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Some new proofs _in connection with Jordan operators
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§ 1, Introduction

In the present paper we give new proofs to some resﬁlﬁs in
[5,6,7,8], where was used some techniques from the theory of decom=-
posable operators. Our approach is different and is based on the well
known theorems of factorization for ﬁonnegative operator valued
: func£ions (see [10],[11]);

The_proofs héve an algebraical character with a few exceptions,
Therefore, the facts can be presented in én arbitrary C*uaigébra, and
we do it when it will be the case.

To be more precise,llet H be a complex Hilbert space and L(H)

: the algebra of all bounded linear operafors on H. The connection |
between these two types of decomposition, will be made with aid of

the map L(E)D T - ®,, where ¢, + B > L(H) is defined by

?T(t) = exp(-itT*)exp(itT) for every tER

This map is a very known one (see [5],[6],[7]). It is clear that
¢T(t) 2 0 for all real t, and if T E€L(H) have in addition some
properties, these ones will be reflected by ¢T in some way and

reciprocally. In our case & satisfy the following theorem from [10]

T
(th., 3.3): "

° 2n :
THEOREM A, Let P(t) = § ijtj be a polynomial whose coefficients are
, 71 =0

: ;
operators on H and which is nonnegative on R. Then P = Q Q where Q is

n
an outer functions on R of the form Q(%t) =%;:thj for some operators
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Qo’Q1""’Qn on H, ‘

This must be happen if T has a Jordan decomposition, T = 0
where N€ L(H) is a normal operator and Q a nilpotent operator of some
order k which commute with N.

In the case k = 2, we give an independent elementaryfproof and’
accurate formulas for N and Q as functions of T and T*. Unfortunately,

es :
in the general case such formulas seems to be very complicated,

§ 2, Preliminaries

The commutator C(T,S) of two operators TyS€ L(H) is the opera-
tor defined on L(H) by ¢(T,S)X = TX - XS for all X¢€ L(H). Following

{2] we define the relation n. on L(H) by

k
(1) : T™n, S if Ck(T,S)(I) 00 ’ (ke N‘*)

and I being the identity operator on H.

- An operator T€ L(H) will be called Jordan operator of order k, if has

a decomposition T = A + N, where A is selfadjoint and N€ L{H) a nil-
potent of order k, commuting with A. It is easy to see that
k K] _ ok ke k_k *
: <9 . ol

and
‘ = a4
(3) exp(zT)exp(=2z8) = I + E :(T - S)[J]§T for a1l ‘= €40,
, : 3 1

If TnkS for some k, then the above entire function must be polynomiai.

As we already saw @T and ¢ , are nonnegativé operator valued functions
T
on R, which are given by:

(4) ‘ ‘ on(t) =Aexp(-itT*)exﬁ(itT)

(5) ¢ (t) = exp(=itT)exp(itT*)
P
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? ;\\\\\\\l@<¢w'18 Selymenial, since ;@T is nonnegative, it must have even

* * ' ‘ ® .
1171 nkT for some X € N , it is no compulsory that TnkT s Such how
is showed in [6 ], by considering in the place of Ty the multiplim
cation with the variable on a weighted Sobolev space on R , restricte

to an invariant subspace.

-

S~

2n+1 2
o Be(®

degree, Indeetfi%F\ﬂlﬁét) = 2B 4% then P = lim st implies

T Exem? ™ 2n+1 % 2n+1
d = =00 t
: . 2n+1
> — ;ﬂ\ P
Py, 20 and also P, o = lim Do () /4 < 0, hence.P, ., =0. By

t-)—,:oo

definition S,7€ L(H) are quasinilpotent equivalent and write

q v

S i titn L eaemy el (1178 Cgu | g = sy B
n-»o n-»oco

§ 3. The goal of this section is to prove the following

theorem which characterizes the Jordan operators in terms of T and T*

THEOREM 3.1

. :
Let T€ L(H) and kX € N , The following two conditions are equivalent:
(i) T is an Jordan operator of order k

*
(ii) T n

®
ox.qT and Tn, T ‘(see (1))

*
If (i) holds, T = A + N where A = A and N is nilpotent of order k

commuting with A. Then we have

2k~

c2k“7(T*,T)(x) g AN e

corresponding to kz) and the fact that LT e 0,

Hence (ii) follows, Obviously k = 1 is a trivial case.
For the converse we give first the proof of the case.k = 2; since as
we say, the treatment is elementary and we get exact formulas for.A
and N as functions of T aﬁd T*.

