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Study of a Jet Incident on a Porous Wall in a Gravity Field

Ruxandra Stavre *

Abstract.The problem of an inviscid jet impacting on a porous wall in a gravity
field is considered. By transforming it into a minimum problem we prove existence
and uniqueness theorems. Properties of the flow region and of the stream function
are established. The monotonicity of the stream function with respect to the given
velocities is also obtained. :

3 | Int;oduction

In recent papers:Stavre(1991), Stavre(1992) we have studied a free boundary prob-
lem concerning the impact of a jet on a porous wall, without the presence of gravity.
This problem is important since it is related to the industrial process of obtaining
glassy metals.

In Stavre(1991), Stavre(1992), using the techniques introduced in Alt & Caffarelli
(1981), Alt etal.(1982), Alt et al.(1983) we have transformed the physical problem
into a minimum problem; we have established the existence and the uniqueness of
the solution (the stream function); we have also proved some important properties
concerning the flow region and the stream function. Moreover, in Stavre(1991) some
numerical results were given.

This problem has also been studied in Jenkins & Barton(1988). In this paper, a nu-
merical solution procedure based on the Baiocchi transformation (see Baiocchi(1972))
was developed.

A generalized Schwarz-Christoffel transformation and a hodograph method have
been used in King(1990) to reduce the problem of an inviscid jet impacting on a
porous wall, when the effects of gravity are neglected, to the solution of a first-order
differential equation.

In this paper we extend the results obtained in Stavre(1991) to the case where
the gravity field is present. We consider only the two-dimensional symmetric flow,
but the problem can be also studied for the two-dimensional asymmetric and for the
axially symmetric cases using the same techniques.

Section 2 describes the physical problem and its variational formulation. Section
3 presents existence and uniqueness results. In Section 4 we establish some important
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properties concerning the flow region and the stream function. Thus we prove that
the flow region is contained into a bounded domain; in Jenkins & Barton(1988) this
property is considered to be apriori known. A comparaison between the stream
function in this case and the stream function for the flow without gravity is also given.
The last Section contains the monotonicity of the stream function with respect to the
given velocities.

2. Statement of the problem. Physical and variational formulation

We consider a steady, irrotational, incompressible flow of an inviscid fluid in a
gravity field, exiting from a nozzle and impacting on a porous wall. For simplicity,
we suppose that the nozzle and the porous wall have a vertical axis of symmetry,
Oy; the gravity is directed in the —y-direction and the jet is perpendicular to the
porous wall. The problem is illustrated in Fig.l. F° denotes the flow region(which
is unknown), bounded by the mouth of the nozzle(A'A),the free boundaries({,!")and
the porous wall(y = 0). o) :

ﬂ
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The normal velocities on A’A(V;) and on the porous wall(V}) are two given con-
stants, with V5 > V; > 0. Denoting by u the stream function, the velocity components
are given by: _ ‘
gu .0
oy’ V2= Bz

Using the symmetry of the flow,we shall study the problem in {2 >0}, Oy axis
becoming a stream line.

The point of intersection of the free boundary [ with the porous wall has the
coordinates: z = t—//ﬂa =1

v = —

(2.1)

On the free stream line [, from the Bernoulli equation, we obtain:

1) = 7+ 2006 - ) (22)
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Hence, the equations and boundary conditions which describe the physical problem
are: |

[Au=0, u>0 in FN{z >0},

u=Vyla—z) on AA'N{z >0},

-y Vda on Oy N F, (2.3)
u=Voa—V;z on OB,

=0, 12 = % +2(6—9) onl

In order to obtain the variational formulation of the problem, we shall extend it
on a known but unbounded domain:

D = (0,00) x (0, b). (2.4)

In Section 4 we shall prove that the flow region is contained in (0, %a) x(056):
Let I' be the boundary of D and f : I' — R the following function: :

Vo(a — )t on {(z,b)/z > 0},
o Voa on {(0,9)/0 <y < b}, (2:5)
(Voa — Vyz)* on {(z,0)/z > 0},

where vt = maz(v,0).
We define the nonempty, closed, convex set:

K ={ve H(DNBg),(Y)R>0/v=fon[,v>0aeinD} (2.6)

where Br = {(z,y) € R*/|z|* + |y|* < R?}
If H is the Heaviside function:

1 ifz>0
Hiz)= (2.7)
0 if o 0
we obtain for the physical problem the following variational formulation:
Find ue K,
J(u) < J(v) forallve K, (2.8)
where:
Ty = [{1ul + (% +20(b ~y)]H(w)}dady. (29)

We can prove that if u is a solution for the minimum problem (2.8) then u satisfies
also the physical problem (2.3) by using the following results of Alt & Caffarelli(1981):

(i) if u is a minimum of J then u € C®*(D) and u is harmonic in {u > 0},

(i1) the free boundary d{u > O}— N D is analytic.
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3. Existence and uniqueness results
Theorem 3.1 The minimum problem (2.8) has a unique solution u.

