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Localization of energy functional
and

duality for excessive measures

[ by 5

Valentin Grecea

In the study of excessive measures, an i'm};ortant tool js the energy
functional. Whenever U= (vﬁ)eL)oiS a submai’kqvﬁén résolvent of kernels
on a measurable space (X, X), two outstanding ordered convex cones arise.
First, the convex coneg(m of all excessive functions on X, and second,
the convex cone Exc(1)) of ali exce#sive measures onx.On the cartesian
prod.uct Exc () xg(D’) is then defined the energy functional L, which gene-
ralises the notion of energy in classical Potential Theory. On the other hand,
for any ordered convex cone-C one consider it’s dual C*, the ordered convex
cone of all positive numerical functionals on C which are: 1) additive,
2) increasing, 3) continuous in order from below, 4) finite on an increasing
dense sgbset. Then C* is an ordered convex cone with usual operations and
pointwise order relation. Given two arbitrary ordered convex cones o and C,y
we say. that C, and C, are in duality wWith respect to a positive numerical
. 1 X C2 if:
-— §C(c1,c2) belongs to C

functional zdefined on cartesian product C

a) for any c;€C; the map c,

b) for any c,&C, the map c, —-}&(cl,cz) belongs to C

=R N ¥
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The duality functional dUQis said complete if any element from C; is obtained

’: is obtained as in b).

as in a) and any element from C
From the well known properties of energy,functional, the ordered convex cones
Exc(\J) and %IU’) are then in duality with respect té L (in fact &£ duality,

that is we require only & continuous in order from below in property 3).

Generally, L is not complete. This happens however when'\)‘posseses a reference



measure. The aim of this paper is to point out that whenever g is an exces-
sive measure and we consider the ordered convex cones Exc § |y S(TLEEXC(W :?‘(L
({g}and '—E(m§= { the set of classes of excessive functions, finite § B8 s
through the equivalence. relation sput@s = tga.s.} , then we can derive from

L, in a, canonical manner, a funcfgionaléfgon the cartesian product Excg(m X
x%m')gthat expresses the complete duality between Excg('\j') and %(U)g in
 above sense. As a consequence, we can prove dit;ectly for an arbitrary solid
convex subcone M of Exc (\_7’) , some of the results from [1] concerning duality
and biduality for the ordered convex.cone Exc(\)’), without using the description

“of the dual Exc (\)) given in (1] .



1. Preliminaries

In this section we recall some flacts about excessive measures, energy functi=-
Qnal, and H-cones. Throughout-this paper (X,I) is a measurable sf;aceva‘nd‘

U= (V) 5o @ submarkovian resolvent of kernels on (xX) for which the ini-
tial kernel V = V0 = S&p ‘V‘L-is proper (that is there exists .a‘-,strfctly posi- -
tive measurable function f on X such that Vf<ooon X) and strict (that is
V1>0). We denote by oo (resp.%('l)?) the convex cone aof all supermedian
(resp. excessive) functions on X. No condition of finitude is imposed for
excessfve functions in notation above.

We denote byT(resp.Tb) the convex cone of all positive numerical (resp.
bounded) measurable functions ‘on X and for any measure }J on (x,X) and for

any fe‘},we denote by rJ(f) the integral of f with respect to ‘J

Following [ 4] and [S] , a positi'VEaxneasuregodIis called Vexcessive (or simply
excessive) if it is £ finite and .
1, Eav < § , V>0

2 %av&)' % when A Jf OO

It can be shown (see [14] ) that in our hypathesis (V strict) if a &£ finite

measureg onxsati‘sfies 1., then 2, is automatically satisfied by § ’

We denote by Exc(V) or simply Exc the convex cone of all excessive measures
on X.

Qﬁrgg‘glyfrom defin_ition, it then follows quickly that for any family F in Exc,
we have inf FEExc and if F is upper directed and dominated in Exc, we have
sup F € Exc, where inf and dup are taken with respect to the natdral order
in the boundedly :comptetenlatticerof=allnpositive finite "measures on I

A less trivial fact is that the Riesz decomposition property holds in

Exc: if %, %], gz € Exc, - %é?] + gz , then there exi.st:-’fl],;flz. & Exc |



such St EMEG M (G 8 - M 02 B 5
Ift’ is a positive measure on JLsuch that rJV is &£ finite, then |t follows

from definition that tJV & Exc.

| 'Defil;\iti'on ([4] or [5] ). |
The energy functional on the cartesian f)roduct Exc XE('U‘? is the map |
Lt Exc xg('\?‘) — E_'_ defined by

L(g',s) = sup-{}lls) s yvsg}
We list the following properties of L:'
l)b For 'ariy~s E%('U’) the map |

§ —>L(E,s)
is additive, increasing, 'andéicontinuc.)us in order from below (gnﬂg :’)
L(E.s} A LLE,s)) |
2) For any g Exc the map

s —>L(§,s) :
is additive, .increasing, and&contiﬁuous in order from below tsnﬁ 5 =
L(E 15,) Z7L(E ,5) ' |
3) For any géExc, s = erg(\)) we have

L(E.vA) = £(f)
L) For any g='JV€Exc, seg(\j‘) we have

| L(PV,s) = P (s) |

5) For any §€Exc, there exists a strictly positive element ueé(\j‘) such
that :

L(§,u)l< oo '
(In fact, let g E‘i’, g0 such that %(g){OO and put u = Vg).

