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ABSORBENT, PARABQLIC, ELLIPTIC AND QUASIELLIPTIC

BALAYAGES IN H-CONES.!1; THE RELATION WITH THE GREEN FUNCTION.
by
"Lucian BEZNEA and Nicu BOBOC

In thisypaper we continue the study of absorbent, paraboliic, eliiptic and
quasielliptic balayages started in {3} . Ve deQe1Cp now the thecry in the fraie
of standard H-cones of functions, especially for those H-cones which are repre-
sented on & Green set.lln this case we characterize the paraboiicity, ellipticity
and quasiellipticity in terms of the Green function associated with the given
H»cbne.

in the first section, preliminaries results on absorbent sets are given.
Particulariy we reﬁark that if 5 is a standard H-cone of functions on & set X,
then the absorbent balayages on § (defined in [3] ) are corresponding to the
absorbent subsets of.X (i.e. the zero sets of the elements of §). In the second
section we consider the parabolic and elliptic subsets of X introduced and‘studied
in [2] . Recall that a subbasic subset E of X is called elliptic if for any
absorbent set A & X we have either ANE = ¢ or E ¢ A. A subbasic subset P of

X is parabolic if for any absorbent sets Ay, A, with A,V P & AZ/\ P  there

exists an absorbent set A with
Ajf}P < ANP {;Azﬂ P,

where ¢ denotes the strict inclusion. We show that the above notions are strongly

related with the similar ones of elliptic and parabolic balayages on S -considered



and studied in [3] . We prove that if M is a subbasic subset of X then M will
be parabolic (resp. elliptic) iff the corresponding balayageBM is of the same
type. A characterization of parabolicity in terms of harmonic carrier of the
elements of ~$S is also given.” If X is ﬁearly saturated then a basic subset F of

X is called quasielliptic if the are no non empty parabolic subsets of F. We show
that if X is nearly saturated and P is the greatest parabolic subset of X then
the fine open set G:== X\ P is quasielliptic with respect to the localized §(G)
of S on G (i.e. the H-cone of functions on G generated by the functions of the

X~ G

form s-B &y &6 8):

In the third section we suppose that the standard H-cone 3 and its dual g#

are represented as standard H-cones of functiéns on the same set X which is a Green
set associated with (g, gx).(We denote by-g(',') the associated Green function.)
We show that if A is an absorbent set with respect to § then the fine closure with
respect to ;x of the complement of A is an absorbent set with respect to éx- We
also prove that X is quasiellastic (resp.elliptic, parabolic) iff g(x,x) > 0
(resp. g(x,y) > 0, g(x,x) = 0) for any x & X without a semi-polar set (resp. for
any X,y & X)- Generally; the essential base of the set {x € X/ g(x,x) = 0} is
the greatest parabolic subset of X with respect to S. Particulariy if the fine
topologies on X with respect to S and éx coincide, then X is quasielliptic.
Consequently, if $ is autodual then X is always quasielliptic.

In the last section we ana\yse,the specié1 case of totally parabolic H-cones.
If S and gx are as above, we say that é is totally parabolic if X is parabolic
and the set of all absorbent subsets of X is totally ordered. We show that S is
totally parabolic iff for any x € X, without a semi-polar set, the set {ygx/g(x,y)=0]

is the smallest absorbent set containing x. The totally parabolic H-

cones are illustrated by the standard H-cone associated with the heat equation
on R" X R.

Finally, we remark that the contents of many results are clarified by

suitable examples.



§ 1. Absorbent sets with respect to a standard H-cone of functions.

In this section § will be a standard H-cone of functions on a set X.

We recall now some results concerning the balayages on a standard H-cone
of functions S on a set X (cf. [5] ), the absorbent subsets of X with respect
to g (ef. [1] and [2] ) and their relations with the absorbent balayages on
s (cf. [3] ).

A subset M of X is called subbasic (with respect to é) if

s (x) = s(x) , for any .x &M and s€$ ,
where
BMs:z=/A\ {s’ &S /sgs onaMg ;
A subbasic set M C X which is fine closed is termed basic. Obviously, the fine

/

closure of any subbasic set is basic. If M is a subbasic set then 8" is a balayage,

called the balayage on M with respect to §. A subset M of X will be subbasic iff
M is not thin at any pecint x & M. Consequently, if H is a subbasic set and U is
a fine open subset of X then M N U is also a subbasic set.

For any balayage B on §, the set

b(B):== {x € X / Bs(x) = s(x), for any s & ég

is called the base of B. If M is a basic set then
M = b(s")
and the map M - BM from the set of &ll basic set to the set of all balayages

on§ is such that

1
It will be important the case when X is such that for any balayage B on §

M

there exists a basic subset M of X with B = B . It is known that this property

holds iff X is nearly .saturated (i.e. any universally continucus element of the dual

§x of S is represented as a measure on X). In this case, the correspondence
B —> b(B) between the set of all balayages on S and the set of all basic subsets

of X is a bijection such that

b Nl e o T T Pt SN Sk L i



t, oo with f = t-

For any positive numerical function f on X such that there exist tty € S,
i r

we have denoted by Bf the balayage on § given by

Bes = N/ R(s ~nf).
né& N

Since for any s,t € S we have

t 3 s Anf , for any n & Nj

iff t s on the fine open set [f 7 0] , it follows

st = B[f>'qL , for any s € S.

Proposition 1.1. For ahy balayage B on § and any u ¢ S which is a finite generator
of § we have

B = B@U<U].
Particularly, for any basic set M we have

"’

=M,

Proof. From [3, Proposition 1.5? we have

B’ =\/{Bg,/g = t-Bt, t € 5, t<oo t

Since u is a finite generator of § we get
[g? OJQ[BU<U} i

t-Bt, t € g, t<eo

for any g =

and therefore

B’ = B _ B[Bu< uJ
u-Bu )

if M is a basic set then

M ={x e M/ Blu(x) = u(X)}

and consequently X~ M = [Bu«(u] 4 (BM)J = BX\‘M.

Corollary 1.2. If B is a balayage on § then

B =B

iff there exists a basic set M on X such that B =

B1 and such that M is the fine
clusure of the fine interior of M.

We remember now the notion of ‘absorbent set

. A subset A of X is called
absorbent (with respect to g) if there exists s € §
e o8\

(or only a bounded element
i~y At



A=[s =‘Q].
If A is absorbent then it is closed (in the natural topology on X) and fine open

and therefore a basic set.

Proposition 1.3. If s &€ § and A:== [s = 0] then

()" = B,

Proof. We have Bs = st? 0} and since the set,[s 7 0]is a basic set, from Proposi=
tion 1.1 we conclude

» = gh
(B,)* = B". .

A balayage B on § is called absorbent (cf. [3]) if Bs s for any s ¢ §,
where x{ is the specific order on §. |

4

Proposition 1.4. a) For any balayage B on $ we have: B is an absorbent balayage

(B)

S
b

o

iff b(B) is an absorbent subset of X and B = B.

b) For any basic subset A of X we have: A is an absorbent set iff BA_is an absor-
bent balayage.

Proof. The assertions follow from Proposition 1.2 and Corollarly 1.2, using also
L3, Theorem 2.27 .

Remark 1.5. The map

A BA

between the set of all absorbent subsets of X and the set of all absorbent balayages
on § is a bijection and

AjE Aye==B < B

Moreover, if (Ai)

el is a family of absorbent subsets of X then the fine closure

\\__,/A.f of \\wv//Ai and /~ \ A, are also absorbent sets and
el ! i €I el !
] kg

/A, /7~ A,

el ' _N\/ A ier ' /\\ BAi-

i€l : el

w
it

w

o

Proposition 1.6. Let A be a basic subset of X. Then A is an absorbent set iff

for any s € S we have



.A’ s, on XN\A
(B) s =
0, on A .

Proof. From Proposition 1.1 we HaveJ

M = XA

and by Proposition 1.4 it follows that A is an absorbent set iff BA is an absorbent

balayage on S. From [3, Theorem 2.1] we deduce now that A is absorbent iff

BAA A = 0

or equivalently iff
BX\~As =0 on A, for any s € $S.

