬂe monadic in [MacL7l] or algebraic
~in [ﬁan?é]. Monadic functers have a lot of important properties which are
discussed in the books devoted to the subject. ‘

A lot of examples of monadic functofs could be found in [han76],

. important one for theoretical computer sclence being the forgetful froml
any variety of many-sorted algebras to many-sorted sets. This notion is so
general that it includes some surprising examples, one of them being the |

forgetful from compact spaces to sets.

INSTITUTIONS

The theory of institutions was sfarﬁed in [@Béﬁ] as an abstract model
theory for computer science., 3Joume recent developements of the theofy of
institutiong are oriented through pure rodel theory (see [TarBé 871,

The notion of ingtitution is an elegant categorical formalization of

the intultive notion of "logical system". It consists of
a category Sign of signatures,
o, functor Mod:Sign’—s Cat giving models,

a functor'Sen:Sign-_a»c { giving sentences and proofs (usualy

et

Sen:Sign —» for the semantic-oriented approaches)

a satisfaction relation t:zf;I Mod X |x|senX]| for each Ye[Sign|
guch that for each Atel|Modl!| , félSenZI and $8ign(Z,2')
=g (Send)p iff (Hod)A' =50

This 1s called the satisfaction condition and it express

our insight that the truth does not depend on the actual

notation,

"Any logical system is an institution” is the thesis forrmulated in the
pioneering article [GBSE], where there are also explored some examples, the

" leading ones being those of nany-sorted equational logie (which is relevant



for theoretical computer sciezice) and many-sorted first-order logic
(reievant for classical model theory). A further -serie of articles on
this subject ( [GB86, Tar85, 86, 87] etc.) develops this notion with the
aim of applying the resulting theory to abstract data types, artificial
inteligenée or model theory_(for the model-theoretic oriented develo-
pements, abstract algebraic institutions [Tar85, 86 ] are especially rele-
vant)e .
At the general level, any institution yields, for any signature

L €|sign|, the well known Galois connection between models and sentences
ylMole#ﬁlSenZl

defined by EX

¥

il

{heluodZ| : AE=sp for ény CfeE} for any EQ]SenZl, and

M

it

{oe|senX

: A=y for any A €M) for any M c|ModZ].

A presentation in the institution I is a pair (Z,E), Y €&]|5ign| and

E <|SenT|. A morphism of presentations (Z}E)ila~(2’y8') is just a signa-

ture morphisn .2, 5t yhich meps E to E', more precisely (SenA)EEE'.

This yields a category Pfesl of all presentations in I. The full subcate~

P

gory of all presentations (5,E) which are closed under gemantical conse-
gquence, E%%éE, is called the category of theories in.l and it is denoted

Th.. Some results in this area could be found in [GB85].

=

i

o, MONADIC INSTITUTIONS

The basic ideea which lies behind the notion of monadic institution
is to look after monads as signatures for "logical systems". It is thus
necegsarily to}consider porphisms between monads defined in different
categories. This is done by the generalization of the classical notion

of monad morphism.
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THE HYPERCATECORY OF ALL THE MONADS

Classicaly, monad norphisms are just monoid rorphisms in the strict
monoidal category of endofunctors of some category (see [NacLTﬂ or

[Man76] ).

2.4 Definition TLet (T”p,q) be a monad in the category X and (T'”u'yn')

be a monad in other category X'. A morphisn (Tvuyq)~—a—(T',/U,ﬂ') is a
pair {A,C), with G:X'—sX functor and A:GT——>T'G natural transformation
gothe NG = GO

and JG-) = -G, whore 22 o Aot s GT— T %G,

Observe that the classical notion of nonad morphism is obtained from

the preceeding one when X=X' and G ig the identity functor.

2.2 Definition The composition of monad morphisms is defined by

(TP/LP,TZ) <%7G> (le/u_ey,q!) <7\;G'> (TH’/J'"’/QH) - <2G"G7\'pG‘G>.

A short diagram chase shows us that this composition is associative
and thus we ha&e built the hypercategory MON of ALL the monads (without
respect to the category they are defined in). |

At the end of [BR85] one can find a brief discussion on the relevance
of definition 2.4 for theoretical computer science.

The following proposition is crucial for the definition of monadic

institutions:

2.3 Proposition Let (va%ﬁ) and (T’,ﬂ!,q') be monads in X and X' respec-

tively. Every monad moxphisn (]9G>:(T5#,W)~—4»(T'”yfrq') gives a functor

&

t
A6, X' X" defined by

(a4 )F—>=(Ga',)  G*) on algebras and f+—-»Gf on morphisms

Proof: The fact that (Ga',)a.‘G&‘) ig indeed T—algebra immediately

T R oA e S S W A e S L S e B o (‘)-G» (FX(’.@ defa2.ﬁ.) and bV tl]e



.ot that (a',«') is a T*-algebra. Adding the naturality of 2 to
t-morphism property of f we obtain T-morphism property for Gf. ALG {2, C)

is a functor since G is a functor. H

0
Observe that ALG is a functor MON—=Cat, otherwise pald ALG 1s a
~ MON~indexed category (see [TBG8S] . for the notiom of indexed category).

