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(n decomposition and marnifold structure
g pnonlinear. control systems
by 0L Vainsan

1. Introduction

In a previous. paper {see C10y may sglution - far & aFring
control system :
1)

m

-—=f(x)+; u (B gi(x), t € (0,T1, x(0)=x, € R" uy(.)€ L1 ([0, T);R)
dt ~

was represented using A diffeomornhism  G(p;X), X R wn R

which is the solution for & "gradient syatem'.

2) ______:Xj(p;G)' j=1’-l-;M, G(O;X)=X, p‘:(til"'ltb{) GRM

and cansidering p &% the new control guided by & controllable

sveten - (dim L{g>, oo . a%) (p)=M, p € R¥)

{ ' : ,
K9] *'%%s;:Lﬁ(t) gi{p), p(0)=0 where the smooth vector fimlds
=1 .

XIp)eC"(RB) depsnding on parameters pER* ,‘ﬁand‘qieC“(Rﬁ)

Care found such that

/ M

41 EXj(p)qji(p)=gi, TN
51 _

The analysis was focused on the nopcommuting smooth veotor fFiglds

=2

g, ..., 0% Veot (R 2) and the' assumption that the Lie algebra

Blgt, gl s finitely generated over R nrovides the msio

tool of proof=s.

I+# 4= %the splrbose of this paper oo inslude  F =]
imtm amalvzis and ik could be partially motivatsd by

control svstams o E e i) XERD UER® which can be Fewritinan
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larger state space yERZ



For which the ldesl I, gensrated in L(f,gi,...,g“) by bhe new
diike £{y) is more  meaningfulle thar the Lie algebra

Llgli o0t e applicetion.

The main contribution can be stated as follows. We

are given % vechor fields ot = SHERE o Vect(R*®) which ars

it

not ~commiuting - and the ideal 1% generated by T in

Llfgt, cven B s A imi bRy nenerated over R then new smooth
vector  fFields X7(t,p)e Vect (R™) depending  on paramaters
LER PR 90,1, M- 5 and analytical vector - fields

g, g%, ...,qg% Vect(R™!) are found such that

. M ‘.
al dy=f(y)dt+§:Xd(t,p;y)d:W peRY is a Frobenius system
J=

% M i
b) E_Xj(t,p)qji(tlp):;gi’ i=0,1,’.-¢;mr
J=0 :

where  g%afaXxX%{t.p), qla (0,0 o0

Theorem 1 contains the above equalities and allow one .to
represent soluticns in (1) by solving a "gradient system”

: a6
E") e 4 j { r AL Y 4 , ; =
. — £(G) atj =X7(t,p:G), j=1 G(0,0;x,) =x,

and considerina pP=(t,p) as the new control guided by a

controllable system (dim I@(ql,...,q“)(ﬁﬂ=¢L Be Rl 2

&) db‘q (D) ﬂ? u () g2 (p), B(0)=0er*?

=]
fs one may =sypect the dimansion of 1}(g1,...,gm)(x) ial ot AR
canstant o fop XERA and to generate integral manifolaos

containing solutions in (1) with x, fixsed is the purpassa of L



Theorsmn 7 which shates that Jor an ok hibrary: e BRI v bl
dim If(gl, g sl =k, ken >, ~ bhere onlets & generator syshem
yi- o ¥k oYM e T cauch that any solution in (1) startinsg

with (0 =X, can he represented as

) x"(t;xb)=G(C,ﬁ“(t);Xb), te (0,17,

whess - P RLE), tele Tl « - 15 the solution in & controllable systen

ante GlE B p“eRkA5 aenerates a k-dim ¢* manifold Moax, for

each. < tel0, T -and

) If(glr bsn el (}’)'-=Ty1'-!E for any y=G{t,B:; x;) -

2. Definitions and some auxiliary results

Gome definitions and auxiliary results we use here were
given " bm. oCLde Let o (RE) be . the élgeabr'a o infinite
differentiable Ffunctions on RA and C®(R2)cC"{RB) cansisting  of =
a.llwanalytir:al st ire - Pupetions. Vector . fields are R —=lineat.
mappinas of @(R") into-itself. The Lis racket [X, ¥ introduces :
the Lie algebra structure in the space Vect(R®) and faor any

XGVeCt(R”) defins ad X:VQC't(R“)-'VeCt(R“) by ad. X =X, Y] whese

[X, Y] () = { {(8X/0x) Y- (3Y/Ix) X) (x) .