Proposition 1.7. Let A be a basic subset of X. Then A is an absorbent set PFf

for any subbasic subset M of X we have

AOM _ oA A gM o gRgM

B AB =808

Proof. From Proposition 1.4, Corollary 1.2 and [3, Proposition 2.8 and Theorem Z.QJ

it follows that A is absorbent iff
BABM.= B A BM,
for any subbasic subset M of X.
B Suppose now that A is absorbent. Then A N M is a subbasic set and we have
gt ot acn®,
To prove the converse inequality it will be sufficient to show that if s,t € §
then
s £ ton ANM= BMS £ t_on A.
- Indeed, from Proposition 1.6 we have
YA {s, on X~A
0, on A P)
It follows
s&t+B s  on M,
B's &t+B s on X,
Bs gt on A

and the proof is complete.



Let M be a subbasic subset of X. Then the H-cone
B'(s) = {8 / s e 5]}
is a standard H-cone (cf. [5, Corollary 5‘2.6] ). Since for any s,t € S we have
BMs = s on M

and

BMs £ BMt<=::)s Lton M

M

and since the infimum in BM(g) of B"s and Bt is equal to B (s At), it follows

that the set
S :==-{S / s €Sk,
2 | In —23

is a standard H-cone of functions on the set M which is isomorphic with BM(E).
Note that if M is a subbasic subset of X and A ic a subset of M then A is

semi=polar with respect to S iff A is semi-polar with respect to BM(§). We also

M,

remark that if A is a subset of M then A is subbasic with respect to B _g) iff

A is a subbasic subset of X with respect to 5. Moreover the balayage on A with

e . ‘s . M 5
respect to BM(g) coincides with the restriction o B (§) of the balayage on A with
respect to g.

Propdsition 1.8. Let M be a subbasic subset of X and A £ M. Then A is an absorbent |

set with respect to BM(g) iff there exists an absorbent set (with respect to 2)
o~
A such that _ .

Proof.|f A, € X is absorbent with respect to S and s€§ is such that A, = [s = OJ

1
“then we have
=T -
A1AM -LSIM = OJ
and therefore A; N M is absorbent with respect to BM(g), Conversely, let AL M
be an absorbent set with respect to BM(E) and let s & BM(g) such that
A = LSIM =0].
If we pirt Ai==[s = 0]it follows that A is absorbent with respect to § and A =AM M.

Rema(&. The relation

~
A=ANM

from Proposition 1.8 is equivalent with the following one (cf.Proposition 1.7)



~

g = pA A "
and therefore the above proposition may be regarded as a consequence of a general

assertion which holds on an H-cone and for an arbitrary balayage B instead of B

(see {:3, Theorem 2.]5] ).



§ 2. Parabolic, elliptic and quasielliptic subsets with respect to a

standard H-cone of functions.

Definition. Let S be a standard H-cone of functions on a set X. The set X is called
parabolic with respect to § (cf. [17) if there exists a strictly increasing family

(At)te [0,1] of absorbent sets such that Aj = o A, = X and

//M\\ Au = At’ for any t 6[0,1),

\\~//Au = /-\t , for any t € (O,]] .

e

Remark. it is proved in f2j that X will be parabolic with respect to § iff for
any two absorbent sets Ays AZQ; Xy Ay Q;Aé,(i.e. A, & A, and A # Az) there exists
an absorbent set A with A & A g;AZ. Keeping in mind this characterization of pa-
raboiicity, we recall the following definition:

Eﬁiiﬁifiﬂﬂ‘ A H-cone § is called Péyabo]ic (cf. [3, §h] ) if for any two absor=
yent balayages 8], B, on S, By < 82, there exists an absqrbent'ba]ayage B on'3
with*B, < B <B,.

Proposition 2.1. Let § be a standard H-cone. Then the following assertions are

equivalent:

a) S is parabolic.

b) There exists a set X such that-g is a standafd H-cone of functions on X and
X is parabolic with respect to 3.

c) Whenever $ is a standard H-cone of functions on a set X then X is parabolic
with respect to $.

Proof. Let X be a set such that § is a standard H-cone of functions on X. From

the preceding remark and Remark 1;5. it follows that S is parabolic iff X is pa-
rabolic with respect to S.

Definition. Let g be a standard H-cone of functions on a set X. The set X is called

S

elliptic with respect to $ (cf. [2} ) if there are no non empty absorbent sets

%

{ -~ £ Y
Pt Ay 8V T >\.



Definition. An H-cone § is called elliptic (cf. {3, §h] ) if there are no non

zero absorbent balayages B on S , B # I.

. Proposition 2.2. Let § be a standard H-cone. Then the following assertions are

equivalent:

a) § is elliptic.

b) There exists a set X such that § is a standard H-cone of functions on X and
X is elliptic with respect to S.

c) Whenever glis a standard H-cone of functions on a set X then X is elliptic
with respect ‘to 3.

Proof. If X is a set such that S is a standard H-cone of functions on X then from

Remark 1.5 it follows that § is elliptic iff X is elliptic with respect to 5-

Definiticon. Let § be a standard H-cone of functions on a set X. A subbasic subset

e s e B O

M & X is called parabolic (rCSpogl}iEEjE) with respect to § (cf. [2, §2} Y if M

s e it O e pR—

is parabolic (resp.elliptic) with respect to the standard H-cone of functions on
M given by élM'

Definition. A balayage B on an H-cone § is called ﬂéﬁgﬁgii&!(resp.elliptic)(cf.

f}, §k} Y if the H-cone B(S) is parabolic (resp.elliptic).

o e =

In the sequel, if any confusion is avoid, we omit to specifie the standarc
| 2 5 .

H-cone $ with respect to which the parabolicity, ellipticity, the absorbent sets

or other potential theoretic notions are considered,

PKQPOELELQEME;E' Let g be a standard H-cone of functions on a set X and let M be

N
a subbasic subset of X. Then M is parabolic (reSp.elllptlc) iff the balayage B
on § is parabolic (resp.elliptic).

Proof. The assertion follows from Proposition 2.1, Proposition 2.2 and from the

fact that the H-cones éfH and BM(E) are isdmorphic.

Remark 2.4. Let §, X and M be as in Propositioh 2.3. Then M is parabolic (resp.

e

elliptic) iff the fine closure of M is parabolic (resp.elliptic).

Proposition 2.5. Suppose that § is a standard H-cone of functions on a set X.

Then the following assertionsare equivalent:

a) X is parabolic.



b) There are no non empty elliptic subsets of X.
¢) There are no non empty elliptic fine open subsets of X.

Proof. a) ==%b) follows from [3, Proposition H.E] , b) =) c) is obvious and c¢)=Da)
- follows from [22 Theorem 2.3} , using also Proposition 2.3.
From the preceding considerations and from [3, §h] the following assertions

on the parabolicity and ellipticity holds:

Proposition 2.6. Suppose that § is a standard H-cone of functions on a set X. Ve

have:

a) For any family (Mi)i of parabolic subset of X the set \_/ M, is also parabolit

&4 .
i€ |

L

b) For any family (Ei)ié . of elliptic subsets of X such that Eif\ Ei # p, for

any i,j € I.the set \_/E, is also eiliptic,
i€l

‘e) If My M, are subbasic subsets of X, M and MZ is parabolic (resp.eiliptic;

then H, i; paraboiic {resp.elliptic).
d) There exists the greatest parabolic subset P of X which is fine closed and
p=(V{X~E/EC X E is elliptic}.
'

¢) Any elliptic subset of X is contained in a maximal elliptic subset of X; any
two different maximal eliiptic subsets of X are disjoint; the set of all maximal
elliptic subsets of X is at most countable; an elliptic subset £ of X, E # f will
be maximal iff there exists two absorbent subsets Al* A2 of X such that A]g;,Az : :
and E = Az\ A].