We recall a converse of 2), which will be esential in the sequel.

Theorem (see (6] )
For any map ?:(8(\)7-—)& which is additive, increasing, & continuous in
~order from below, and finite on some strictly positive u 6%('\?‘), u¢oola.s.,

S



there exists a unique excessive measure gonx such that ® = L(% gmay

Note that generally a similar converse for property 1) is not valid (see'[6] :
for an example) ' | B : | ,

.Finally, we, recalllsome elements from H cones theory.,

Let § = (S,£) be an ordered convex cone containing a null element 0 and
s20 for any s€S. We say that S is an H-cone if thé following broﬁerties
are fulfilled: | | | . '
1) For any family F&S there exists the greatest lower bound A F and A( +F)=
- =s +/\F for any sgs. |
2) For any upper directed and dominated family F<S we have V(s+F) = s+VF
.for any s&S (VF exists from 1))

3) For aﬁy Sy $15 $,€9 such that s;<~51+52, there exist t],‘ t, €S, s=t1+t2-, /
ti sy tzgs2 (Riesz decomposition property).
~0n (S,4) we define the specific order :Sby

sét@ﬂue_s, stu = t

If F<S is an upper directed family and there exists s = VF, we write F/’s.
A map P: S -—-'v‘R._I_ which is additive, increasing, continuous in order from
below (F s @F(F)ﬁ})(s)) and finite increasingly dense (Y/seSs, 3rF As,

V(t)<OO,Vt€F) is called H integral on S. It is known that the ordered
convex cone $* off all H integrals endowed with the usual algebrafc operations

and the pointwise ordef relation is an H-cone called the dual of §.

Let now §** be the dual of the H cone $* and consider the canonical @mbeding
of S in **
o~ X% ~ _ *
$3s —» TS . _s(y) =P(s) ,V]—’ES
If s* separates S, then obviously the above map is injective and S will be

p & s b Sl L ¢ ’ %%
identified with its image through this map. S becomes a convex subcone gf's
&

o



and the order "é"- on S coincides with the trace of the order on S*j'E if S’t

separates S in ordef too, .that is :

PV (s)&V(s)), Vyes' =s<s
Let us apply these considerations to the convex éone Exc. From previdus_ ’
femarks, Exc is an H cone g(lith né{u‘ral order on measures, Moreover if FaExc
we have AF = inf F and if additiona\lly F is upper directed .aqr-x,d dominated
then VF = sup F. Note that the H cone Exc posseses an important property,
being a cone of measures: For any upper directed and dominated (resp. lower.
directed) family FcExc, there exists an increasing (resp. decreasing)

sequence' g nc:F such that VF = sup % n(resp. NAF = i‘nf‘g’: n)" Therefore, it
n n :

is sufficient to ask in definition of a H integral on Exc to be & continuous

in order from below.

" From now on we denote by S the convex subcone of <-E('D") consisting of all
functions s G'Em) such that scooUa.s. =
Note that generally S is not an H-cone. For any s&S the ma;;

§—>L(E .o
is én H integral on Exc and if we denote byq)the map s ~—> L(.,s), then S
is embeded in Exc® as a convex subcone. Moreover ? is inJ:ective and there-

fore we can identify S with (P(S).

Definition.
An element u of an order-ect"vc'onvéx'. coneC, €) is called weak unit if

Vi{icAnu =¢c , \/céc
n

0f course, we suppose that cAnu exists and this hapbenes if C is a lower
lattice for example.
It s known that in <f_—?(\j)’fcr any s, s, we have s,/\s, = mf(s],sz) where

means the excessive regularization of the supermedian function inf(s1,sz).



It is easy to see that for any f>0 such that Vfcoco, u = Vf is a weak unit

for both S and CE('U’)

Generally Exc has not a weak unit. It is ‘easy to see that Exc has a weak unit

iff l? posseses a reference. §peasure’e

 Definition. Let C be an ordered set and C1CC a subset. We say that C]. is

solid (resp. dincreasingly dense) in C lff-"fenyany c &€ C] and any c&C, c&ey
:-E?CEC1 (resp. for any ceC there exists an upper directed family FCC] such

that ¢ = VF),

Proposition 1.1
Let C be an H-cone, C,=C a solid increasingly dense subcone of C and 'J GCf.-
Then the functionalp defined on C by
V(c) =~sup{}1(c1) 1 ¢y ECy, c]é_;}
is the unique extension of - tJ to an H integral on C and the map
s
. . g * F S
is an isomorphism between the ordered cones C1 and C* (See [2] BROp: 2.2.24)

for the proof of a more general statement)

2. Localization of the energy functional.

Throughout this section, % is a fixted element of Exc, and we define on ’3:

(cf. (1] ) the equivalence relation
foug <> f =g g a.s. Yf.g é?

