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Extending Factorizations and Minimal Negative Signatures

Tiberiu Constantinescu and Aurelian Gheondea

Abstract. We formulate a problem of extending factorizations of type X*X in
Krein spaces, with control on the negative signatures, and the minimal negative signa-
tures for this problem are computed. As application we determine the minimal negative
signatures of an operatorial one-step completion and the minimal negative signatures
of defect for a problem of lifting operators in Krein spaces.

1. Introduction

There exists a widely known method in the theory of moment problems which uses a
simple framework from operator theory. This method was initiated and developed by
M. A. Naimark [34] and M. G. Krein [28] and refers to the search of unitary extensions
of a given partial isometry, that go beyond the space where the partial isometry
acts. This method turned out to be useful for many problems. For instance, the
Nevanlinna-Pick problem can be solved in this way (B. Sz. -Nagy and Koranyi [39]).
the Hamburger moment problem and the Nehari problem fit well in this approach
(see D. Sarason [37]). Also, as shown by R. Arocena [4], the more general abstract
problem of lifting of commutants of Sarason, Sz.-Nagy and Foiag [36] and [38] (see
also [27]), can be embedded into this framework and, finally, let us mention that a
recent method of M. Cotlar and C. Sadosky [22] for solving moment problems can be
viewed as a case of the considered extension problem. .

Quite recently, there appeared tentatives for obtaining other variants to solve some
other specific completion or moment problems. We mention here three directions.
First. in order to solve Nevanlinna-Pick or Nehari problems for meromorphic functions -
instead of analytic functions, extensions of isometries in spaces with indefinite metrics
were considered by V. M. Adamyan, D. Z. Arov and M. G. Krein [1], T. Ya. Azizov
(7], J. W. Ball and W. J. Helton [9], [10], M. G. Krein and H. Langer (30], [31], [32],
D. Aplay, P. Bruinsma, A. Dijksma and H. S. V.de Snoo [3]. Second, for solving
some bidimensional completion problems, a problem of extending pairs of partial
isometries was considered by R. Arocena and F. Montans [5] and, third, in order to
solve problems as those in the papers of H. Dym and I. Gohberg [26] or J. W. Ball
and I. Gohberg [10], a nonstationary variant of the extension of partial isometries was
considered in [15] (see also {16]). The interpolation problems or moment problems

that we referred to before are mainly concerning Hilbert spaces or Pontryagin spaces.



An important challange in these topics appeared in 1986 when L. de Branges asked the
question of adapting the commutant lifting theorem to contractions in Krein spaces.
The first answer was given by the authors in [17] in the framework of Pontryagin
spaces and, for different situations ihvolving Krein spaces, it was given by M. A.
Dritschel [24], M. A. Dritschel and J. Rovnyak [25] (see also the papers [2], [13], [14],
and the authors’ papers [18], [19] where the more general case of nontrivial negative
signatures of defect is considered).

In [18] and [19] we have considered a problem of extending operators in Krein
spaces with control of the negative signatures of defect. This problem, denoted here
by E(T,,T.; k1, k2) (see Section 5) is a core of the variants of commutant lifting with
control of the negative signatures of defect. In [20], as a consequence of solving
a completion problem. denoted in this paper by C(K;k1,k2) (see Section 4), the
extension problem is solved completely in the case of finite dimension.

The purpose of this paper is to describe another variant of the method of Naimark
and Krefn in connection with the determination of minimal negative signatures of the
extension problem. In order to follow this method we extend factorizations instead
of partial isometries, because of the different behaviour of the factorizations of the
type X*X in Krein spaces and, respectively, Hilbert spaces.

The extending factorizations problem, denoted by EF(X,Y’; x;, k2) is considered
in Section 3. Here the main result is Theorem 3.4 which gives explicit formulae for
the minimal negative signature. Using the remark in [13] , we are led to consider the
problem C(K; K1, K2) as a problem of extending factorizations (see Proposition 4.6
and Proposition 4.10). ‘

One of the basic tools used in this paper is the Krein space induced by selfadjoint
operators. This led also to the investigations of the relations between the Krein spaces
induced by a selfadjoint operator and a selfadjoint extension of it. This is done in
the first part of Section 4.

The main result in the last section is Theorem 5.5 which gives formulae for the min-
imal negative signatures of the modified extension problem En (T, T; k1, %2). This
problem allows Krein spaces with infinite signatures. In case that only Pontryagin
spaces are considered, using a slightly different approach, the same formulae can be
obtained for the problem E(T;,T.; k1, K2). '

2. Notation and Preliminary Results

The basic properties of Krein spaces and their linear operators that we use in this
paper are contained in the monographs [8] and [12]. In this section we fix the notation

and recall some results which will be frequently used in this paper.



2.1 Geometry in Krein spaces. If K is a Krein space then its inner product is
usually denoted by [-,-]. For a fundamental symmetry (in brief f:s.) of K we denote
by (-,-)s the corresponding positive definite inner product. Also £~ [K] and £*[K]
denote the negative signature and, respectively, the positive signature of K.

More general, if £ is a subspace of K, denote by x~[L], x*[L], and &°[L] its
signatures. £* stands for the orthogonal companion of £ and L% = LN L stands for
its isotropic part. We have «%[£] = dim[£°] and k*[L*] are also called the cosignatures
ol

If H is a Hilbert space then we denote by [H @ H] the Krein space obtained from
the Hilbert space H & H with the f.s. J defined by

0 I
J:[[ o]' (2.1)

Let Ay and K, be Krein spaces. We denote by Ay[+]X; the Krein space direct sum
of Ky and K,.

A subspace £ of the Krein space K is called regularif € = £ + L*. In this case
we usually write K = L[+]L*.

Let T € L(Ky,K;), where K; and K, are Krein spaces. Then T* denotes the
adjoint of T. If J; and J; are fixed f.s. of K; and K, we denote by T* the adjoint of
T with respect to the Hilbert spaces (K, (-, -),) and (Ky, (-, +)5,).

2.2 The Krein space Hy. Let K be a Krein space and A € L(K) be selfadjoint,
ie. A= A" If Jisafs. of K then JA is a selfadjoint operator on the Hilbert space

(K, (+,+)1), hence we can consider its polar decomposition
JA = Sja|JA], (2.2)

where Sj4 = sgn (JA) is a selfadjoint partial isometry such that ker Sy = ker L.
Then Sj4 is a symmetry on the Hilbert space (m,('.-p). Denote by ‘H, the
Krein space (R(JA),[,-]) where the inner product [-,-] is induced by the symmetry
Sy4 as follows:

[z,y] = (Ssaz,y)s, Yy € Ha, ' (2.3)
Let us remark that the linear manifolds R(|JA|) and R(|JA|?) are dense in H,4 and
that the strong topology on the Krein space H 4 is inherited from the strong topology
of the original Krein space K. Denote by €4 : K — H,4 the quotient mapping. Then
€4 € L(K,H,4) and we have

ghes = ISz (2.4)

The definition of the Krein space H4 does not depend on the f.s. J in the sense
that if a different f.s. is used, the two Krein spaces obtained in this way are unitary

equivalent.