We give now an example of a standard H-cone of functions S on a set X for
which the greatest parabolic subset P of X is without fine interior points. Hence '

. o

in this case (B') = I.
Example 2.7. Let us denote by § the convex cone of all positive lower semi-conti-
nuous real functions s on the interval (—131)_32:X, which are increasing and such
that the restriction of s to the complement of Cantor set K is locally concave.
We remark that § is a standard H-cone of functions on the set X. More precisely

there exists an harmonic space on X such that § coincides with the set of all po-

sitive superharmonic functions on this space. A general construction may by found



in [7] (see also [6, Exercice 3.1.47] ).
If ¢ is an open subset of X, we denote by J(G) the set of all real conti~

nuous functions h on G such that x ¢ G N K =% there exists x’ < x with hl(xz x)
v 9

is constant, th-K is a locally affine function.
M YA . e . 7y ” .
Obviously gL(G) is a linear subspace of ¥(t) and for any increasing sequence

(h )

Dne M!from 3%(6) such that %%lehn is finite on a dense subset of G it follows

that sup, hy belongs to J((G). Also the map G —o JEC(G) is a sheaf J( of linear
spaces of real continuous functions, On the other hand let.(a,b) be an open inter-
val with [a,b] € X. If 5 ¢ K or (a,b) N K = fi then the open set (a,b) is regular
with respect togg since Jf((a,b)) coincides with the set of all continuaus functions

[

A 1 © . { ¥
h on (a,b) such that h is linear on (c,b) and constant on (a,c) where

o)

, if (a,b) nK=2§p

sup{(a,b)NK) , if (a,b) K # £.

if b e Kand (a,b)NK# ff, then the interval (a,b) is semiregular since in this
case J((a,b)) coincides with the set of all constant functions on (asb)

From the above considerations it is easy to see that a lower semi~continuous
function s on X, s » =<o will be superharmonic with respect to the sheaf&g iff s
is finite, increasing and concave on any interval (a,b) such that K /N (a,b) = f.
Hence 5 is a standard H~cone of functiéns on X and a subset A of X will be absor-
bent (with respect to i} iff A= (*I,c] , where ¢ ¢ K. From this fact it follows

that a subset E of {-1,1) will be a maximal elliptic set with respect to iff

v

E = (a,b] , where (a,b) is a component of the open set X~ K.
" Moreover the greatest parabolic subset P of X with respect to § is the set
KN (=1,1) N M,

where

A

M = Lb £K / there exists b’ < b'with (b*,b) K = ﬁ} .
Obviously the fine interior of P is empty and therefore the complement of the

P

balayage B is the identity.



We extend now a result concerning the characterization of parabolicity in

terms of harmonic carrier and in terms of balayages on compact subsets of X (see {1}

I

e

is a standard H-cone of functions on a set X and s ¢ §, the harmonic

Egrrier of s QQ_X is the set
AN >
CAPF & = {x e X/ gt Y, # s, for any Vé%l/x} s

e e

where ]j; denotes the set of all natural neighbourhoods of x.
Theorem 2.8. Let § be'a standard H-cone of functions on a nearly saturated set X.
Then the following assertions are equivalent:
a) X is parabolic.
b) For any universally continuous element p of § we have
im‘{p(x) / x & carr p}: 0.

If moreover the topological space X' (endowed with the natural topology) is -
universally measurable then each of the above two assertions is equivalent witn
each of the following ones:

c) For anv universally continuous element p of § and any compect subset K of X
/

such that carr p & K, there exists x & Kwith p(x) =0.

\/

d) For any compact subset K of X there exists Xy & K such that p(xO) = 0 for any

universally continuous element p of

1952

with carr p & K
e) For any compact subset K of X there exists x € K with %1 (x) = 0.
f) For any compact subset K of X there existé Xy € K such that BKs(xﬂ) = 0, for
any s & S.
g) For any compact subset K of X and any universally continuous element p of $
there exists x € K with BKp(x) a2 Dy
Proof. We suppose firstly that the topological SpaCGIX is universally measurable.
We denote by So the set of all universally continuous elements of $S.

The implications f) ==ye) ==>g), b) =>c) and d) =»c) are obvioustp):uﬂ>f)7

we have BK(p+q) =

H

Since for any two universally continuous eleménts_p,q of

il

; . ; K :
= BKp + BKq it follows that the family ( {x EK /B p(x) Oi )pé 20 is lower

dirccted. and therefore has non empty intersection. Hence there exists x, £ K with

e

14 B _ K
B nlx.) = 0 for any p & SO and therefore B s(xo) = 0 for any s &

b \
A

Y



i

The proof of c) =>d) is similar to the above proof of g)=>f).,c)=>b)
Let p € 5. Since X is neary saturated and universally measurable then there exists

an increasing sequence (Kn) of compact subsets of X such that the sequence

né Ni

\

(P ). ¢ g Of specifically restrictions of p to K = increases to p (see [ 5, §3.4) ).
n

Since for any n ¢ Niwe have
P =Py T Pyak
n n

and since p € SO’ we deduce that the sequence(g&K ) decreases uniformly to 0.
n

né& N

For any n & Nl we get

inf'{p(x) / xecarr pS < hﬁ’{p (x) / x & Eﬁiinp{ + inf{py\w /x€ carr pk}
7 \ “"‘[ ik SR o

=

. ) PR | : o
inf {pK (x) / x & carr py £ Inf {py (x) / x ¢ carr p

]

] I

K};:Oa_
n

We conclude that inf { (x) / x e carr pl = 0.

{
s e i

W
) =va). !

[y

o
]

o

t G be a fine open subset of X, G # §. Since X is nearly saturated and
in the same time universally measurable there exists« compact subset K of G which
is not semi~polar. Thus there exists an universally continuous element p of 3
with carr p ¢ K, p # 0. From b) we get inf {p(x) / 2 €& K}-u 0 and therefore there
exists x; € Kwith p(xg) = 0. 0n the other hand we have {x £ G/ plx) = 03 £ G.
Consequentiy G is not an elliptic subset of X. By Proposition 2.5 it follows that

X is parabolic.

i

a) =se). Let ( he a strictly increasing family of absorbent subsets of X

At>t ¢ o, 1]

[}

such that

te lo,1) => /7 \ A=A,
s >yt

£

t & (0,1] = AL = A

st o

3 K 1 H g
and let K be a compact subset of X such that B'1 # ¢ on K. There exists t\w(991)-

with KN At # P since in the contrary case we have

BK1-$ 1 . for any t & (0,71)

X\At

and therefore

K : :
B™ = @ on At’ for ahy t & (0,1),



P B s e R |
£ <t -
Since K is compact and £ As = At it follows that there exists the smallest
sy t '
'to € (0,1) with
A MK # 8.
3
0
Hence if t < to then A, N K = f and thus BKT £1 . It follows
t X \At
K. .
B1=0 onA_, forany t <t
t 0
81 =0 onn =TAf
t : t
e} L<§t0

and therefore there exists x, & K with BKT(XO) e .

Suppose now that X is only nearly saturated and let X1 be the saturated set

with X Q‘X]. Since from Proposition 2.1 X and X] are simultaneously parabolic sets.