According to the observation which was made in § 2; (ii)

implies that there are equalities:

S Tt A T e ) e T Bk BT fex a1
P 1 2 . 1 2%

o L
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~of polynomials (Pn) with Pn(o)

i e

——
———— T

where

* : *  * * *® -
by == B, = i(r-1), 4, = = 3(22-201"41"?), B, = =3(T 2-27 p41?)

~From the fact that @T(t)¢T*(t) - QT*(t)QT(t) = I for every real t,

S~

it follows

—

]
"

(6) A B, =B,A & Dy A.B. + A.B D'y

282 285 r A48, 281 =0» A, + AB +B

's0 that

(7) dcs ' 4, +3, = 42 - 82, oo :
Let C = 1B1(A2 - Bz); which is selfadjoint since from (6)

: Ll BB = Uy B 4 3B
C = = - 1= i 185 + i 1A2 = C

3

. Then there exists R = C°, the selfadjoint cubic root, obtained by

the continous functional calculus for normal operators,

’

Let show that the operator
(8) L N = %(ia, + R)

is the desired nilpotent of order 2.

First of all, let's check the next two properties of R

(9) ' R = Af and RA, + AR =0,

Indeed we may write the Sequence

R2

o® = iyt . [21 (8 = 3,) (8, = 3,)8,7% = [3, (4] +'B§)B1]% 3

[B1(A2 + 32)23{]% = [Bf]% = Af.

Certainly we have used again relations (6).
For the second equality from (9), let us consider a sequence
0, uniformly convergent on the

T
spectrum of C, to the map t =+ t°,

s



Hence, it is easy to see that Pn(C)B1 + B1Pn(c)i2=ﬁ:f3; all =
nonnegative integers n. Then, after passing to the limit, we get :
Therefore, equalities (9) imply that

Bocp g 2 & Ceoma
§° = 2[R" - Ay + 1(RA, + A, R)] = O,

To finish the proof, it is enough‘to show that the operator
L 3

A ;\T\n N is selfadjoint and commutes with N,

Let us notice that N can be written in the form

(10) L S0 U A (RN YT AP L
and then A haé the form
(11) A=3(T + @ [(r - T*)(TT* = T*T)]%j

For the commutativity we use the following lemma which has, in some
way,; an independent character

LEMMA 3.2

Let A c L(H) be a C*-algebra,v¢/i6l) = {(n/Nnel , L 0} and the maps

0 9y o defined by

+ - : ;
* * & * '
(12) oi(N) =4[N - N+ (FN)F o (N )%] for all g
Then we have e
(1) o, Miay eHa)
(ii) g, 0. g = 0 0. g =id
(iii) NERA/~commutes with a selfadjoint operator A éL(H) if and

% * *
only if A commutes with N « N and NN (or N N).

* L *
Proof. Let us denote by R = (N N)% - (WN )%. Then
2 *y 2 2 * Tkt
A4.o+(N)—(N-N) +R°+(N-N)RO+RO(N-N)._0

2 *
if we show that Rj + (N = N )2 = 0 and (N - N*)Ro + Ry (W = g BT )

We choose analogously a sequence of polynomials (Qn)nEO’ with,Qn(O)'= Y

e



Co T ; i T

————

uniformly convergent on the interval [O,IlNl]%] to the function
bR '

Hence, for every nonnegatlve integer ny is not difficult to see
that we have the equalities:

e (e (NN ) = o, ¥o (N'N) = @ (¥8")N and

.‘/w

NQ, (NN ) = Q. (N &5N e i

" Then, after passing to the limit, it follows that (N N)%(NN )%-0
N(N V)% = (NN ) N and N(NN )% O
Finally, these relations imply the desired ones: | B
(13) Ri =W 4 NN = (¥ -2 R (N = N°) + (N - 8)r, = 0.
. Analogously c_(N)2 = 0, This shows (i),

. For the point (ii), let us compute 0_(‘U+(N))s

0. o, (M) = (o, (M = oM = [o,* 5, m1% +

il

[ 0,0, 1F =3 =" - o504

4

¥43
1 [ 04 04l )