Proof. Since the domain D is unbounded we must show first that there exists v € K
such that J(v) < oo. We choose w € Hl((O,-“%a) x (0,b)) with w = Voa — Vjz

on: {{2,0)/0< p ‘-‘f‘jla} w = Vha on {(0,y)/0 <y < b}, w = Vy(a—z)" on
{lobib<a< %a} . uwr=100on {(%a,y)/O < y < b}, we define:

wt in (0, —V—Oa) x (0,b),
4
v =
0 in (Y—O-a,oo) x (0, b)
Vs

and we get v € K and J(v) < oo .

For obtaining the existence of a solution of problem (2.8), we can prove as in Alt
et al.(1983) that J is coercive and lower semicontinuous with respect to the weak
topology in H'(D N Bg), (V) R > 0 and, by using a Weierstrass theorem the existence
follows.

For proving the uniqueness of the solution of (2.8) we consider u; and up two
solutions of (2.8). Since the proof is similar to the one in Stavre(1991)(see Appendix)
we shall outline only the main steps.

(i) there are no connected components C of {u; > 0} N{uz >0} withaC NI+ =0,
where I't = {(2,0)/0 <z < %a} U{(0,9)/0 <y < b} U {(z,b)/0 <z <a},

(ii) the set {u, > 0} N {u > 0} is connected,

(iii) w < Vpa in D, for 1 = 19

(iv) there exists (zo,%0) € {w1 > 0} N {uz > 0}, with u;(zo,%0) = 2(Zo, Yo),
(V) u; =wugin {u; >0}N {uz > 0} and hence, u; = uy in D.

4. Study of the flow region, of the stream function and of the free bound-
ary

In the sequel, we shall compare the solution of problem (2.8) with the stream func-
tion of the flow without gravity. Then we shall prove an important result concerning
the flow region. ;

By using monotone rearrangements(see Kawohl(1985)) we shall establish the mono-
tonicity of the stream function with respect to z and y and, as a consequence, some
properties of the free boundary.

Theorem 4.1 If u is the solution of problem (2.8) and U is the stream function in
the case where the gravity field is neglected, then u < Uan D .
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Proof. Denoting by U the stream function of the flow when the gravity is absent, we
can obtain U as the solution of the variational problem:

{ Find U € K,
FH L T w) forallviEe K, (4.1)
where:

J(@) = [ (| of +VH(v)}dvdy. (4.2)

By taking v = min(u,U) € K in (2.8) and v = maz(u,U) € K in (4.1) we obtain
the following inequalities:

/D{I 7 ul® + [Vy + 2g(b — y)] H(u)}dady <
/D{I o min(u, U)[? + [VZ + 29(b — y)]H(min(u,U))}dzdy,

LUw UP+ VG HU)dady < 11w maa(u, U)P + V3 H(maz(w,U))ldsdy,

Hence mes(DN{U < u}) =0or H(u) = H(U) in DN{U <u}.

In the first case it is obvious that U > v in D .

In the second case, since D N {U < u} C DN {u > 0} we get H(u) = H(U) =1
in DN {U < u}. Hence DN {U <u} C DN {U > 0}.

We consider (z,y) € D with U(z,y) = 0 and we obtain (z,y) € DN{U 2 u}
which leads to u(z,y) = 0. It follows that {u > 0} C {U > 0}. The function U — u
is harmonic in the open set {u > 0} and U —u > 0 on d{u > 0}. By applying the
maximum principle we get U > u in {u > 0} and hence U > v in D.

Theorem 4.2 The flow region {u > 0} is contained into the bounded rectangle
(o,l‘jffma) x (0,b) , denoted Dy .

Proof. We obtain this Theorem as a consequence of Theorem 4.1 Indeed, since u < U
in D , it follows that {u > 0} C {U > 0} ; but from Stavre(1991) (see Theorem 3.1.2)
we have {U >0} C Dy .

