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Extending Factorizations and Minimal Negative Signatures

Tiberiu Constantinescu and Aurelian Gheondea

Abstract. We formulate a problem of extending factorizations of type XIX in

Krein spaces, with control on the negative signatures, and the minimal negative signa-

tures for this problem are computed. As application we determine the minimal negative

signatures of an operatorial one-step completion and lhe minimal negative signatures

of defect for a problem of l i ft ing operators in Krein spaces.

1.  In t roduct ion

There exists a rviclely knorvn method in the theory of moment problems which uses a

simple framervork from operator theory. This method was initiated and developed by

lVI. A. Naimark [3a] and ]1. G. Krejn [28] and refers to the search of unitary extensiotrs

of a given partial isometry, that go beyond the space where the partial isolneLry

acts. This method turned out to be useful for many problems. For instance, the

Ner.anlinna-Pick problem can be solved in this rvav (B. Sz. -Nagy and Koranvi [39]),

the i{amburgef momerrt ploblenr and the Nehari problem fi t  r i 'el l  in this apploaclt

(see D. Sarason [37]). Also, as shorvn by R. Arocena [4], the more general abstract

problem of lifting of commutants of Sarason, Sz.-Nagy and Foiaq [36] and [38] (see

also [27]), can be embedded into this framervork and, f inal ly' ,  let us mention that a

recent method of IvI. Cotlar and C. Sadosky l22j f.or solving moment problerns can be

vierved as a case of the considered extension problem.

Qrr i tc  recent l l ' .  t f rere appearec l  tentat ives fo l  obta in ing other  var iants  to  so lv t 'sot t r t -

olher specific complebion or monlent problems. \\'e Irtentiou here titree directions.

First. in order to solve Nevanlinna-Pick or Nehari problems for meromorphic functions

instead of analytic functions, extensions of isometries in spaces with indefinite metrics

were considered by V. NI. Adamyan, D. Z. Arov and N'I. G. Krein l1]' T. Ya. Azizov

[i] ,  J.\\ f .  Ball  and W. J. Helton [9], [10], N,L G. KreYn and H. Langer [30], [31], [32],

D. Aplay', P. Bruinsma, A. Dijksma and H. S. V.de Snoo [3]. Second' for solving

some bidimensional completion problems, a problem of extending pairs of partial

isometries was considered by R. Arocena and F. Ivlontans [5] and, third, in order to

solve problems as those in the papers of H. Dym and I. Gohberg [26] or J. W. Ball

and I. Gohbelg 110], a nonsfationtrry varianL of the extensiotr of part iai isotlretr- ies u'as

c.r lsit lcrcd in [15] (se.. erlso 116]). The irrtclpolr,t ion problcnrs or r lorneil t  problcnts

that rve referred to before are mainiy concerning Hilbert spaces or Pontryagin spaces.
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An important challange in these topics appeared in 1986 when L. de Branges asked the

question of adapting the commutant lifting theorem to contractions in Krein spaces.

The first answer was given by the authors in [17] in the framework of Pontryagin

spaces and, for different situations involving Krein spaces, it was given by M. A.

Dritschel [2.1], lrll. A. Dritschel and J. Rovnyak [25] (see also the papers [2], [13]' [14]'

ancl the authors'papers [18], li9] where the more general case of nontrivial negative

signatures of defect is considered).

In [18] and [19] we have considered a problem of extending operators in Krein

spaces with control of the negative signatures of defect. This problem, denoted here

by E(T,,T"iKr,rc2) (see Section 5) is a core of the variants of commutant lifting with

control of the negative signatures of defect. In [20], as a consequence of solving

a completion problem. denoted in this paper by C(K; h,Kz) (see Section 4), the

extension problem is solved completely in the case of finite dimension.
' lhe purpose cif this paper is t<.i descril.re attollter variant of the niethocl of Nairrlalk

and Krein in connection rvith the determination of minimal negative signatures of the

extension problem. In order to follorv this method we extend factorizations instead

of partial isometries, because of the different behaviour of the factorizations of the

type XIX in Krein spaces and, respectively, Hilbert spaces.