The applicaticn exp ad X:Vect(R7) “Vect(R") is defined formally as
the Taylor series (exp ad X) (V) =Y+—§1—adX(Y) Yo .+—n—1—l—ad”X(Y) Yoo
and CthpicpoveEsgefice . 1 o deTined by the topology ofF LWDlfoom.

convergence of all derivatives on compact subssts

i

We are aiven £,g ...,9%Vect(R?) and denate

L



L{f, g% ....9"), It(gll s 20 R) phe  Lies algebra and recspect ively

the 'ideel  gpnerabediby f dn LI, g%, ...0% ~ By definition, I.
/
coincides with  the Lie algebra on R gensrated by the vector

fFields adkf(gi), b 05 220 S M

Definition 1

We say that I.(gl, ...,g® is finitely generated over R

iF bhere esiet WL W NeE (gl .. 0" such thRE any
M

YeIt(gl,...,gm) can be written Y(x):? anj(X), XER™ . with a4€ER
m] :

depending on ¥ . In the ssguel we s—:hai_l uwse T, fob It(gl,_”gm) i
If I, is finitely gensrated  over R (see  Lemma 1) than the
e:j:porxe'ntial map (exp ad tX) (Y) is well defined  for . Bay
XoXel, ang-teR. . -Let B={Y%, ..., YM b= a generator f:y*tﬁm Fok kg
We define the new corresponding vector fields XI(t,p)e€ Veét(R“)

dependina on parameters (t,p)é€ RxRY¥ ,
7. '

Xy=£,x*(t) = (exp adtX®) (Y'),

X3(t, by, ..., ty)=(exp ad t,X7), ..., (exp ad t,X') (exp ad tX°) (y7+1)

Jali. Mt

For an masier reference we restate the auxiliary results given in
EEtiilss
Lemma 1

i s finitely nesnerated over R. then
¢,) XTIt t,, ..., t,)=(exp ad tf) (exp ad t,¥') ... (exp ad £
d=001, o aMel

&) XIH(E, b, ..., t)=lexp ad £,X5) ... (exp ad tX°) (exp ad t,, ¥Y*!). '



L8]

... {exp ad t,¥9) (¥I)
0<k<j-1, J=1,2,..«: M-1
In addition (¢)) and (¢,) hold For I@ﬂ(t,tl,...,tj)(y)
E"nd Tj+1(t’ tll « 8oy tj) (Y) GIf for alny YEIf’ j=0, 1, e s u ,I"f"l % where
Tj"l(t,tl,...,tj):l'z—*l”r i the linear application obtainsd +from

Xjﬂ(t,tl,...,tj) replacing yi+*i by Y .|Using Lemma i the vechor
fields definad in (7) miset ths following commuting property.

g) [xi,xi]z-ajxi, ot R L =, e s oM

n
]
=T
et
mn
‘—Q-
b1
2
3
£
c
a2

whev= an1=8Xi/8tj,tb=t . cand . the Lisl brsa

respect to XER™ .

Lenma

fesume that I, is finitely generated over R - Then tha vecteor
£l R Rl s AR n AT meet, Ehe Frobenius commuting
property (8. .

