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The dual of the category of trees

?erban A. Basarab

Alexandru Brezuleanu,

, ~in memoriam

Abstract
A set T together with a symmetric ternary operation Y:T°—>T is said to be
a (generalized) tree if Y(x,x,y) = x and Y(Y(x,u,v), Y(y,u,v),z) =

=YY Ceviz) usy) for.akl x,v,z.u,v €T,

Extending suitably Stone's duality for distributive lattices it is shown
that the category of trees is dual to the Cafegory having as objects the systems
(X, 0;1,1 j where X is an irreducible spectral space with generic point 0,1 is
the unique closed point of X and | is a unary operation on X satisfying the

following conditions:

) b= x fopallx € X,
ii) for each quasi-compact open subset U of X, the set 'lU:z{x EX: 7xéu}

is quasi-compact open too, and -

iii) the quasi-compact open subsets U of X satisfying ‘1U=U generate the

" topology of X.

. It is also shown that the category of-trees is equivalent to the category
~ having as objects the systems (A,v,A, 1) where (A,v,A) is a distributive lattice

and .T is a unary operation on A such that the following conditions are satisfiec
i) Tis a negation, i.e. TTa'=aand 7Ifavbh) = TaAIb for a,b € A, and

ii) the subset T(A) =-{ ag A: "{a=é} of A generates the lattice A.



Introduction

According to |4|, we understand by a (generalized) tree a set together with
a symmetric fernary operation Y:T’—T satisfying the following equational

axioms:

Absorptive law: Y(x,x,y) & X

Selfel istributive law: Y(Y(x,u,v), Y(y,u,v),z) = Y(Y(x,y,z), u,v).

Tt is shown in |4] that the A\-trees as defined in |7,1,2| (in particular,
the simplicial trees), the distributive lattices and Tits' buildings are natural

examples of such generalized trees. :

The trees form a category Tr having as morphisms the maps f:T—>T' satisfying

£0Y(x,¥,2)) = Y(E(x), £Cy), £(z) for x,y,z.€ T.

The main goal of the present paper is to describe the dual of the category Ir.
This task is achieved by extending suitably Stone's duality for distributive

lattices.

1. Stone's duality for distributive lattices

By a‘lattice we understand a poset A in which every non-empty finite subset
F of A has both a join (a least upper bound)VF and a meet (a greatest lower
bound) AF. This is equivalent to saying that A is equipped with two binary opera-
tions v, A such that both (A,v) and (A,A) are semilattices (i.e. commutative
semigroups in which every element is idempotent) satisfying the absorptive laws

aA(avb) = a, av(aAbY = aii

Usually (as for instance in |5,6l)lattices are assumed to have an initial and
a final element. However, from *technical reasons, we are forced to consider

in the following the general case.

The lattices form a category Lat having as morphisms the maps f:A—>B satisfyir

f(avb) = f(a)vi(b), f(aAb) = f(a)Af(b) for a, bEA.

The lattice A is said to be distributive if the distributive law aA(bvc) =

=‘(a/\b)v(a/\c) holds for all a,b,c € A. Note that in a distributive lattice the
: ‘ il



i

dual of the identity above is satisfied too. - ===

Denote by DLat the full subcategory of Lat having as objecté the distributive
lattices. The empty lattice is an initial object of DLat while the one-element

lattice is a final object.

Definition. A subset I of a lattice A is called an ideal of A if I is a sub-jo
semilattice of A, i.e. agl, b€l imply avb €I, and I is a lower set, i.e.a@l,
bsa imply b€I. A subset F of A satisfying axioms dual to those defining an

ideal is called a filter.

An ideal I of the lattice A is said to be prime if its complement in A is a
filter, i aAbgl implies either a €I or b€I. The complerent of a prime ideal

is called a prime filter. -

Definition. A topological space X is said to be spectral (or coherent) if

i)\X is sober, i.e. every irreducible non-empty closed subset of X is* the

closure of a unique point of X, and

ii) the family of quasi-compact open subsets of X is closed under finite
intersection (in particular, X itself is quasi-compact) and forms a base for
the topology of X.

Denote by IrrSpec: the category of the systems (X,0,1) where X is an irre-
ducible spectral space with the generic point 0, having a unique closed point 1.

The morphisms in IrrSpec, called coherent maps, are those continuous functions

f:X—Y for which £(0) = 0, £(1) = 1 and fil(U) is quasi-compact whenever U is

a quasi-compact open subset of Y.

1.1. Theorem (Stone's representation theorem for distributive lattices)

The category IrrSpec is dual to the category DLat.

The duality sends an object (X,0,1) of IrrSpec to the lattice of proper quasi-
compact open subsets U of X (proper means U # f, U # X, equivalently, 0€U and
lélJ), and a distributive lattice A to the system (Spec A, ¢>, A), where the

space Spec A is the prime- spectrum of A. The points of Spec A are the prime

ideals of A, while its open sets may be identified with arbitrary ideals of A, a

ki
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point P being in an open set I iff IgtP. The correspondence a—>U(a) =
={P€SDBCA: afPf establishes a lattice isomorphism of A onto the lattice of
proper quasi-compact open subsets of Spec A.

Thertis an alternative description of the dual of the category DLat.