We gre now ready to give the definition of monadic institutiens.

2.4 Definition An institution (8ign, Mod, Sen,F= ) is called monadic iff

Sign is a subcategory of MON and Mod is the restriction ef ALG to Sign. i

The very semantiec nature of this definition is obvious, gince it says
nothing about syntax. Nevertheless, the(aiscussion concefning syﬁtax in
monadic institutions will be the subject of the last paragreph of this
section.

gome exanples of this general definition are discusgsed in-the next
paragraph. The nmost important of them is that of nany-sorted algebralic

theorien.

MANY-~-SORTED ALGEBRAIC THEORIES

Every mbrphism of many-sorted algebraic theories is seen as a (gene~
ralized - in the sense of definition 2.1) monad morphism, while morphisms
of honogenuous (one-sorted) algebraic theorles are seen as clagsical 1o
nad morphisms. Thig 1s perhaps an argument to see the extension of the cla-
ssical notion of monad morphism (def.2.1) as a categorical passing from the
homogenuousg to the heterogenuous case.

Let Set be the category of all sets. For any get 8 we have the functor
category éggs of S-sorted sets. Any function G:S—=5' induces a functor

Q;G_:gggﬁl~—+-§gis (the left-composition with G)e

|}
5,5 Proposition For any G:S——>S' the induced functor G:9 t§«_~qr3@gs

=

hos a left and a right-adjoint. The left-adjoint ofi G maps any S-sorted



;2% X to the S'-sorted set X"defined by

Proof:; Since S is small (discrete) category and Set is small complete
and cocomplete any G:S——S' vhas a right and a left Kan-extension along
any S-gorted set X (sée '[MacL'I’l] )e The expression of the left adjoint 61‘
G is given by the construction of left Ken-extensions as pointwise coli-

mits (ef. [MacL7l]).

A S-sorted signature is a ranked set ¥ —X g g of operation sym-

bols (the free monoid generated by g ig denoted by s¥). r(v)=(slecoan,s)
is often denoted as v:isSleeeSD —>3, the interprétation Va of V in any
g-gorted Z-algebra (AQ(VA)V,EE) being a function Asleszx”'xAs'rT‘"’” Ao

Algebraic signatures are pairs of the fornm (S, Z-—-E—”'S%XS), vhere

g is the set of sorts and s_¥Y, g8 ig a S-sorted signature. An algoe-
" ]

braic signature morphism from (S, 7. Xes*%s8) to (3, Z'-——-?-—% Sty gt )

consists of a renaming of sorts GiS— g' and a renanming of operaticn

syrbols Ae D FHopregerving their ranks, i.e. %r':—.r-(G*xG)

*.

A GXG

ol g

Lebt AlgSig be the category of algebraic signatures (sece [GBSS] s
There is a functor Alg:&lgg}_gOMQQ which maps any algebraic signature
(s,2) to AlgZ ~ the category of S=sorted swalgebras and which maps any
signature morphism (GyA): (8,5)—(8',Z') to the functor

Alg(G,}):Algz,-———:—- Algz defined as

(A"(V}\')v" GZ’) ;-——u»(GA'.((?\V’)A.)V;éZ) on algebras

and f |—» fG on morphisnms.



Mg is often deneted as | (see [EB8S, Tar85, 86] and others)

Given an S-sorted signature 2 end an 3-sorted set X let T (X) be the
free T-algebra generated by X (the set of Z-terms over the variables X).
Following [GB85] or [GM83] (or others) a S-sorted equation in variables X
is a pair (lyr)é;TZ(X)Z. ‘

A J-algebra satisfies this equation, in symbols
(A (V) o s S 1ury LSS

for any "valuatien" of variables, v-X——ewA, (1,r) belongs to the kernel

of v¥#, where v#}TZ(X)*—a~(A,(Uh) ) is the unique extension of v to a

ves
2 -porphism.
Let (G,2) be an algebraic s:gnature morphicm (8, 7)e a0t 200,
Using the notations of proposition 2.5 define [_J:T (X)—~»—TZ,(Y ) 88 the
vnique extension of Xc~4>GX°L_¢.A1g(G,%)TZ,(X') to & T-morphism

TZ(X)——-——Alg(G,%)Tz,(X')

l
ieJ
5
|
exr e :,_Alg(G,?\)TZ; (x*)

Ve ﬁhué obtain a translation of any X-equation in variables X to a
3 twoguation in variables X' by (1prdnecss LI Pyl )

A1) the facts presented from the begining of that paragraph are the
ingredients of many-sorted equationa al logic [GB8 5]. The above definitions
(algebraic signatures, the functor Alg, equations ehc. ] cou d be organized

ag an institution as follows:

-the category of signatures is that of algebraic signatures
AlgSié

~-the nodel functor is Alg



~the sentence functor AlgSig—»Set maps any signature (8;%)

to the set of s-sorted.AZ—eQuations, for any signature morphisn the indu--

ced translations of equations being above definad.

-

-the satisfaction relation = is the usual one (being above

-~

presented).

A beautiful but expected result [GB85] says that many-gsorted equatio-

nael logic is an ingtitution (i.e. the satisfaction condition holds).