Denote by ?é the ordered convex cone obtained by factorization of the ordered

-
Ny
e

convex cone '}— relative to this equivalence relation, the algebraic operations

and order being induced on ? tn the canonical manner.

def - ' ‘
Consider now Excé = {'YLEExc-, WL<<§} . Using the Radon Nicodym derivative

it is easy to see that Excg s {"rLéAExc, M= V'YL/\T‘!%} . Note that % ,



becomes a weak unit in Excg :

Define now C€ '\?’) {h hc"é‘f('\j") h(o«:ga s} and S% {? : Se%m'),‘

s<coo \Ja s.} ‘ Observmg that V1, = 0 ““>% (A) = 0 for any A € X and

A
any %é Exc, we have the following eequex'rce of inclusions of order_ed convex
cones : | -
s B e Ty
Remark 2. : ‘

For any wec.k unit u of S, u is a weak unit for %(U) too. lndeed, it

follows first that u$0 on X. Then, using an argument from [6]there exists
f»0, Vfi¢ oo and Vf€u. As we mentioned in 1, Vf is a weak unit for %(U‘)

and therefore u is a weak unit for % (\9) .

Therefore S§: is solid and increasingly dense in %(Wg . -Moreover, for any.
h 6%('\7) and for any weak unit u&S we showed above that "
h =sup hAnu
n

. A —N |
and therefore' h = V hAnu im the: ordered convex cone%(mg . Obviously
n 1

N A
h/\nués.é and the sequence hAnu is increasing (to h).

Proposition 2.1,

1

For anY 'YLéExcg and S szé(é(m such that s1és2 % a.s. we have -

LVLs ) &L(Y,55).

£ty

Proof.

From [l*] there exists an increasing sequence M V /4’YL , and by properties
1) and 4) of L, it is sufficient to prove that

éf’(sz)

if s]gs2 )JV a.s.



Because Vy £ V we have b (evy si)ér(&‘J&sz),Vd>0 and letting ol—> oo

we get the desidered inequality.

Definition 2,2, ‘ .

- For -any %eEgc let us denote by ;‘fg the unique map on Exch (E(’U‘)g i
with values in?(' such that xg("?z h) = L(‘Vl h) for any 'VlﬁEXCg and .
- h 6%('\9’) such that h< oo %a S., and we call é_og the % ]ocahzatib_n :
of L, ; ; o

In order to prove the properties- of 2§ (theorm 2.9.) we shall use es-
sentially the cons:deratnons from [1] concerning Excg and %('U’) . We
keep the same notations for ease of the reader interested in some detalls

Our tnterest:is to emphasize the phenoménom of localization,

Fol]c;wing [l] , the resolvent \J = (VOK)‘,L>0 induces a family of morph:sms
g W (VE )d\> o O the ordered convex cone ?'g just setttng
A N
fF-7F VreF, Vavo

by observing that f =g § a.s. => Vf = Vg % a.s. Indeed if A € X and

% (A) = 0 then E(V&l )é—-—’——g(A) =0 for any A 0 and letting &=>»0
we get g(\ﬂ b= 0 Then it is easy to see that the family (Vg &> B
sattsfies the resolvent equation. We caH resolvent on ’}' any family of
morphisms “J = (Tg)d\>0 on (?gwhnch satisfy the resolvent ‘equation

&
It can be shown that for any o\ 3> 0 there exists a unique morphism VE on

’}'g such that
5 :
§5u8ag - ?VEﬁ‘d§ Vroed
(tn the sense that' there exists a kernel V% on ’}% such that
‘ ng Fdg = gfvégdg Yiee F)

and the family '-U%— (V§ )d\">0 is a submarkovian resolvent on (Fg



We note that if there exists a resolvent X = (Vj:;\)d~> o of kernels on T
in weak duality with U relatively to € , then vo’f* is obtained from vi

in the same manner described above.

Definttion 2.4, ( [1]) , .
We denoté by E('\)g) (résg‘- E('\jg*)) th;a convéx céne of all el'ements-'lu\‘ é’}‘g
“such that : g . | | '
d\vi?ﬁ’l? (réss.uvfﬁﬁ\/ﬁ) when b e
~and G <02 (that is u-icoga.s.) | |
It can be shown ([3]) that E("D'é) and E(’Ogi) are H cones and we have
Theorem 2.5. ( [3]) |
» t) For any s*e E('O%ﬁ) the mab B (s*) from E( '\j’%) Into-l_{‘_ defined by
§ b3 sup{gs § dg .4 V% f<s}
belongs to (E(\F§))* and the map
| ¥ —> G (%)
is an isomorphism between the H cones E("O’Eﬁ) and (E('\jg))* A
ii) For any s€E(VUE) the map B*(s) from E('\j%*) into_fz; défined by
§* ——> sup{gs? d % . V% *?g s*}.
belongs to (E(1J§*))* and the map
§ —— 6*(s) . ' _
is & tsomorphism between the H cones E(\?%) and (E(UE*))*, and we have
B 6) = B Y , YV see (D), SFee(pth.
" The next result gives a characterization of the elemeﬁts of Exg g . ¥
 Theorem 2.6 ( [l&])