. . - . . . " ! ;
with respect to S, it follows that {using the above considerations applied to the

universally measurable set X,) b)=ya). We also have A)‘uﬁ?{ﬁ since for any p¢ 50
1

carr p = {carry, pl{

carry p = C&TT P,
i

1
inf-{p(x) / x & carr p

te
et

(where carry p denotes the harmonic carrier of p on X]) and therefore

PSS

= inf {p(x) / x & garqxjp§

Remark. The equivalence a) {==»e) was proved in [], Theorem 4.3 I. The arguments

in the proof of a)=pe) used above are the same as in L]]

Corollary 2.9. Let S be a standard H-cone of functions on a set X and suppose that

X is parabolic. Then for any universally continuous element p of 3 there exists
x & X with p(x) = 0

!Eﬁggf. Let X] be the saturated set, X (;;X1 and let (Pn)né N be ‘an increasing
sequence, p_ £ §0 (ne N), carr y P is a cdmpact subset of X]'and sup p = p. I f
T p N neé N

py 0 on X then py 0 on X, and therefore p is a weak unit in S. Hence there exists

1

nOG Nt with



1
P& Py *Tp Py

p<£2p
N nO

“which contradicts the fact that [pﬁ = 0] is non empty.
0 ’ :

Remark. Let § be the set of all positive lower semi-continuous functions on

X:== (~1,1) which are increasing on ("],Q} and concave on (0,1). It is known
(EZ, Example 1] ) that $ is a standard H-cone of functions on X and X is not pa-
rabolic. On the other hand one can see that there are no universally continous weak
units in S§. Hence the condition

[p = 03 # 8 , for any p é‘go

is not sufficient for the parabolicity of X (compare with Corcllary 2.9},

Definition. Let be a

et A58 TR
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> functions on a set X. A subbasic subset

M X is called nearly sat respect to §) if M is nearly saturated

with respect to the standard H-cone §;

Remark. Let'S be a standard H-cone of functions on a set X and let M he a sub-

basic subset of X. Then the following assertionshold:

\ ] il m , M ‘
a) M is nearly saturated i{f for any balayage B on §, B £ B there exists a

subbasic subset L of X, L& Mwith B8 = B".

1

b) If X is nearly saturated and M is a basic set or M differes from its fine clo=

sure with a semi-polar set then M is nearly saturated.
Definition. Let S be a standard H-cone of functions on a nearly saturated set X

P =

The set X is called quasielliptic with respect to § if there are no nonempty

parabolic subsets of X.
We recall the following definition (cf. [3, éS} ):

Definition. An H-cone S is called quasielliptic if there are no non zero parabolic

balayages on 3.

Proposition 2.10. Suppose that § is a standard H-cone. Then the following asser-

tions are equivalent:



a) $ is quasielliptic.
b) There exists a set X such that S is a standard H-cone of functions on X,
X is nearly séturated and quasielliptic.
c) Whenever § is a standard H-cone of functions on a nearly saturated set X then
X is quasielliptic. |
The proof follows immediately, using Proposition 2.3
Remark. Suppose that § is a standard H-cone of functions on a set X. If S is

quasielliptic then there are no parabolic subsets of X with respect to §. If X

is not nearly saturated the converse is not true. Indeed the standard H-cone

18]

from Example 2.7 is not quasielliptic however if we consider § as a standard

H-cone of functions on the set X = (=1,1)~K then there are no parahclic subsets
of X.

Definition. Let § be a standard Hecone of functions on a set X end let M be a
subbasic nearly saturated subset of X. We say that M is a quasielliptic set

with respect to § if M is quasielliptic with respect to the standard H-cone of
functions Si: on the nearly saturated set M.

Definition. A balayage B on an H-cone 3 is ca

if the H-cone B(S) is quasielliptic.

Proposition 2.11. Let § be a standard H-cone of functions on a set X and let M

M

be a nearly saturated subset of X. Then M is quasielliptic iff the balayage B
on § is quasielliptic.
The proof follows from Proposition 2.10,

Proposition 2.12. Let § be a standard H-cone of functions on a nearly saturated

set X. Then X is quasielliptic iff
x =\_{E/ECX, E Is elliptic | .

Proof. If P is the greatest parabolic subset of X, from Proposition 2.6 we get
P=/\{X~E/EEX, Eis elliptic.

Hence X is quasielliptic iff P # § and therefore iff

X =(J{E/ECX, Eis elliptic |



Remark. 1f X is not nearly saturated Example 2.7 shows that the relation
X=\{E/EcX Eiselliptich -
is not sufficient to characterize the quasiellipticity of S.

Proposition 2.13. Suppose that § is a standard H-cone of functions on a set X

and let F,, F, be two nearly saturated subsets of X. The following assertions

hold:
a) If Fy is elliptic then Fy is quasielliptic.
b) If Fy is parabolic and quasielliptic then Fy = f.

c) If Fys Fy are quasielliptic then F i/ F, s quasielliptic.

\ P -
d) If F. & F. and F
¢ i = 2

i N v . 4 3 18 -
Proof. The assertions follows immediately from the above considerations and

is quasielliptic then F, is quasielliptic.
4 } 1 l

since FTfoF? is aleo a nearly saturated cubset of X.

Let S be a standard H-cone of functions on a nearly saturated set X end

let G be a fine open subset of X. We recali that the localized of § cn G is

{ef. [Mé ). the standard H~conz of functions on G denoted by S(G), which is the

cone of all positive furictions f on G which are finite on a fine dense subset
of G such that '
{ X~8& . ; X6
f = sup {s-8 s / sg% s ¢ Loy 5-Bs é/} .

i 1 . . »
It is known (see |k, Theorem 2.1]) that G is nearly saturated with respect to S${G).

Theorem 2.14. Suppose that § is a standard H-cone of functions on a nearly satu-

rated set X and let P be the greatest parabolic subset of X. Then the fine open

set G:== X~P is quasielliptic with respect to the localized E(G) of § on G.

Proof. We have remarked that G is nearly saturated with respect to é(G). From

T

[3, Theorem 5.16} it follows that the H-cone

§ L %S"’BPS / s & S_Mg
“BP 2

is quasielliptic. Since § , is solid and increasingly dense in $(G) we deduce
2P .
that $(G) isalso & quasielliptic H-cone and therefore, by Proposition 2.10, it fol-

lows that G is quasielliptic with respect to E(G).



= eT .

Remark. Generally the fine open set Gi== X ~P. in Theorem 2.14 is not quasiel-

liptic with respect to § (see Example 2.7) More precisely, from Proposition 2.6
and Proposition 2.12 we deduce that G is quasielliptic with respect to S iff G

is nearly saturated with respect to 3.



§ 3. Absorbent, Darabo]ic, elliptic and quasielliptic subsets on é

Green set and their relations with the Green function.

3

- lLet é he a standard H-cone and let X be a set such that g and its dual gx are

represented as standard H-conesof functions on X. Since § is a solid and increa-

5 . AHK
singly dense convex subcone in §°

;= (™) (the bidual of §) then without loss

KA
S

of generality we may suppose that § = . In this way if x & X then the map

s —r 5{x)" 4, 5 €S,

: : % . :
is an H-integral on § and therefore an element of §" for which the associated

function on X gs'dencted by xgx, Analogously, for any x € X we denote by ¢ s
function on X, 9, €S = ;ﬁﬁ which is the associated function on X of the H-inte~
gral on g given by

st} t s

3

< g . ; - . A -
| we denote by {. .7] the canonical duality between $ and §° then for any
g = =

X £ X we have

X y

zgx’t} = tlx) te Ex.
Therefore for any x, y & X we get

ﬂgx» Kgy? = QX(Y> - xgy\w)

The function on X % X with values iniﬁ; given by

g(,y) == g, (y) = g (), %y € X
y .
is called the Green function on éﬂQSSOQLﬁﬁ?ﬁmﬂiEh,(§v§k)'

in the sequel we mark with the prefix ''co'' the potential theoretic notions

them from the similar notions related with the standard H-cone of functions 2 on X.

particularly we have on X the natural and conatural topologies, the fine
and cofine topologies etc.

For any subset M of X, ﬁf andﬁf (resp‘ ﬁCf and ﬁCf) denote the fine

closure and the fine interior (resp.the cofine closure and the cofine interior)of M.



If M is a subset of X, and t € §x we put

e = A {t’ € E:( / t£t’ on MS'

and we denote by carrt the harmonic carrier of t on X, i.e.

oA

carr t ={x é X/ XBX\Vt # t, for any V& UZ},

YR . . . .
when {]X denotes the set of all conatural neighbwrhoods of x. Particularly, for

3,

. % . -
any x € X, since gx(reSp. ‘gx) is an extrem element of the convex set § {resp.

Ay y . -
§7) the set carr 9. (resp. carr gx) is either empty or a singleton.