Definition. By a guasi-boolean lattice we understand a distributive lattice A

in which for arbitrary a,b,c €A such that agcgb there exists (of course unique)

deA satisfying cAd = a and cvd = b.

Thus the boolean algebras are those quasi-boolean lattices which have an

initial and a final element.

Definition. By a quasi-boolean space we understand an object (X,0,1) of

IrrSpec such that the subspace X\ {0,1} satisfies the Tl—axiom, .es forall
x,y€X, x—>y (i.e. y is contained in the closure of {x}) implies either

x=0ory=1o0r x=y.

Thé duality between DLat and IrrSpec induces by restriction a duality between
the category of quasi-boolean lattices.and the category of quasi-boclean spaces.
In particular, the duals of boolean algebras are those objects (X,0,1) for which
X \-{O,lj'isré Stone space. | .

Definition. By an ordered gquasi-boglean space we understand a quasi-boolean

sp&ce (X,0,1) together with a partial order & such that for all.x; p€N, theke
exists a lower quasi-compact open subset U of X satisfying><¢U and yé U,

whenever X #y. It follows that 0 ¢ x ¢ 1 for all xgX.

The ordered quasi-boolean spaces with order preserving coherent maps form

a category 0QBooleSp.

1.2. Theorenm. THe?categories IrrSpeC'and:DQBooleggAafelcénonically isomorphic.

Given an object (X,0,1) of IrrSpec, let A be the lattice of quasi-compact

n
open proper subsets U of X, and let B :-{Uu U <vi-wi) : N€EN; U,Vi,WiEA} g
' | i=1

B is a quasi-boolean lattice gemerated by its sublattice A. Moreover BU{X} is a

base of the so called patchtopology on X, with respect to which (X,0,1) becomes a

quasi-boolean space whose guasi-compact open proper subsets are exactly the
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members of B. Considering the partial order on X given by the specialization
relation —> with respect to the A-topology on X, we get the ordered quasi-boolean
space asociated to the object (X,0,1) of IrrSpec. Note that the A~open'sets of X

are identified with the lower (with respect to —>) B - open sets of X.

Conversely, given an ordered quasifboolean space (X,O,%&), the lower open
subsets of X form a topology on X with respect to which (X,0,1) becomes an object
of IrrSpec, while the specialization relation is‘identififed with thé: partial

order

k.5 Corollary. The forgetful functor from the category of quasi-boolean
lattices into DLat has a left adjoint; its value at some distributive lattice A

is the quasi-boolean lattice freely generated by>A.

2. Distributive lattices and irreducible spectral spaces with negation

Definition. By a negation on a distributive lattice A we understand a unary

operation boean satisfying the following equational axioms:

Double negation law: 173 = a

De Morgan‘law: Alavp) = TJaAlb.

Note that the equality 7(aAb) = TJavlb also holds.

The distributive lattices with negation form a category NDLat having as
morphisms the lattice morphisms f:A—>B satisfying £( Ta) = 7] {(a) for a€ A. The

category of boolean algebras is identified with a non-full subcategory of NDLat.

Definition. By an irreducible spectral space with negation we understand an

object (X,0,1) of IrrSpec together with a map ;T:X——>X subject to the following

conditions:
1) Tlx = x for all x€ X, and

ii) for each quasi-compact open subset U of X, the set —IU:='{X€ Xz 7X¢U} is

quasi-compact open too.
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The irreducible spectral spaces with negation form a category NIrrSpec
having as morphisms the coherent maps f:X—> Y satisfying £(x) = ]£(x)
for x€ X. .

The next lemma is immediate.

2.1. Lemma. Let (X,0,1,7]) be an object of NIrrSpec, and let x,y € X. Then

x—>y implies “[y— ¥%,In particular, °JO=1.

2:2. Lemma. Let A be a distributive lattice and X = SpecA be its prime

spectrum. There exists a canonic bijection between the negations on A and the

negations on X.

Proof. Assume -]is a negation on A. Given a prime ideal P of A, the subset

TP: = -{a € A: 7a¢P} is a prime ideal too, and ]JP = P. Let D be a quasi-

compact open subset of X. Then

¥ :if D=4
(g it D=Y

U(T]a) if -~ - D = U(a) for some a€A, . ,

so, D is quasi—compact open too. Thus we get a negation on X.

Conversely, given a negation Jon X, define the unary operation'~7:Ar—>A by

assigning to each a € A the unique element “Ja € A for which TU(a) = u(7a) g

' The next theorem is an immediate consequence of Theorem 1.1. and Lemma 2.2.

2.9, Theoren: %he Categor§;~ NIrrSpec is the dual of the category NDLat.
This duality induces by restriction a duélity between the category of quaéi—
boolean lattices with negation and the bategory of guasi-boolean spaces with
negation. _ |

To get an alternative description of the Category‘NIrrSQec we need the

following concept:

Definition. By an ordered quasi-boolean space with negation we understand

an ordered quasi-boolean space (X,0,1, £ together with a negation T :x—>X

on the underlying quasi-boolean space (X,0,1) which is compatible with the partial



LT
order €, i.e. x &y implies JygT)x for all x,y € X.