I\
For any MEExcg there exists an unique element V) EE( *Y such that
g g q
A

"="-§
s T

is an isomorphism between the H cones EXC% and E(vg*).

and the map

&

-



(tn fact, the proof imitates the case of two resolvents in weak duaii‘ty
with respect to %, by using the Randon Nicodym_derivative and the relati'on
of duahty -

Proposntlon 2l [Ij corollary 2.5)

_. .The cones E(\J§) and %(U‘)% comcudeé

 Recall that %<Wg ={? : he EOD), h<o<'7§a;s'.}

Propos:tlon 2.8.
For any 'Y‘LG_EXC% and for any s 6(5('\7), sdwga s. we have ;
LB =L, =BG - 0" Gren). ‘('1)

where 9, @ are the |somorphasms defined in theorem 2.5 and ’YLIS the unique
element of E('@E ) such tha’t’YL='TL'§ ,given. by theorem 2.6,
‘.Proof.
0f course we have to brove only the second éqﬁality in (1) because the
first ts just definition of &‘%and the third is the last statemen't of théorém
2.5., tn relation with proposition 2.7. ’
Therefore, from definition of 9, we have to ﬁrove the rélation

L(",s) = sup {7(’(1’-) VEgs 8 a.s.}
(0f course, fE 7 in above express:on) '
Indeed, from Hunt’° theorem, there exists a sequeﬁce Vf 2Ts and théréfore

L{N,s)= sup L('YL Vf ) sup "YL(f )<sup{'7’(.(f) : Vils g a.s }

For the converse lnequallty, we use propochnon 2.1, We have

vigs § a.s. = M () = L(N,VALLY,s)

and the proof is finished.

Theérem 2.9.

1) The map
7\ A
h _—_—?f ("h)

" is an isomorphism between the H cones %(‘U’)% and E)éc’%



2) The map

N —> L, )
is an isomorphism between ‘the H-cones Exc§ and QE(TJ’)%’
Eroof. ‘

We recall that ¢ is the unique map on Excg X. & ( such that
§, A § §

for any M € Exciand for any hé%(m, h<oo'§ a.s. From theorems 2.5; 2.6

we keep that @ is an isomorphism between g(\@’)g ol E(\?%K B0 ks tsemor-
: o '
phtsm between E('U'%’() and %('O’)g- ,and finally the map "L'Sf_)ql. is

an isomorphism between Excg and E('\?E*). Proposition 2,8 shows that

1) Lel-H = My , VieEmg
2) L= O (), Vweeg

and both statements of theorem are clear now.

Remark that the H cone E('\)g%) played an evanescent role for our purpose.
We produced from L, a map S,f-‘-ion Excg X%(’G)g that expresses the complete
duality between Exc% and CE('\?)% although L fails to have this property
relative to Exc and (8(1}). Therefore we shall identify (E.(\))% with the
dual of Excg , that is the same with the « dual of Exc %S as we remarked
in section 1. However, not .the description of Exc*gitself is essentfa] in
what follows, as we shall see next section. We shall use eésentially the
fact that Sg is émbeded, in this way, solid and increasingly dense in

Excié in the strong sense stated in remark 2.1., by using weak units of S,

that is in a manner not depending on g .

3. Duality and biduality for solid convex subcones of Exc.
Throughout this section M is a fixed solid convex subcone of Exc. It then
follows that M is an H-cone (with the order induced by Exc) which posseses =

a dual M*. The purpose of this section are to establishathe position of S

relatively to Mx and then to establish the position of M as a subcone of M.



Proposition 3.1.

Let us consider the set b= Exc§ Then M is a solid convex subcone

of Exc, and M is .,olld and mc?egsmgly dense in M as a convex suBcone.

Proof. :

Ve remarked in sectlon 2 that for any %GExc we have Excg {WL&EX(\:,.»
= yAng |- -

For the flrst assertion, observe flrst that each Exc%is a solld convex sub-*

" cone of Exc and the famlly (Excg) %GM is upper directed relatlvely to

inclusion (for any % 1 ‘§2€M let % %1 +§26H then Exc% CEXCgand"
1

Exc:g < Exc§) For the second assertion, let ’VL&M and choose %6&1 such

2

that M € Exc<§ It then follows™] = \/’YL/\ng and consider the sequence
E N —’lL/\ng We have n%e M, M bemg convex cone and theréfore % €M
because % né n% and M is solid in Exc..Therefore M is even &£ increasingly
dense in M since \n/én =§ . The solidity of M in M is ebvious, since M is

solid in Exc.