Write pP=(t,p) and denote dfa/dp* the multiindex partial

derivative with I=Ig+Xit.. .41, ZEN, opTa (&50t) (072E) s v e (8%¢t,) -

Lemma =

fasumes - R Finitely generated over R and let
{Yi,,..,YW b =z gensrator system +or I, -
Let Xj(t,p),_j=0,1,...,M)tGR,_peRM he  the vector Fields def i ned

in CHdns Then each XI(t,.p). j:l,,,,,M 5 can bhe written

X3 (t,p)= al (typ) XE with aﬂec’*’ (R¥*1) FulFilling

L

¢;)  (det Ale.ph)t

ie i e IREY) o whare A(t,p):(al(t,p),...,a”(t,p))



e} -jtazaljepry(oylscmt, 0¥ IeX +X +...+X 20,T€N |

for same >0

. . J . .
%, The « decompppsition. and danifeld . structure - for  affine
cantrol systems

Let B:Uﬂ,...,YmEIrhe a gensrator system of I, aover R and

without loosing generality we assume. that the first vector fields
in B are the original ones gl,...,g" . Detine new vechor

fields XI(t,p) as in (7)) (via Lemma 1}.

9y  X%=f, X*(t)=(exp adtf) (g') -
XP(t, by, e ty,) = (exp adtf) (exp adt,g?) ... (exp adt,_,g™*) (g™
X (E, tir.. .. ty)=(exp adtf) (exp adt,gt) ... (exp adthf) (y7+1)

) s PR =

Using lemma 2, the follawing "gradient system”

: e 3G e
1(—)) ‘S"‘""‘"“f G 2 ""“"“:Xl t; y ® 80 "'"""":XM t' l'l![t ;G A
T (G) g (t:6) S (t, & n-1iG)

meet the Frobenius commuting conditions in (8).

Theoren: 1. Let £.6% ...,9%Vect(R?) be given. Let T, be
Finitely gererated over R and {Y%,...,¥4gt,...,9%a gensrator

system for s Lok X0t p) o 320,100y - be the  yectoy flelds
defined in (9. Then there exist amalytical vector fields
gieVect (RN, 1204, ..., s such that

N

a7l ¥ Xilto)allttp)egl, 120,10y where: X=feg®  and

j‘A

(LN

g@°={1,0, . .s,0) TeRH?
8,) dim I_algt, .. .. q2){t.pl=M (V) (t.p) Rl |

In addition, assume that each Xj(t,p) genarates a flow and

&)



denot e Gg(r)(x), TER, XER?D the flaw generated by
Yido = Aot g M Y9=£) . e the golution in (1 with
G010, =x  =an besuritten
b)) Gl pix) =G (t)o 6, (t,} 0...0 G L) (x) and

b geli g o aagth S LEE g€lpolgl, ..., g") will exist sueh

that ?:Xj(t,p) gibt,p)=g - Lt pIeRY .
=) ; 4
Eroor
The proof is similar to that of Theoremn 1 dn L1l
Py hypothesis the CONCluslons in Lemma 3 hold and
sach- X0t D) can be written

: - »
1) R pY el D), d=l .l where ajec®(R¥1) and
=1

12y |(6fa§/aﬁf) (0) |sC™*l, (V) r=rg+...+r,, YeN for some fixed (>0

Since X% rf=g° and Y=g, i=1,...,m it is nbvious that solving

M /

;:Xd(t,p) qui(t,p)=gi is equivalent to findirng bI€R¥ such that
-1

3 ;
it ;af(t,p)bj(t,phei, i=1,..., where e,...,e, is the
=1 C

capomieal Cilbase i RY aj(t,p)=(af(t,p),...,ag(t,p))r and ag are

defined dn- (1), DeheteAlt, p)={tallt,p),:..,a¥t,p}) and using

B4t (@i application) . the analytical - scalar - function

{det A(t,p)) > canbei excplicitely computed which allow one to

Findh anadvbisal stunetinns DRt D)o o DAL, P) FulfFid bing & (130,

Define @ le, p)=11,0,...,0)Ter¥:, gl(t,p)= )GR““, d=0 el

( 0
bi(t,p)

and using (13) we get



M
14) Exj(tlp)Qj(t/p)zgjl i=0,1,---:m: goéf'

J=0
The - second . part dn dheorem 1 15 hased on the existence of
solutions in (190) which allow one to write
e O R T
< at 7 7 14 ’ 4 R Bl S ¢ 0