Bemma 4.3.a)Thesolufion of (2.8) is monotone decreasing with respect to x.
: : V2 +2gb-V}?
b)If the constants: a, b, Vo, V; satisfy: % S Vitag Vo +2gb=V?

V2 (Vo-Vp)? 0
decreasing with respect to y.

then u is monotone

Proof. Let u* be the monotone decreasing rearrangement of u with respect to z(see

Kawohl(1985)).
By taking in (2.8) v = u —€(u — Voa)t,e € (0,1) we obtain u < Vpa in D. Since
the values of u on {(z,0)/z > 0} and {(z,b)/z > 0} are monotone decreasing in z
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and 0 < u < Vpa in Dy, it follows that u* is an element of K. For such a function,
we have: '

*|2 < 2
/Do|\7u|da:dy_/DOIVu| dndi (4.3)

and, hence:

Jut) < Jlu) (4.4)

By using the uniqueness of the solution of problem (2.8), it follows from (4.4) that
u = u* and the proof of a) is complete.

For proving the second part of Lemma 4.3 we have to compare first the solution
« with its boundary values (Voa — V;z)* and Vo(a — z)*.

We can prove as in Stavre(1991) that U < (Voa — V;z)* in D, where U is the
function introduced in Theorem 4.1 . Hence Theorem 4.1 yields:

u < (Voa — Viz)*. (4.5)
In order to establish the other inequality we take in (2.8):

v = maz{u,[Voa — :1:(V0 —b ny + Vi)l*}

and we obtain:

(vl -1 Voo - =( 2Ly + VI [+

/Dn{u<[voa-r(ﬁ’—';—viy+"/)]+}
+[VZ +29(b - y)][H(v) — 1]}dzdy &

Ww-V
[ 19 (Voa — 2(B 2y 4 VI =) Pdady

Vo — V5

Vo ¥V
=2 /D Vihe—al= o —ut VI v {[Voa — 2(— : Ly + Vo)t — u}tdzdy+

(Vs +2g(b—y)][H (u) - l]dzdy < 0.

+ ;
: Dn{u([Voa—I(v%grLy'*Vf)]*'}

Since the second integral is equal to zero, it follows:

Vo — Vi
Vha — V, - Rl + '2d d
v/;n{u>0}n{u<[voa—‘-1‘(Z()——:—VLy-{-Vl)]"'} |7 {[Voa —=( b y+ Vil u}™|*dzdy+

VoV
{|wlVoa—a(Z—Ly+ V)= Vo ~2g(b~y)}dedy < 0.

/Dn{u=o}n{u<[voa—r(Vi',,—VLerV;)]*}

The first integral being positive, we get:

Ww-V Ww-V
(B Lyt (T Ve -V = 2g(b-ylldady < O

(4.6)

-/l-)n{0=u<[Voa—r( V_o%‘_’j_y_*_vf)].p}



On the other hand, if we take in (2.8) v = mazlu, (Voa — /V& +2gbz)*] we

obtain, as before:

s 2 + 112
‘/Dﬂ{u<(voa—\/‘?$2—g31)+}{‘ v [(Voa Ve + 2gbz) u)|*+

+[V2 +2g(b — y)|[H(u) — ]}dzdy <0,

or:

Voa — \/ V2 + 2gbz — u)|*dzd
/Dn{0<u<(voa-./v02+2gbz)+}‘V( 0% o t4290% u)|"dzdy+

V2 4+ 92gb — V2 — 2g(b — y)]dzdy.
+/Dﬁ{0_’—_-u<(Voa—\/Vo"T+—2_g—bz)+}[ o +29 0 g9(b — y)ldzdy

Since the two integrals are positive it follows that:

u> (Voa—\/ V& +2gbz)* in D. (4.7)

The inequality (4.7) yields that in D N {u = 0} we have:

¥ |
o B (4.8)

= Jvaiogh
From (4.6) and (4.8) it follows:

Vo3,
(B—Ly+ V) +(

Vo—Viva Voo
)

Ty Ty £ 6

/Dn{0=u.<[Voa-—I(YQ—;&-y+V1)]Jr }

By using now the hypothesis of b) we obtain:

o
Yo M L (4.9)

u > [Voa — z( .

and, hence:
u> Vo(a—2z)* in D. (4.10)

From (4.5) and (4.10) it follows that u™* is an element of K, where we have denoted
by u** the monotone decreasing rearrangement of u in y. Thus the inequality (4.3)
holds for u* replaced by u** and, hence u = Vs

Corollary 4.4 The velocity components satisfy: v1 >0, v, <0 D.
Proof. The Corollary is a consequence of Lemma 4.3 and of the definition (2.1).
Corollary 4.5 The free boundary is given by z = I(y), where:

l(y) = sup{z/u(z,y) > 0} for all y € (0,0). (4.11)

Proof. By using the monotonicity of u with respect to z, it follows that if u(zo, yo) = 0,
then u(z,yo) = 0 for all z 2 zo. Hence:

{(z,) € DJu(z,y) > 0} = {(z,9) € D/z <(y)}
and (4.11) holds.