Using proposition 1.1 a").' H integral '—’&Mﬁ can be extended‘uniquely'to an
e]ementp of H* and therefere M2 WE

So;, we can study.ﬁ* insteae of M* and we will work with % in the
sequel. o .
Let now ‘JGF\* end denote V% =r)‘ Exc-g_ for%é M.
Proposition 3.2.

»
&

For any Pe.ﬂk and éé M the restriction }J% of P to Excg belongs to Exc’%’f.

%
Conversely, for any functional ‘J N -—~>R such that }—" Exc<§e Excg for

any ieM it follows }1€£M . Therefore we can identify " with the family

{(‘Jg ) §€ ut P%é Exc§, V%eM and such that for any g 12 ‘g‘,_e N, ?1é_§2
we have szl Exc§1é Excgf}‘



Proof gt
The first assertion foHows from definition of H mtegra]s, and the fact
. that Exc§ is a solud subcone of Exc, for any’ gé Exc. The second fo]lows
since M = U Exc and the famlly (Exc is upper dlrected
| ten : ¢ g
We wish to use the' results from section 2 to study.ﬁ'ﬂ't For any VG‘H* the
net (‘Jg) gé M increases mtuthely to FJ and we know the description of
}J% for any‘é . MOre precisely, for any meW and for any Eé M, let us
consider the pro;ectlon of m on the cone ExcE that is take Bg(m) dgf
\/{"VLG Exc§ 41 } From definition, Bé (m) EEXC§, and the net
BE(M) %GM increases to m only-because m en = E\GJMEXC % , and then (!t
seems natural to approx:mate}l with the functionals B‘;‘P ]J o Bg
However, we don’t know yet neither if B%IJ belongs to 1. Suggested by [1] s
the following proposition makes more exact above discussion.
Proposition 3.3.
a) For any %éExc and méExc, we have

Bg(m) \/mf\n% | A ' (1)

n
and the operation B% defined on Exc is addltlve>|ncreasmg, contlnuous in

order from below, contractive (BE\U and ldempotent (Bg-— 'Bzg )
'b) The operation m -—»m«-Bg (m) defined on Exc is increasing.
Prdof.

For relation (1) we have to brove only that

Bg(m)é \n/ mAng

R

(since mA n%g m and belongs to the solid cone Exc%)
let ME EXCE ; 'qg m:.. We have
- Vaang <V nAng
n

n
and therefore -

B%(m) =V {'f(e EXC;‘Vl\{m}é\L/ m/\n.% .

°



»

|

It follows now from general theory of H cones that the operation B% posseses

all the properties listed in a) (see [ﬁ?lgh@ﬂ,é).As to b) it suffices to

show that the operatien I-B is increasing. Let mr{m . We have
+B§(m —m+V m/\ng V(m+m!\n§)—
V (m +m )/\(m +n%) <\f (m +m )/\ m2+n€)-—m +B§(m

" and the proof is flmshed

NV

Corollary 3. L,
For any Efé.-‘.M and for any € €M we have
a) B%N € T* (and we remarked that sup B%F !.I )
b) P- 8P € .
Let us consider now Llﬁ x S. It then follows exactly as in the case
M = Exc that the map

s =23 L(.,s)
is a map from S into .ﬁ*, which is not generally injective (Foi-*:examble take
M=M= Exc\%); However denote ?(9). the irﬁege of S in T~ through ®. CP(S)
is an convex subcone of Th- iy .‘ and for any s€$ the action of Q)(s) on M
is given by the formula ~ B

Pls)(m) = LGns) , N ne® (1)
On the other hand note that T* separates M since W = @(s) and C%)(S) separa-
tes M (|n order too) by above relation (1) Therefore we can identify M with

it’s image in nr through the map

41y

n—>F  F(P) =pm s Vpen
and M betomes an ordered convex subcone of H**
Proposition 3.5.

For any weak unit u &S, the element q)(u)é(? )CH is & weak unit for T®



Proof.v
First, we show that for any VY ,P e w'e have
| (VAP)g = VeAps
(Recall that P% def P‘EXC% for any ‘ue‘h* and %e M).lThe first A\ is taken
in the H cone T and the second in the H cone EXCﬁg . The inequa]ity-égis‘then
obvious. For the converse, from proposition'3.2 it suffices to show that the
map
..-ﬁam ..-—)\}g/\rjg(m) for meExc%c:,-ﬁ
ts well defined on M that is we have : | ' _
V%I/\‘P@ “=V§2A})§2‘ Exc%1 if E1$§2
By theorem 2.9 the map '
o G
ts an tsomorphism of H cones between E(m% and Excg 5 ForE =§ 29 choose
h,g EE??("C?), h,g finite ? 5 @:Ses such that :
N
Vg, = Lg,m hg,) = Limh)
and ) : ,
Pg,m = §€§2(m,’g\%2) = L(m,g)
for any'm & Exc%z. If we take mEExc §1§-EXC§2 arbitrary, we get
- ~N 3
Ve, (m) =$§1(m,h%1)v= L (m, h)
and : '
%j’%‘(m) =duf§1(m,?§]) = L(m,{g)
on the other hand, it is eaSy to see that for anY'g,h €£%§(Uﬁ and for any
_ P A A
%& M we have (g/\h)§ 2 g§/\ h‘?‘ and therefore, for any m & Exc %f.‘-‘_-Exc%z
we have | : | .
I A D S
Ve, AV g, =/é31§,_(m,hg,/\. 9 §q) =Kg(mhAgE) =
A~
L(m,hAg) =$g2(m,h/\g%2) =§g2(m,h§2/\3%2) =
Ve NY gm0 |

and the above assertion is proved.