Let K and K be Krein spaces and T € L£(K1,K3). Fix f.s. J; and J; on K, and
respectively, K,. Define the operators

Be s (T LAY, Jpv=sgn [Ja— THT) (2.5)

Bl TEh IR . Do =|h=THIE, (2.6)

and using these elements define the space Dr = R(Dr) considered as a Krein space

with the f.s. Jr and, similarly, define the Krein space Dy. = R(Dr-) with the fs.
Jr+. The Krein spaces Dr and Dy« are called the defect spaces of T and clearly

Dr=H;imr, Dr-= Hi_r- (2-7)

2.3 The Krein space K,. Let K be a Krein space and A € L(K), A= A*. Define
the inner product [-,-] on K,

[x’y]A = [A‘Tay] y XY € K (28)

where [+, -] denotes the inner product of the Krein space K.

Notice that ker A is the isotropic subspace of the inner product space (K, [, ik
Fix J afs. of K and denote K = J(ker A)*. Then consider the Jordan decomposition
of the selfadjoint operator JA with respect to the Hilbert space (sl )

el T A= A (2.9)

S —_—

and denote K, = (JA),K and K_ = (JA)_K. Then we have

K: = K‘::+ + ﬁ_.
Notice that (K,,[-.-]4) and (K_.=[-,-]4) are pre-Hilbert spaces and denote by K
and K their completions to Hilbert spaces. Define

Ka=Ki[+IK3, (2.10)

where the inner product is the extension by continuity of the inner product lisalns
Then (K 4,[,]4) is a Krein space and (2.10) is a fundamental decomposition of K4.
Let 4 denote the quotient mapping X — K composed with the embeding of K into
K4. Then my € L(K,K4) and :
ahma = A (2.11)

The next result is a direct consequence of the definitions.



Lemma 2.1 IfK is a Krein space, A € L(K) is a selfadjoint operator and J is a f.s.
of K used in the definition of the Krein spaces Hy and K 4, then the linear operator

Ka2K 32— |JAPz € R(JAJ}) C H,y (2.12)
extends uniquely to a unitary opverator Ki— Ha. In addition
|JA|Z7y = e4| T A3 | * ey
The definition of the Krein space K4 is independent on the f.s. J, modulo unitary
equivalence (see [21]).

2.4 Operator signatures. Let K be a Krein space and A € L(K) be a selfadjoint

operator. The signatures of A are, by definition, the cardinal numbers

A =K h‘?(:i} = dimker( A). (2.14)
As a consequence of Lemma 2.1 it follows
£E(A) = kE(Ha). (2.15)

Let Xy and K; be Krein spaces and consider T € L(K4,K3). The cardinal numbers
kE(1 = T*T). k*(I — TT?). k%] — T*T) and «°(T — TT*) are called the signatures of

defect of T'. These signatures verify the following equalities (see [21])
K5I = T'T) + x¥[Ky) = n2(1 - TT") + *[Ky], ; (2.16)
(1 = T*'T) = &% - TTY). (2.17)

2.5 Some spectral properties. Let H be a Hilbert space and A € LiH) A= A"
A real number t is isolated on the left (on the right) with respect to the spectrum
of A, here denoted by o(A), if there exists ¢ > 0 such that (t=e,1) Bald) =]
(respectively. (t.t + ) Na(A4) = 0).

Let now K be a Krein space and A € L(K),A = A*. If for some fs. J of KB
is isolated on the left (on the right) with respect to o(JA) then the same is true for
any other f.s. of K.

Let Ky and K be Krein spaces and T € £(K;, K,). With respect to fixed f.s. J, _
and J; on K, and, respectively, on K,, we introduce the spectral properties:

(@)+ 0 is isolated on the right with respect to a(Jy = T*J;T),

(a)- 0 is isolated on the left with respect to o(Jy — T~J,T).

The properties (a); and (a)- do not depend on the f.s. J; and Jy. Moreover, if T
has the property (@), or (@)_ then I* shares the same property (see [21]).



2.6 Indefinite factorizations. Let A € L(K;),A = A and C € L(K,),C = C" be

given. We are interested in factorizations of the type
A= B'CB, (2.18)

where B € L(K1,K,), Under certain conditions, this kind of factorizations produce
unitary operators acting between the Krein spaces induced by A and C. Here we
recall two criteria of different type. The first one is a consequence of a well-known
extension lemma [29], [33] , [35], [23].

Lemma 2.2 Let B € L(K,K;) be surjective and satisfy (2.18). Then:

(i) B induces a unitary operator in L(K4,Kc).

(i1) If Jy and Jy are f.s. with respect to which H and He are defined, there exists a
uniquely determined unitary operator V€ L(H 4, He ) such that

VILAJF = |LC|ZB.
For the proof of the second criterion see [21].
Lemma 2.3 Let B € L(K,K;) have dense range and satisfy the equality
A=8"B.

Moreover, assume that for some (equivalently, for all) f.s. Ji of Ky, 0 is isolated
either on the left or on the right with respect to o(J1A). Then:

(i) B induces a unitary operator on L(K4,K2).

(1) If Jy is a f.s. of Ky used in the definition of Hy then there erists a uniquely
determined operator V' € L(H 4. Ky) such thal

V|J. Az = B.

2.7 Elementary rotations. Let K; and K; be Krein spaces and T' € L(Ky,K,;). An
elementary rotation of T is a triplet (U; K1, K3), where K and K are Krein spaces,
the operator U € L(K1[+]K{, Ko[+]K}) is unitary and extends T, 1.e.

Be UKy =1,
and one of the following equivalent minimality conditions holds

i, = Rl X U = Kl



For any operator T € L(Ky,K,) there exists an elementary rotation (cf. [6]). Here
we refer to a certain elementary rotation denoted by (R(T); D+, Dr), where

S r D
R(T) i [ DT —LTOJT' }

L € L(Dr.,Dr) being a uniquely determined operator (see [6], [21]).

(2.19)

2.8 A unitary extension. Let H be a Hilbert space and consider the Krein space
[H & H] defined as in (2.1). Also, let K be a Krein space and T e LK) = R(T)
In this paper we will use the following result (e.g. see [7]).

Lemma 2.4 In order to exist a unitary extension U € L([H & H],K) of T it is

necessary and sufficient that T be injective and Lol

3. The Problem of Extending Factorizations

The problem we are concerning with has the following statement:

There are given Krein spaces H, G; and G, and
operators X € L(H,G1),Y € L(H,Gz) such that
XX =YY =2 ¢ecL(H) '
Given cardinal numbers x, and &, it is required to
determine a quintuple (X,Y; Gy, G4; W) such that:
(¢) G, and G} are Krein spaces and :
k(G = k1, K7[G5) = K.
X € L(H.G[+]G! is an extension of X and
€ L(H,Ga[+]G} is an extension of Y, such that
XiX=v'¥=2
(i) W € L(G,[+]G). G,[+]G}) is unitary such that
WX = Y.

| (tv) GV WiG, = Gi[+]G]

EF(X,Y; k1, k2) ﬁ i
Y

Before considering this‘extending factorization problem we need to recall a known
result (e.g. see [18]).

Lemma 3.1 Let H and G be Krein spaces, X € L(H,G) and Z € L(H),Z = Z" be
such that
Db

If J denotes a fired f.s. on M then X is uniquely represented by

e WIzE El (3.1)



where V 2 R(IJZ|2)(C Hg) — G is isometric such that V|JZ|? is bounded, X, €
L(ker Z,G) is such that R(X,) is neutral and included in R(V)*t. In particular
R(Xo) = R(X)° (the isotropic part of R(X)). :

Let X be an operator as in Lemma 3.1. In the following it will be needed to consider

a technical condition that we denote by (7):

il The operator V from the representation (3.1) extends
L (uniquely) to an isometry in L(Hz,G).