J

;:-a (t,p) i (t,p)=g*(G(t,p)), 1=0,1,...,m
5

Taking directional derivatives in (15) we obtain

M
oG 15 o=l et
& - i J L, g2 : S Togth ;
16 j§’0; atj(t: p)lgt.g it p)=lg".g ]‘ (G(t,p))

for any il,iﬁﬁO,l,...,nﬁ-

Since Lhe solution Gl girr), (g, r)eVlt,p) in- (100 —was defined

such that « GlE,pix)=x = fram (16} we st
- 1 g 1 i
17) jE xI(t,p;x) lg, g 4(t.p)=[g7. g7} (X)

for any XER?® and il,izem,l,...,nﬂ .
Repeating what is done in (17) we obtain a homomorphilsm

betwesn the two algebras  Lig%,0% o @, LI, gty vac0q®) . shiEl

bt sgebile?y - s 95 ifE cgelilg® . s@®) will-Bxist Ful#illing

N
18) ; x1(t,p)gy(t, p)=g, (t,p)ER™
«0

Starting in (10 with G(0,0:Xx)=Xx and noticing
e e b ad) S () for t=tg=...=ty=0,7=0,1,...,M-1
we get the solution in (10) as is defined in . {bg} and the prons

iz complete. :
The +ollowing theorem states the manifold structwes of the

colution in (12 with )%AG(O,x%)GR” fixed which provides the



support of all solutions in (1) with x(0) =x,.

‘Remark, If I, s Finitely osnerated over R wilh (ot 2
as a qgenerator system and dim It(gl, v G LR ket et Ehere
exists a generator syshem {72 e .,YH} e > Ls asuch that

c,) VAo ¥elie) | are linearly independent in R7 .

e) Yz )=0; dekel, oM,

e {y:,...,vy4={zt, ..., 28T, with a nonsingular TeEL(RM; RY)
Theorsm 2
Let x,ER? bhe fixed and dim T hal, s sgBilz,)ekan -

Let I, be finitely generated over R and ¥, ..., ¥% a

%

generator system for I, which meats (cl),(cz) in the Remark.
Assume that each Y4 generates a flow :

G;({) (x), {€RrR, xe€r", 1=0,1,...,k , where Yoar . Write

Pelty, ..o ty) and define G(E, i) =Gy (£) oGy (E4) g+ .QGk(tk) (x,) -
Then '
&) - ) SCA(G(t,ﬁ;XO) PeERMcR? is a k-dim C®manifold .

BEd Tlat, . ..o (Vli=T,5, (V) yes, where " Tk mEans

tangent spgce

140 gty v (G(t,ﬁ;xo))=span{§%(t,ﬁ;xo),iz%,...,k}
f) there exist analytical entire functions bi(t,ﬁ)_e}?k' EELI.CT.\
that any sclution xp (%), EE[O,T) » in (1) cam Do rewritten  as
xe (%) =Gy (£) (yH (L)) . whers

yU(t) €S, vUlEy =@lo plt) ix), telp, 7] . and

9



S RS PO % S TR

dplt) s o 3
e -;_Jluimbi(t,p(t)), £(0)=0, te(0,T]

e oo

. ! , - vl
By hypobhzsls the conclusions in Lemmas 1.2 and 3 hold. Let

{Yl,...,YW' bea  the generator system alven by hypothesis afd
XI(t,p)y, J=1seee oM defined as in  Lemma T Since

ij%)=0,j=k+l,...,M we get that the salution in the following
Frobenius syshem
19) gG=f(G), 06 _x1(t,piG) . J=1, ..« M, PER¥ G0, 01X) =X,
J
can be written as