A many-sorted algebraic theory (algebraic theory for ghort) is Just
a theory in the ingtitution of many-gsorted equational logic.
The theories of any institution can be viewed as signatures in other

institutions in the following way:

2.6 Remark Given an ingtitution I = (sign, Mod, Sen, =) let
Modt:ThI-a»gg§ be defined by
) Modt(Z,E) is the full subcategory of ModY having E” as objects
and for any theory morphism (5,E)— (T ,E'), ModtA is the
restriction of Mod2.
Then Modt is well defined (in the virtue of gatisfaction condition), thus

Modt could play a model functor role. i

One may thus consider institutions having algebraic theories as sig-
natures and varieties of algebras as modelse This ideea seems to be close

related to Lawvere algebraic theories [;aw63].

2.7 Proposition Any institution having algebraic theories as signatures

end verieties of algebras ag models is a nonadlic institution.

Proof: The first step is to show how algebraic theories morphisnms
could be naturally viewed as monad morphisms (in the sense of definition

2:1)

Let (S.E.E)—igial»(s“,Z',E') be an algebraic theory morphism. As



known (see [ManT6] or [fR85) for example), the forgetful functor
Ang,E-_,.Set is monadic (algebraic), the monad (TZ E/ﬂ-q) thus defined
in Set building (Z,E)- terns (1.e. classes of JT-terms which are equiva-
lent under the congruence generated by E), and AlgZ P being just the cate-

S
- gory of TZ E—algebras in Set”. Let (T£°E"/L’ql) be the monad defined in

]

set> by the forgetful Ang.E,w—m.SetS . _
(G,2) induces a morphism <a’g>'(TZ,EO#’W)'"*"(TZSE'U#y’ﬂ') in the follow=-
ing menners

st 3
{2 —=8et” is G_ (see Prop.2.5)

e
m

i

;=§-2}E'_*'TZ*E'G ig the natural transformation having '))9

]
XGEQQESI , as components. ;X is defined to be the unique extension of

gﬁk to a Y-morphism.

\

o Wi RN

\ /
\ //
/
/

oy e
/
/

G(T m,x)=A1g<G,7\)(TZ;E.X>

The fundamental fact which has to be observed here is that G(TZ’E‘ ) =
= Alg(ng)(TZ;E,X) ig indeed & (£,E)-algebra (since gen(G,N\)ECE'), and
thus the universal property of Ty E(_(}X) can be applied.

JENE

2 is natural in the virtue of naturality of 0? and ﬁ'.

We have now to check that fg;é:Zf-g}U. Indeed, for any S'-sorted set X

we have:

« Ap v O = (naturality of 1)

o ‘\Z
oy g(E(X)) EEX TryypX

; . . gp! = (definiti £
Ax el o) i opy = (definition o )
4 $

& ] o | =
AX QnTZ;E'X Ghy = (monad properties) AX (monad properties)



GRSV e S R R L
41/
em

* Moy a0 e X

Since TZ,EAX. AT

of Y=morphisms) it follows that they are equal.

The rgmark that Algsalgebraic theories —Cat 18 just the regtric-

. QMS / ‘ = ‘
Z;E’X g/JX g /ug(x) Ay are y-rorphisms (es composites

tion of ALG (see prope.2.3) will finish the proof of this proposition,

When one-sorted (homogenuous) algebraic theories morphisns are invol-
ved remark that the induced monad morphism are classical ronad morphisms
(as in [MacLTi, Man76) )e
. Instead of manymsorte@ algebrag one may consider many-sorted conti-
nuous algebras (see [BR85] or I}DJT?]). Hore monads over categories of
gsorted complete partial orders have to be censidered, It is also possible
to consgider mixtures.between ordinary algebras and continuéus algebrasg.

‘An intéresting example of monadic instlitution is provided by linear
algebra:

An institution (g§§§7 Module, Sen,}— ) in linear algebra hes the ca-
tegory of commutative rings, gggég as signatures categorye.

The model functor Nodule:g§2§i-4»g§§ gives for any commutative ring R its
corr@sponding rmodule category R-lod and for any ring morphism R—R' 1%

' gives the natural translation R'=Mod —sR~llod. CRng can be embedded in
MON by R}-%»(TRVMR,QR)9 vhere (TRU#R,qR) is the monad defined by the

(ronadic) forgetful R-Mod-— Set.

Module is just the restriction of ALG to CRng.
This example is only a particulér caée of a more general one., That
one is constituted by actions over objects in monoidal categories and it

is strongly connected to categorical autonata theory.



MONADIC EQUATIONAL I0GIC

The categorical approach of syntax of equational logic has a long
story (see [Hat70, HRT2, Man76] or more recently [BrR85] ); The central ne-

tion of this approach is given by the following definitions

2;8 Definition Let (Typfq) be a monad in a cabtegory X.

A T-equation having x&|X| as the "object of variables" is a parasllel
pair k::%::Tx in X (alsoc denoted as (1l,¥) or 1=7), |

This T-equation is satisfled by a T—algebra (awﬁ) Werete the variab-
les valuation vix—sa (in symbols (a,«) = 1=r[v]) iff 1v =r7#, where
V$%(Txyux)-¢»(a¢£) ig the unique T«morphiém extension of v,

The equation l=r is satisfied by (2,«) 1ff it is satisfied by (24C)

WeTr.t. any valuation of variables.