Lemma 3.2 Let X be as in Lemma 3.1. Then X has the property (v) if and only
if X|J(ker Z)* extends (uniquely) to an isometry in L(Kz,G). In addition, if X has
the property () then R(X) is a pseudo-regular subspace of G and R(X)O = R(Xo).

Proof. The first part of the statement is a direct consequence of Lemma 2.1. For
the second one, assuming that X has the property (), let V denote also the isometric
extension to the whole Krein space Hz and £ = VHz. Then L is regular subspace

of G and, from Lemma 3.1, it follows that X has the representation -

ker Z L

L e
‘0 J(ker Z)* s
From here it follows immediately that
R(X) = L[+]R(Xo) (3.:2)

then, this R(Xo) is also a neutral subspace and it follows that R(.X) is pseudo-regular

and its isotropic part is R(Xp). i

We can now consider the problem EF (X, Y k1, k).

Lemma 3.3 Assume that both of X and Y have the property (v). If EF(X,Y; x1,k2)
has solutions then the following identity holds:

k1 + rank(X | ker Z) + k7 [R(X)*] = &2 + rank(Y| ker Z) + s*[R(Y)*].  (3.3)

Proof. Let (X, Y; G!, G W) be a solution of the problem EF(X,Y’; k1, ;). Then
X has the representation

X=X X :H- G+ (34)

such that
XX =X+ X'X, = 2 = X¥X,

hence XEXI =0, i.e. R(X,) is a neutral submanifold of Gj.



Consider now the representation (3.1) of X and, since X has the property (7), we
have the decomposition (3.2), where £ is regular. Denoting

X = [Xo Xi]f:kerZ — Gi1[+]161 » (3.5)
it follows that
R(X) = L[+]R(Xo), (3.6)

in partlcular the subspace R(X) is pseudo-regular and R(X,) is the isometric part
of R(X i
Similarly, ¥ has the representation

Y=[v Y:H- G+lG; (3.7)

such that ¥ has neutral range and, taking into account that Y has the property ()

and denoting
=Y Yilf: kerZ — G416}, (38)
where Yy = Y| ker Z, it follows that

R(Y) = SHIR()) (3.9)

in particular this means that t R(Y) is a pseudo-regular subspace and R(Ys) is the
isotropic part of R(Y).

Taking into account the factorization relation

WX=Y,

since W is unitary we obtain WR(X) = R(Y) and then, using (3.6) and (3.9) it

follows

R(Y) = WLHR(Y). (3.10)
The identity (3.3) is now a consequence of the identity :

k7L = AT I(WL)T],

where the orthogonal complements are computed with respect to the Krein spaces
G:[+]G; and, respectively, Go[+]G5-
Indeed, from (3.6) we obtain

£ [LY] = £7[G1] + rank(X|ker Z) + £ [R(X)]
(this time we consider R(X) as a subspace of Gi), and similarly, from (3.10) we obtain
k~[(WL)*] = &7 [Gy) + rank(Y | ker Z) + kT [R(Y)]

(viewing R(Y') as a subspace of G2). |
The main result concerning the problem EF(X.Y:x1,%2) is the computation of

the minimal negative signatures x; and ka.
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Theorem 3.4 Assume that X and Y satisfy the property (y) and, in addition,
rank(Y|ker Z) < oo, rank(X|ker Z) < oco. (3.11)

Then, the set of pairs (k1, k2) for which the problem EF(X,Y; k1, K2) has solutions,

has a minimum which is simultaneously attained and given by
K" = rank(Q(I — P)) + max{0, " [R(Y)*] - & [R(X)']}, (3.12)

k1 = rank(P(I — Q)) + max{0, k" [R(X)*] = " [R(Y)]},  (3.13)
where, with respect to a fized f.s. J on H, we denote P = P,?(XJ),Q = Pg(yo.) and
Xi=Xker Z:Y5= Y ker Z.

Proof. Let xy and k9 be cardinal numbers for which the problem EF(.X, Y xy, &2)
has solutions and let (86 ¥ G1. G, 1) be a solution. Then we consider the represen-
tations (3.4) and (3.7) of X and Y and consider the operators X, and Yy with neutral
ranges, introduced in (3.5) and (3.8). Restricting the operator identity WX = Y to
the subspace ker Z it follows

WX, =¥, (3.14)

We fix now f.s. J,Ji,Ja, Ji, J3 on H, Gy, G, G; and, respectively, G, and consider the
corresponding Hilbert spaces.

With respect to these Hilbert spaces, we obtain from (3.14) that
R(Xo ) = R(Ys )- (3.15)
Consider now the decomposition
R(X3) = R(X;) NR(Yy) & R(P(I - Q)), (3.16)

and
R(Ys) = R(X5) N R(Yy) @ R(Q(I — P)), (3.17)

with the remark that the assumptions (3.11) imply that both of P and @ have finite
ranks. Taking into account that

R(P(I - QNNR(QU - P)) =0,
from (3.15) and (3.17) we obtain
k1 = &~[G] > rank(X;) > rank(Q(I — P)) (3.18)
and similarly, from (3.15) and (3.16) we obtain

Ko = K7 [Gy] > rank(Y}) > rank(P(I — @)). (3.19)
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Let us remark now that from (3.16) and (3.17) it follows
rank(Xg) = rank(X3) = rank(P A Q) + rank(P(I — Q)) (3.20)

and

rank(Yp) = rank(Yy) = rank(P A Q) + rank(Q(I — 2 (3.21)
where P A Q denotes the orthogonal projection onto R(Xg) N R(Yy). Using (3.20)
and (3.21), from Lemma 3.3 we obtain

k1 + rank(P(I — Q)) + k7 [R(X)*] = s + rank(Q(I — P)) + FEIREE) - (322

and finally, from here. (3.18) and (3.19) we obtain k; > &™" and ko > £T" . where
AT anid k5" are introduced at (3.12) and (3.13).

Conversely, let &7 and k5" be given by the formulae in (3.12) and (3.13). We
will construct in the following a solution of the problem EF (X, Y T i

Let us first notice that the following decomposition holds,

G = LI+](R(Xo) & iR(Xo))[+]L
where £ = VHz is a regular subspace of G;, and
R(X)* = R(Xo)[+L

and, similarly,

G, = S[+](R(Yo) & J;R(Y0))[+]S,

where S = UHj is a regular subspace of G, (U corresponds to V' in the decomposition
(3.1) of Y) and
R(Y)* = R(Yo)[+]S"

We consider now H; a copy of the Hilbert space R(Q(I — P)) and take X, the natural
embedding onto the first component

X: : R(QU — P)) — [H1 & Hi]
Then extend X; trivially onto the whole ker Z and define
Xo=[Xo Xilt:ker Z — Gi[+][H: @ M.

Similarly, consider H, a copy of the Hilbert space R(P(I — Q)) and take Y7 the
natural embedding onto the first component

Y1 : R(P(I - Q) — [H1 & Hal,



A2

then extend Yi trivially onto the whole ker Z and define

A

Y() = [YQ Ya]t 5 ker Z = gg[—H{Hz EB HQ]
With these definitions it is now easy to check that
R(Xy) =R(Yo);

hence there exists a (uniquely determined) invertible operator T ”R,(Xo) — R(Yb)
such that
TX() = }}0.