Take now u€S weak unit and PEN . For any § €M we b
(PAn@)g = PeAng = Lel-hennle) -
= L(-,hAnu) :
Hence | :
(N pange =V (P AnQlu)y - sup L{,hAnu) =
L(-,h) = P% 5

and therefqre :
\n/v/\n@(u) =r’ N | VFQM’“

that is ?(u) is a weak unite

Let now PET*. By theorem 2.9, for any § € M there exist an uni-que/!:%ecg(‘\)’)g
such that
V- Lgthe)
{f there exists tes such that H(Cg)(t) then for any £ & M, there exists an
/\
ge S such that h§ § . Indeed, we have e
h§< t% => h%" hgl\t% e hgl\ t
where hg & €O is an representant of hé, and we can take sg = heAt.
Proposition 3.6.
Let g!e‘ﬂ* dominated by an element of Q(s) and for §& M choose an element
sg € § such that h§= sg . We have then '
(p) B§ CP(sg))
Proof.
For any m&M we have
P -y (Bl = Me(Bg (m) = éeg(Bg(m) he) -
é€§<s.-§(m), s¢) = LBg (ysg) = sg (Plsg )) (m).
Corollary 3.7
The set of all specific minorants of elements from @ () in T is increasingly

oy el
dense in M.



Proof.
From proposition 3.5 it suffices to show that for any ]J&—?i* dominated by an
element of P (S) (like n-q>(u), where u€S is a weak unit), there exists an F -

upper directed family consisting of specific minorants of elements from (P(S),

-~

such that P= Ve in"ﬂ#. We take the family

F ={3’§§ (P)}% e M

Indeed, for any %eM, let sg be an element of S such that
Pg= Lelhsg)

From proposition 3.6 wé have then

| g () = 5% (Qlsg))

and from corollary 3.4 we have

B (Plog N4Plsg IEPLS)

and

’gen(iid F

Theorem 3.8
The convex cone M is a solid cubicone iof s Bldual R
Proof. |
Let mgH and let Fe®* such that
N

that is r: Mﬁ—'—?a‘ is additive, increasing; continuous in o'rdehr from below
(and finite increasiﬁgly dense)such that

l'(;a><m( 5) =P, \7"\: T
Cons;der the functional ro(? S-—-=>R
Obviogsly V oq) is additive, increasing and continuous in ordérr from Bélow.
Let u€S be a weak unit such that

m(P(u)) —GP ) (m) = L(m,u)

(We can choose u = Vf, where fE€F is such that £>0, m(f) o0 and V(f)<00

This choice is possible since m is< finite and V is proper).

We have then



s figeE S

ro (P(u)éﬁﬁ)(u)}'( o0
and hence, from [6] there exists an unique m1€ Exc such that
r°§N5)= L(mg,s) Y ses
But we know: that I—.g:_?ron M* and hence on CP(S)». Therefore
YZDCP(S) = L(mg,s)<L(m,s) ='FR<P(S))
for any s&S. If we put s = Vf we get
m, (F)m, (f) : Yrer
that is m]é m, and hence m1€ﬁ, which is a solid subcone of Exc. We show that
_ T-% on
We known that E—= m; on CP(S) by construction of m;. Let }JéMg domi nated
by an element of (P(S) and for any tCM choose an element sie S such that
Pg- & 'Sg |
From proposition 3.6 we have then
e () - §<q><s§>) . VYeen

We can write then

[

[ees ¢ § () ]—(BE(CP(S ))<f<P ) -
=, ((P %)) = L(m],s%) ; T
If we take g large, such that m, & Excg, we have | '

L(m1,s§)— g(mvs%)— g(m)—ld(m B s t]

and recalling (1) For £ large we get

RB fJ))< ' - (2)
P | being contlnuous in order from below,we get

[ - suprB (PN () o ®
Now, if P eM is an specnflc mnnorant of an element cP (s)& (?(s) such
that

r(cp(s)) = (P L oo (1)
we get from (3): }

['W)@:(w

and



IERUPCAGIORS
and by (14) these inequalities must be equalities.and therefore : 2
e o < S
Using now coroHary 3 k. and proposition 3.5, from (5) we get o L
| T =%, Vped ERr)

both functionals being continuous in order from below.