Clearl&, the kind of loglc involved by this definition is an equatio-
nal one. However, observe that the sentences gshaped 1n definition 2.8
geer to be families of equations over the same set of variables rather
then classical equations, k playlng the role of "object of indices". The
aim of this paragraph is to investigate the conditions which make this
type of logic an ingtitution. It is obvious that the institﬁtions involved

here will be monadic ones (in the sense of definition 24 )%

2.9 Definition Let <%,G>:(Tvuy7)—~e»(T'vu'/q') be a monad morphism such

that G:X'—»X has a left-adjoint FiX—eX'., If @G is the unit of adjun-
ction X—X' and _D:X(X,Ga)JEQ»X'(Fx,a) ig the natural bijection defined
by this adjunction, then we define

[_Jg’X:X(k,TX)——4>X'(Fk,T'(FX)) by hl—=(h- T¢x Fx D.Eﬁ

If MON, is the subcategory of MON of all monad morphisms &)

having right-adjoint functors as functor components G, then one may define

a functor EQN:MONd——a~Set which will play the sentence-functor role.



2,10 Definition EQN:MON——-=3et is defined as follows:

for any monad (T”u,ﬂ) having X as its underlying éategoryx
B i) = {k

. for eny mohad sorphisn (T,u,m) 20 (19,0, 91) in HON,:
(M<2,G>)(k Tx) = ([1]k X [ ]kﬂx) for any (1,7)EQN(T, ). B

Px k,xezlxl}, and

The following lemmé proves the correctness of the previous definition:

Xl ‘ '
2,04 Lewma Let CF¢L¢Q)-SAL91.(T'Vu'¢q')~§aﬂzzw-(T"UM",W") be monad mor-

phisms in MON,. Using notations of definition 2.9 we have

[[h]k ik Fk o [hjgé?-Gh' for any heX(k,Tx) .

Proof: The unit of the composed adjunction X——e=X'—=X" ig
] 1
$8'Cg% G4°F (see composition of adjoints [MacLTl]).

§° 'G@g . ¢ (6 [[n] ]A,) = (definition of [_- k niE)

G m 1“
£ @k ~G[b]ﬂ~ G(l'@FX) (Fy) = (definition of [_ ] fo
G G? e
= b 00 N GG ) ¢ Oy (pyy = (naturality of )
= h-7dl .ol . ' - i 1 . 2O
= h 1¢X L(G@PX) }Gg(F,(FX))- G%F'(Fx) = (definition of ¢

s . G‘G s ] ] a GEG 1 vVe ~ 7 63
= h i@x (MGt GA )Fg(FX)e uince<@k ig an universal arrow we have that
- R G'G t ¢ o — 79
Definition 2.10 could be also regarded ag the internalization of the

notion of equation in monadic institutions. Let ALG, be the restriction

of ALG to MON . The main result of this paragraph lies in the following

theoren:

2,12 THEOREM (MON,, ALG, EQN, =) is a monadic institution.

Proof: We have to check that satisfaction condition holds, that is
for any (%,G):(Tvu,ﬁ)~—«»(T'”pﬂ,7') in MON,, for any T'-algebra (a,¢) and

for anvy T-ecquation k:z%ﬂth



(a,oc)i:: [1],= [r]7\ 1ff  (Ga,) - 6€)=1=r .

Using the notations of definition 2.9, observe that
._sz(x,Ga)-—»-X'(Fx,a) can be regarded as an one-one correspondence bet-
ween‘the vaeluetions Px—sa and the valuations x——Ga. It thus suffices

te show that for any X — = Ga

Catii= [1jzm[rJA[vD] 122 (Cay R, 6C) = 1= [v].
The first step is to prove that T(b?c . )Fx is T-morphism
(Tx,/u )—=(ALG R, 6D ) (T (Fx) ﬁﬂFX
129% « Thpy s Apr (px) * Gy = (dofinition of 2

, mehG 2 ; .
= f ‘bx' %Fx' GHL, = ({3,G> is monad morphisam)

= 1200 . . , LA
= D5G° Facrx) * Ppx = M natural) M 05 - Ape s

Let 4 .(Tx/u )—_-»-(Ga,) . G6L) and voH (T*(FX)VMF )-—-—-aw(ﬂ.gaC) be the
unique extengions of v and vU to morphisas.

/;?X : T(b(;c ; 7‘FX’ Gv D# ’72 is natural)

. G, “ D# "
% d)x Mo (rx) Apx Gv ( 2 is monad morphism)

_ HG-. : et -l AT .
..(I}X G’YZ}'?,X va..(px—(}v =¥ o= ) o L

G 3 3 ) .
gince T@) s - GvP# ig a T-morphism (as composition of T~morphisnsg)

Ex
it is just v¥ ’!1 being universal arrow).