Using Lemma 2.4 we extend T to a unitary operator
W (R{Xo) @ JR(Xo)) M © Hy] — (R(Yo) @ LR(Y)HH © Ha),

in particular we also have
WX() = YAO.
u@@mmﬁezmtgwwﬁawmmm?eﬁmtgwmugﬁmby
% =[viziE Xd

and

v =[UJzl: Yol
Extending the unitﬁary operator W such that

e e

we have

ey

—
(o]
Q)

Finally, let S € L(L',S') be such that
v [l =551 = max{0, sTIRIY L - IR

k[ - S'S] = max{0, kT [R(X)] - s~ R

extend W with an clementary rotation of S, say it (R(S),DS-,DS) (see (2.19)) and
notice that (3.23) still holds. Denoting

gy = [H: @ Hl“‘HDS'

ghi={Ha H,)[+]Ds,

it follows that

T e e
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Then (X, Y;G!,G}; W) is a solution of the problem ERLX Ve sl
An important particular case of the problem EF(X,Y; k1, k9) is for k1 = K3 = 0;
in this situation we write simply EF(X,Y). Before specializing Theorem 3.4 to this

case it is worth noticing that we can state EF(X,Y’) in the following equivalent form:

( There are given Krefn spaces H,G;, and o
and operators X € L(H,G1), Y € L(H,G2)
such that:

XX =YY =7 € L(H).
It is required to determine a triplet (G, Ga; W)
such that :

(i) G and G; are Hilbert spaces.

(i) W : Gi[+]G] — Go[+]G; is a unitary
operator such that
WXo= ¥

L (i31) G V W'Gy = Gi[+]G;.

EF(X,Y)

Indeed, this follows from the remark that, since G; and G, are Hilbert spaces, in

this case the extended operators X and Y are trivial extensions of X and, respectively,

Y

Corollary 3.5 Assume that X and Y satisfy the property (v) and also that the con-
ditions in (3.11) hold. Then, the problem EF(X,Y) has solutions if and only if
R(Xg) = R(Yy) and &7 [R(X)*] = k~[R(Y)1], where Xo = X|ker Z, Yo = Y|ker Z
and the * operation has to be understood with respect to a fized f.s. J on H.

Proof. Indeed, using Theorem 3.4 it follows that EF(X,Y) has solutions if and
only if k7" = k7" = 0. and using formulae (3.12) and (3.13) this means Q(I — P) =
P(I1=Q)=0and x [R(X)] = x~[R(Y)*]. It remains to notice that Q(/ — P
P(I - Q) =0 if and only if R(Xg) = R(¥7).

4. The Completion Problem

In this section we will consider a problem of selfadjoint completing of a certain type
partial block-matrix. As a first task, we investigate the relations between the induced
Krein spaces of a selfadjoint operator and that of a compression to a regular subspace.
Without restricting the generality, we can consider the spaces onto which this block-
matrix acts to be Hilbert spaces, instead of Krein spaces, since otherwise we can use

fundamental symmetries.
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Let H; and Ha be Hilbert spaces and selfadjoint operator H e L(H, ®Ha) givén
by the following block-matrix:
A B
H-—{B* C]' (4.1)

Consider a linear operator Xi,c € L(Ha, Hu) defined by
xuch=H|zh, heH (4.2)

Then, it is easy to show that
Xirexme =C (43)

hence. using Lemma 3.1 with respect to the decomposition Ha = (Hy0ker C) dker C

we have the representation

P

YHC = [V\C\ ,\’H,C\ ker C], (4.4)

where V : ’R(\C\%)(Q Hy) — Hu is isometric.

By definition, we say that the Krein space Hc is canonically embedded into the
Krein space Hy if the isometry V is bounded and, in this case Hc has to be identified
with the regular subspace VHc of Hy.

Consider now the operator pH.C € L(H2,Kn) defined by

PH,Ch =ryh , h € Ha. (45)

 Then we also have
puceuc=C (4.6)
and from here it follows that the linear operator pi,clH2 € ker C : Ha © ker C(C
Ke) = Ky is isometric.
By definition, the Krein space K¢ 1s canonically embedded in K g if the isometry
prc|He ckerC 1s bounded. in this case the Krein space K¢ being :dentified with the

regular subspace pucKc of Ki.

Lemma 4.1 Hc 18 canonically embedded in Hy if and only if Ke 18 canonically
embedded in K.

Proof. From the definitions of pr.c and yg.c we have
VIClh = |H Eprch, h€HaSkerC

Taking into account that \C\‘? € L(K¢,He) and \Hﬁ € L(Ku,Hn) are unitary oper-
ators, it follows that the isometric operators V and pu.c|Haoker C are simultaneously
bounded. &
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Also as a consequence of Lemma 3.1, R(xmc|kerC) is the isotropic part of
R(xu,c) and similarly, R(pw,c|ker C) is the isotropic part of R(px,c). The dimen-
sions of these isotropic parts can be computed in terms of the data of the selfadjoint
block-matrix H.

Lemma 4.2 rank(xzc|ker C) = rank(B|ker C) = rank(pp,c|ker C).

- Proof. Let us denote By = B|kerC. Then for h € kerC, hy € H; and hy € H, we

have
[xm.ch, |H|%(h1 @ ho)lsy = (Hh, hy @ hy) = (B2h, b1 ® hs) = (H-Pﬁ@h,hl @ hy)

= [x#1.0 Prggsyhs |1H12 (b © ha)lsy.

This implies the first equality. The second one follows in a similar way. B
We present now two criteria, of different character, which insure the existence of

the canonical embedings. For this purpose it is convenient to introduce the notation
B, = BlH; 5 kerC , B, = B|kerC. (4.7)

Then, the selfadjoint operator H in (4.1) is represented by

A B] Bz -
B b O (4.8)
B 0.0

Lemma 4.3 Assume that B, = I'C for a certain I' € L(H; © ker C,'H;). Then K¢
is canonically embedded in Ky and, in addition,

kE[R(prc)*] = 6% (Peerpy (A = TCT™)| ker B).

Proof. 1f B, = I'C then using the representation (4.8) we obtain the factorization

of H as

L e TP 0 B Figll
0-2L 0 0 @i e )
b0 T B 0 0 o
Defining R € L(H;, & H,) by
500
R= 1| T* T 0
0 0 I

and using Lemma 2.2, it follows that R™! induces a unitary operator

¢ e —_
kelwihn 4 - rgp- 5, L
B
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Since this unitary operator is an extension of py,c|H, © ker C, it follows that K¢ is
canonically embedded in Kg. Moreover, :

Ki[R(PI{.C‘)l] < ni({ A —[.;;CF* B;)z })

(B, (A= TOT™)ker By);

and the proof is finished. §

Lemma 4.4 Assume that B, = AICI% for a certain A € L(H, © ker C'Hy), and, in
addition, assume that 0 is isolated either on the left or on the right with respect to
o(H). Then Hc is canonically embedded in Hy and

h't[(/R,L]f')L] = h‘i( Pkf.,-HF(A s JS(A‘)‘ ker B;)
Proof. We consider the decompositions
H, = ker B5 & (Hy & ker By),

ker C = (ker C S ker B;) & ker By,

and. with respect to the first decomposition let A be represented by A = [A A

Then (4.8) becomes

o R s
4 Ay B0 A O0
H= 0 B e 000 (4.9)
0 (R
s opar 00 O

" We consider now the Krein space 'HA“—AISCA;H][R(BQ) 3 R(By)|[+/He = K with
the specified {.s.

sgn (A11 = JlscAI) Qs ) 0
0 0. F.o0
J = ; =t (4.10)
0 0 0 8¢
Define the operator T' € L(H; & H;,K) by
= 5ot 0 0- 00
0 I 7 S
diF . E: St 4.11
Ag — AgScd] (A — 25ca3) By 00 1 (4:10)
Sa] Sady : 00 lCiI
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Using (4.9)-(4.11) it is easy to verify that the following factorization holds
H=0"JT

Since T has dense range and 0 is isolated either on the left or on the right with respect
to o(H), using Lemma 2.3 it follows that there exists a uniquely determined unitary
operator U € L(Hpy,K) such that

UIH|? =T.
Taking into account the defnition of T' it follows that
U= C|Eh = xuch, h€HyOkerC,

hence Hc is canonically embedded in Hy. Also, using the unitary operator U it

follows

R [R(xnc)t] = #5(An — 41 Sc A7)
The proof is finished. §

Remark. Just from the definitions of pyc and xp ¢ it follows

1
|H|2 puc = XH,C-

Considering |H|? as a unitary operator in £L(Ky,Hy) (see Proposition 2.1) it follows
that R(pgc)* and R(xu,c)* and unitary equivalent, hence their signatures are the
same. i

We are now in a position to formulate the completion problem.