The ordered gquasi-boolean spaces with negation and the order preserving

coherent maps which commute with negation form a category NOQBooleSp -
As a consequence of Theorem 1.2. we get

2.4. Theorem. The categories NIrrSpec  and NOQBooleSp are canonically

isomorphic.

2.5. Corollary. The forgetful functor from the category of quasi-boolean
lattices with negation into NDLat has a left adjoint; its value at some distributiy

lattice with negation (A, 1) is the quasi-boolean lattice with negation freely

generated by a, D

Some particularly interesting full subcategories of NDLat and NIrrSpec are

defired as foliows.

Definition. By a quasi-linear lattice we understand a distributive lattice with

negation (A, 1) in which for each a € A either a & < Jaior Ta&
Denote by QLinLat the category of quasi-linear lattices.

Definition. An irreducible spectral space with negation (X,0,1,7]) is said to

be quasi-linear if for all x,y € X either x—>y or y —> X Or X —> "y or
< :

a2y

Denote by QLinSpec the category of quasi—lihear irreducible spectral spaces.

2.6. Proposition. The duality NDLat—> NIrrSpec -induces by restriction a

; dual_ity QLinLat—>QLinSpec.

- Proof . Let (A, '7) be a dlstrlbutlve lattice with negation. We have to show
‘that the necessary and sufficient condition for (A, 1) to be qu351 ]1near is that
its dual (Spec A, P , A, T) is quasi-linear. :

First assume that (A,7]) is quasi-linear, and let P,Q € Spec A be such that

ié_a agp and PELT0. Let d€ TP, i.e. TugP. Ne have to whou that d€Q. By
hypothesis there exist a&P\Q, b&Q\P and c €P such that Te€Q. Let e: =,

= (aAd)V(TbAC). As (A, D) is quasi-linear, we distinguish two cases:
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Case 1: e < Je. Then aAd & bvTc€Q, whence aAd€Q. Since by assumption an

it follows d €Q.

Case 2: Je < e. Then bA1d < avc€ P, whence bATdG‘P,thrarytothe assumption
that b P and  JagP.

Consequently, e & “]e and hence d€Q as contended.

Next assume that (SpecA,¢,A,7) is quasi-linear, and let a€A be such that
a 7{ Ja. To conclude that “Ja < a we have to show that for each Q€SpecA, a€Q
implies TJa€q. Let Q€ SpecA be such that a€Q, so 7a¢7[1. By hypothesis there
exists P €SpecA such that Ja€P and a¢P, so Ja€PNIP. As a€Q\P and TJa€P~]Q

‘it follows that either PCQ or JPLQ, whence Ja€PNTPCA. o

5. Some basic properties: of trees

Let T be a tree with the ternary operation Y.

Definition. A subset I of T is said to be an ideal (or a convex subset) of T

if for all a,b,c €T, a€l and b&I imply Y (a,b;c)€I.

As the intersection of a family of ideals of T is also an idéal, Qe may spéak
on the ideal genérated by a subset S of T and denote it by |S]. Nothe that |¢I = 55
[{a}| = {ay tor a€T, and |{a,b}|: = la,bl :{Y(a,b,'t',) : CGT}={C€T : Ya,b0) e e
for a;h €T, ef s &) Lemma 2.5.

Definition. By a cell (or a simplex) of the tree T we understand an ideal I of
'T of the form I = |a,bl with a,b&T. Given a cell I, any a &T for which there exists
b€T such that I = |a,b| is called an end of the cell I. The (non-empty) subset of al

ends of the cell I, denoted by @1, is called the boundary of the cell I.

~ According to [4] Lemma 2.5., the boundary @ I of a cell I'is a subtree of T and
there exists a canonic map @I—>91, al—> T such that I = |a,3|, asafor a € ¢ I
and Y(a,b,c) = Y(&,b,c) for a,b,c €dI. Given a € DI, the cell I becomes a distribu--

. tive lattice with respect to the partial order b Cc iff b€&la,c|, with the initial
a :
element a and the final element a. The boundary ©1 is identified with the boolean
subalgebra of the distributive lalttice (I, &) consisting of those Sk e
: a .

L



have (unique) complements.
Some useful elementary facts proved in |4|§2 are collected in the next propo-
sition.

3.1. Proposition Let T be a tree.

a) a,blnla,cl = la;Y¥(a,b,c) | and |a,b|/\lb,c|/\[c,a| = T{Y(a;b,c{} for
a.b,c€T.
) et 120 Jasekm o) - fc.
c) Given a€T, T becomes a meet-semilattice with respect to the partial order

Cgiven by b Cc if b€|a,c|, with the meet b c = Y(a,b,c) and the initial

a a a
element a. V
n H
d) oz a, by, b €7, ml, /\ la,b;| = la,b|, where b = Npy,..,b_} is the
j=1 :
meet of the family {bl,..,bn}with respect to the order € .

a

e)_For CIERRRL: €l, nzl the ideal Ial,...,aq| generated by the finite subset
.{al,...,an}equals {Q{al""’anj : aGT} = {b_eT: /B {al,...,an} & b}

£) Let ay,...,8, by,...,b €T be such that lal,...,q1|f\|bl,...,bm| is nom-
enpty. Tren fay, -3 [\l oo by = | %{bl,...bm},.,,.;,Q}{bl,...',bm‘ﬂ lft-)\l{él,....,an'{x,...,
fb‘\‘{al,...,anﬂ. In particular for a,b,c,d€T, either |a,b]A|c,d| is empty or
™m

la,6lAle,al = [¥(a,b,0), YCa,0,8)] = [¥(a,c,0), Y(b,c,d).

e,

g) For each subset S of T, the ideal |S| is the union W|F|, where F ranges
SRTE

over the family of all finite subsets of S.