Corollary 3.9

In the case Me.= Exc, the above proof shows that any FG Exc**’ finite on some

(%)(u), ‘where u is a weak unit of S, belongs necessary to Exc. In this case

"we noted that S may be ldentlf16d with @(S) since @ls anectlve

We recall one more element from H-cones theory.

Propositi.on o [J]) 3 ‘

let T be an H cone which posseses a weak unit u. Then the set{reT*: r(u)<°°}

is increasingly dense in Tﬁ. ’

For a proof see ( {1] , proposition 4.1.).

Theorem 3.11 '

The convex cone M is an in.creasingl-y dense subcone of its bidual T

Proof

From proposition 3.10 applied to the H cone M it suffices to show that for

any FGM r((?(u))<00 for some weak unit u€S, there exists an upper

directed family FcM, such that VF = rwhere V. is the supremum ‘in TRE

Fix ras above. For any %GM define the element Bér of W by the formele
sl (p) - T, e

It is then easy to chekk that BgEM for any %CM the family F {gr}éﬁm

is obviously upper directed and from corollary 3. L4 we get VF =

We claim that B%ré Exc%CM for any %GM. For this, it euffices to find,

for each géM, an element m%G Exc%; such that



B%f' =?{a’% on @ (s)
since then, the proof of theorem 3.8 shows that the above equaH.ty holds on M.
In order to find me let us consider the mab
s —> sl (@)

from S into R, which is additive, increasing; & continuous in order from 7

i

e

belo_w and finite for '5"= u.
" Ve remark that if s],szés, s1g52§ .5 wé havé

| agi'(cwsl))@s,éi‘ (@G, .
Indeed, it suffices to show that - :

' B%c?(s,)gs%q;(sz) e BUIRRE

Let '?‘(-évM’ arbitrary. We have

a ) ~ ‘

BEC?(SI)(WU =%)(s1)(85q) L(Bé’#’t,sl)

% ;

B§Gf>(sz) () =Pls,) (Be L(Bg ) »5))

Hence (2) follows using proposition 2.1 since B%'YLEEXCE , for any "Q‘é"ﬁ‘.

it

Now, we can define the map \6’€ on S% by '
v \ -
?{g(?) = B§ I (CP(S)) ,\G/.sé.s
From (2), zfgis well defined, increasing and then it is additive, and finite
for & = U, We show that Xgis continuous in order from below. Let ?e S%
and {sgX i) @n uppe‘r directed family such-that /s\'ﬁg\ In order to show that
?{%(si) 4 b’g@)
it suffices to show that
e*‘%cp(siu’" K P in
For this, let ’Y‘(GW arbitrary. Using theorem 2.3, we have |
5 Pl (1) = Plap) g = LBE5y) - Ly o, %)
7 Lo B - BE P (s) ().
et s ~
Therefore ?)E is an H integral on the H cone Sgconsidered a5 a solid and in=

creasingly dense convex subcone of %(mg "



From propositi'on 1.1 and theorem 2.9, _there exists them, an unique element
M & Exce such that
: % % ‘ £ 0 ’ o~
B = Lng B, VSese

and hence we get ' ; ' iy
gl (@ < z&.”%(m%.’s‘) - Lng.s) =

=Te (Pla)), ; i |
for any s&S, hence B%ré Excggﬁ,-ﬁ' for any igéM Considering B‘=,_(B§I_)§£M

we have FEM and Ffr , and the theorem is proved.

Theorem 3l.1,2
M is solid and increasingly dense in MMQ.
Proof .
From propositio.n 1.1, any PIGH*E exténds uniquéaly to an e]ement'i:l'é}:‘f"’t and de-
note by e the map .
igeats | |
that is an isomorphism between the H cones M~ and T“lk. Now, take r@.Mﬁejﬁ
dominated by an eiement’n\w’of HM, where meM. 1t then follows

Fpilarhai 5. .o
where m is regarded now as elemént of M.
From theorem 3.8, there exists m1€°H‘, hence m1€_M since M is solvi‘d,Asuch that
' . ‘ oes ! =ﬁ=‘r~n~;oc-1;31 on W°
and therefore E-=Fﬁ1-’on Mﬁ and the firsr assertion of theorem is proved.
For the second take réi W Then rou51€Mﬁ* and from theorem 3.11, there
exists a family?c:ﬁ such that-F—)ﬂ rou.S1 in’ﬁﬁx, For each element tEF,
consider the set Ft = {TL@M;WLgt}.
Then ft’t is upper directed and VF_ =t in M since M is increasingly dense in H.

Hence Ft’ﬁ t in Mo for any tGE. Let F = U FtCM. Then F is upper directed
5 :



since F and each Ft are upper directed, We algo have

VF =V (VF,) = VF = Fows' = tn®*™*
£ L OY
Now, obviuosly F O<A31 = F and hence
VF =] in 1

and the second assertion of theorem is proved.

Remark.
In the barticular case M = Exc, the fact that Exc is increasingly dense in

Exc®® results directly from éFOPOSitibn 3.10 and the proof of theorem 3.8.
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L. Exc and reference measure.