It follovs that (Ga,) «GC)F=1=r[v] iff 1vierv® iff
l'T¢G°7\ 'GVD#:-1:‘-T<I>G-7\ v gae
X X = X AEx
5= : ,D#,, G- . oyOF
dbk Gk e e @k Gr], * GV §r
[1] e O [r] .vJ#* (the universal property of (i)k Ei
(a,0)F= [1],=[r], VO]
This theorem could be considered as a cabegorical generalization of

the main theorem concerning many-sorted equational logic in [GB85] (asser-

ting that many-sorted equatioﬁal logic is an institution). Thisg remark




e
A\

is due to proposition 2650 Moreover, the restriction of EQN to A g.ﬂ,ﬁ is

just the translation of equations as defined in [@BBS]

Je COMPLETENESS

The study of completeness of logical systems plays a central role in
eny kind of model theory. Equational logic has its own cempléten@és th@oﬁy,
The first result was.obtained in the field of homogenuous uni?ersal élgéé
bra by Birkhoff(1935) (see [?ré79]), This result was recently eitended to
many-sorted universal algebra in (M85 ]. The purpose of this chapter is

to extend these results to monadic equational logic.

THE FULLY iNVARIANT CONGRUENCE GENERATED BY A RELATION

The following three definitions esgree to the gset-theoretic notion of
relation, equivalence and congruence in uge in classical universal algebra.

They are part of the folklore of categorical universal algebrae

3./ Definition Let X be a category and let a Dbe an object in X. A relae-

tion on & 1is a parallel pair k::%g:aeiﬁ

Recall (cf. [MacL7l] or [Man76]) that given any arrov a —Leb 1t ker-

nell pair (kernel, for short) is the pullback of the pair (£:5)

3,2 Definition A relation k::%ﬁ:a on the ebject a in the category X is

b oA ea——

an cquivalence iff there is an arrowvw a-gw~b g.the (1,r) 485 the kernel

Of f; ioeo (lgi‘)zkerfoﬁ;}

Fe? Definition Let T/ﬂ,ﬂ) be a monad in X. A relation c::%- (a,m) on

the underlying object a of a T-algebra (a,) is a congruence iff there

Observe that any congruence is an equivalence (since the forgetful



m'.-wi, _/

functor from algebras to the underlying category X preserves linits as a
right-edjoint funetor).
The following definition is only a catogorical formalization of the

set-theoretic inclusion between relations.

& ! ' .
3.4 Definition Let k-—%*~a and K'::%;xza be relations on the sare

object a. Then (1',r') includes (1,7), in symbols (1,?)22(1',r“), i 8

there is hik—s=k' s.th, 1=hl' and r=hr'.[d

Observe that < is a preorder and that we may identify relations

which are equivalent under the equivalence‘ggf}gze

ST I

%.5 Remark Let (TvuVY) be @ monad in a category X. Any T-equation over
the object of variables x is just a relation on Tx.

Given a T~algebra (8,£), for any valuation of variables x“;i»-a; 1z

$
(k::%::Tx)g;(k':;}Tw.Tx) then (a, )FE=1'=r'(v] implies (a,0)F=1=r[v],

T
and thus (a,L£)=1'=r' implies (as0)f= l=r.kd

This‘oorrcsponds to the intuition that any model which satisfies a
a sot of sentenées should also satisfy any subset of this sentences.
Observe also that equivalent (under & [)=2 ) T-equations are satiafied by
the ssme clasgss of T-algebras.

Pirkhoff Completeness Theorem is sometimes formulated using the
notion of fully invariant congruence (see [@r&79] for example). This is
a rore algebraic treatment of syntax and it seems to be also adequate for
our abstract categorical framework too. The following definition is a
categorical gencralization of the classical set-theoretic notion of fully‘

invariant congruence (see [Qrﬁ79] for the set-theoretic definition).

3,6 Definition Let (T”pyq) be a monad in X. A congruence (1,r) on T-alge-

bra (a,£) is fully invariant iff (Lf,pf kel vr) for any endomorphisn

. PR f 1. .\



D 7 Definition Let k-—%—“(a;x) be a reiatioﬁ on the underlying object of
Tualgebra (2,) . | Tk

The congruence generated by (1,r), which is denoted as C(1;x)y 18 a
congruence on (a,«) containing (1,r) (i.e. (1,r)=C(l,r)) s.th. any other
congruence (v 3t containing (1,r) (i.e. (1,r)=(1',r')) also contains
- e(1y7) (Leee C(LE) ST, | °

The fully invariant congruence generated by (1,f) which is denoted as
FIC(1,r) is similarly defined (we have only to replace the word "congrucm

nee" by "fully invariant congruence" in the definition of the congruence

generated by (1,7)).H

Obsgerve that the [fully invarianﬁjcongruenee generated by a relation,
if exists, is unique up to the equivalence defined Dby the preoréer &=,

The fcllowing two propositions (having an algebraic rathor than a
logic natur;) shov that under some mild and natural conditions the congru-
ence and the fully invariant congruence genersted by a relation exigt and,
moreover, they give us a method to construct them in barticular cases.

The construction of the congruence generated by a relation is a

two-gtep processe.