Definition. A tree T is said to be boolean if for every cell I of T, QI = I,
respectively linear if every cell of T has at most two ends.
Let T be a non-empty tree and let a € T. Then, according to |4] Lemma 2.6., T

is boolean iff T is a quasi-boolean lattice with respect to the: order C.
: g

Note also that a tree T is linear iff the following equivalent statements hold:

i) Far all ayb,;c€T, e€la,b| igplies |a,bl = |a,c|\|e,b].
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ii) For all a,b€T, the partial order ¢ induces on the cell |a,b| a total
= .

(linear) order with the initial element a and the final element b.

4. From  distributive lattices with negation to trees

The category DLat of distributive lattices is naturally ideﬁtified with a non-
full subcategory of the category Tr of trees. Given a distributive lattice A, the
ternary operation Y:A*>——>A, (a,b,c)—>Y(a,b,c) = (aAb)v(bAc)v(cAaa) = (avb) A(bvc)
Afcva) is a tree operation on A. Obviously, any lattice morphism is a tree morphism.

1f .7 is a negation on a distributive lattice A then this one is an auto-
morphism of the underlying tree of A. Thus the catégory NDLat of distributive
lattices with negation is identified with a non-full subcategory of the categofy

ITr of trees with involution; the objects of ITr are pairs (T,s) consisting of a tree

T and of an automorphism s of T subject to s? = id;, while the morphism (T,s)—"~
lT',S') are tree morphisms f: T—>T' satisfying the equality fé¢s = s'éf.

By composing the forgetful ' functor NOLat—>ITr with the anctor Ile o,
(T,5h—T1° = {:(@T:sx:x}, we get a functor J : E@&é}}—>lgj assigning to a distri-

butive lattice with negation (A, ]) the subtree of A with universe{ééA: Ta = a} :

4.1, Lg@@gg_ The functor 9V:ﬁgg§§_—-> Tr induces by restriction a functor
from the category NQBoslelat of quasi-boolean lattices with negation to the category:
BooleTr of boolean trees, respectively a functor from the category (LinlLat of quasi-
linear lattices to the rcategory . LinlTr of.linear trees. '

Proof. Let €A, 7) be a quasi-boolean lattice with negation, and let a,b,c€T: -
= 9’<A> be such that c belongs to the cell |a,b| '0fT. In particular, a/\bscgavb;
‘By assumpfion there exists a unique d €A such that cAd = aAb and cvd = avb.
Applying the negation, we get cvTd = avb and cA 1d = aAb, whence d="Tdé€T.
Moreover, it follows easily that the cells |a,b| and |c,d| of the tree T coincide,
concluding that the.tree T is boolean.

Next let (A,’l) be a quasi-linear lattice, and a,b,c,d €T be such that c,d
belong to the cell |a,b| of T, whence aAbgcgavb and a[.b§d$avb. We have to show
that d € |a,c|V]c,b|. Set e : (aAc)v(bAd). By hypothesis we distinguish two cases.

Case 1: eg le. Then aAcgbvd, whence aAcsaa (bvd) = (aAb)v(aad) = aAdgd.
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Applying the negation we get also dgavc, and hence dela,c|.

Case 2: “Jege. It follows aAdgbve. Proceeding as in the case 1, we get

dé|b,c|. o

5. From trees to irreducible spectral spaces with negation

The aim of this section is to construct a contravariant functor Spec: Tr—>
NIrrSpec from the category of trees to the category of irreducible spectral spaces

with negation as defined in §2.

5.1. Shadows in trees

Definition. Given two subsets A and B of a tree T, let ShA(B) be the subset of

T consisting of those x €T for which there exists a €A such that the intersection

la,x|"B is non-empty. Call ShA(B) the shadow of B with respect to A.
In particular, for A = {a} and B = {b}, Sh, ()= Sh,(B) =‘EX€T:D E"la,xlv}:: :
={x6Tmcx}. ' »
- :

The basic properties of the sets ShA(B) for A,BC T are collected in the

following lemma.
5.1.1. Lemma. Let A and B be subsets of a tree T.
~a) If A is non-empty then B§§ShA(B).
b) Sh(B)Y = N/ sh (b).

a€ A, b€B ,
6 Sha(Shb(C)) = ShY(a,b,c)(C) for'a,b,c€T.

d) If A is an ideal then Sh,(Sh,(B)) = Sh,(B).

g): If Adiis an-ddeal then A and ShA(B) are disjoint iff A and B are disjoint.
i A‘and B are ideals then SUQ(B) is an ideal.