5. Monotonicity of the stream function with respect to the given veloci-
ties

Theorem 5.1 If Vo1, Voo are two values of the normal velocity of the fluid on M A,
with Vo, < Voo then uy Swug in D, where u; is the solution of problem (2.8) corre-
sponding to Vo it = 1,2.

Proof. We denote by f; the function defined by (2.5) for Vo = V,,; and By K; the
convex K for f = fi,i =1,2 ;we obtain two minimum problems for z = 1,2 :.

[ Find u; € K;,

J,-(u,-) < J,'(’U,') fO'r‘ all v; € K,‘, (5.1)

where:

5() = [ {170 + (Vo0 +29(6 = )| H (o)) dody. (5.2)

We definefori=1,2: U; = 7‘;‘—, Ei= T/'E_’ K; the convex K corresponding to F;
and: ' ‘

2g(b -
$@J=/“VWP+U+£LTQW@MW@ el b
D Vo
From (5.1) we obtain for 2 =1,2:
Find U; € K;,
TdUs) < Ji(vi) forallv; € Ks. (5.4)

By adding the two inequalities for v; = min(U, U,) and vy = maz(Uy, Uy) jsince
Vo1 < Vo2 it follows: '

-/l;n{U,>U2}{2g(b — ) [H(U,) = H(U,)|}dzdy <0 (5.5)

and hence:
(i) mes(DN{U; > Us})=0or
(il) H(U1)=H(U;) =1 in D N{U;, > U,}.

In the second case, we obtain as in the proof of Theorem 4.1 Uy < U, in D. Hence
Uy _<_ U2 in D. )
We shall prove next a similar result for Vy; < Vo.

Theorem 5.2 If two given velocities on the porous wall satisfy Vi, < Vj2,the corre-
sponding stream function decreases,i.e. Uy 2 Ug in- D,



Proof. Denoting now f; the function f for V; = V;; and K; being the set defined in
(2.6) for f = fi,1=1,2 we get the variational problems:

Find u; € K,

J(w;) < J(v;) for all v; € Ki. (5.6)

Since u; > u, on I' we can take vy = maz(uy,uz), V2 = min(uy,uz) and we obtain:
J(up) + J(u2) = J(maz(u,u2)) + J(man(u, ug)) (5.7)
Hence, from (5.6) and (5.7) it follows:
J(w) = J(maz(u, uz)); J(ua) = J (min(us, va)). (5.8)

By using now the uniqueness of the solution of problem (5.6) we get uy =
maz(u,uz) and uz = min(uy, ua) which ends the proof.

The last result of this paper shows the variation of the stream function with
respect to L‘;‘}

Theorem 5.3 With the notations of Theorem 5.1 and Theorem 5.2 for the velo-
cities Vo and Vy , if Vo < Voo and Via < Vig, but %“: = %% we obtain for the

corresponding stream functions < upan .

Proof. We consider for i = 1,2 the functions U; defined in Theorem 5.1 .Since U; € K;
fori=1,2and Uy = U, on I' , we can take v; = min(Uy, Usz) and v = maz(Uy, U)
in (5.4) and, with the same technique as in Theorem 5.1 we obtain the conclusion of
this Theorem.

6. Conclusions

The flow of a fluid in a gravity field, impacting on a porous wall was studied
by using variational methods. These methods are useful, since they permit us to
establish existence and uniqueness theorems and to obtain properties of the flow
region, of the stream function and of the free boundary, properties which cannot be
used as hypotheses of the problem because the flow region and the free boundary are
unknown. Moreover a computational approach may be performed (as in Stavre(1991))
by employing a finite element method.

These methods can also solve the two-dimensional asymmetric and the axially
symmetric problems but not the three-dimensional asymmetric case.

We hope to extend the methods presented here to the coupled problem of a jet
penetrating a porous medium. :
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