3 8 Proposition Tet (Tbu n) be a monad in X. Suppose that X has small

limits and that T-algebrasg cabegory X T has coequalizers. Let K'”%*" yeC)
be = relation on the underlying object of the T-algebra (8,L) o
I« Lot 1* and r* bve the.unique extensions of 1 and r to T-morphisms
(Tkvuk)-«m(a,x)
IT. let e be the coequélizer of (1#9r#) in XT, and let (1,r) be the
kernel of e, that is (i,f)zker(éoeq(l#,r#))o

Proof: (I,T) is a congruence by construction (as a kernel pair). VWe



only have to show thgt for. any"l‘—-morphism h;(a,ac)-»-(b,/@), if (1,:') e
Ckerh then (i,?)_gkérh. '
(2,r)<kerh impligs 1h=rh, which implies ryzkl#hr.ﬂ?kr#h. Since qu is
universal it follows that 1*h=r®h, | ' |
since e is the coequalizer of (1#,1'#), there is h' s.th. eh’=h. But
Te=Fo (by construction). It follows Ih=Fh (since h=eh'), Univeméi pro-:A
perty of kerh (as pullback) implies (1,T) S kerh i

= : : :
At sot-theoretic Level Tk=izt= (a,¢) is the closure of et (14c0)

under algebra operations and (1,T) is the reflexive-gymmetric-tranzitive

closure of (l#, %),

3,9 Proposition Let (Tg/u,’lz) be a monad in X. Suppose that X has small

lirits and small coproducts and that T-algebras category XT hag coequali=

zers. Let 1-:\--—%:”(:1,06) be a relation on the underlying object of T-algebra
(y0C)
T, let End(a,«) be the set of endomorphisms of (a,«), that is
End(a,) = {f s f:(&;o{)-——-—kﬁ-(agoc)}o

8
Construct the coproduct (k f_L_l kK = k') and let
fernd(a,<)

*
# .__;1:__.__<“.. -~ y 2 4 ~ of an { i oo ¥ o o
k =——Fa be the unique arrows which satisgfies sf‘l = 1-f and

sf-r*x rf for any fe&End(a,L)

ITI. let (1%,7%) = C(1%,r*) be the congruence generated by S

Then (1¥,7%) = FIC(1,Tr).

Proof: (—iﬁ,f_g) is by definition a congruence.
Let ugs show that it is fully invariant:
Let g:(a,L)—=(a,£) be an endomorphisa of (ay€)e Using the same notations

as in proposition 3.8 we succesively deduce for any fo ot (upl)

sf-l*-g-e = lefeg.€ = sfg-l*oe (since e is the coéqualizer of

(AT SRl . e ~r¥.g.e.

r-f-g-e = 8y

i

fg



By coproduct universal property it follows that *.g.6 = v¥. 5.0 .

(Tk*vﬂk*) ‘ kere
‘ ik 2T
: 1 1‘%‘ r*-
,sz r*#:
- et
k* E ATrer (8‘9£)
h >
i if
7 ge @
K h
A
Then lﬁ#eg-e = r*#-g~e in the virtue of the universal property of free

*
T-algebra (Tk Uuk%)°
)

There exists h s. th. eh=ge since e is the coequalizer of (1*#}r*
Then 1%-g-0 = 1¥.¢-h ((i39§¥) is the kernel of e) = r.e-h = T*.gee

Tn the virtue of the universal property of kernels we may conclude that

(g, rg) S (1%,v%). This proof is summarized in the previous diagram.

It remains to prove that given any fully invariant congruence

] — e
k'wm%TJn(aﬂL) containing (1,r) it also containsg (1%,r*) .

1f (L, r)=(1l',r') then for any f:(a,)—=(a,«) we have (g, rf) (1,00
(since (1',r') is fully invariant) &(1',r'). Let hf:C~—ka' sobhe

A Jo t . ol
lfwhfl and I‘f».hf
S (3-.90(.‘) e

r' and let hikT—s k' s.th. sh=h, for any £ (@) e
By coproduct universal property n1'=1% and hrt=r¥, therefore (1%*,r*) <=

< (1',r'). Using proposition 3.8 we have (1*, F)=c(1*,rt)=(1',r" ). B

Again we mention here that the set-theoretic level congstruction of
the fully invariant congruence gencrated by a relation is just a sgpecial

case of the previoug proposition.



COMPLETENESS OF MONADIC EQUATIONAL LOGIC

The results of the previous paragraph are used here for proving some
Birkhoff-like theorems concerning the completeness of nonadic equational
1@gic.

When reading [Tar85] or [Tar86] one immediately observes the crescent
“role blayed in theoretical couputer science (and especially in abstract

data types and artificial inteligence) by the ground equational logic.

3,90 Definition Let (T5#9W) be a monad in X. Suppose that X has an initial

object 0. A ground T-equation is a T-equation having O as the oebject of

variables. [3

This definition agree to the set-theoretic notion of ground equation,
that is equations having no symbols of varisbles. In this special case the
complete sets of ground equations are the congruences on the initial alge-

bra. The following theorcm generalizes this fact.

3,09 Definition Let (T§M’W) be a monad in X. We say that the T-equation

(1',r') is a senantical congequence of the T-equation (1,2) {0, o)== 0", 1%
in symbols) iff for any T-algebra (a;«) if (a,l0= (1,r) then (al)=

= (1'yr"). i3

%.02 TREOREM [completencss of monadic ground equational logiel Leb (TVM(Y)

be o monad in X. Assume that X has small limits and an initial object O and

m ' »
that %' has coequalizers. Let k::%::TO and k'._%gﬁ:TO be ground T-equations.