Proof. The statements a) and b) are immediate.

c) Let x&Sh_(Sh (c)). Then there exists y €|a,x| such that c €|b,y|. It

follows Y(x,Y(a,b,c),c) = Y(x,Y(a,b,c), Y(y,b,c)) = Y(Y(x,a,y), b,c) = Y(y,b,c) =
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=c, i.e. c€lx;Ya,b,e whence Sh :
’ | 9 5 )|9 x€ Y(a,b,C)(C) :
Conversely, assuming x€ ShY(a,b,c) (c), we get

gim Y, Yadnc) o) =W a,0), Y(x,6.80 B) = Yylsa.e), b,o).

Seting y = Y(x,a,c), it follows y€& |a,x| and c&|b,y|, whence x€ Sha(Shb(C)).

Obviously, d) is a consequence of c).
e) Assume A is an ideal and let aéAAShA(B), i.e. b€|a',a| for some a'€ A,

b€B. Thus b€|a',alAB S ANB, whence ANB is non-empty.

f) Assuming that A and B are ideals, let x,yGShA(B) and z € |x,y|. Thus
blélal,xl and b2€|az,y| for some ay,a, €A, bl,bzéB. To conclude that z€5h,(B) it
suffices to show that Y(b,,b,,2)€ IY(al,aZ,Y(bl,bz,z)), z| since_ " Y(by,by,2) €
€ Ibl,bzl_C_.' B and Y(ay,a,, Y(bl,bz,z)) ¢ lal,azif_ﬁA. Taking the point z as a root

of the tree T and using the notation €,MN and U instead of ¢, N, U, we get
v z

xowe= YorN,z)oe 7y Y(bl,bz,z) = b;nb, = Y(al,bl,x)n Y(az,bQ,y) = (alnaznbiﬂbz)t

s /
v (anynbyn by) V (a;Na,nbyn y)V (xna,nbn b2>u (a;n xevayn b,) € (a;n a,) v

U (anb /\bz)u(azf\ b, N b,) = Y(a;, a,, byn by) = Y(a;, ay, Y(by, by, z)), as

1

required. o

5.2. The fundamental existence theorem for prime ideals in a tree.

An ideal P of a tree T is sai'd to be prime if its .complement in T is also an
ideal. Thus the complement 7P:= TN\NP of a prime ideal PofTis a prihe ideal too.
In particular., the em.pty set 95 and the whole T are prime ideals. ;

Denote by Spec T the non-empty set of all prime ideals of the tree T.‘Given
a subset A of T, :let V(A) = {PGSpecT : ACPY and U(A) ={ PE SpecT: PNA = ¢_}—
={7P: PGV(A)} . Obviously, V(A) = V(|A]) and U(A) = U(|A]) for each ALT. -

5.2.1. Theorem. Let A and B be subsets of a tree T. The necessary and sufficien
condition for V(A)NU(B) to be non-empty is that |A|N|B| is empty.

Proof. Assuming that V(A) N U(B) is non-empty, let P€ V(A)nU(B). Then |A|C P
and |B| € TP, whence |A|N|B| is empty.

Conversely, assume |A| A\ |B| is empty. We may assume that A is non-empty

=L
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since otherwise ¢ € V(A)f\ U(B). By Zorn's lemma there exists an ideal P of T which
is maximal amongst those containing the ideal |A| and disjoint from the ideal |B|.
~ According to Lemma 5.1.1.- the statements e) and £), P = ShIBI (P). It remains to
show that the ideal P is prime. Let x,y€ IP and z€ |x,y|. We have to show that
7€ [P Let = lPU{X} |. As P is an ideal, it follows by Proposition 3.1.- the =z
: ‘\statemehts g)dndsg)=:that Q= L/ |¥,p|. By the maximality of P there exists '
béIBil"\Q, i.e. b€|BlN|x,p| fgr zome pEP. On the other hand, since z € {x,y|n |p,z]
énd b€ |x,p|N|b,y| it follows by Proposition 3.l.-the statement f£)-that Y(x,y,p) €
€ |p,z|n |b,y|, whence |p,z|A |b,y| is non-empty. Assuming z€P, we get |p,z|<€P and
hence |b,y|N P is non-empty. Consequently, yefﬁwél(P) = P eontrary to our e

assumption. Thus ZE.7P, as contended. O

5.2.2. Corollary. For every subset A of the tree T, &1 = YR,
PG V(A)

5.3. The prime spectrum of a tree

Let T be a tree and X = Spec T be the set of all prime ideals of T. The
 family of the subsets U(A) = {-P€§X: RO & ﬁ:}, for A ranging over the finite
subsets of T, contains X = U(#) and is closed under finite intersection, and hence

is the base of a topology on X; call it the spectral topology on X. By Theorem 5.2.1

the map IY(I) induces a bijection of the set of all finitely generated ideals of

T onto the base above.

Note that the subfamily of basic open sets U(a) =§PEX:afP} for a€T
generates the spectral topology on X. j

For each P€X, the closure of {P} is V(P); i.e. the specialization relation on™
X coincides with the inclusion of prime ideals. In particular, X = v(g), i.e. X is
irreducible with the unique generic point @. On the other hand, as {T}'s VET), Tads
thelunique closed point of X. Note also that X is quasi-compact since V(@) = X.is

the unique basic open set containing T.
'5.3.1. Lemma. The space X = Spec T is sober.