Phis time, from (13) we have

* 2 %92 * : *
iy = %LRO = (N=wN)" = (N =N )Ro + RO(N -N)] =

4
. - *
= 30 +NN-(N~N)R—J-1‘[IN+N[ (¥ + 8 )] °
¥* ?‘ : "

| where [N + N | = (NN_ + N N) f
g Analogously :
% . $ o 2 AN, » .
| : g, o = | + N + XN ] and by the uniquenes of the nonnegative

square root, we,infer that
% % * * * :
( o, 0+)% =3([N + N | =% =0N), ( o, g+)% = %ElN + N | + N + N

; * * ;
Therefore o_( o+(N)) =3(N-N + N+ N ) =N which proves (ii),
The equivalence from (iii) is easy to prove, in one way. Let us

* * :
suppose that the selfadjoint operator A commutes with N -« N and N N.

e’ // ®



(4 B e % S
RN, 5 O e
‘
3 '

e

* o # i g i
Then A commute with NN , since NN + N N + (N = N )° = 0, Hence, A
3 *
commutes with (N N)%, (NN )% and then with ch(N) and ci(N).
Finélly, A commutes with ¢_( o+(N)) = N as required,
Returning to the proof of theorem 3,1, on the account of the
e *
aboié\legma, we must show that A commutes with N -« N =T = T* and
% e N
NN . ot
_ : ko
Using (11), the commutation with T « T becomes
* * ’
2(PT -~ 7 T) = i(RA1 - A1R) which, by equalities (9), this is the

same withe
*
(1) iRA, =T T =~ TT*,

Prom this we obtain:

: N T
- iRA1RA1RA1 = 133A1 = (T T - TT )3.

3

But R =viB1(A2 - B2) and then

11

iR3Af =~ B, (4, - BZ)Af = (B, - Az)Af = (32 =B I8 4 A2)2
= (B, - A )3 and here again by (9), B, = A, = T*T - TT*.‘
2 2 2 2

Hence, (14) holds,

To prove the commutation with NN* we use the identities
fulfilled by T

CB(T*,T)(I) = 03(T,T*)(I) = 0,
More precisely we have '
63 (2, %) (1) = 12(1 - %) - 20(7 - )0 4 (7 = 15)0*2 = 0

and replacing T = A 4+ N and using the fact already proved, that A
commute with N = N* we obtain the desired equality:ANN* = NN*A.

Let observe that the formulas (10) and (11) which give the
operators A and N as functions of T and T*, are specific to one case

of noncommutig functional calculus.

Now, we consider the general case of the Theorem 3.1, From (i1

*

we get that the maps ¢T and 9
; L

are polynomials of degree at most. .

2k-2.

! S



Hence, as we have said, we apply the Theorem A of factorization from
Hﬂ.dne to Rosenblum and Rovnyak, which generalizes the analogous
classical result of Fejer and Riesz,.

Moreover, we need the following variant of Theorem 2.4 from [10],
concerning the uniquenes of such factorization.

THEOREM B

Let G, and G, be two operator valued outer functions on R. (in the

1 2
sense of [H]).
' # %
(1) We have G,G, = G,G, a.e. if and only if G, = UG,
. : ;
G, =T G, a.e. where U is a (constant) partial isometric
operator on H.
: * *
(ii) If GGy = G,G,y for continuously Gys G,y and
G1(to) = ngto) for some fixed t_€ R, then G, = G,.

Phe proof of this variant is obvious, via the original result
from [{].
By these theorems, there are unique polynomials u and v whose ~

coefficients are operators on H, such that

(15) @T(t) = u%(t)u(t), QT*(t) = V(t)v*(t) for all t€ER.
k-1 kw1
(16) u(0) = v(0) = I, u(t) = .t (t) = v.td
| SRV ORI

and u, v are outer functions on R (in sense of Il
Let us show first that u(t)v(t) = v(t)u(t) = I for every real t.

Since @T(t) sap R) = b *(t)QT(t) = I, we have
n i

* ; % * *
u (t)u(t)v(d)v () = v(£)v (t)w (t)u(t) = I (£ - R)
But for small t > 0, u(t) and v(t) are invertible operators. That

implies next equalities:

(7 | (a(e)v ()" * u(®)v(t) = w(t)v(t) (u(s)v(s))" =1

: s S Atn Al

: 5 » :

We know that u(t)v(t) ==ZE::wjt for some integer s 2 O and wje L(H).
Jj=0 B o

5



= 9.