We remember that ( L5; §5¢5] ) a set X is called a Green set associated

with (S, §°) if X is nearly saturated with respect to both and §" and if for

it

) /
carr g =4
Jx &

standard H-cone there exists

o~
ot
3]
P
-
e
o
5]
)

1t is known {cf. {
a set Y such that S

H
[aH]
2

)
-~
4

o

a Lusin space with respect to the natural and conatural topclogies and

b8

1>
s that Y is a Green set associated with (s, 5

;

). Moreover we can choesey such
. i . _ . gl
that the natural and conatura) topclogies on Y coincide (cf. {8 5

From this fact it follows that whenever is a standard H-cone of functions

fwn

on

o

e ey . S )
nearly saturated set X there exists a subset Y of X such that §° may be repre-
sented as a standard H-cone of functions on Y and Y becomes a Green set associated

with (5, §).

Consequently if $ and &

1183}

are represented as standard H-conesof functions on a

set X then X is nearly saturated with respect to § iff it is nearly saturated

i . %
with respect to 5 .

‘ . : g g ® ‘
in the sequel instead of "X is a Green set associated with (8§, S 1R we say.

the pair’(g,gx).

simply "X is a Green set' if there is no any ambiguity concerning

We recall now some results concerning the theory of balayages on a Green

Y

set X associated (S, éA) (cf. [Sgé 5.5} 4

If£ A is a subset of X then:



1) ~For any s & g and t €& gx we have:

LBAS,t] =.[52 XBAtj )
2) A is semi-polar (resp. polar) iff A is cosemi-polar (resp. copolar).

3) A is thin (resp. cothin) at x € X iff "B ("

P A
gx) # 10, (resp. B 9, # gx).
As a consequence we have that:
a) Any natural (resp. conatural) open set is cofine (resp. fine) open.
b) Any fine (resp. cofine) open set is a cofine (resp. fine) neighbourhood for all

its points without a semi-polar set.

Proposition 3.1. Suppose that § and s” are represented as standard H-conesof

functions on a nearly naturated set X. Then X is a Green set iff any natural
(resp.conatural) open subset of X is cofine (resp. fine) open.

Proof. From the preceding considerations the "only i part of the proof is clear.

ann s e T

4 « . , o R -
Further we want to show that for any subset A of X and any s & 5, t & 3 we have:
J.A " 7 pv
| B's 1} = |s, "Bt
~c o ., . - Coe e ' Bz A I - p, (-.)"l o . NS A
Ohviously it will be sufficient to suppose that s & o4 8R4 L & 34. Since X is
: = [

nearly saturated with respect to § then there exists a subset Y of X which is a
o s ) R el (G X

Green set associated with (5, §7).

Obviously since s & 54 we have

WA A LU - . . 5 ,
8 s /\\ZB s / AU, Unatural open in X } =
i

/N {8

i

gV N Y / A& U, U natural open in X

i

Nformed

and therefore, t being universally continuous,

© o { © A )
LBAsztl = oinf %éBUr}Ys,tf / A& U, U natural open in X g =

et

(
= inf { & XBUIWYEj/AéQ U, U natural open in Xi ;

Since any natural open set U in X is cofine open we get

and therefore, using the above considerations,
LBAsit] Vs [s, XBAt] :

Analogously we get

[BAs,t_‘



We show now that if A is a_subset of X and % € X then we have

A is thin at x (&= XBA(XQX) #ngxs
A is cothin at x {==> BAg # g
X %

For any %,y € X we have

WA Ny L Ao\ { A S R
B ( gx) \y) = [‘gy 3 B ( gx)J == .-B g\/’ ng - B gy(x) s
Since X is nearly saturated with respect to § then for any s & 20 there exists a

measure ffon ¥ such that

[s,t} =‘uf;(y)ﬁp€y§ , for any t & éx.

Hence for any x & X

M

" o
‘ . e o ( N\ iy ”,&J_,\ - (‘ (\ \H Hy
s(x) x£;§.7 gxIﬁt E Iy Y7 O ) 9y V)
o S nf :
and therefore A is not thin at x iff
A - . 3
3 g (/"\) = g\/(")a for any y & A
or equivﬂ‘!ﬁﬁt¥\/
2 A y Ao Lol r .
8" (*g ) (v) = "g, (y) , for any y € X.

Analogously, using the fact that X is also nearly saturated with respect to Sy

we get

A
s, nlf

Bg # g_.
L S

c ¢ ¥ and U is a natural neighbuurhood of x then U is a cofine neighborhood

of x and therefore X~ U is cothin at x. Hence

Xe U ,
B gx i

and therefore

i
“~
bl

——g

carr g

A Lo

Analogously for any x & X we have
carr Kg, = {xﬁ ;

i X

Hence X is a Green set.

Theorem 3.2. Suppose thet X is a Green set. If A £ X is absorbent (with respect
v ; . 5 x

to §) then X\ A cf 1o coabsorbent (i.e. absorbent with respect to 3 ). Moreover

we have
e
a=hc



Proof. Let A be an absorbent subset of X. Then A is a basic set and therefore

from Proposition 1.4 it follows that the balayage BA is absorbent. From [32 Theorem

BEZ] we dedgce‘that the balayage on 2% given by (BA)K’ is coabsorbent. We have
(BA)X’ _ (BA)’K _ (éytzﬂf)x _ (BXFMA)X ES N xBK\ACF

Since XN A is natural open it is cqfine open and therefore X“~K.C is a cobasic

. Co e T,
set. Again from Proposition 1.4, we deduce that X~A is coabsorbent.

From the preveous considerations we have

o TECT R Cf ;
(BA)A T = B XA e
' : S STR— -
" e O, X = &f
\“\’ .\’ 7 \ v N \
L L N AL L AL

Proposition 3 x & X the following assertions

are Cq’li\/ lent:

(%,x) = O

a) g
h) The complement of the smallest ahsorbent set which contains x 1s not cothin at X.

- 1
c) The set |
o+

is the greatest absorbent set which contains x such that its

complement is not cothin at x.

Proof. 1) =33). We already remarked that X\agg = 0] is not cothin at x iff

R AN X J

or from g, = 0 on the set o, = 0} it follows that

B 9, = 9y on {gx =

and therefore

%"

Let A be an absorbent set which contains x and such that its complement is not

cothin at x. Therefore

XNA
B g =g -
R X



Since A is absorbent we have

X = 0onn

and thus
-
=0 & A .
[, =0] ¢
Hence lgy = Q} is the greatest absorbent set which contains x and such that it

complement is not cothin at x.

3) ==» 2) is obvious.

2) = 1). Let A be the smallest absorbent set which contains x. Since X™~A  is
%

not cothin at x we get

X~A
%

Corollary 3.4. If ¥ is a Green set then the following assertionsare equivalent:

X is fine open.

sose that X is a Green set and let x & ¥ be that g(x,x) = 0,

is the smallest absorbent set which contains X.

: ['% T, ; ,
Proof. By Proposition 3.3 the set 1o 5 03 s not thin at x and therefore, using
LIO0V. Uy | , ) L 8, A

-

i
. ” A . ratrl
Theorem 3.2, the set L gyf? OJ ‘s an absorbent set containing x and we have

SR R
X f LS £, ©
[gx"(w “<X\Lgx> @ )

s A ¢
It follows that the set X‘~L(gxf? O} is not cothin at X.

- Hence

=5 st o
[gx> 0} é‘:[gx”()]’
Let now A be an absorbent set containing X and such that A.x;[gx = 0] . Since

T T, i o ' i o 4 H ;
‘g » 0 is not cothin at x we get that XA has the 'same property. Since



RO,

e O

A =X~ (XNA )
) . m———f A .
it follows that the coabsorbent set XA f is such that its complement is not

thin at x and therefore

v<7 " ¢, = 0],

y &€ X we have

g(x,y) = 0 or gly,x) = 0.
_Eigaggii?gpmégl. Let X be a Green set and let x & X be such that g{x,x) » 0. Then
there exists an el!fpiic subset of X which contains X.