Proof. We have to show that the function P—>V(P) maps bijectively X onto the

set of all non-empty irreducible closed subsets of X. The injectivity is obvious.

s
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Assuming that C is a non-empty irreducible closed subset of X, let P = M Q. We
QecC

have to show that the ideal P is prime and PEC. Let aJ3€'7P and assume that there
exists some c €|a,b|AP. It fellows CCV(c)SV(a) W(b), whence, by the irreducibilit
of C, either CSV(a) or CCV(b), contrary to the assumption a,bé& JP. Therefore

the ideal P is prime.

1% remains to show that‘PEEZ Assuming P¢TI there exist CIERRRPL: €T, n21,
such that an U(g) and C& UV(a ). Since C is irreducible, it follows C<C V(a )
i=1l i=1 19

for some Hjé{i,...,n} , whence a; € P, a contradiction. O
0

5.3.2. Proposition. The necessary and sufficient condition for an open subset
D of X = SpecT to be quasi-compact is that D is a finite union of basic open subsets
of X.

Proof. It suffices to show that for each finite non-empty subset A of T; the

basic open set U(A) is quasi-compact. Assume U(A) = Ll i where the Di's are open.
i€l

Without ibse of generality we may assume that for each i€I, Di = U(Bi) for some
finite non-empty subset B. of T. Suppose that for each finite subset F of I,

Jfﬂ)gf(v/ D,. Let M- be the set of those functions f: F—> \J/B satisfying f(i)ffBi

1(F F . i€fF !
for i€ F and U(A)&é (/) U(£(i)). By hypothesis, the finite sets M. are non-empty. The.
KEF
sets MF together with the restriction maps MF il MF for Flg:Fz form a directed
2 1

projective system, and hence the projective limit M = lim MF is non-empty. Conse-
it

quently, there exists a function f: I—> U/ B; such that f(l)C'B for i €1 and
i€l

for each finite subset F of I, U(A)NV(£(F)) is non-empty. According to Theorem

5.2.1., |A|n|£(F)| is empty for each finite subset Fof 1,88 f(I) :Uf(F), we get

REL = LJlf(F)I by Proposition 3.1. - the statement g) -, whence IA‘/\!f(I)]

By Theorem 5.2.1. again it follows U(A)gﬁ \./ U(£(i)), contrary to the assumption
&l

that UM U D:
1651

5.3.3. Lemma. The necessary and sufficient condition for a quasi-compact open
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proper subset D of X = Spec T to satisfy the equality D = —[ D: ={PE X: 7P¢'D} is
that D = U(a) for some (unique) a €T.

Proof. Obviously JU(a) = U(a) for all a€T.
Let D be a gquasi-compact open proper subset of X and assume D = 7 0. By

Proposition 5.3.2., D has the form L,fU(A ) where nzl and the A ;s are non-empty
finite subsets of T. i=1

First let us show that {'\ |A | is non-empty. The case n = 1 is trivial so we
i=1

may assume n;2. Let k 6{1,...,[‘:} be maximal with the property /"\ |A | # 8 and
i=1

Suppose k<n By Theorem 5.2.1. there exists PEU(Ak POVEN IA |). Since
i=1

&
PGU(Ak l)CD = 1D, it follows TP U U(A p I BR - a; ¢ TP for some a; EA
i=1

k
lcigk. Pick some b in () |A.]. Then c:= /\{a ...,ak3§ ‘IP. On the other hand,
i=1 :

ke 2% k
c€ f‘\]b,ailgf'\ [Ailg P, a contradiction.
fl 1=

N

n N
Next let us show that /) i/\.| is a singleton. Assuming the contrary,let

i=1
a,b& /\lIA | be such that a#b. By Theorem 5.2.1. there exists a prlme ideal P such
i
- that 4€P and b€ TP. As a€ Pn.f}l‘lAil it follows PED, and hence TP & [0 = D.
1= ‘
Consequentiy, b¢7P éinipe b€ .fn'\l}Ail , a contradiction.
: =
Let a be the unique element of the ideal /T\ IAi|. Obviously, DCU(a), whence

; i=l
Uca) =7U(a)§ 1D =D, so D = U(a) as contended. O

According to Lemma 5.3.1. and Theorem 5.3.2., Spec T:= (Spec T, @, T 7) is an
object of the category NIrrSpec. If f: T—-—>T' is a tree morphism then the map
Spec T'—> Spec T, P! l——>f_1(P') is a morphism in NIrrSpec, so we get a contravariant
functor Spec : Tr —>' NIrrSpec. By Lemma 5.3.3., the spectral topology on Spec T for

any tree T is generated by those quasi-compact open proper subsets D of Spec T

satisfying 70 =D,
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.