Z0) G(t,p;x0)=Go(t)oGi(t1)O---OGk(tk) (x,) 6G{E, PiX;)

for any teR, pERY , where _ﬁ:(tl,..;,tk) .0On the other hand the
08 o o P
matrix 75§(t,ﬁ;xb) iz a nonsingular one and

| 3G, |
21). (t Bixg) 1= [k (£ ) 170 [ (ti,xk_l)]‘l[—a—c—;g(t xk)]“’

where }H=Gk(tk)(Xb),...,Xk4=6&(t1)o...OG¥(tk)(Xo),XK*G(thﬁ;Xo) < By

definition (sas (20))

vy P0G e e e X T, DG L, B12) Y0 d ek L M For

at,

any’tER,peRMLﬁERk . We shall show that %%?(t,ﬁ;xd, j:l,,,,,k’,
b

are lingarly indepsndent in R® by proving that

2o R0 ﬁ)a[ (t Bixg) 17X (£, B: Gt Bi %)) s oo 6

rly indem&mdenh.

straight computation shows that we have the {followind
A B

e d

= 27 (t, 0 ={(exp ad- Y E) e LoD ad-t,, Y Y Mx)

RE(E, D) =Y R(xy), Fsk-1

10



Denote BJ & (MxM) matrix associated to Y7 using the matrix
representation of fed it . L AR A s [Yi,v4 according o

Lthe Fixed generator  system {y*,..., Y% . leing (Z24), the

eguations (23 can be rewritten

25)
27, ) =AY (%) s+ .. YE(X),0, ..., 0 exp=t,B¥) .. . (exp~ty, BT*Y) 1
REGE, OV AT svoe s YL 50,0 0 o, Oy Jodpn e s k-1
where 1.€RH, i=1,...,M ., is the canonical base.
Define a (Mxk) matrix A(D) by
260 A(B)=(A(B),....a%(B)) . where ad(F)ER¥, nmests

27y al(P)=(exp-t,BY) ... (exp-t,,,B*) 1, j=1,...k-1, a*(p)=1,

e L2489,

Fram each aJ(f) eliminate the last M-k components and denote
it by &J(p)erk . write A(P)=(&1(),...,a¥(P)) and (25 becomes
Sm o Repetipi=lvite) oo YD)

where b s LT T R 2ELE P} and AP a nonsingular

matrix for which (deot }f(ﬁ))“l can bz computed as an analytical

entire function (see application in [11). Using (28) in (23) we

aet. o tihak —éa—tq- (t,B:i%),J=1,...k« are linearly independent and
J

therefore Sc moots the Firet conclusion in the thesorem.Further we
represent gi{G(t,Pix))) ., i=1,...,m . using X2t 56t 0550 ) .

Fel, vy K FEOD Lemmea Z  and application - dn T1) we gat

the renrsszntation  for N Pl I, s PR R e (B B

203 ARE Gt Dk s G DYl o YHALE, D)

whetre A{t,p) €EL{(RH, RY) is a nonsingular matrix for which

i



(det A(t,p)) 2 is an analytical entire function which provides
Rk o HdXbhe ), o X e e is a generator system for I, and
therefors (ii) and (ii1i) in (&) “hold. On the otbher Hand .tg&r@
existe a nonsingular TEL(RY, RM) such that . Balgt,...,g%,

fwﬂ...,fﬂ=hﬂ,...,qu’ antd B is a generator system for I,

To solve

5 : :
50D ;:Xj(t.p) gl (t,p)=g whera gelot,...,g® is encugh to Find
, =1 ;

the solution g(t,p) For
S T-1Aa(t,p) glt,p)2e ., where e€ll;,...,1} . Therefore, we get

229 glt,p)=A"1{t,p)Te, e€ll ;... , 1} and using (32) in (3O

M
S5y ?:Xj(t,p;G(t,ﬁ;Xo))qj(t,p)==g(G(t,IS;X0),95@1.---,g‘”}-
=l

Binme XIE,p:CLE, 0% V) =0, Joktl, ..., ,  (spe 225, From (5D
fallows sasily .

k

34) ;):Xf(t,ﬁ;c;(t,ﬁ;xo))c?j(t,p‘)—“-g(c(t.ﬁ;xo))
=] g ! \

for any gelgl,....g% « whare dj’(t;ﬁ) =proxg(t,p) - HWrite gi(t,B)

for the solution  in.(34) corresponding to- g, f=1,. ... - and
detine the system

A5 dp. 5 = € /
z5) 2o ui(t)@ﬁ(t,ﬁ), B(0)=0, te[0,T]

whnse soiutions nee

ts the conclusion  (B)