Proof. Let us denote by Ax (resp A_) the smallest absorbent. (resp. coabsorbent)

subset of ¥ containing x. VWe put

. RUCRI——
&:xA!\(X\AJ X
b4 A

bvicusly E is fine open and fine closed. Further X & E. Indeed,since glx,x) > 0,

£
v . e
. i T - b wo. > ) . FEN ﬂ.
using Proposition 3.3, we get tnat XK~A s thin at X and therefore x & X‘»AK ;
A - v
x & E
We show now that E is an elliptic subset of X. Let A be an absorbent subset
. - g e - . 5 . B o .
of X. 1f x & A then A_& A and therefore B & A. 1f X & A then- x & XNA and
X .
therefore
g
% | e CT
A "":’: { ™ A
%
{14
. -

: . &F o
Since A = X~(X ~A ) we deduce now that
e f
AC X ~AD . .

and we conclude that

s T

AOE=AOA A OSKSA) ) EANENA) =B
PAS A .

Proposition 3.8. Suppose that ¥ is a Green set. Let E be an elliptic subset of

X and x € E be such that E is a cofine neighborhood of x. Then g{x,x) > 0.

Proof. Let AX be the smallest absorbent set comtaining x. Since E is elliptic we

have EC A, If g(x,x) = 0 then, by Proposition 3.3 it follows that X~A_ i¥ nok

cothin at x and therefore XNE is aleo not cothin at x, which contradicts the



fact that E is a cofine neighbourhood of x.

~Theorem 3.9. Let 3 be a standard H-cone. Then the following assertions are
equivalent:

- a) § is quasielliptic.
b) There exists a Green set X such that qlx,x) > O'for any x & X.
c) There exists a Green set X such that g{x,%x) ¥ 0 for any x & X without a semi-
polar set.
d) For any Green set X we have g(x,x) » 0 for any x€X without a semi-polar set,

the family of all

Proof. a) ==»d). Let X be a Green set. |f we denote by (Ei)ié |

maximal elliptic subsets of X, since § is quasielliptic it follows that this family

is at most countable and by Proposition 2.10 and Proposition 2.12 we get

¥ = N Ei
el

On the other hand. for any i & | the fine open set'Ei is a cofine neighbourhood
for any x & Ei without a semi-polar subset of Ei and therefore, by Proposition
3.8, the set

lx\i o/ gbux) =0

| x € £/ glex) =0}
is semi-polar. We conclude that the set

Ix & X/ glx,x) = D%

S

is semi-polar.

" Obviously d) ==yc) ==»b). The implication b) ==ya) follows from Proposition 3,7,

Proposition 2.12 and Proposition 2.10.

Corollary 3.10. Suppose that X is a Green set such that the fine and cofine to-

pologies on X coincide. Then § is quasielliptic. Particularly if S is an autodual

iR9]

standard H-cone then § is quasielliptic.

Proof. From Corollary 3.4 it follows that g{x,x) 3 0 for any x € X and therefore

by Theorem 3.9, X is quasielliptic.

Proposition 3.11. Let S be a standard H-cone. Then the following assertions are

equivalent:
a) S is elliptic.

b) There exists a Creen set X such that glx,y)'y 0 for any X,y & X.



c) For any Green set X we have g(x,y) » 0 for any x,y € X.

Proof. a) ==>c) follows from the fact that for any x € X we have g # 0. c) =7 b)
is trivial.

b) ==> a). For any universally continuous element s of § there exists a measure U
onX such that ‘
s{x) = Jfg(y,x)dﬁ(y) , for any x € X

and therefore s 7 0 if s #£ 0. Hence there are no absorbent subsets A of X, A # ﬂ,
A # X. We conclude that X is elliptic and by PrOposition 2.2 it follows that §

is elliptic.

Theorem 3.12. Let § be a standard H-cone. Then the following assertionsare

equivalent:
a) § is parabolic.
b) There exists a Green set X such that é(x,x) = 0 for any x € X.
¢) For any Green set X we have g(x,x) = 0 for any x € X.
d) There exists a Green set X such that for any x,y € X we have
g(x,y) =0 or gly,x) = 0.
e) For any Green set X we have for any x,y € X
glx,y) =0 or gly,x) = 0.
Proof. a) =3 c). Let X be a Green set and let x €& X. Then g(x,x) = 0 since in
the contrary case ffom Proposition 3.7 there exists an elliptic subset E of X,
%« € E which contradicts the fact that X is paranlic,
¢) ==>e) follows from Corollary 3.6. The implications e) =>d) =»b) are trivial.

b) ==>a). Let X be Green set such that g(x,x) = 0 for any x & X and suppose that

Heed

is not parabolic. Then from Proposition 2.1, Proposition 2.5 and Proposition
9.6 it follows that there exists a maximal elliptic subset E of X, E # . Since

E is fine open and since E is a cofine neighbourhood for any x & E without a semi-
polar set, from Proposition 3.8 we deduce that there exists x& E with g(x,x) > 0,
which contradicts the hypothesis.

Definition. Let Y be a Green set associated with (g,;x). A subset M of X is

! B NE BLE ¢ ; H T TP - S S T Tl
called a Green subset of X if M 15 a cubbasic and nearly saturated subset of X



We remember now some remarks concerning the duality between H-cones
(cf. [3, §6] ).
If B is a balayage on a standard H-cone $ then the dual (B(é))x of B(;)
is isomofphic with the H-cone Bx(éx), where B® is the adjoint of B. The restric-
tion to B(g)xBx(éx) of the canonical map defining the duality between § and g“
is the canonical map defining the duality between B(S) and (B(é))x.
Suppose now that X is Green set and let M be a subset of X which is sub-
"basic with respect to both S and gx' In this éase we always consider that the
standard H-cones BM(g) and (BM)X(gx) = xBM(gx) are represented as standard H-cones
of functions on the set M. In this way Bn(g) (resp. xBM(?)) is identified with
the set é]m (resp. QTM)bféﬁerestrictions of s € S (resp. s & §x) to M. The above
notion of Green subset is strongly related with the case when M becames a Gréen
"(s), (M),

set associated with (B

Proposition 3.13. Suppose that X is a Green set associated with ( gx) and let

s
M be a subset of X which is subbasic with respect to both § and éx. Then M is a
Green subset of X iff M is a Green set associated with (BM(E), (BM(E))x).
Moreover if M is a Green subsetcf Xthen the Green function.on M associated with
(B \§), (BM(E))K) is.the restriction to M x M of the Green function on X associ-

ated with (S, §7).

Proof. If M is a Green set with respect to (BM(S), (BM(g))x) then M is nearly

® M

saturated with respect to § and since (BM(E))x = °f (§x)

;M is also nearly saturated
wfth respect to gx. Hence M is a Green subset of X.

Suppose now that M is a Green subset of X. Then M is nearly saturated with
respect to the standard H-cones of functions on M given by BM(E) and xBM(S() =
- (BM(E))X. To obtain that M is a Green set associated to (BM(E), (BM(E))X) we
apply Proposition 3.1. Hence it will be sufficient to show that: ény natural open
subset of M with respect to BM(g) is fine open with respect to xBM(EX). This
assertion follows from the fact that the natural and the fine topologies on M

associated with BM(g) (resp. xBM(_S:{)) are the traces on M of the corresponding

: - %
ones associated on X with S (resp. §7).



- 30 &

Proposition 3.14. Suppose that X is Green set. Then the following assertionshold:

a) For any balayage B on § thé set
b(B) N b(8)
is a Green subset of X and a Green §et'associated'with'(B(g)P(B(g))x),
b) If M is a Green subset of X then
. ‘M"fn-ﬁ'cf
is the greatest Green subset‘of X which contains M.
c) If Misanearly saturated subbasic subset of X with respect to § then the set
M A b*(N)
is the greatest Green subset of X containing M and a Green set associated with

(BM(g), (BM(E))X). (b™ (M) denotes the base of M with respect to éx i.e.

b (M) : == {x e x / %8s (x) = s(x), for any -se'gf}‘)
Preof. Assertion a) follows from the fact that
Cb(B) ~b(E%) . b(B*)~ b(B)
are semi-polar subset of X. Assertion b) follows from a) using the obvious rela-
tions 7 T = b(a™, 7 = b = (a™™).

c) We have

and therefore

e _
s ) < sty < AN [ 2 5] = bR = B¥T D).
s £ g

Hence we get .