5.3.4. Lemma. The functor Spec: Tr —> NIrrSgec induces by‘fégtrlctlon a

functor from the category BooleTr of boolean trees (respectively from the category

Linlr of limear trees) to the category_NUBooleSp  of quasi-boolean spaces with

negation (respectiyely to the category QLinSpec of quasi-linear irreducible spectral
spaces). . . ; : E——
Proof. First assume T is a boolean tree and let P,Q be proper prime ideals
of T such that PC Q. We have to show that P = Q. Assuming the contrafy, there exist
a,b,c €T such that a€P, c€Q\P arH béQ. It follows Y(a,b,c)€ Q\ P so we may
assume from the beginning that c €|a,b]. By hypothesis there exists ciCT'such that
la,b] = |c,d|. As aEP C¢P we get d€PSQ, whence bé |c,d|CQ, a contradiction.
Next assume T is a linear tree and let P Q be prime 1deals of T suech that
P_¢Q Q¢P and P¢7Q We have to show that 7PCQ By assumptlon there exist
a,b,c€ T such that a€ Py TQ, b€ Qn TP and c€ PN Q. As Yéa,b,c)€ |a,c|n |b,c|SPNQ,

we may assume c € |a,b|. Let d€ IP. By hypothesis we distinguish two cases:

Case 1: Y(a,b,d)€ |a,c]. Then Y(a,b,d)é& la,cley [b,d|€PATP = B, a contra-

diction.
Case 2: Y(a,b,d)€ |c,b|. Then Y(a,b,d)€ 0N la,d|, whence d€Q since aﬁfQ. o

6. The distributive lattice with negation freely _generated by a tree.

By composing the contravariant functor Spec .:'Ig_——>NIrrSQec_as defined in §5

with the duality NIrrSpec—>NDLat we get a covariant functoroéjz Tr—>NDLat which

assigns to a tree T the distributive lattice of guasi-compact open proper subsets
of Spec T together with the negation D—> D ={P€Spec T :7P¢D}.
According to Theorem 2.3., Proposition 2.6. and Lemma 5.3.4., the functor a[q

induces by restriction the functors: Boole Tr —> NQBoolelat, LinTr¥—>QLinLat.

6.1. Lemma. There exists a canonic natural transformation %?:ide——> :7;0[\

Moreover ? is an isomorphism.

Proof. Given a tree T, \572051T)) 7?U(a) : aegT}'by Lemma 5.3.3. The canonic
map ﬁL(T) : T——>f7‘a[ZT)), at— U(a) is a tree isomorphism by Theorem 5.2.1. o
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6.2. Lemma. There exists a canonic natural transformationS:O("’?j >1dNDL i

Moreover E£(A) is injective for any distributive lattice with negation A.
Proof. Let (A,”]) be a distributive lattice with negation, and T:=~7J(A,7)

be the subtree of A with universe {aéA: Ta.= a}. The map 2A -—>2T

W e A
induces a morphism Spec (A, ])—> Spec (T) in the category NIrrSpec. Indeed, let
P be a prime ideal of A, and let a,b,c€T7T. Assuming a,b€P it follows Y(a,b,e)EP
since Y(a,b,c)<avb €P. Assuming afP, bfP we get Y(a,b,c)¢P since aAbgY(a,b,c)
and aAb;¢P. Consequently, PNT is a prime ideal of the tree T. Note that TPAT =
= T\NP = T(PNT) for PE€ Spec A; tecall that TP = {aéA :73¢P} for P€ Spec A.

As {PéSpec A: PNTE UT(a)} = UA(a) for all a € T, the map above is coherent.

By duality (Theorem 2.3), we get a morphism f(A):o[kT)——>A of distributive
lattices with negation. To conclude that E(A) is injective it suffices to show that
the canonic map SpecA—>SpecT is onto.'Let Q be a prime ideal of the tree T. Denoté
by I the idea1 of the lattice A gemerated by Q, and by F the filter of A gencrated

byt Sl =N

Claim: The ideal I is disjoint from the filter F.

Assuming the contrary, we get some CIERERTE: €°]q, bl"‘ meQ, nzl, mxl,
n m n
suEhithat-Aia. <V b... «Set a.= Ag., b= \/b,C~/—\{ ,...,a%. We get
e i AR -l L - n
i=1 J=1 i=1 j= 1
n m
c = avV (a,Ab)) and 1$5;,...,b 5= (Ab.)v \/(n AS) = C A b Iv(bAC) -
S ey I m Lo J
i=% C J=1 j=1 el ,

(/\b Yv(aA b)v \/(a Ab;) = c, whence C€|81,--o,8n|f\|bl,--,bmlf_:‘*,QﬂQ =}3/,
J= 1 i=1 - :

a contradiction.
Consequently, I is disjoint from F as claimed. According to the fundamental
existence theorem for prime ideals in distributive lattices, there exists a prime

ideal P of A containing I and disjoint from F, whence PAT = Q. 0.

6.'3. Theorem. The functor o[: Tr—>NDLat is a left adjoint of the functor

{:NDLat—ﬂL In other words, af(T) is the distributive lattice with negation

freely generated by a tree T.
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Proof. Since the natural transformation ? : idTr > 57;°Z4 and
r :u[;jri—>id satisfy obviously the trangular identities 57k€ e C?J) = id
NDLat . g C . f

and & (o€)° oC('Q) = idoc ; o[is a left adjoint of 5 having unit 7 and eounit &

As a consequence of Theorem 6.3. and Lemmata 6.1. and 6.2. we get:

6.4. Theorem a) The fuﬁctor q(: Tr —>NDLat induces an equivalence between
the category Ig.of trees and the full subcategory of NDLat consisting of those distri
butive lattices with negation (A,7]) which are generated as lattices by their sub-
trees T (A) :{aEA: A a}. ‘