Trhie pront 1s conplete,

Application

Nonlinesr control systems could be viewsd as affing contral

i

systems and the corresponding ideal I, is defined as tollows.



l.et f'(x, w)-s RBxl-R2 bre A = Ffunction and consider e

CDFFEE%DDHdiHQ system,

D (L), x(0) =xo, (L) EORRY, €10, T]
For any admissible control u(t)=u0+fv('s) ds,ult) GUJ with

v{)eL, ([0,T];R")  the '5\/‘.-":7tem (1) is rewritten
2 Y () +Y v, (t)gl, y= ( ) y(0)= o V)L GLORT) 2R ™)
dt ? 1 uO ’ ] ] s

£ 0x,u) 0
where f(y):( . ), gi=(li)€Rn*m « and 11,..'.,lmERm‘ lis thg

canonical bhase. ‘
't is easily  seeu that the "gradient" - snd “econtrollable®
systems (see th.l) as well as the description of the manitold

supporting “agradient” system (see th.Zd) Farc (20 cprojectedoiy.

R2 define the corresponding decomposition and  supporting
manifold for (1), The definition of the ideal generated by £ 1in

FLE gt ) is bhased on

af af

adf(gj) (¥)= Ju (X'u)li du, Uy e ‘(hi(x’m] and

0 0 4

for any k»l,I=1,...,00  where

. k-1
ad*£(g %) (y) =(adx 4 <?1) (x, u)]

L]
m
(e
(R0l
=
it

ad, f£(n,) (x,u af(x u) by (x, u)n-—-——(x u)f’(x, gl . - We

It(gl,...,g’") can be written as a Lie algebra
: \

Ll s wiois ,bﬂ,ad"f(hi) slenn da(d, M)t - over. R g swhene

b,, ad*f(h,) eVect(R™") are given by b, () 839 /3uy, adkf'/hi) (¢) =



n

Zad]; f(hl)p?LF/Bxp gl el el o v,y - fOR any k{jé Coo(Rn+m)
p=1 : -

Definition 1

We say that If(gl,..{,gm) 18 finitely gemnerated over real polynomzial

P(uz,...,um) tf . there etiat Yz(x),..., YM(x)(gI depending only on xg;Rn

f
such  that any Ye_If can be written
s i
Plo,w) = fé% c (u) Y (x), where e (u), 2=1,...,M,
are real polynomials of (uz,...,ﬁm) depending on Y.

To rewrite an arbitrary solution in (1) and to describe the corresponding
supporting manifold we need to assume that If(gz,...,gm) is finitely
generated over real polynomials P(uz,...,um) which can be'accomplished

if we Tmpese that the-Lie adebrarL(adi f{hj), j:Z,...,ﬁ: kel).ie
finiteiy generated over P(ul,...,um), where hl(x,u),...,hﬁ(x,u) are all

partial derivatives.of file;u) with respeet to u st

gofealia
The computations and results in Theorems 1 and 2 do not change
essentially.

Even more, working with affine control systems

m % .
% = A s e R, FataiVeet(E")
i1 .

the concept of finite generation over R can be replaced by the following

one

Definition 2

: n ~ 1 m
Let xoggR and G(tz,...,tk)(xo) be ancopbit of If(g e .

starting from z We say that If(gl,...,gm) 18 finditely generated with
respect to orbits starting from x, L. there exiet
Yz(.),...,YM(.)eng(gl,...,gm) such that any Yé:If(gZ,...,gm)
along to G(tl,...,tk)(xo)-can be written I(G(t1“7’tk)h%)A:

M

: ' J > = Bk -
= ;%% aj(tl""’tk) Z (G(tl,...,tk)ﬁxoy with aj¢50 (R‘) depending on Y}



and G(tl""’tk)(xo)'

It is my believe that using new concept in definition 2 the decompostition

and manifold'structuYe stated in theorems 1 and 2 will preserve the content.
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