Then (1,70 {1t e0*) dff it ety oLl r).

Proof:We shall use the notations made in propositions 3.8 and: 3.9,
Let (ae’d%) be the codomain of e, where e ig the coequalizer of (e,
Recall that (TOD#O) is the initial T-algebra (left-adjoint functors preser-

ve initial objects). For any T-algebra (bﬁﬁ) the unique T-morphism



(;'I;Qs/‘%o).-_::x(bg/&) ig denoted as !(baﬁ)'

Now, suppose that (i rE=11",r" ), Sihece (ae,d;)tzrlmr (qbe is the
unique valuation of variables) it follows that (a@,x%)t::l';r', therefore
1'e=r'e, Applying the universal property of kernels fo? e we conclude

ot (1Y, 2! )Cikeremc(l Y

Nowp guppose (1',r' )c:C(l r). Then (1',r')<kere, therefore l'e=r'e.
Let (b,p)=1l=r, that is 1°1(b,p)“r'l(bg;s)' l#!(byﬁ)r;r#'l(b,/@) since ) is
universal. There is h:(ae,dé)——ﬂ»(b,ﬁ) g Ehie eh:l(b,f) becauge e is the
coequalizer of (l#,r#). Then 1‘4(b’ﬁ):1'eh=r'eh:r'-kbvﬁ), that is

(bgﬁ)ttzlegrt. The soundness part of the theorem is thus also proved.i3

The steps involved in the construction of the congruence generated
by a ground T-equation (see proposition %3,8) can be used in certain par-
ticular situations to produce explicit deduction rules.

A m@tgéd often used in loglic is to fix the set of variables. We shall
prove a Birkhoff-like completeness theorem for monadic equational logic
ugsing a fixed object of variables. The syntactic part of the theorem is
formulated in terms of fully invariant congruences on the free T%algebr&
over the object of variables. However, a Choice Axiom-like supplementary

condition is needed.

3,03 THEOREM [completenegs of monadic equational logic] Let (TVM{?) be

a noned in X. Suppose that X has amall limits and coproducts and that XT

Q §
E g : T 5 ;
has cooqualizers. Assume also that every coequalizer e in X" is a G ~s5plit

epl (i.0. e has a left-inverse in Xj see also [Man76]) .

]
Let k““l*“Tx and k'::%;””Tx be T-equations over a fixed object of

varisbles xelX| . Then (l,r)t::(l',r') iff (1Y, p' ) S PIC(Lyr).

Proof: As usual we shall use the previous notations made in propo-

sitions %.8 and 3.9. Let (ae,d%) be the codomain of e, where e is the

' : 2
coequalizer of (L *F r*¥)
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N
(O

kere
¥ TF
'k'—*——-—l———«»(rx ) SRR W=
T ’/ux - e e
Tv.n¥ v
(_"?X’/LX) - e (a@’oce)

Suppose that (1,r)E=(1',r'). We shall prove that (a@,d(_”@)t::‘:lzr°
Let vix—s=a  be any valuation of variebles and let v#:(Txvux)——qw(agpdé)
be its unique T-morphism extension.
In the virtue of Choice Axiom-like agsumption (e ig split epi in X) there
is m:aém—ﬁpTx g.th. menia « Lat m#:(Tae?uae)*”%”(TXDux) be the unique

. e
T-nmorphism extengion of n.

V= Ve = quh'-m#~e 07 is natural) = 7X»Tv~mﬁie o

@
#

But v = Wk»v#} Since %9 ig universal it follows that v #

= Tv.n" e,
Then (XXv#r7v#) = (ig-?v~m#-e;?ﬁ~Tv~m#-@)§§(igegfge) (since (1*,7%) =
= FIC(l,r) is fully invariant we have that (ig-Tv-m#,§¥-Tv-m#)§Z(iE,fg),
gee also the previous diagram). '
Since 17e=r¥e it follows that 1¥v#=r*v# therefore 1v¥=rv#,
Now (1,r)E=({1',r") dnplies (aegd%)tzzl'zr' which also implies l'e=r'e.
since FIC(1l,r)=kere we can conclude that (1%, r\)erIgli o).

low suppose that (L',r')=FIC(l,r) and some T-algebra (b%ﬁ) satisfies
l=r. We have to prove that‘(b{ﬁ)tizl'mr', Let vix—sb be any valuation
of variables. “
For any f:(Txvux)~—w»(TxvuX) ve have 1.-f-v¥ = r.£.v¥ (since (b%ﬁ)bézlmr
and fvﬁi(Txvux)wwaw(Tx{ﬂx»o Immediately follows (univergal property of coQ
products) that 1¥vFer*v#, and then l*#v#zr*#v#, which implies the existen-
ce of v':(ae,xg)——a»(b”ﬁ) s.th. ev'=v¥,
Since 1'e=r'e (by assumption (1',r*)SFIC(1l,r)=kere) we deduce 1! vi=rtv¥,

It means that (bWB)F::l':rf.ﬁE



The classical set-theoretical results on equational completeness (of
equational 1ogié [Grﬁ79] and of many-sorted equational logic [@MBS]) are
instances of the previous theoren,

The completeness of monadic equational legic also provides us with the

",appropriate framework to treat equational completeness in the field of

infinitary theories., It also gives us the possibility to develop a complete
equational logic in other cabegories than those based on Set. An example
in thig sense is provided by topological algebras. We think that the pre-

vious theorem has many other concrete applications.

