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Fine behaviour of balayages in potential theory

N. Boboc

1. Introduction

We consider a standard H-cone of functios S on a set X (i.e. S is
the set of all excessive functions with respecf to a suwbmarkovian resolvent
-absolutely continuous on metrisable space X). For any fine open set U of X
we denote byTJJthe set of all points x&X for which X\NU 1is thin at x and
by S(U) the localization of S on U (i.e. the set of all positive functions
t on U such that t is finite on a fine dense subset of U and such that there
exists a sequence (Sn)n in S; By finite for any neN for which the seguuence
(sn—BXRUsrgn increases to t on U).Any function t & S(U) may be extended to a
fine continuous function on ‘U which is also denoted by t. We remark that
if X is a harmonic space and S is the convex cone of all superharmonic functions

on X then S(U) means the set of all positive fine superharmonic functioms on U.

It is proved that for any positive Borel function f on X, the

function BX\U f is fine continuous at any point x € U.

Let now (xn)n be a sequence of U which converges in X to a point
ze U. The sequence (xn)n is called maximal if we have

Lim BX\Ué<xn) -8 (@)

n—>es
for any universally continuous element s from S. It is proved that the
sequence (xn)n will be maximal iff (xn)n Converges'to z with respect to the
natural topology on U associated with the H-cone S(U). Therefore for any

positive Borel function f on X dominated by an element s €& S which ié finite

continuous at z then we have



S

o - g* (o),

lim B
—> oo
Particularly we have this last relation for any positive bounded Borel function
f on X.
Finally if =z ekﬂithen it is proved that if U is a Doob set then

there exists a fine neighbourhood V of z and a positive real function ¢ on V

such that ,
i LU0 ol ¥ye
where é;(\u means the balayage of the Dirac measure Ey on the set X\ U.
Such inequality extend in a more generalﬂframé‘the well known Harnack
inequality.
These assertions extend some similar results obtained in the classical
potential theory by M. Brelot (|4]), |5]) and in the frame of harmonic spaceé,

under various generality, by E Smyrnelis (]9]), H-Bauer (|1]) W. Hansen (11D

W. Hansen (|6]) and I. Netuka (|8]).

2. Preliminaries

In all this paper S will be a standard H-cone of functions on a set X

(|2]). We remember the following:

a) On X there are distinguished two topologies which are strongly
related with S. The first, called the natural topology, is the coarsest
topology on X such that any universally continuous element of S is continuous.
The set X endowed with the natural topology is a metrisable space with countable
basis. The set X is called saturated if any H-integral on S which is finite
on the function 1 is represented as a finite measure on X; the set X is
called semisaturated if any H-integral on S which is dominated by on H-measure
which is universally continuous is represented as a measure on X, Infact X
will be semisaturated iff the set of all H-integrals on S which are represented

as measures on X (i.e. the set of all H-measures) is solid with respect to the

natural order in the set S% of all H-integrals on S. The set X is called nearly -



; .
saturated if any univefsally continuous H-integral on S is represented as

a measure on X. It is known that always there exists a set Xl:)X such that .
S is a standard H-cone of functions on Xl and such that Xl is saturated;

generally the set X is fine dense in Xl'

b) If A is a subset of X we denote by BA the map on S into S defined

by
A

B S= A { s'€ S|s'zsonA } .

It is known that for any x & X the map

A
> B s (x)

S

is an H-integral on S dominated by €x' Hence if X is semisaturated then
A

the above H-integral is represented as a measure on X denoted by E)(

In the sequal if f is a positive Borel function on X we denote by BAf

the function on X given by
A A
B £(x) = £(D.
A

c) If A is a subset of X then A is called polar if B s = 0 for any
s¢ S. The set A is called thin.at x if there exists s€5S sﬁch that
BAé(x) < s(x) . The set A is called totally thin if it is thin at any point
x & X. The set A is called semipolar if it is a countable union of totally
thin sets.