This is

Let H;.H, and H; be Krein spaces and,
with respect to the Krein space Hi[+]|Ha[+]Ha.
let be given the selfadjoint partial block-matrix

A= =B
o= B P
D=k
Denote
A B ok gD
H:{B: C}andGa[D: E}

Given cardinal numbers x; and k4, it is required
C(N:k1.K2) { to determine a triplet (F:Gj.G;). where

F-e LHs. Hy). and G;. @) ave Kreln spaces,
such that:

(i) 57[Gi] = k1. ~7[G3] = ko

(1) considering the selfadjoint completion of K,

a4
L= B ¢c D
Ft D' E

we have. modulo canonical embedings. that
\ Krry = KH{HQ{ and Kp(r) = KG[HQQ-

We will first show that the problem C(K: &,.K,) can be restated into the framework
of a problem of type EF(X.Y; k1. k7).

To this end, let (F; G}, G}) be a solution of the problem C(K’; 1. x2). By definition,
there exist unitary operators wy : Kp(py = Kn[+]G] and we : Kr(ry — Kg[+]G; such
that w7;' is an extension of the canonical embeding of Ky into K (r) and similarly.

w‘&l is an extension of the canonical embeding of K¢ into K g (p). Define the unitary

operator W € L(Ky[+]G],Kc[+]G;) by
W = wewg', (4.12)
and then define the operator X € L(H,, Ky[+]G}) by
‘ X = wprrin|Has (4.13)
and, similarly, let ¥ € £(Ha, Kg[+]G;) be defined by ‘
Y = werk(r)| Ha- (4.14)

Proposition 4.5 Let (F;G!,G)) be a solution of the problem C(K;ki,k,) and, let
X,Y and W be defined as in (4.12)-(4.14). Then (X,Y',Q{,Q;;I'V) is a solution of
the problem EF(pn.c, pc,ci K1y K2)-
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Proof. Let us first remark that from (4.6) it follows
X =YY =C

where X' = pyc and Y = pgc, hence the problem EF(X,Y’; k1, ky) makes sense.
It remains to prove that the quintuple ()A(,}A/; G!,G4; W) constructed as indicated in
(4.12)-(4.14) is a solution of the problem EF(X,Y; k1, £2).

Condition (i) in EF(X,Y; k1, k2) is clearly satisfied since it coincides with the
condition (i) in C(K; k1, K2)-

In order to prove that the condition (ii) holds, let us first note that X = WHPK (F),C
hence

X'X = phpycPrpe =C.

Similarly we obtain

YiY = C.
Let h € H,, by € H, and h, € H,y. Then

(X h, hy ® holy = [waTk(Yh, b1 © holl = [7h @y b why(By @ ha)lk(F)

= [w?qWHh,w”H(M ® ho)k () = [7ah, by @ holy = [Xh, by © ha)H,

which proves that X is an extension of X. Similarly one proves that Y is an extension
of Y and thus the condition (ii) also holds.
Taking into account the definitions of W, X and ¥ we have

WX = W‘—UH'/TK(F)IH2 = wGwK(F)|H2 = f/

Finally,
Ky VWiKe = Ki VwpwiKe = wn(whKy v wbKa)
= wy(rgEF)(H1 ® Ha) V WK(?)(Hz @ Has))
= wurgF)(H1 @ He ® Hs) = wuKk(F) = Kul+]G:.
We proved that (X,¥;G}, G5 W) is a solution of the problem EF(X, Y] £1,r2). B

Lemma 4.6 Assume that K¢ is canonically embedded in both of Ky and Kg. If the
problem C(K; k1, k2) is solvable then the following equality holds

k1 + rank(BlkerC) + £~ [R(prc)"]

= Ky + rank(D"| ker C) + /cf[R(pG,c)l].
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Proof. As before, we take X = pyc and Y = pgc. Just from the definitions it
follows that X has the property (v) if and only if K¢ is canonically embedded into
Kgy. Thus, assuming that K¢ is canonically embedded into Ky and K¢ it follows
that X and Y have the property () hence we can apply Lemma 3.3, via Proposition
4.6, and get the required equality. B

For the choice X = pyc and Y = pgc, we have now to show how the solutions
of the problem EF(X,Y’; 1, %2) produce solutions of the problem C(K; k1, Kq). We

need first two preliminary results.

Lemma 4.7 Let (X,i’;g;,g;;l-v) be a solution of the problem EF(X,Y; Ky, K2),
where X = pyc and Y = pgc. Define F' € L(H3,Hy) by

F = Py, 7% P, W'ng|Ha, (4.15)
and Ty € ﬁ(H1[+]H2[+]H3,I€H[+]G{) by
Ty = [ra|Hy X Wirg|Hs). (4.16)
Then Ty has dense range and satisfies the following equality
‘ A B F
B ¢ D |=T\Ty. (4.17)
BE DY
Proof. From the definition of the operator Ty we have

R(Ty) = R(zulH1) + R(X) + R(Wirg|Ha).

Since X is an extension of X = 7y |H, it follows that
R(TH) 2 R(7n).
Since Y is an extension of Y = 7g|H, and W'Y = X it follows that

R(Tw) 2 (W're).

Taking into account the minimality condition (iv) in the problem EF(X, Yy, K2),
we obtain thus that R(Ty) is dense in Ky[+]G1.

In order to prove the equality (4.17) we compute the entries of TFHITH regarded as
a block-matrix with respect to the decomposition

Ha [+ Ha [+ Ha.
To tlis end let h;, k; € H;i,i = 1,2,3. Then

[TﬁzTth,kﬂ = [WthaWHkl]H = {Hhh kl] = [Ahl,kl]-
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Since X is an extension of X = wg|H, we have

(T4 Tiha, k) = (X hoymrk]n = [waho, wukiln = [Hba, ki) = [Bha, k1.
Also, since X*X = C it follows
(T4 Terha, ko) = [Xho, Xbolu = (XX hy, ky] = [Cha, ko).
Using the definition of F' in (4.12) we have
(T4 Tihs, ki) = (Wirghs, miki] = [Fhs, k).
Taking into account that X = W#Y and Y is an extension of 7g[Hy, it follows
(T8, Tirha, ko] = (Wi, Xholn
= [nghs, WXky)g = [rcha, Vhala = [r6hs, kol = [Dha, ks
and finally
: (T{Tiaha, ks) = [Wirhs, Wirgksly = [Fahs, taksla = [Eha, ks,

We proved thus the equality (4.17). §

Lemma 4.8 Let ,(X’,}A’;Q{,Q;;W) be a solution of the problem EF(X,Y;ky, K2),
where X = pyc and Y = pgc. Define F by (4.15) and then define

T € L(H1 [+ H,[+]Hs, Ke[+]G2)

by
Te = Wrg|Hy Y mglHsl. (4.18)

Then Tg has dense range and satisfy the following equality

AP F '
B O oD =T (4.19)

Ft D' E
The proof of this lemma is similar with that of Lemma 4.8 and will be omitted.

