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Study of a Jet Incident on a Porous Wall in a Gravity Field

Ruxandra Stavre *

Abstract.The problem of an inviscid jet impacting on a porous wall in a gravity
field is considered. By transforming it into a minimum problem we prove existence
and uniqueness theorems. Properlies of the flow region and of the stream function
are established. The monotonicity of the stream function with respect to the given
veloci[ies is also obtained.

1. Introduction

In recent papers:Stavre(1991), Stavre(1992) we have studied a free boundary prob-

lem concerning the impact of a jet on a porous wall, without the presence of gravity.

This problem is important since it  is related to the industrial process of obtaining

glassy metals.
In Stavre(1991), Stavre(1992), using the techniques introduced in Alt & Caffarel l i

(1981), Alt eCal.(1982), Alt elol.(1983) we have transformed the physical problem

into a minimum problem; we have established the existence and the uniqueness of

the solution (the stream function); we have also proved some important properties

concerning the f low region and the stream function. Moreover, in Stavre(l991) some

numerical results were given.

This problem has also been studied in Jenkins & Barton(1988). In this paper, a nu-

merical solution procedure based on the Baiocchi transformation (see Baiocchi(i972))

was deveioped.
A generalized Schwaiz:Christoffel transformation and a hodograph method have

been used in King(1990) to reduce the problem of an inviscid jet impacting on a

porous wall, when the effects of gravity are neglected, to the solution of a first-order

differential equalion.
In this paper we extend the results obtained in Stavre(1991) to the case where

the gravity field is present. We consider only the two-dimensional symmetric flow,

but the problem can be also studied for the two-dimensional asymmetric and for the

axially symmetric cases using the same techniques.

Section 2 describes the physicai probiem and its variational formulation. Section

3 presents existence and uniqueness results. In Section 4 we establish some important
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properties concerning the flow region and the stream function. Thus we prove that

lh"-flu* region is contained into a bounded domain; in Jenkins & Barton(1988) this

property is considered to be apriori known. A comparaison between the stream

iun.tion in this case and the stream function for the flow without gravity is also given.

The last Section contains the monotonicity of the stream function with respect to the

given velocities.

Z. Statement of the problem. Physical and variational formulation

We consider a steady, irrotational, incompressible flow of an inviscid fluid in a

gravity field, exiting from a nozzle and impacting on a porous wall. For simplicity,

we suppose that the nozzle and the porous wall have a vertical axis of symmetry,

Oy; the gravity is directed in the -y-direction and the jet is perpendicular to the

porous wall. The problem is illustrated in Fig.L F denotes the flow region(which

i, unkno*n), bounded by the mouth of the nozzle(A'A),the free boundaries(/,/ ')and

the porous wall(y : S).
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velocit ies on A'A(Vs) and on the porous wall(vj) are two given con-

> v1 > 0. Denoting by u the stream function' the velocity components

0u 0u
Ur : -7-l U2 = ;-

oy ot
(2 .1 )

in {r > 0},  Oy axis

porous wall has the

Using the symmetry of the flow,we shall study the problem

becoming a stream line.
The point of intersection of the free boundary / with the

c o o r d i n a t e s :  u  =  h o , r : 0 .
On the free stream line /, from the Bernoull i equation, we obtain:

, 0 u ,
' a n t  -

)

A (a, b)

+ 2s(b - y) (2.2)



Hence, the equations and boundary conditions which describe the physical problem

are:

(2.3)

A u = 0 ,  u ) 0  i n F f i { t > 0 } ,

u = Vo(a - x) on AA'o {r > 0},

u = V o a  o n O y f i  F ,

u = V o a - V f t  o n O B ,

^ ,ou, /--u = U ,  l ^  l :  l v & + 2 g ( b - y )  o n l .' o n  '

In order to obtain the variational formulation of the problem, we shall extend it

on a known but unbounded domain:

(2.4)

x  (0 ,  b ) .