Let now X be a nearly saturated set (with respect to S) and let Xl be
the saturated set (with respect to S) such that Xc:‘xl. Then any Borel
measurable subset of Xl\\ X is semipolar and this property characterises the
fact that X is nearly saturated. Moreover in this case a subset A of X will
be semipolar iff A is semipolar as subset of Xl' If X is semisaturated then
any Borel measurable subset of Xi\\X is polar and this property Characterisgs

that fact that X is semisaturated (|3]).

d) Suppose now that X is hearly saturated and let U be a fine

open subset of X, U # @ . We denote by S(U) the convex cone of all positive



ol
functions t on Uvsuch that t is finite on é fine dense subset of U and such
that |
t = sup {S—Bx\Us|s=¢ Sy S—BX*US < £,

-

It is known that (]3]) S(U) is a standard H-cone of functions on U. If X is
semisaturated (with respect to S) then U is also semisaturated (with respect
to S(U). The H-cone S(U) is called the localization of S on U. Moreover if

S es,tés, t < oo and t < s then we have
s - 3D € sW).

Particularly sIU & S(U) for any s&S. We remark that (1z D if te s

and s€S, then the element from S(U) given by t‘A\(s—éx\Us) is of the form

x\U |

s'-B""Vs' where s'& Sb, s' £ s.

e) Suppose that S is a standard H-cone of functions on a set X.
Then for any increasing family (si),.1€I from S the function sup s. 1is

l l
fine continuous. Indeed for any n€& N we have

inf (sup s, n) = sup (inf (s, n))
iy i . i
o =4 | iel

and the assertion follows from the fact that

sup (inf (si, nN)& S,
ier

If the elements of S are called usually superharmonic on X

-~

the function of the form sup Si, where (Si)i 1 is an increasing family
i1
in S, is called hyperharmonic on X.

2. The Eiaximd H-cone S(U) as a standard H-cone of functions

on the extension set Tﬂ

In this paragraph if U is a fine open subset of X we denote by
’ ~
Tr'the set of all points z€X such that X\ U is thin at z. Obviously U 1s

fine open and U is a fine dense subset of U. We intend to represent S(U) as

a standard H-cone of functions orqu. In fact any element t &SW) is



&
represented as the fine continuous extention on‘U)of the function t.

Theorem 1. Any element t& S(U) may be extended to a fine continuous
positive function ?foant In this way'S(U) is represented as a standard

H-cone of functions on the set U such that the subsettf\\u is polar with

respect to this standard H-cone of functions.

Egggi;'fhe first part of the theorem‘follows using the fact that the
convex cone of elements of the form (s—BX\US)/U where s & Sb is a solid
subcone of S(U), which is increasingly dense in S(U) and.contains a strictly
p081t1ve element namely (5 B S )/U, where SO is a bounded continuous gene-
rator of S. Indeed any element of the form (s- B s)/U where sé& Sb has a
fine continuous extention on U (i.e. (S—BX\US)/U) and the function (SO‘—

\ o' Cr—h
B Us y/U is a strictly positive function on U. Now if t & S(U) we have

¥(x) = sup. (inf (L, n(s —B s Y(x))) ¥ x&eU.
n

Since there exists §1E;Sb » S, £n Sy such that

inf (¢, n(s, - BVs)) () - (s Vs 0 ¥ xeU

then the element

. X|U
by = 1nk Gy, n(sO—B so))

has a fine continuous extention tn on U. The function

~ _ o
t = sup tn
n

is a fine continuous extention of t because .
inf (t, n(so - B 50)) =t on U.
From the above definition of T it follows immediately that we have
o —— ~

’hJ
tl + t2 = tl + tZ

./‘\—/' _ : —~ N
inf (tl,tz) = inf (tl, tz)

o~ -
ti’rt ==> tiTt

and therefore replaceing t by T the H-cone S(U) is represented as a standard
H-cone of functions on the set U.
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Let now So be a bounded continuous generator of S. To prove that
~L ' ~
U\U is polar in U with respect to the standard H-cone of functions S(U) on

o~
U it will be sufficient to whow that

~

U ~
pU™Us-8* _Uso) =0

o ,
where UBA means the balayage on the subset A of T with respect to the H-core of

o~
functions S(U) on U.

Let (Gn)n be a sequence of fine open subset of X such that Gn:D X \.U

- and -such that

/\an ‘BX\US
n 0 0
We have
G “ G : G
ans -8 Us -85 -8 U@ " desw)
0 0 e 0
BGn s - BX\\US > 5 - BX\Us on G (\TT
0 0”0 0 n
and therefore
~ XU Gy X\U
UBU\U(S—B s)<B s -8B ¥+ néN,
. ) 0 0 0
~ e x\U
N - =
UB U\U (5O B so) 0.