In thlS section we characterize thoée H-cones which are isomofphic with some

Exc(V) where the resolventt\?'(vd\)d\jyo posseses in addition a reference

measure. Of course this is a strong resbrlctlon, bﬁt thisccase covers l

however sufficient examples \lfe need some addltlonal elements from H- cones

theory.

Definition (‘[z} )

Let S be an H cone with a weak unit u. An éleﬁent'segs is ;all;d u continuous

‘if for any‘family.FCZS, F.A7s and for any €20, there exists t&F such that
& st +E&u

Denote by Su the set of all u continuoﬁs éléments'of-s. it can be shown.that

SQ is a specifically solid convex subcone'oF'S. An element s €S is $éﬁd§ to:

be universally continuous if it is u contfnuoﬁs for any weak unit u and den

note by Sg the set of all such eléments of S. It thén followsAthat_Sois an

specifically solid convex subcone of $ since 54 = (}, Su
' ueS weak unit

pefinition ( (2])

An H cone § is called a standard H cone if:
1) There exists a weak unit in S.

2) There exists a countable subset D off S0 such that for any}sé&S, there exists.
an upper direc;éd family F of elements from D such that F,f?s.

We can state now the announcéd charécterization. If a resolventrE}Eosseses
-~ a reférence measure we say that\?’is absolutely continuous.

Theorem 4.1, |

An H cone M is lsomorphxc with the H cone Exc V of all excessive measures
with respect to an absolutely continuous submarkovian resolventﬁty i ) Lo

on a measurable space (X,jﬁ) for which the initial kernei V is proper and



strict, if and only if M 1s the dual of an staedard H cone. *
Proof. o5
.lf we have a resolvent“,?‘as above, it is known that § ={s-&,%(°\_‘?‘) P Ss<OP [??'a-s}
is a. standard H cone :EZJ ) and Exc V is isomorehic with §* through the
-energy functional (see remark following this theorem)
It follows also that Exc(V)'ns an standard H cone. Convetself; let S be a
standard H cone such that M=s* Ifwe pick é weak unit ue;S and consider
Ku —'{EJGEM ’J(u)%gl:}then it can be shown that Ku s a simplex in the cone ,
M and a compact metrizable space with respect Ee the coarsest topology ren= ‘~
dering'centinuous on M the elements ofvS'0 through the duality relation between
S and M. Using then Choquet’s representation theorem S is identified with
the standard H cone of functions Su on the set Xu of all extreme points of
Ku less 0 , through the duality relation , :

s —>% TP =P, VPex
(see [2] , theorem 4.2.12). tt follows then (see [2] , theorem 4.l L.) that
there exists an absolutely continuous submarkovian resolyeni‘“7% (ng)g&:70
(for which the initial kernel Vis proper and strict) on (Xu,@(Xu)) such that
S is a solid and increasingly dense subcone of_S—={s ézo('lj’). : 540017:3.5.}.
Using then proposition 1.1, it follows that we have :

M= $%e%Exc V .

Remark

We have already noted in section 1 thatW)’pOSseses a referehce measure iff
Exc possese€s a weak unit. In fact, ity is a finite reference measure fc:r’\§r
then g 0 =yV is an excessive measure of reference too and it follows easily .
that any other excessive measure is absolutely contlnuous with respect to

EO’ that is Exc = Excg0 and we have that EO is a weak unit for Exc = Excgo.



Therefore, in this case, if we consider this (refergnce) measure gg in
theorem 2.9., we get that every equivalence class in (é('\j?%écontai-ns é
single represehtant from ?{”(U), hence @(“m%()&?s, Exc %0 = EXC,y

: %%0 = L, and thérefore the first assertion of abovle'theorem becomes a p
coroiiafy of theowvem 2.9.

Moreover, we get.ExcgﬂfS thfough the energy functional, that expresses.the

complete duality between the H cones S and Exc in this case.

References

i L;Beznea, N.Boboé, Duality and biduality for excessive measures. Pre-
prént series of the Institute of Mathémétics of the Romanian Academy
No. 15/1992.

2 N.Boboc, GH.Bucur, A.Cornea, Order and convéxtty in Pptential Theory:
H-cones. Lecture Notes in Math. 853, Séringer, 1981. |

3 N.Boboc, A.Cornéa, Cones convexes ordonnes, H-cones et biédjoints de
H cones. C.R.Acad,Scf.Paris, t.270(1970) serie A, 1679-1682,

4 C.Dellacherie, P.A.Meyer, Probabilites et Pofentsel, vol . X1 1=XVI,
Hermann,1987. |

5 . R.K.Getoor, Excessivé measures, Birkhauser; 1990

6 J.Steffens, Duality and integré} represéntation for excessive measures.
Math.Zeitschr. (to abﬁear)

R
-«

V. Grecea - Institute of Mathematics of the Romanian Academy, P.0.Box 1-764,

R0-70700, Bucharest, Romania