Proposition 4.9 If F € L(Ha, Hy) 15 defined as in (4.15), where (X,?;Q{,QQ;W)
is a solution of the problem EF(X,Y; K1, k2) with.X = pgc and Y = pgc and
assuming that the operator Ty in (4.16) (equivalently the operator Tg in (4.18)) has
the property (), then (Fj; G!,Gh) is a solution of the problem C(K; k1, £2)-
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Proof. Let us first remark that from (4.16) and (4.18), it follows
WTy =T,

hence Ty and Te have simultaneously the property (v). Assuming that these hold,
since Ty and Tg have dense ranges, it follows using Lemma 2.3 and (4.17) that Ty
uniquely induces a unitary operator wy : Kk(r) — Ky[+]G; and, similarly, from
(4.19), T uniquely induces a unitary operator wg : Kx(r) — Ks[+]Gs.

On the other hand, from (4.16) it follows that Tp|H;[+]Hz is an extension of 7y
hence wﬁ, is an extension of the canonical embedding of Ky into Kg(ry. Similarly one
}Sroves that wé is an extension of the canonical embedding of K¢ into Kg(r). Thus
we proved that (F;G!,Gj) is a solution of the problem C(Kj &1, K2)- |

Remark. Assume that Hy. Hs. Hs are finite dimensional Hilbert spaces. Notice that

in this casc, with respect Lo the dt.‘(um})unitiun Hp= ker € = L\H; _ ker (:'). we have
the representations

B=[B, AlC)},
and

D=[D, |C74),

and denote
A22 = Pkch;(A = quCAI)l ker B;.

E22 =2 PkerDz(E 3 A;SCA2)| ker D2'

Also, let P and Q be the orthogonal projections of ker C onto R(B;) and, respec-

tively, R(D;). Using Proposition 4.6, Proposition +.10 and Theorem 3.4 we get
min{x~(K(FN)IF € L(H3. H}}
=& (C) + rank(P) + rank(Q(I — P)) + max{x™(An), #™ (E2)}.
(compare with [20], Theorem 4.1).
5. The Extension Problem

In [19] it was considered the following extension problem with prescribed negative

signatures of defect.



23

There are given Krein spaces Ky, K, K1, K5
and two linear operators T, € L(K4[+]K}, K2)
and T, € L(K,K2[+]K5) such that
Trl’CI = P}CzTc-

Given cardinal numbers ] and &} it is required
to determine an operator

T € L(K[+]KY, Ko[+]K3)
such that:

() T|K1 = T, and Pe,T = T,.
(id) &~(I = T*T) = &~ and
b wT{ —TTY) = sl

Motivated by the approach adopted in this paper, we formulate a modified exten-

BT Lot itin) j

sion problem as follows

Assume that K, K/, K2, K% are Krein spaces and
T. € L(K,[+]K!,K2) and T, € L(Ky, Ko[+]K5)

are operators such that
TrlK:l = P)C2TC.

Given cardinal numbers &, and &,. it is required
to determine a triple (7';G;,G;) such that

T € LK, [+]K), Ko [+]KY) satisfies
(8) T|Ky = T. and P,T =T,
(42) 7[G1] = k1 and £7[Gy] = &a,

(i17) modulo canonical embedings, we have
R g7 = Ki_pr 4161 K35 = K _g.7:l+19.

| SR T K2) <

It is clear that if (T, G!,Gy) is a solution of the problem E, (T, T¢; k1, £2) then 73
is a solution of the problem E(T;,T; k1, £5) where

K= r+a (=TT, sp=rm+x (I-TT}). (5.1)

Conversely, if (5.1) holds and T is a solution of the problem E(T;,T; &}, x5) then
T produces a solution of the problem E,, (T}, T¢; K1, K9) if and only if ICI_TchC and
K;_gq are canonically embedded in K,;_z,7 and, respectively, K; 37 and k; and
k2 coincide with the negative cosignatures of K_qig, and, respectively, K;_; 74 with
respect to these canonical embedings.

The following result illustrates a situation when the two extension problems do

coincide.
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Lemma 5.1 Assume that
oo (LTI <ion, sh= k(I - FTl < oc e
Then any solution T of the problem E(T;, T¢; k1, £5) produces a solution of the problem
Bl 208,
Proof. Let T be a solution of the problem E(T;,T; k1, #3). Then T is a row

extension on T, hence

B %
and this produces a representation
v 0 _ Tt
[-PF= [I e *}
* *

where we have denoted by ™ * 7 the operators entries which are of no nnportance
here. Taking into acconnt the first condition in (5.2) it follows that the mapping
PI_iiF I-TT, (see (4.5) for the definition) induces a densely defined isometric opera-
tor acting between Pontryagin spaces of the same negative signature hence, using a
Pontryagin Lemma type argument (e.g. see (18], Corollary 1.3) it follows that this
isometric operator is bounded, i.e. K; gi 1s canonically embedded into X'y 5,5

Also, there exists a Hilbert space G; such that, modulo the canonical embeding,
K_i5 = Kp_pr[+G1

Similarly, using the second condition in (5.2) we prove that there exists a Hilbert

space G, such that, modulo the canonical embeding,
K 3 = Kp_gp:[+]G

Thus (TG, G}) is a solution of the problem En(T;,T:,0,0). B
We will now embed the problem E, (T;,T.: k1, K2) 1nto a completion problem as

the one studied in Section 4. For this reason let us denote
TrlK1 e P)CZTC = T € ﬁ(K1K2)

Then there exist uniquely determined operators B € L(K1,KL), D € LK, Ky) such
that

Tt B, =T D (5:3)
Using these objects we consider the selfadjoint partial block-matrix K acting on the
Krein space Kj[+]K2[+]K1[+]K] and defined by -

F+0aB

U

Bl o
DA

et (5.4)
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Also, let us remark that T € L(K;[+]K}, Ko[+]K}) satisfies
TIK:I =T, PKzf =T,

if and only if for some F € L(K{,K}) we have

S hpe D .
T—A[B F]' (5.5)

Proposition 5.2 The formula (5.5) establishes a bijective correspondence between
the set of solutions (T Gi,Gh) of the problem E, (T, T;; k1, k) and the set of solutions
(F;G:,Gb) of the problem C(K; k1, k2) where K is defined as in (5.4).