SOME CONCLUDING REMARKS

We think that monadic equational logic projects a new light on the
general foundations of equational logie and on its conngctions with monaa
theory: |

A. btrying to fit monadic equational logic in the general framework of
abstract model theory (in its institutional version) leads to the natural
generalization of the classical notion of monad morphism which permits us
to connect all thé monads {without respao{ to the category they are defined
: in) in a hypercategory. Monads are thus playing the role of gignatures for
logical systems,

B. families of equations seemg to be more appropriate than singular
equations for the notion of sentence of (classical) equatibnal logic

'C, monadic equational logic seens to destill the essence of equatio-
nal logic and to purify it from its set-theoretical aspects. For example,
completeness of equational logic is treated using a pure category-theore~
tical line of thought (cf. [MacL7i] , category theory is the art of "living
without elements, using arrows instead"). We belive that this treatement of

completeness is the most important mathematical message of this paper.



APPENDIX

This chapter ig devoted to the study of the connections between mo-
nadic institutions and Tarlecki "abstraét algebraic institutions". The
‘axiqms of abstract algebraic institutions are introduced in [TarBS] and',
'Eraraé].

| Here we shall present (without proof) some natural conditions which
nmeke a monadic institution to be absgtract algebraic. Each axiom in the de-
finition of abgtract algebraic institutions is independently treated. Wei
gshall use the concept of regular category as defiﬁed in [Man76];

The following proposition is well known in categorical_univeféal alge-

bras

4.9 Proposition [Man76} Let (T?N/V) be a monad in a regular cétegory

(X,E,M) having O as initial object. If T preserves E (that is TESE) then
4(XT9ET={GEEXT y GTeEEE}gMT:{EGZXT . ¢'mel}) is regular having (TO?MO) 2.

initial object.

From now on, any monad defined in a regular caregory is supposed to

preserve regular epis.

4.2 Proposition Lét (Tvﬂ,ﬁ) and (T'§M';Q§ be monads in fegular categories
(X,E,M) and (X',B',M') respectively. Leb <?,G>;(TVU/Q)-¢»(T'vu',ﬁ') be
monad morphism,

I. for any small category J, if G:X'—=X preserves J-limits, thep
§£§K29G>:X‘Ei——%~XT also preserves J-limits

II, if G preservesg regular monoé (cM'c< M) then:éégfh,c> preserves

subalgebras (submodels).[d

Thus, if the functor component of a monad morphism preserves products

.and regular monos then the model functor also preserves products and regu-

lar monos. Note that if the functor component of the monad morphism is



a righf~adjoint functor then it autom;tically'presérvea all small limitse.
We use the same category-theoretical notions of variety, ground var-
iety, reachable objects etc. (which are defined in regﬁlar categories) as
defined in [Tar85].
The following proposition shows us that the ground varietieslin MONGee
dic institutions are exactly those classes of Eilenberg-Moore algebras

which are defined by ground equations.

4.3 Proposition Let (TVU-ﬁ) be a monad in a regular categery (X,EsM) he~

ving initial object O.
P évery ecE is a coequalizer then every ground variety is de-
finable by a ground equation

IT. if XT has coequalizerg then every ground equation defines a

ground variety. (3

The final propogition express the possibility to use the model-theore-

tical method of diagrams in monadic ingtitutionse.

4.4 Propogition Let /u W be a monad in a regular category (X,E,M) having

finite coproducts. Then for any T-algebra (a, L) there are

e/. & monad (Txgy,,o in X

b/. a monad morphism {L,A > (T )»—%-(TJ = J)

[ 4 5 - 9 X & f/lﬁf? ’/U‘ ’,‘?
¢/. a reachable TJLalgebra (8,)
&ed

Gutile

I, T£ preserves B

II;_§§§<L912> induces an isomorphism ((: ﬂf) &X iﬁ&» ayd7$XT)

11X (ALG(L,1X>)(a,o(),aﬁc:(a,oc)

Iv, if feET:C then (ALG<L,1X>)£‘6ET.K§

The only axiom from the definition of abstract algebraic ingtitu=

tionsg which is not treated here is that one asgserting that the category of



signatures must be finitely ébébmbiéte and that the model functor ﬁust
preserve finite limits (see [@ar85, 86] ) The reason is that there are
meny results in the theory of sbstract algebraic institutions [Tarss, 86,
87] which does not use this axiom and that this is the only axiém which
can not be treatedvat the general ievel of monadic ingtitubtions bécause

it depends on more particular characteristics of institutions.

I wish to expfess ny gratitude to professor Virgil Emil C&z#nescu who
carefully read this paper and who suggested to me the possibility to obtain
the completeness of monadic equational logic, and to Gheorghe §tef§nesou

who carefully read thigs paper and gave helpful advice,.
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