' b) The contravariant functor Spec : Tr —> NIrrSpec induces a duality between
the category Tr and the full subcategory of NIrrSpec consisting of those irreducible
spectral spaces with negation (X,O,I,‘T) whose topology is generated by fhe quasi-
compact opeh‘subsets Becatistying D =D,

6.5. Examples
i)TLét (A,v,A) be a distributive lattice. The product AxA becomes a distri-

butive lattice with negation with respect to the .operationg

(a,b) v (a',b")

1

Cava', bALY)

1

ta.blAvila bl
Ta bz g,

(aAa', bvb")

The diagonal embedding at—> (a,a) identifies the underlying tree of A with
the subtree of the lattice above consisting of the elements which are invariant under
the negation'j . Thué we get the -distributive lattice with negation freely'generéted
by the underlying tree of A. Note also that the prime ideals of the underlying tree
of A correspond bijectively to the pairs (P,F) consisting of a prime ideal P and of
a prime fiiter F of the distributive lattice A.
- ii) ‘Let T be the linear tree with 4 distinct elements a,b,c,d such that

Y(a,b,c) = d. The prime spectrum of T has 8 points namely the prime ideals 95,

P

‘ -{a}, {b}',<{b7- and their complements in T. The distributive lattice with negation
°['(T) freely generated by the tree T has 18 distinct elements and is described by the

diagram
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7. The distributive lattice freely generatéd by a tree

Let t: BLat—> Tr be the forgetful functor which identifies the, category
of distributive lattices with a non-full subcategory of the category of trees.

-Denote by 1: Tt —> DLat the functor obtained by composing the functor o[njgf—>NDLa

as defined in §6 with the forgetful functor NDLat —>PLat. The functor 1 assigns
to a tree T the distributive lattice 1(T) of quasi-compact open proper subsets of
the spéctral space Spec T. Note that T is identified with a subtree of 1(T) which

generates 1(T) as a lattice.

7.1. Proposition. The functor.1: Tr —>DlLat is the left adjoint of the
forgetful functor t: DLat—> Ir. In other words, 1(T) is ‘the distributive lattice

freely generated by a tree T.

Proof; Let T and A be a tree and respectively a distributive lattice. Given
a tree morphism f:T—>A, we have to extend it uniquely to a lattice morphism
£: 1(T)—>A.

As for each prime ideal P of the distributive lattice A, f—l(P) is a prime

ideal of the tree T, we get a map f*: Spec A—> Spec T. One cheeks easily that f* is
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a morphism in the category IrrSpec. By Stone's duality, we get the required lattice

morphism Ti-—=h 6

8. The boolean tree freely genérated by a tree

Given a tree T, let Spec T = (Spec T, ¢ , T,7]) be the irreducible spectrai
space with negation associated to T. Denote by fg(T) the‘Subtree of the power set
ZSpec 4 consisting of those propef subsets D of Spec T which are quasi;compact and
open with respect to the patch topology on Spec T (cf. §1) and satisfy the condition

“ID = D. The tree T_ié identified with a subtree of 53(T), and JQ(T) is boglean

according to Lemma 4.1. Thus we get'a functor vf;: Te—> Boalelr:

8.1. Proposition. The functor ‘23 is a left adjoint of the forgetful functor

BooleTr—> Tr.

Proof. Immediate by Theorems 2.4. and 6.4. Indeed, we get a duality between
the category Tr of trees and the full subcategory of NOQBooleSp consisting of those
brdered quasi-boolean spaces with negation (X,O,l,s,'?) which satisfy the following
condition: the lattice of lower quasi-compact open proper subsets of X is generated by

its members D for which "JD = D. &

B8.2. Remark.  Let (X,O,l,hT) be the dual of a boolean tree, and & be a partial
order on X making (X,0,1, 5,”7) an ordered quasi-boolean space with negation. The
lattice of lower quasi-compact oéen proper subsets of X is not necessarily generated
by its members D satisfying “ID = D. For. instance, let T be the 1ineaf, bodlean tree
consisting of two diétinct points x,y. Then X = Spec T has four‘points, namely
c;') ol {x}, {y} , while the open proper subsets of X are U(x) ={¢, fy}}, Uly) =
:{?5, {x}} , utonuly) = {af?} and UGV U(y) :{?5 { {x}, {y}}; they form a boolean
- lattice JC(T) with 4 elements together with the negation -7 given. by ‘TU(X) =X ),
Tuty) = uly), 7(U_(x)n UCy)) = U(x)UU(y). Consider the linear order ¢ 5'{x}§{y};
&T on X, making (X,sﬂ, 1 5,~’V) an object of the category NOQBooleSp.. The lower -
open pfoper subsets of X form the chain U(x)N U(y) £ U(x) & U(x)VY U(y), whose unique

member D satisfying D = D is U(x).
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8.3. Example. Let T be the linear tree with four distinct elements a,b,c,d

such that Y(a,b,c) = d. The embedding at—>fa} b—>f b}, 00—>{c}, db— ¢
jdentifies T with a subtree of the power set of the set with three elements fé,b,q} :

whose underlying tree is the boolean tree freely genmerated by the linear tree T
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