(8™ A (M%) = T IAB M) = (1 ALY U (N 1) Ab* ).

Since T I\ M is neglijable (i.e. any compact subset of "RINTRE semi-polar),
b(BM)/\ b((BM)x)) is nearly saturated and M NbX(M) is semi-polar, we deduce that
MA bX(M) is nearly saturated. The assertion c) follows now from a).

Proposition 3.15. Let X be a Green set and let M be a Green subset of X. Then

we have
M is elliptic ¢=» M is coelliptic <=> g(x,y) > 0, for any x,y € M.

M is parabolicd=y M is coparabolic =y g(x,x) = 0, for any x & M.



M is quasielliptic¢<=>M is coquasielliptic¢=>g(x,x)> 0, for any x € M
without a semi-polar set.

Proof. The assertion follows from Proposition 3.13 and from Proposition 3.9,

Proposition 3.11 and Theorem 3.12.

Corollary 3.16. Let X be a-Green set and let M be a nearly saturated subbasic

subset of X with respect to S. Then M is elliptic (resp. parabolic, quasielliptic) .
iff there exists a semi-polar set AC M such f;hat

g(x,y) > 0 (resp. g(x,x) = 0, g(x,x) > 0)
for any x,y € MNA.

Theorem 3.17. Suppose that X is a Green set associated with (S, ).

{11927

We put

Xp::-s {x € X [ glx,x) = 0}»
" Xe:-—-{xéX/g(X,X)> 0}, |
and let P be.the greatest parabolic subset of X with respect to 3 and (Ei)i €|

be the family of all maximal ellipt.ic subsets of X with respect to S. Then Xp

is_a fine and cofine closed subset of X and P coincides with the essential base

of Xp' Particularly

X C \_JE,
e iel.l

PcX
)

and the sets

E.NX_, X\P

-are semi-polar.

Proof. Since the functions

x —» (x,x)
(x,y) — g(x,y)
are fine lower semi-continuous it follows that the function
X ‘—'? 9(’X,X)
is also fine lower semi-continuous and therefore the set XP is fine and cofine

closed. Let us denote by P, the essential base 6f X,{i.e. the greatest basic



subset of Xp) and let
' X
Yi== P, Nb (PO)
From Proposition 3.14 it follows that Y is a Green subset of X and a Green set
: P P
associated with (B 0(2), (B 0(g))x). If g is the Green function on X associated
with (g, éx) then by Proposition 3.13 it follows that its restriction to Y x Y
| | Py Po,
(s), (B °(

is the Green function on Y associated with (B 1)), Since

e

g(x,x) =0 , for any x & Po

P
it follqws by Theorem 3.12 that B 0(_S_) is parabolic and therefore

Pa L. Ps

By the definition of Py we get that XP\ PO is semi-polar.
On the other hand, from Proposition 3.7 we deduce

X, & \/

E-_a
e B!

By Proposition 2.6 we get

P=X\k_,/Ei§ X\Xe=Xp

i €1
and therefore
From
S ENX, = (\LJE)NAX C X NP
e | i€ | P™ P

it follows that the set \__/ Ei\Xe is also semi-polar.
ie |



§ 4. Totally parabolic standard H-cones.

Definition. An H-cone § is called totally parabolic if it is parabolic and the

" set of all absorbent balayageson S is totally ordered.

Definition. A balayage B on a given H-cone § is called totally parabolic if the

H-cone B(S) is totally parabolic.

Remark. 1. Generally, the notion of totally parabolic H-cone is more restrictive
than the parabolic H-cone. one. For example.if X is a Stonian space which has no
isolated points and S is the convex cone of all positive real continuous functions
on X, then § is an H-cone such that any non zero balayage on $ is parabolic
without beeing totally parabolic.

2. If $ and T are two H-cones in duality (cf. [3,§;6] ) then

11 %]

and T are simul~
teneouslyitotally parabolic. Particularly a standard H-cone § will be tetally

parabolic iff §x is totally parabolic.

3. Suppose that § is a parabolic H-cone such that there exists an absorbent con-
trol function on § ( see [3, §4] ). Then $ will be totally parabolic iff there
exists an increasing bijection t---wAt from fG,l] on the set of all absorbent

balayages on 3.

From now on S will be a given parabolic standard H-cone.

[f X is a Green set associated with LS, gx) and g : X X X-—~9§; is the
Green function on X associated with (S, gx), for any x & X we denote by Gx(resp.Gi)

the absorbent (resp. coabsorbent) set given by

Gx:== [gx = 0] (resp. Gi:s= [xgx = 0] 1

Also we denote by A (resp. Ai) the smallest absorbent (resp. coabsorbent) subset
of X containing the point x.

Remark. Since § is parabolic from Theorem 3.12 and Proposition 3.3 it follows
that for any x & X we have

X
A e G AL &6

X X
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and G, (resp. Gi) is the greatest absorbent (resp. coabsorbent) subset of X such

that X\ G, ( resp. X‘\Gz) is not cothin (resp. not thin) at x. We have also

= f . cf
A = XNG 5 AT = X NG .
X X X X

Proposition 4.1. The following assertionsare equivalent:

a) § is totally parabolic.

b) There exists a Green set X such that the set
lo, 7 xex}

is totally ordered.

¢) There exists a Green set X such that the set
{,Ax / x € X)

is totally ordered.

Proof. a)=»b) and a) =»c) are obvious.

i s e

¢} =»a). Let A,, A, be two absorbent subset of X and suppose that there exists

it 2
xq € A, with x, é,A].XWe show that Ay & A,. If X € Ay we have A & Axo and therefore
Ay = \_/AXQAX C A,
b) ==y a). Since for any X & X we have Af = X‘~Gx cf it follows that the set
X
(0]

is totally ordered and therefore from ¢)=>a) applied to §x t that S'is totall
Y . Pp 2 we ge 2 Y

parabolic.

Proposition L.2. Let X be a Green set. Then for any x & X the following assertions

are equivalent:

a) A =G
x .

b) 6, NG, is semi polar.

c) There exists an unique pair (A, AY) where A (resp. p*) is absorbent (resp.

coabsorbent) with

xe ANAY X = AuUA

and AN AY is semi-polar.
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f

Proof. a)¢=>b). Since Ax is fine open it follows-thét ASR T s semi-polar and

therefore from

= ° cf
6, NG = (6, ~NA)UANAT)

%
X
we get that G N G:

¥ is semi-polar iff GX\Ax is semi-polar or equivalently Ax = G .

X

a) =7c).If (A, AY) is a paif-as in the assertion c) then we have XNA (resp.
X~\A%) is not cothin (resp. not thin) at x and therefore from Proposition 3.3 it

follows

Since

A C A and AL €A we get
X X

A=p, =B, A=A =G,

Obviously the pair (Ax’ Gi) verifies the conditions from c).

c) ==»a). Since (Ax’ Gz) and (Gx’ A:) are two pairs which verify the conditions

from c) we deduce A_ = G_.
X X

Proposition 4.3. Let X be a Green set. Then the following assertionsare equivalent:

a) A, = G, for any x € Xs
b)
c)

d) For any absorbent set A we have A

is semi-polar for any x € X.

X X ox X

6, G
6 M Gy is totally thin for any x € X.

f

: ® G
A if x & ANA
X
Particularly if one of thecabove conditions is verificed then for any absorbent

set A have _
© o
A°f=U{Ax/x(gACf}-
e ; & of o " . |
and therefore A is fine open and the set ANA is polar in A with respect

to §, = BA(s).