Theorem 2. Suppose that X is semisaturated and let f be a positive Borel
function on X. Then for any fine open subset U of X the function BX\Uf is
fine continuous at any point ofﬁjf 1f moreover f is dominated by an element
s&S then we have

X\ | e x\U - " ey

Ctlyeswy, B Ctly "%S(U) S[U’
Proof. Suppose that f is of the form f = t'-t" where t',t"& S,
\

t" ¢ t', t" finite. We want to show that B>< Uf/«-géS(U). Indeed let s €S
be such that fgs. For any s'é S such that s'zt' on X\U we have

S',>. Sl/\ t", éx\ U(S'At") = BX\Utu

' .



and therefore
(s'-8" Uiy, € sw).

Since s' is arbitrary we get
XNU, w . ' 1 1 1 ; b e
B t/U AS(‘U)/\{SW |s éS,s =t onX\U}—

- BX\Utl ‘U'

Hence BX\\Uf[UGE s(U) . From

XU XS

P T

B

: o L PR W, ' ~
it follows that B f is fine 'continuous onN X and therefore on U.

Let now F0 be the set of all bounded functions f on X such that
there exists an increasing sequence (fn)n in (Sb—Sb)+ with f = Sﬁp £ - it

fE&FO and (fn)n is as above we have
L
BX Uf T BX\Uf _
n
From the previous considerations we have-

gty &
nltr

S(U)

and therefore, since BX\\Uf is bounded,

ey
Vil € s,
. Xt - . . 0g .
Particularly B £ is fine continuous on U. We remark also that if f & Fo’

géFO, f £ g then we have
¥ Nig-t) g € s

Indeed let (fn)n be an increasing sequence in <Sb_5b)+ such that sﬁp £ = g
Sihge g—fnéi FO we have

BX\>U<g-fn> 7 & s

and (BX\\U( - . .
gL, is @ specifically decreasing in S(U). Hence
s



e

P Nig-nly = inf 8 gty € SW).
- n

Suppose now that f is a positive bounded Borel function on X.

We have

5
8Vt - int {8" Vg eEFy, g2t § -

Since the family (BX\‘U is specifically decreasing in S(U)

91PgeF,, ot
we get :

X\ L
B fIfLT:lr\f{B gly | gefy, gaf:}é s(W .

X\U

Particularly B f is fine continuous on U.

Suppose that f is a positive Borel function on X. We have

NUe - gupsYcine(e,n).
n

From the previous considerations it follows that BX\\UfLU is hyperharmonic on U
(with respect to the H-cone S(U)) and therefore it is fine continuous on uU.

XN\ U

Moreover if f is dominated by an element s of S then B flTT is dominated

by é}u and therefore belongs to S(U).. In this case we have also

X\U(lnf (£, n)) NS(U) BX\U(inf(s,n))l’Uf_ﬁinf(s,n)i'DJ

and therefore
X\\U

3. The natural topoogy in the stqmﬁ&d H-cone of functions S(UW)

on the set U and the maximal sequences i A

If U is an open subset of X then it is known that fhe natural
topology on U induced by S(U) coincides with fhe'restriction to U of the natural
topology on X induced by 5. This assertion 1is not true if U is fine open. Also
even if U is open the natural topology induced by S(U) on the fine open set i
does not coincides with.the restruction to T of the natural topology on X induced

by the H-cone S.
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| Proposition 3. Suppose that U is a fine open subset of X. Then
the natural topology on U induced by the standard H-cone S(U) on U is the -
coarsest topology on U for which any function of the form S-BX\\US is continuous
where s runs therset of all universally continuous elements from S.

Proof. Let SO be the set of all universally continuous elements

from S. We show that for any s& SO the element szX\U

s is l-continuous with
respect to the standard H-cone S(U). Indeed let (tn)n be an increasing sequence

from S(U) such that sup t = s - BX\‘J s on U. We have

and

' Hence the sequence (tn + BX\\U s>n converges uniformely to s on X and therefore

NU s on U.