Proof. Let F € L(K%.K!) be arbitrary. consider T as in (5.5) and define the

selfadjoint operator

BT R e e
; & FET-D
KF)=| g n 1 ¢ (5.6)
F: DY 0 I |
Then,
: B
I\(F)={;fm [} (5.7)

and the following factorization holds

"'<F>=[f{uH'[éz_oﬁf}'[éﬂ- o

Then, using Lemma 2.2, from (5.7) we obtain a unitary operator
Kriry = KK HK g5 (5.9)

In accordance with the notation in Section 4 we denote

Tr 0ol iy
Hedo (b Pl gsaag, 0 (5.10)
BTl ] Dt o I

We notice that the following representation holds
e
m= 7]

and using a factorization of H similar with that in (5.7) we obtain a unitary operator

Ky = K+ K .- (BuE1)
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Let now (F; G/, G,) be a solution of the problem C(K’; &1, £2) and define T as in (5.5).
By definition, we have a unitary operator

Kul+]G6; — Kk (F), (5.12)

which extends the canonical embeding of Kg into Kg (r). Using this operator and the

unitary operators in (5.8) and (5.10) we obtain a unitary operator
Ky _pap [+1G1 = K[+ [+]IK g7

This unitary operator maps Kj[+]K; onto itself and extends the canonical embeding

of K;_ri7 into K ,_#:#, hence, modulo this canonical embeding, we have
~ ’
Ko = Kpyzn 4160

Similarly we prove that A;_ g z: 18 canonically embedded into K;_;5: and modulo

this embeding we have
Ky i = Kp_p,p:[+1Gs-

Thus (T;gg,gg is a solution of the problem E, (T, T¢; k1, K32).

Conversely, if (TG}, G4) is a solution of the problem Ep (T, T¢; k1, £2) then (5.5)
uniquely determines F € £(K}.K5). We use again the unitary operators in (5.8) and
(5.10) to produce a unitary extension of the canonical embeding of Ky in Kx(r) as
in (5.11). Similarly we get a unitary extension of the canonical embeding of K¢ into
Kk (F), with the complementary Krein space Gy. Thus (£;G1,G3) is a solution of the
problem C(K; k1, k2). i

As it was pointed out during Section 4, the problem C(A’; &1, &2) I stated into
the framework of a problem EF(X,Y; k1, k). In accordance with the notation in
previous sections. we consider the selfadjoint operators f and G as in (5.9) and, in

addition

I T 5
6= [ el } (5.18)

Lemma 5.3 Assume that either k1 + £~ (I — T'T.) or ko + k~(I — T,T}) are finite.
If(f(,f’; G!.Gh; W) is a solution of the problem EF(X,Y; k1, K2), with X = puc and
Y = pgc, then, letting F be defined by (4.12) and T as in (5.8, (T, G50 ) 180
solution of the problem E, (T}, T;; k1, K2)-

Proof. Assume that k, + &~ (I —T!T.) is finite. We first prove that if T is obtained
from a solution (X.Y/;g;,g;; W) as indicated in the statement of the lemma, then
k= (I — Tnf) is finite.
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To this end, let us consider the unitary operator in (5.8) and denote by S the
regular subspace of Kx(r) which is mapped by this unitary operator onto Kj[+]K,,
in particular we have :

Wl =TT =s718%L < (5,14)

From (5.7) it follows that S = wx(r)(K5[+]K2) € R(7k(F))-
We consider now the operator TH € LIKL[+HKo[+]K1[+]K], Ku[+]G;) defined by

TH:[nHuc; £ wfmucg} (5.15)

and using Lemma 4.8 we obtain that Ty induces an isometric operator wy with
domain R (7 (F)) and dense range in Ki[+]G1. An argument of Pontryagin Lemma
type shows that

78] < w7 (wnS)t]. (5.16)

Let us consider now the representation (3.4) of X. Remark that R(\’l) is a neutral

subspace of G/, hence it has finite dimension. From (5.14) it follows
S+ RIH) = ra (KL + R(Ky) 2 maly+]Ka):
Making use of the unitary operator in (5.10), this yields
£ [(wnS + RIX)) € s+ 671 = TET)

and finally, from here, (5.13), (5.13) and the fact that R(Xl) is finite dimensional,
we conclude that = (I — T'T) is finite. '
Since k™l — fj) is finite it follows that 1" has either the property (@) or the
property (a)_. Taking into account the factorization (5.7), it follows that the hypoth-
esis of Proposition .10 are fulfilled. hence (£;G1,G3) is a solution of C(N: sy, #2) and

using Proposition 5.2 we conclude that (1 ;G1,G)) is a solution of B (17, Tei Ay, k).

We focus now on determining the minimal negative signatures for which the ex-
tension problem is solvable. For this purpose we need to fix fs. Jy, JyyJ2 and Jy
on Ky, K}, K2 and respectively K3. With respect to these f.s. we consider the defect
operators Dr and D7« (see (2.6)).

There exist uniquely determined operators .15 = JzB{l\er Drand I, : R(D7) —
K} such that

'B = [A;, I,D7], (5.17)

and similarly. there exist uniquely determined operators Ay =aPrsppidal) K, —
ker Dy« and I': R(Dg.) — K such that

D= (A D) (5.18)
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Lemma 5.4 Assume that the operators I'y and I, defined in (5.16) and (5;17)
 are bounded, and denote It = I'* € L(K},Dr+). Then, in order for the problem
B (T, Ts; k1, K2) to be solvable, the following equality must hold

k1 + rank(Ay) + &7 (Peer az(J5 — T2Jr 7)) ker A3)
=Ky + I‘ank(/’h) T KI(PkerA_l(_J{ = F;JT-Fl)I ker Al).

Proof. Using Lemma 4.3, since I} and I3 are bounded, we obtain that K¢ is
canonically embedded into both of Ky and K¢, equivalently, pg.c and pg ¢ have the

property (7) (see Section 3). In adition, also from Lemma 4.3, we obtain
k™ [R(pe.c)*] = &7 (Beeray (J1 — I1J7eI1) | ker Ay), (5.19)

and

K7 [R(pr.c)t] = 8 (Prer a3 (J3 — 2717 )| ker A3). (5.20)

We apply now Proposition 5.2 and Lemma 4.7, taking into account the formulae

(5.18), (5.19) and the definitions of A; and .1, and get the required formula. B

Theorem 5.5 Assume that the hypothesis of Lemma 5.4 are fulfilled and, in addition,
that A, and Ay have finite ranks and also that &= (I=T*T,) and k™ (I-T,T}) are finite.
Then, the set of pairs (k. k,) for which the problem E (T, T¢; k1, Ke) is solvable has

a minimum, simultaneously attained, which is given by the following formulae

k7" = rank(Q(I — P)) + max{0, k™ (Peer s, (J; — [T J7-11)| ker A1)

—N—(Pkcr.tg('fé — [ JrIy)| ker A7)} (5.21)

Ot
o

and

ﬁguﬂ = rank(l)(] — Q}) —+ max{(), H“(])ker_ls(-jé s 12,]'112‘)1 kerj;)
K (Parn (i = i Dlker ) (522)

where we have denoted P = Pr(a,) and Q = PrTR(43)-

Proof. First recall the considerations during the proof of Lemma 5.4. Then notice
that since /4; and A, have finite ranks and &~ (I — T7T,) and s~ (J — T.T%) are finite,
in order to determine the minimal signatures of the problem En (T, T¢; £1, fcg),l‘taking
into account Lemma 5.4. it follows that we are interested only in those pairs (1, £2)
such that either x; or &3 is finite. Thus, Lemma 5.3 works in this case and we can

apply Theorem 3.4. It remais only to notice that the orthogonal projections P and



&)
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Q can be considered as in the statement of the theorem, since the partial matrix K

in (5.4) gives the same bound for x; and k, as the partial matrix K

Tl 8
e o D i
TR R ST o
D <BHE

The proof is finished. #

Remark. In formulae (5.20) and (5.21) we optionally can take P = Pjr.r(4,) and
Q = Pr(s;)- This follows by considering instead of K’ in (5.22) the partial block-

matrix

I -BT* B
~TR =P T =0 D
e %5
i B 0 oo (5.24)
L Jo G

Corollary 5.6 Assume that the hypothesis of Theorem 5.5 are fulfilled and let &} and
k) be defined as in (5.2). Then the problem E(T,.T.: &}, &) is solvable if and only if

Ridi = TREA) (5.23)
and

K'_(Pker‘i](t]; e Fl'JT‘-FI)I ker Al) =
£ (Preraz(Jy — DTy ker 43). (5.26)

Proof. This is a consequence of Lemma 5.1 and Theorem 5.5
We conclude by noticing that Corollary 5.7 is a generalization of [18, Theorem
5.1] (see also Remark 5.6 in [19] and Remark 5.7 in [20]).