(2 .5)

D = ( 0 , o o ) x ( 0 , b ) .

In Section 4 we shall prove that the flow region is contained in (0, f,a)
Let f betheboundaryof D and f : f - R thefollowing function:

t  Vs@ -  x)+ on { ( r ,6) /c  > 0} ,
I

f  :  I  , *  on { (O ,y )10<y<b ) , ,

I  Vo" - W*)* * {(r,o)/c > oi,
\

(2.6)

(2.e)

satisfies
r. i(1e81):

where u* = rnax(r,0).
We define the nonempty, closed, convex set:

K = 1 ,  e  Hr (DctBn) , (Un >  T fu  =  f  on  f ,u  )  0  a .e . inD\

where Ba= {(t,y) €R2llxl2 + lyl '  < frI
If H is the Heaviside function:

[ 1  i f  x > 0 ,

H(z)  _  {
I

L  o  i f  x < o ,
we obtain for the physical problem the following variational formulation:

I  rna ue. K,
{

L .r(") S J(r) f or atl u e Ii,

w h e r e :  
,  f  , , -  t 2J(u)  -  

l r { lv  
u l '+ lv :  +2g(b-y) lH(u) }hdv.

We can prove that if u is a solution for the minimum problem (2.8) then u

also the physicai problem (2.3) by using the following results of Alt & Caffarel

( i )  i f  u  i s  a m i n i m u m o f  J t h e n  u e c o , r ( D )  a n d  u i s h a r m o n i c i n  i ,  > 0 ) ,

(i i) the free boundary 0{u > 0} n D is analytic

(2.7)

(2.8)



3. Existence and uniqueness results

Theorem 3.1 The minirnum problern (2.8) has a unique solution u.

proof , Since the domain D is unbounded we must show first that there exists u € K

such that J(u) ( oo' we choose u'r € f/t((0' fro) " 
(0' b)) with tp : voa - vtt

o n  i ( r , 0 ) / 0  <  * . h o \ , u = V s a o n  { ( 0 , v ) / 0  < v  < b } , t = V o ( a - r ) + o n

{ (o ,b ) /0  <  r  <Vo}  , ' ,  =  0  on  { ( f io ,v ) /0  <v  <b \ ,  we de f ine :

in (o,,fiA "(0, b),

;n (fro,oo) x (0, b)

and we get u € /( and J(u) < oo .

Fo, obtaining the existence of a solution of problem (2.8), we can prove as in Alt

etal.(1983) tha;..I is coercive and lower semicontinuous with.respect to the weak

topology in Hr(D n BR),(V)ft ) 0 and, by using a Weierstrass theorem the existence

follows.
For proving the uniqueness o{ the solution of (2.8) we consider u1 and u2 two

solutions of (Z.S). Since ih. proof is similar to the one in Stavre(1991)(see Appendix)

we shall outl ine only the main steps'

(i) there are no connected componenis C of iu, > 0) n iu2 t 9) *.l!! 0C f1f+ = 0''

w h e r e  f +  -  { ( r , 0 ) / 0  <  r - <  t o } u  { ( 0 , y ) / 0  1 v  z - b }  u  { ( r ,  b ) 1 0  < '  1 o ] r ' ,

( i i) the set {r, > 0} n {u2 > 0} is connected

(ii i) u; 1 Vsa in D, for i - 1,2,

( i r )  thereexists ("o,yo) € {r ,  > 0} n {ur> 0i ,  wi th ur(ro,yo) :  uz(xo,yo),

( " )  u r=uz in  {u1  >  0}  n  {u r>  0}  and hence,  u r= ' t t2  in  D '

4. study of the flow region, of the stream function and of the free bound-

ary

In the sequel, we shall compare the solution of problem (2.8) with the stream func-

tion of the flow without gravity. Then we shall prove an important result concerning

the flow region.
By using monotone rearrangemenls(see Kawohl(1985)) we shall establish the mono-

tonicity of ih" stream function with respect to r and y and, as a conseqtience) some

properties of the free boundarY'

Theorem 4.L If u i.s the solution of problern (2.8) and' u is the stream function in

the case where the grauity f,etd is neglected, then u < u in D .