Proof. Suppose that a) is fulfiled and let A be an absorbent subset of X. If

f ¢ cf

% & x S then Ax€; P bf y ¢ AX then y € A since in the contrary case we have

by Proposition 3.3 that A Q;Gy and from @) we get

ACG =A CcA CA
e Y %=

which contradicts the fact that X\Ax is not cothin at x. From the above consi-

: . ¢ ocf . ¢ cf
derations we deduce that qu; A if x ¢ A and therefore



S

KCf=U{Ax/xef\°f}.

For any s € § we have

ocf . ANA
] 0
ghnA sé/\{a‘ Xs/xéA'Cf}:O on A =hcf
. cf | %
Xx€EA
. ®ef .
and therefore, since ANMA is semi-polar,
o cf
BA\A =0 on A.

a)¢=>b) follows from Proposition 4.2 and c)=>b) is trivial.

’ . (=3
a) =>d). If A is an absorbent subset of X and x& ANA o from Proposition 3.3.

we have
ACACG
X = X
and therefore
A =A-=G0_.
X X

d) =>a). From Proposition 3.3 we get x € Gx\.ngf and consequently

A =G_.
X X

a) == c). From the first part of the proof we have for any x € X

o]
c At =ax~hcf
X X X X

and therefore

GX/\G::
1 =0onG .
X

B
We conclude that GX/W Gi is totally thin.
Theorem 4.4. The following assertionsare equivalent:
a) S is totally parabolic.
b) There exists a Green set X such that:
Ax = GX for any x € X.
c) There exists a Green set X such that:
GX/\ Gi is totally thin for any-x e X.
dY For any Green set X we have:
Ax =6 for any x € X without a semi-polar set.
e) Fér any Green,set X we have:

L "
fo\Gx is semi-polar

for any x € X without a semi-polar set.
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Proof. b)¢==7 c) follows from Proposition 4.3 and d)¢=7 e) follows from
Proposition 4.2.
b) =va) Let x,y, € X. Since $ is parabolic, from Theorem 3.12 we get that either

g(x,y) = 0 or gly,x) = 0. Therefore

% € Gy oF: &G *

If x & Gy we have A Q.Gy and consequently~®

By Proposition 4.1 we deduce now that a) is true.

d) =»b) follows from the fact that if X is a Green set associated with (g, gx)
and M is a semi-polar subset of X then X\M is also a Green set associated with
(5, 57

a) =e). Let X be a Green set associated with {5, §X) and let E be a Green set

; . 4 . \ n :
associated with (g, $7) such that E is a Lusin space (cf. {9,lé5.51 ).

Let D be a countable set of non zero H-measures such that does not charge
the semi~polar subsets of X and such that the Green potentials (resp. the Green

copotentials) on E,given by

St ) =fgy(.)d/d(y) (resp. 6% (.) =[xgy(.)d/'~l(y)),
where /Aé D,form an increasing dense subset of g (resp. gx).
We denote by M the set of all points x &€ E such that the set G N G: is
not semi-polar.
We remark that for any x ¢ E we have:
Gx/\ Gf( is semi-polar (or equivalently xé M) iff for any | /,(ED we have
| M) Yo, or TeHx) o

Therefore

- - M _o]).
M %ejb([ef‘bo]m[e 0])

It remains to show that for any A &D the set
i }J =2 { X1N = ‘\.’1
L= [6H = 0] [ = ¢

is semi-polar. Since the sets
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f

&F =0] R e
are absorbent, from hypothesis a) we get

[6# =0 < [Fe#>o0]".
Indeed in the contrary case we have

¥ > 0] ¢ [o* - 0],

We remark that a measure Y on E such that Gv = 0 on suppY and V does not
charges any semi-polar set is equal to zero..From this fact we may suppose that A’
is ¢harged only by the set [Gﬁ'> q]/j [XGF'> 0] and therefore A=10, which is a

contradiction.

£
N

o
B ey RN

Hence |
[6# = o)A [*e#
and we conclude that the set
[6# = o] N[

is semi-polar,

]

Corollary 4.5. The following assertionsare equivalent:

a) § is totally parabolic.
b) Tpere exists a Green set X such that for any x € X there exists a unique pair
(A,A%) where A (resp. A®) is an absorbent (resp. coabsorbent) set with

xe ANAY , X=AUA"
and A/“)Ax is semi-polar.
c) For any Green set X and any x &€ X without a semi-polar set, there exists a
unique pair (A, A®) whereA (resp. A") is an absorbent (resp. coabsorbent) set with

x & AN A" X = AU A®

)
and AN AS is semi-polar.
Proof. It follows from Theorem 4.4 and Proposition 4.2.

Remark. 1. If § is the standard H-cone of functions associated with the heat
equation on X:=R" xR, ny 1,then § is totally parabolic and the totally thin
set (see Theorem 4.h4)

WAL , X € X
X X

is exactly the horizontal line



{(z,t) / z € ﬁ% ,
where x = (y,t) &€ R" x R.
2. We give now an example of totally parabolic standard H-cone S and a Green set
X associated with (S, éx) such that there exist points x & X for which
"
X

G, /NG, is not semirpolar.

We consider X:=R xR and we distinguish in X the following three regions:
0, = {(y) £y y 0

0, x3 o0},

We identify D, with
{(X.y) 7yg OSA
by a homeomorphism ¥ such that
P((x,0)) = (x,0) if x» 0
P((0,v))

and we identify D3 with the band

JL(X.y) / Oéyéﬂ

i

(y,0) ifygo

by a homeomorphism ¥ such that
1 .
Py, 0) = ¥ (0, y D=y - == 1y 0
and such that |

li Y(oy)| = +e0 o
(x,y)lz(o,o)l mplf = e

On X we consider now a sheaféf of linear vector spaces of real continuous
functions defined by: if U is an open subset of'X,a real continuous functions h

on U belongs to JO(U) iff

h , h , hj '
luno, }Dzoﬁp In; °Y

are harmonic for the heat equation. It is easy to see that (X,}( ) is a Bauer
space. |f we denote by § the standard H-cone of functions on X of all positive

superharmonic functions on X then one can see that g is parabolic and X is a

Green set associated with kS §x). We also remark that if a = (x,0), x> 0 then



we have
Aa = (x,O) 4 02 5 Ga = DZ\/ D

and therefore

On the other hand for any a # (x,0) with x » 0 we have

Aa = Ga.

Obviously the set {(x,0) / x3» 0 1is semi-polar and S is totally parabolic.
Y 7 ~p S y p



References.

[1].

[2].

H.Ben Saad and K.Janssen, A characterization of parabolic potential theory.
Math.Ann. 272 (1985), 281 - 289.

L.Beznea, Parabolic and elliptic parts in standard H-cones of functions.
Rev.Roumaine Math.Pures Appl. 32 (1987), 875 - 880.

L.Beznea and N.Boboc, Absorbent, parabolié, elliptic and quasiebliptic balayages

in H-cones.l. Preprint series of Inst.of Math. df Romanian Academy, Nr.7, 1991.

. N.Boboc ahd Gh.Bucur, Natural localization and natural sheaf property in

standard H-cones of functions, !, 11, Rev.Roumaine Math.Pures Appl. 30 (1985},

1 =2k, 4885218

. N.Boboc, Gh.Bucur and A.Cornea, Order and Convexity in Potentiai Theory:

H-Cones. Lecture Notes in Math. 853, Springer Verlag. Berlin-Heddelberg-New York,

1981.

. C.Constantinescu and A.Cornea, Potential thery on harmonic spaces. Springer

Verlag. Berlin-Heidelberg-New York, 1972.

. J.Kr&T, J.Luke§, 1.Netuka, Elliptic points in one-dimmensional harmonic spaces.

Comment.Math.Univ.Carolinae 12, 3(1971), 453 - 483.

. U.Schirmeier, Continuity properties of the carrier map, Rev.Roumaine Math.

Pures Appl. 28(1983), 431 - 451,