References

(1] V. M. Adamyan, D. Z: Arov, and M. G. Krein: Analytic properties of Schmidt
pairs for a Hankel operator and the generalized Schur-Takagi problem [Russian],
Mat. Sb. (N.S) 86 (128)(1971), 34-75.

[2] D. Alpay: Dilatations des commutants d’operateurs pour des espaces de Krein

de fonctions analytiques, Annales de l'Institut Fourier, to appear.

[3] D. Alpay, P. Bruinsma, A. Dijksma, and H. S. V. de Snoo: Interpolation prob-
lems. extensions of symmetric operators and reproducing kernel spaces, I, in
Operator Theory: Advances and Applications Vol. 50(1991), Birkhauser Verlag.
Basel.



[4]

[5]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

30

R. Arocena: Generalized Toeplitz kernels and dilations of intertwining operators,
Integral Equations and Operator Theory, 6 (1983), 759-778.

R. Arocena and F. Montans: On a general bidimensional extrapolation problem,
preprint 1990.

Gr. Arsene, T. Constantinescu and A. Gheondea: Lifting of operators and pre-
scribed numbers of negative squares, Michigan Math. J., 34(1987), 201-216.

T. Ya. Azizov: On the theory of extensions of J-isometric and J-symmetric op-
erators [Russian], Funktsional Anal. i Prilozhen. 18(1984), 57-58.

T. Ya. Azizov and 1. S. Tokhvidov: Fundations of the theory of linear operators

in spaces with indefinite metrics (Russian), Nauka, Moscow 1956.

J. A. Ball: Interpolation problems of Pick-Nevanlinna and Loewner type for
meromorphic matrix functions, Integral Equations and Operator Theory, 6(1981),
804-840.

J. AL Ball, and 1. Gohberg: A commutant lifting theorem for triangular matrices

with diverse applications, Integral Equation Operator Theory 8(1985), 205-267.

J. A. Ball and J. W. Helton: A Beurling-Lax theorem for the Lie group U/(m.n)
which contains most interpolation theory, J. Operator Theory 9(1983), 107-142.

J. Bognar: Indefinite inner product spaces, Springer Verlag, Berlin-Heidelberg-
New York, 1974.

L. de Branges: Krein spaces of analytic functions, J. Funct. Anal. 81(1988),
219-259.

L. de Branges: Complementation Theory in Krein Spaces, Trans. Amer. Math.
Soc., 305(1988), 277-291.

T. Constantinescu: Some aspects of nonstationarity. II, Math. Balkan.,4(1990),
211-235.

T. Constantinescu: Completions and extensions, in Operator Theory: Advances
and Applications, Vol.43, 1990, Birkhauser Verlag, pp. 141-150.

T. Constantinescu and A. Gheondea: On unitary dilations and characteristic

functions in indefinite inner product spaces, in Operator Theory: Advances and
Applications, Vol.24,1937, Birkhauser Verlag, pp. 87-102.



[18]

[23]

[24]

[25]

[30]

31

T. Constantinescu and A. Gheondea: Minimal signature in lifting of operators. I,
J. Operator Theory, 22(1989), 345-367.

T. Constantinescu and A. Gheondea: Minimal signature in lifting of operators. 11,
J. Funct. Anal., 103(1992), 317-351 .

T. Constantinescu, and A. Gheondea: The negative signature of some hermitian
matrices, Linear Algebra Appl., 178(1993),17-42. .

T. Constantinescu and A. Gheondea: Elementary rotations of linear operators

in Krein spaces, J. Operator Theory, to appear.

M. Cotlar and C. Sadosky: On the Helson-Szegd theorem and a related class of
modified Toeplitz kernels, Proc. Symp. Pure Math. Vo XXXV, Amer. Math.

Soc.; Prowidenee, Bl 1979,

J. Dieudonne: Quasi-hermitian operators, in Proc. Internat. Symposium Linear
Spaces, Jerusalem, 1961. 115-122.

M. Dritschel: A lifting theorem for bicontractions, J. Funct. Anal. 88(1990).

M. Dritschel and J. Rovnyak: Extension theorems for contraction operators
on Krein spaces. in Operator Theory: Advances and Applications, Vol. 47,

Birkhauser Verlag 1990.

H.Dym and I. Gohberg: Extensions of band matrices with band inverses, Linear
Algebra Appl. 36(1981), 1-24.

C. Foiag and A. E. Frazho: The commutant lifting approach to interpolation
problems. in Operator Theory: Advances and Applications Vol.44. Birkhauser
Verlag 1990.

M. G. Krein: On Hermitian operators whose deficiency indices are 1 [Russian],

Dokl. Akad. Nauk. SSSR, 43:8(1944), 323-326.

M. G. Krefn: On linear completely continuous operators in functional spaces
with two norms [Ukrainian], Sb. Trudov Inst. Mat. Akad. Nauk USSR 9(1948),
104-129. ; -

M. G. Krein and H. Langer: Uber die verallgemeinerten Resolventen und die
charakteristische Funktion eines isometrischen Operators in Raume 7y, Hilbert
space operators and operator algebras, in the volume ,353-399. Collog. Math.
Soc. Janos Bolyai, 5 (Tihany 1970) North Holland, Amsterdam, 1972.



32

[31] M. G. Krein and H. Langer: Uber einige Fortsetzungsprobleme, die eng mit der
Theorie Hermitescher Operatoren in Raume 7, zusammenhangen.I, Math. Nach.,
77(1977), 187-236.

[32] M. G. Krein and H. Langer: On some continuation problems which are closely
related to the theory of operators spaces mi. IV, J. Operator Theory, 13(1985),
299-417. :

[33] P. D. Lax: Symmetrizable linear transformations, Comm. Pure Appl. Mat.
7(1954), 633-647.

[34] M. A. Naimark: On self-adjoint extensions of the second kind of a symmetric
operator [Russian], Izv. Akad. Nauk. SSSR 4(1940), 55-104.

[35] W. T. Reid: Symmetrizable completelv continuous linear transformations in
Hilbert space, Duke Math. J., 18(1951), 41-56.

[36] D. Sarason: Generalized interpolation in H®%, Trans. Amer. Math. Soc.,
127(1967), 179-203.

[37] D. Sarason: Moment problems and operators in Hilbert spaces, in Proc. Symp.
Appl. Math., Vol.37(1987), pp.54-70.

[38] B. Sz. -Nagy and C. Foiag: Harmonic Analysis of Operators on Hilbert space,
North Holland, New York, 1970.

[39] B. Sz.-Nagy, and A. Koranyi: Relations d’une probleme de Nevanlinna et Pick
avec la theorie des operateurs de 1'espace Hilbertien, Acta Sci. Math. 7(1956),
259-302.

Tiberiu Constantinescu Aurelian Gheondea
Institutul de Matematica Institutul de Matematica
al Academiei Romane al Academiei Romane
C.P. 1-764 ¢ P 1-764

RO-70700 Bucuresti RO-70700 Bucuresti

Romania Romania