, { :



Proof. Denoting by t/ the stream function of the flow when the gravity is absent, we

can obtain U as the solution of the variational problem:

I 
r;,"a u e K,

I J(U) S J(u) f or att u e K,

J(:) - lrttr, l2 +vlu(u)\drdy.

(4 .1 )

(4.2)
where:

By taking u = min(u,U) eK in (2.8) and u = max(utu) e K in (a.1) we obtain

the following inequalities:

lrtto ul ' + lui + zg(b - v)lH(u)\dxd,v I

I rU, 
rnin(u, u )l '  + lv: + 2 g (b - v)) H (min(u, u ))\ d,r dv,

lrU, Ul' + v;H(U))dxdy 3 lrU, nax(u,U)l ' + VIH(mar(u,(J))ld,xd'y,

and, by adding them' it follows:

f zsL, - illH(u) - H(u)ldxdy < o.
J Dn{U <u}

Hence mes(Dn { { /  <  r } )  =  0  o r  I1 (u)  =  H(U) in  D f ' l  {U  <  
" } '

In the first case it is obvious that U ) u in D .

In  rhesecond case,  s ince  Dn{U <  u}  c  Dn{u  >  0}  weget  ̂ F / (u )  :  H(U)= l

i n  D f t  { U  < u } .  H e n c e  D n  { U  <  u }  c  D n { U  >  0 } .

We consid. .  1t ,  y)  e D with U(r ,y)  :0 and we obtain (* 'y)  e Dn{U 2u\

which leads to u(x,y)  -  0.  I t  fo l lows that {u > 0i  C {U > 0}.  The funct ion U -u

is harmonic in the open set {" > 0} and [/ - u ) 0 on 0{u > 0}' By applying the

maximum principle we get IJ > u in iu > 0] and hence U ]-uin D.

Theorem 4.2 The fl.ow region {u
(0,T,o) x (0,b) ,  denoted Ds .

Proof . We obtain this Theorem as a consequence of Theorem 4.1 Indeed, since u 1 U

in D , i t  fo l lows rhar {u > 0} c {u > 0} ;  but  f rom stawe(1991) (see Theorem 3.1.2)

w e h a v e { U > 0 i c D s .

Lemma aJ a)The solutionu of (2.5) is monotone decreasing^with respect to x.

b)tf the constants: a,, b,vs, v1 sati:,sfy: # , W"#,t:F,i' , then u is monotone

decreasing with resPect to Y '

proof. Let s* be the monotone decreasing rearrangement of u with respect to r(see

Kawohl(1985)) .
B y t a k i n g i n  ( 2 , 8 )  u = , t t . - e ( u - v o a ) + , 6  €  ( 0 , 1 )  w e o b t a i n  u l v s a  i n  D .  S i n c e

the values of u on {(c,0)/r > 0} and {(x,,b)lx ) 0} are monotone decreasing in r



and 0 1u lvsa\n r0,  i t  fo l lows that u ' is .an element of  K.  For such a funct ion,

we have: 

L,lo 
u.l2d,xdv s |o,la 

ulzdxd'v (4'3)

and, hence:
(4.4)J(u.) S J(u).