the seguene (tn)n converges uniformely to s—BX
Conversely suppose that t e S(U) is an universally continuous element

from S(U) and let s, be a bounded continuous generator of 5. We want to show

that + is nf the form fos s—BX\‘U s where s&5S is so—continuous. Indeed since

SO—BX\USO is strictly positive on U it follows that there exists o< > 0 such

that ts_OQSO-BX\\USO) and therefore there exists s &€ S such that t=S—BX\\U S

Moreover we may Suppose that s is such that if s'.: 5 satisfies the property

X\U XNU_,
S 5

5-B <s'-B

then 5&5'. Particularly we deduce that sge{s- We prove now that s is Sg

Continuous.'Indeed let <Sﬁ>n be an increasing seguence 1in S such that
s=3sxi5 on X. We have
SR B
o B N
BX\-U Sn T BX US

and therefore

i e e 5 g N
n n
n—od
LU, U
; /\ (&= : = —B S
sip (kzn qi sk)> e



=

Al

Since t = s-B""” s is universally continuous in S(U) then for any £> 0 there

exists nééz N such that

D . . : -
X\U < g ANl ~U
- B s-B""" 5.¢& é;h(sk-B 5. ) + E.(SO-BX SO)
M2y e 5B s ¢ s —B)NJS>n + e(SO~BX\USO)

and therefore

>n ZED G §  #
nz e ; n E.SO _

which means that se¢is So - continuous.

™

The assertion from Proposition follows now using the fact that any
é»‘S which is so—continuous is the uniform limit of an increasing of universally

continuous elements of S.

Definition. The natural topology orxfj (induced by the standard H-cone
of function S(U)is denoted by Z‘O(U,ﬁ). The topology Z1= Zl (U,U) which is the
ccé}sest topology on U which is finer that Z;(U ™ and Z;(X)/U' is called

the maximal topology on T associated with the standard H-cone S(U).

Corollary 4. The maximal topology or1TT is the coarsest topology on

o~ - . A XsU . £
U for which any function on U of the form sﬁU'and B sﬁU is continuous where

s runs the set of all universally continuous elements of S.

Corollary 5. Let z -~ U and let (xn)n be a sequence in U. Then

(x), — z in the maximal topology it (x ), — 2z in T, (X) end for any -

universally continuous elerznt S of S we have

A g(z) = 1im BX\U

n—oo

B s(xn).

Remark. If z & U\U then a sequence (x ), in U wiich converges to z
in the maximal topology on U is called "maximal with respect to 2, This
terminology was introduced by Brelot (|5]) and was used by Smyrnelis cl9l),
Bauer(}10, Hansen (161) and Netuka (|8]) in the case of the theory of harmonic
spaces.

Theorem 6. Let U be a fine open subset of X and let z:e;TT; Then



ol
for any t € S(U) for which there exists s€S finite continuous at z such

that

s|
t Zgqy U

we have

fine lim t (x) = Zi - 1lim t (%)
Usx—2z Usx—> zZ

—

s
—

or equivalent

fine lim t (x) = lim t (xn)
~UDx—> Z n —>oo

for any sequence (xn)n in U which is "maximal with respect to 2%,

Proof. Any element t'€ 5(U) is considered as a function on U. By
hypothesis there exists t'€ S(U) such that

£+ L= 8 SOn T
By the definition of the topology ZHﬁthb the functions t,t' and s/a'are lower
semicontinuous with respect to the topology YZJ(U;ﬂﬁ and therefore with respect
to ZE(LLTD. By hypothesis s is continuous at z with respect to ZiJ(X)PU and
therefore with respect to ?Ti(U,TD. Hence t and t' are also continuous at z with
respect to Z&(U:U). Hence we have

t(z) = fine 1im t(x) = 'Zi-lim t (x)
Usx—z Usx—>z

Proposition 7. Let U be a fine open subset of X and let zéiqj.Then,

for any positive Borel function f on X for which there exists se€S finite

continuous at z such that fgs, the function BX\‘UfLU is El - continuous at z.

Proof. The assertion follows from Theorem 6 since from Theorem 2 we

deduce

W, e s/
B f/U = 50) U

" Corollary 8. Let U be a fine open subset of X. Then for any positive

N\
bounded function f on X the function Bx Ufﬁu’is 271 - continuous.

s
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We remember that an element t of an H-cone T is called subtractible

if we have
t e T, tht' == £t

For instance if (X, *H) is a harmonic space and U is an open subset of X then
any positive harmonic function is subtractible in the H-cone S(U) of all positive
superharmonic functions on U. Moreover any positive superharmonic function on U

which is harmonic outside a polar set is also subtractible.