0 if 8 > O, This implies the fact that

From (17) we see that w:ws
wj =0 for j > 0 and then

- u(t)v(t)
in fact for all t€ R,

v(t)u(t) = 1

Now, for t and s in R we can write, by (15)

u*(t + s)u(t + 8) = exp(-isT*)u%(t)u(t)exp(isT) or . "

(18) u*(t+s)u(t+s) = [u(s)exp(;isT)ﬁ(t)expisT]*u(s)exp(-isT)u(t)expisT

Let‘us observe that the map t + u(s)exp(-isT)u(t)expisT, for every
fixed s€ R, is the nontangential limit of some outer function on the
half-plane y > 0 to R (in sense of [M7]). .

This happens since if G is outer on R and X€ L(H) then it is
also true for the maps t + XG(t) and t » G(t)X., Therefore, (18) and

Theorem 3,3(ii) give us the following
(19) ﬁ(t + 8) = u(s)exp(~isT)u(t)expisT

If we differentiate (19) with respect to s, and.evaluate it at 8 =0

wve get

(20) ut(t) = uw'(0)u(t) + ifu(t), 7]

where [4, B] = 4B - BA for 4, Be L(H).

* . .
1 + U1 = 17T « iT
or T + iU1 = (D + iU1)*.»Then we can define the selfadjoint operator

From (15), an identication of coefficients gives U

A= Doy iU1 and N = -iU1.

Solving the equation (20) with these new notatiohs we have
(21) W(t) = exp(edti)explisr).
Then if we invert this, we get
(22) ‘ - v(t) = exp(~itT)expita.,
Now, iet us write that u and v are polynomials of degree a# most k - 13

(23) ¢(4, 1) (1) = F(z, 4)(D) = o,

o il e



; 10 -

"For k = 2 it is easy to see that (23) implies the commutation of A -
. and T, This is true in general and we sketch the proof for k = 3,

since it goes analogous for every k. Therefore (23) becomes

2 3

. - T3 = T3 - 3T2A + 3TA" - A

(24) 83 - 3a%n 4 3an =0
Since A is selfadjoint, there exist a spectral measure B concentrated
on R (see [6]) which gives a spectral resolution of the identity

E(t) = E((~ w, t]) and we have the representation

= S tdE(t) .
R

Let g = ra, b] and y = [e, 4] two closed and disjoint inﬁérvals
and'U 'U two closed Jordan curves, which surround resPectlvely g

and @ and have no intersection. Then we get
gl o o
E(w) T 27[1 S-olz f(g)dg

where f£(&) = S g.l tfxm(t)dE(f) is analytic on ch.
R - : :

Now, we use some ideas from [3] (where we can find a generalization
of the present result):

Proposition 3.4

q )
Let T L(H) and A L(H) selfadjoint such that T ~ A, Then T and A

commute,

By computations from (24) the function
s e Y YR (- A2[2] o
£(g) = £(8) - £1(g) + ()
satisfy the equality

x = ) 2(E) . E(w)  for aelc[m

and then the map

- S = | a [21
g(8) = 18(8) - &=L afr(p) + LB nF (e
satisfy the equality '

(A - 8)g(g) = TE(w) for all £€ G[Q;

o ey



Then we have

E(0)TE(0) = o7 QW (g - )7 "B(o)TE(u) 2
1

= E%F-g. B(g)e(g)dE = 0, e C[w) :
f o v

Since,w is arbitrary in R\o, this implies that E(c)T(I - E(0))

g

The same is true for o and then TE(0) = E(0)T ox equivalently

TA = AT, '

The préof of Propositio§.3.4 can be made in the same fashion.
Returaig to the proof of Theorem 3.1, since A and T coqmute,

(23) sais that N = T = A is nilpotent of order k and that finishes

the implication (ii) (i),
The lemma 3.2 is in fact lnsplred from the work of Helton T6]

"Pinally, I should like to take this opportunity and I express
hy gratitude to Professor Stefan Frunza which was my first teacher

in the field of Operators Theory and have suggested me these problems,
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