By using the uniqueness of the solution of problem (2.8), it follows from (4'4) that

u, ='tL* and the proof of a) is complete'

For proving the ,".oni part ol Lemma 4.3 we have to compare first the solution

u with its boundury values (Voo - Vr')* and Vs(a - r)*'

We can prove * in Sruure(1991) that fl S (Voa - W')* in D' where U is the

function introduced in Theorem 4.1 . Hence Theorem 4.1 yields:

u 1 (Vsa - Wr)*. (4'5)

In order to establish the other inequality we take in (2.8):

u = max{u,,lVoa - r(+Y + Vill*}

ancl we obtain:

t- .  { lv ul2 - lv lvoo - '(+Y + vi) l+[2+
J Dn{u<lVso-,(3# v+v r) l*  }  

t '  n

+lv: +zg(b-v)l[]/(") -tJ]drdv s

Irt, {lvoa - ,(+Y + v)l+ -'}* lzd'xdY-

-, 
Lvlvoa 

- ,(% i'' v + v)\+'v {[voo - '(ryv + v))+ - u\+ d'rd'v*

*.f,.,{".tuo o-,(b{Lv+r,nrrlvt 
+2s(b- g/)l[H(') - rid'xd'v !0'

Since the second integral is equal to zero, it follows:

.f,n*,ror.,t ,rrro" ,t|r*urr*, l v t[%o - '('o u't v + v)1+ - ']+ l2d'xdy+

t^,  - , , r  - ,vo-y l^ , , , . . , , * , { ly [%a-r(b]o*v))* l ' -v t -2g(b-v) ]dnd'v 
< 0 '

JDn{u=o}n{u([Voa-r( -]r  v* v 1 ) lr  ]

The first integral being positive, we get:

I rn ro=urrro o -, (b{ u +u, r * } [ 
( ff ' *v )' + (ry)"' -vi - z g (b - a)'d'x d'a 3 0'

(4.6)



On
obtain,

the other hand, if we take in (2'B) u - maxfu,(Vsa -

as before:

t r---=. . {l v l(voo - lv: + Wr)+ - rll'+
J Dn1"<1vs"- ylvf +2sb x)+ j

+lYo'?+ 2g(b - s)][H(u) - t ] \dxdY < 0'

or: 

f,nto<'<(vo '-11@6")*) 
I v (voa - 'lw - 

"bt 

- u)l2dxdv+

* [ lv* + 2gb - v] - zs(o - Y)ldrdY '
- ./Dn1o=,. 1vo"-rfrisu")*)' "

Since the two integrals are positive it follows that:

u|(vsa- rfm*)* in D'

The inequality (4.7) yields that in D n {u = 0} we have:

- Voa

and, hence:

(4.7 )

(4.8)

From (a.6) and (4.8) it follows:

|on{o=.,tuoo-'(9{La+,,ur,(Yv+vl,+(ffYm_v]_zg(u_y)<0.
By using now the hypothesis of b) we obtain:

u / lvsa - ,( 'o iu' 
y + v)l+ in D , (4.e)

(4 .10)u ) Vs(a - 
")+ 

in D'

From (a.5) and (4.10) it follows that u*' is an element of /(, where we have denoted

by ,,' the monotone decreasing rearrangement of u in y. Thus the inequality (a'3)

notat for u' replaced by u'* and, hence 1t' : 'u''* '

Corollary 4.4 The uelocity components satisfy: ur ) 0' u2 10 in D '

proof. The corollary is a consequence of Lemma 4.3 and of the definition (2'1)'

corollary 4.5 The free boundary is giaen by x = l(y), where:

/ ( y )  =  sup { r l u (x ,a )  >  0 }  fo r  a l l  v  € (0 'b ) ' ( 4 . 1 1 )

Proof . By using the monotonicity of u with respect to c, it follows that if u(rs' ys) : 0'

bhen u(r,go) : 0 for al l  t  2 ro' Hence:

t ( r ,  y )  e  D lu(x ,Y)  >0)  :  { ( r ,  v )  e  D ln  <  l (v ) }

and (a.11) holds.

v] + zsbr)+l



b. Monotonicity of the stream function with respect to the given veloci-

t ies

Theorem 5.L If VoJ,Vo,z are two values of the normal aelocity of the fl,uid on M A,

with Vs,1 1 Vo,z then u1 I u2 in D , where ui is the solution of problem, (2'8) cortv-

sponding to Vs,i, i = L,2.