Proposition 9. Let U be a fine open subset of X and let ze;TT.Then

for any subtractible element t & S(U) for which there exists s&S finite continuous

at z such thatvtss/u we have

fine-1lim t(x) = Zi - 1lim t(x)
UDx—>z Bk2e

Proof. The assertion follows from Theorem 6 since we have

Corollary 10. Let U be a fine open subset of X. Then for any bounded

substractible element t & S(U) we have that t is a ?Ti—continuous function on U.

4. Doob sets and Harnack generalised inequality

In this section U will be a finme open subset of X and z a point in X
such that XU is thin at z. We denote as in the preceding sections by'UJthe
set of all points y & X such that XMWis thin at y. We suppose that X is semisatu-

rated we respect to the H-cone G

Lemma.ll. ket FZ be the set of all positive Borel.functions f onX

such that £§\\U(f)< oo . Then there exists foé;FZ such that for any £ & FZ we

have

—5

Celles s = J< { el E,);,\U(fkoo} .
where Kf means the fine closure of A.

Proof. For any f €& Fz we denote
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A = {yeu } X\U(f) <00}

Obviously Af is fine open and z eEAT. Moreover if (fn)n is a sequence in FZ

then there exists fe& FZ such that

Indeed let (an)n be a sequence of strictly positive real nutbers. such that

XU
e
n

Then

p2= 0 8 £ €& F,

n

and we have
f.);\u(fkoo s E);\U(fn) < o0 ¥ neN
and therefore

W 0, Afn'

Now we remark that for any £ E-FZ the set Aglne

is absorbent in
Il
U with respect to S(U). From this fact we deduce that there exists a sequence

(fn)n in F, such that

ya —?lﬂe B ,r\ Aflne -
fé:F n

Definition. A fine open subset U of X is called a Doob set (with

respect to S) if for any fine open subset V of U there exists a fine open subset

V of V such that V‘\V is totally thin and such that for any positive Borel

X\Uf

function £ on X for which BX Uf is finite dense on V then B is finite

nv.
Rl Yy
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Remark. Suppose that (Rn+l, adH), n}O is the harmonic space aséociated

n+l

with the heat equation on Rnijhen any open subset of R is a Doob set with

respect to the H-cone S of all bositive superharmonic functions s on this

harmonic space. Indeed let U be an open subset of Rn*i)' V be a fine open subset of U

‘.nd Tet f be a positive Borel function on X such that 8Nt is tinite dense on V.
T x0=(x',tO)EE V and DxI is a rectangle with the center in x such that XIC U

then if y_ = (yl.t) € (DxI)/M\V is such that

we have
\
g5 Ue(y', ¥)< oo
for any y'€D and any t/< t. Hence the set
{yGV(\ oxD NV () = ob}

is a subset of a set of the form
; Sl
(y=0,67 1=t ]
/
- for a suitable {0 and therefore the set

{er/BX\Uf(w e

ig=total Ly AR,
Theorem 12. Suppose that U is a Doob set with respect to S. Then
there exists a fine neighbourhood V of z such that for any positive Borel function

f or X we have

gX )< o0 ==>E§\U(f)<‘oo | Vyev .

Propf. - ek FZ be the set of all positive Borel function £ on X with
gi\u(fkoo and let for anv £ €F_,
X\U
= (fl)<oo t.
ay  =ivel/ € [

From Lemma 11 there exists foez FZ such that

—fine
Afoc: Af V-fé&FZ
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From this relation and from the fact that U is a Doob set it follows
that there exists a fine open subset AO of Af such that Af‘\,AO is totally thin
and such that BX\\Uf Is finite-on AO wheneverof'Ein. The sgt V0 = AO\z§z§ 158

fine neighbourhood of z for which we have

yevo,gX\U(f)< s g (f)<oa

Corollary 13. (Harnack inequality). Suppose that U is a Doob set with

respect to S. Then there exists a fine neighbourhood V of z and a positive real

function C on V such that
y V N £X\U< C( )£X\U

Proof. From the preceding theorem there exists a fine neighbourhood

V of z such that for any positive Borel function f on X we have

XNU-
yeV, £y Af)<ceo => € (7C><oo

Hence we have '
X\U

ygalet o o 0 o £ =

2l X\
and therefore EV ! 1is absolutely Contln%qgs with respect to 5_ 4 for any
ye V. Hence the Radom derivativs g, of E with respec+ to g: XM ds

Y z
a positive bounded function. If we put, for any ye ¥

c(y) = inf {.o( > 0/ gyéf>< ,Eé\u -a.s }

then we have

£ XNU

: <ely) EX\U.
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