Proof. we denote by fi the function defined by (2.5) for I/s = vo,i and by /(; the

convex /( for f -- f;,i = !,2 ;we obtain two minimum problems for i = I,2 z.

f rma u; €. K;,
{

| /,("r) < Ji(u;) f or all u; Q K;, (5'1)

where: r ..
4(r) = 

/" tt v ul2 + [(vs,;)z + zslu - v))H(u)]dxd,a' (5'2)

We define lor i = 1,,2 : (J, = 
*, 

F, = 
*, 

f,; the convex K corresponding to 'F'

and:

J;(u;) : [ { l v r, l '+ [r + 
zg(!-: a))H@;)]axay u; € K;. (5.3)

From (5.1) we obtain for i - 1,2 :

I 
Find U; € K;,

By adding ,i. ,*" ,""11*:;: i,{:1,'=t#ir,,l,,l'',0 uz = mao(u,,uz)::::
VoJ 1Vo3 it follows:

t  {2g(b- i l l r (ut1 -H(uz) l}dxdv<0 (5.5)
Jpni .u t>uz} '  

' '

and hence:

( i )  rnes(Dn {U, > Ur}) = 0 or

( i i )  H ( U t ) - H ( r J )  - 1 i n  D n { q 2 U z } .

In the second case, we obtain as in the proof of Theorem 4.I q 1 Uzin D' Hence

u 1 1 u 2  i n  D .
We shall prove next a similar result f'or V11 1V1,2'

Theorem 5.2 If two giuen uelocities on the porous wall satisfgVll 1V1,z,the corre'

spond,i,ng stream futtction decreases,i.€. ur 2 uz in D '



Proof. Denoting now I the function / for Vt *V!'! and & being the set defined in

iZ.Oif"t f = f,,i = 1,2 we get the variational problems:

( Pna u; € K;,,
I
1 

r,0,.\  fnr o, l l  u, € K (5'6)
L ;(",) < J(r,) f or atl u; e Ir;'

Since u1) u2on f we can take q - max(ut1u2)1uz = min(ut,uz) and we obtain:

J(',) + J(uz) = J(max(ut'uz)) * J(min(uuuz)) (5'7)

. 
Hence, from (5.6) and (5'7) it follows:

J ( r r )  =  J (max(ur ,uz) ) i J (u r )  -  J (min(ur 'uz ) ) '  (5  8 )

By using now the uniqueness of the solution of problem (5'6) we gel u1 =

*or(ut,rrf ind u2 - min(ur)u2) which ends the proof'

The last result of this paper shows the variation of the stream function with

respect ," fr-
Theorem 5.3 With the notations of Theorem 5'1. and' Theorern 5'2 for the uelo-

cities Vo and V1 , i.f l'o,r < vo,, o'i' i,,t t V7,2' but +, 
: 

W, " 
obtain for the

correspond'ing stream functions ur 3 uz in D '

Proof. we consider for i = 1,2 the functions ui defined in Theorem 5'1 'since u; e K;

for i: 1,2 and (Jr = (Jzon | , we can take u1 - min(U1,fft).ung u2.= maI(U'' 'Uz)

in (5.a) and, with the same technique as in Theorem 5'1 we obtain the conclusion of

ttris Theorem.

6. Conclusions

The flow of a fluid in a gravity field, impacting on a polous wall was studied

by using variational methods. These methods are useful' since they permit us to

establish existence and uniqueness theorems and to obtain properties of the flow

region, of the stream function and of the free boundary, properties which cannot be

used as hypotheses of the problem because the flow region and the free boundary are

unknown. Moreover a computational approach may be performed (as in Stavre(i991))

by employing a finite element method'

These methods can also tolu" th" two-dimensional asymmetric and the axially

symmetric problems but not the three-dimensional asymmetric case'

We hope to extend the methods presented here to the coupled problem of a jet

penetrating a Porous medium'
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