The extending factorizations problem, denoted by EF(X,Yiq,r2) is considered

in Section 3. Here the main result is Theorem 3.4 rvhich gives explicit formulae for

the minimai negative signature. Using the remark in [15] , rve are led to consider the

problem C(l{;nr,ilr) as a problem of extending factorizations (see Proposition 4'6

and Proposit ion 4.10).

One of the basic tools used in this paper is the KreYn space induced by selfadjoint

operators. This led also to the investigations of the relations between the Krein spaces

induced by a selfadjoint operator and a selfadjoint extension of it. This is done in

the f irst part of Section '1.

The main result in the last section is Theorem 5.5 which gives formulae for the min-

inral negative signatures of the modif ied extension problem E^(7,,7";q,n2). This

problem allows Krein spaces with infinite signatures. In case that oniy Pontryagin

spaces are considered, using a slightiy different approach, the same formulae can be

obtaine<l for the problem E(7,,7";q,,rc2)'

2. Notation and Prel iminary Results

The basic properties of Krein spaces and their linear operators that we use in this

paper are contained in the monographs [8] and 112]. In this section n'e fi.x the notation

and recall some results r.vhich rvill be frequentll' used in this papcr.
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2.1 Geometry in KreYn spaces. If K is a KreYn space then its inner product is

usually denoted by [.,.]. For a fundamental symmetry (in brief f.s.) of K we denote

by (.,.).r the corresponding positive definite inner product. Also rc-[K] and t+[rc]

denote lhe negatiue signature and, respectively, the positiue signature of" K.

More general, if 4 is a subspace of K, denote by 
"-lLl,, 

n+lLl, and rc0[4] its

signatrrres. lr stands for the orthogonal cornpanion of ,C and L0 : L Ct.Cr stands for

its isotropic part. We have rc01L1 : dim[,Co] and rct [,Cr] are also called the cosignatures

of L.

lf. Tt is a Hilbert space then we denote bV l'l{O }l] the Krein space obtained from

the Hilbert space 7{ @ 1l with the f.s. J defined by

' : [ ?  { ] (2 .1 )

Let ,Lr  ar rd,Lz be l r re in  Spaces.  \ \e  c ler rote b1. ,L1[+]A,z t | re  I i re in  Spacc d i t 'ect  sur t t

of K1 and K2.

A subspac e L of. the Krein space K is called regular if K : L + L' . In this case

we usual ly wri te rc :  LI+)LL.
Let T e L(K.,K2), where K1 and K2 arc Krein spaces. Then T' denotes the

adjoint of ?. If { and J2 arc fixed f.s. of Kr and Kz we denote by ?' the adjoint of

? u ' i th  respect  to  the l i i lbcr t  spaces (Kt ,  ( ' , ' )y , )  and ( f , r ,  ( ' ' ' ) . r , ) .

2.2 The KreYn space 77e. Let f, be a Iirein space and A e L(IC) be selfadjoint,

i.e. A - At. If J is a f.s. of f, then J.4 is a selfadjoint operator on the Hilbert space

(,(, (.,.)r), hence we can consider its polar decomposition

JA= Ste lJAl , (2.2)

rvhere S;; = sgn (.IA) is a sclfadjoint part ial isoruetrl '  sLtch that kcr' .9.r..r :  kcr . '1.

Then S.y.a is  a  synrmetr l ,on the l l i lbeLt  s i race iRlLt ; , ( ' , ' ) ; ) .  I )e t to te b1"H,1 rht ;

Krein space (NJ{,[. , . ]) where the inner product [ ' , ' ]  i t  induced by the symmetry

S.;a as foilou's:

l r , y l  =  (S ter ,y ) t ,  x ,y  €7{1 . (2 .3)

Let us remark that the linear manifolds R(lJAl) andR(lJA1l) are dense inVlt and

that the strong topology on the Krein space ?l4 is inherited from the strong topology

of the original Krein space K. Denote by eo K --+ 7{a the quotient mapping. Then

ee € L(K,Tle) and we have
€Fa€a = J Ste.

The definition of the I{rein space tla does not depend on the f.s. J in the sense

that if a diiTerent f.s. is used, the two Krein spaces obtained in.this way are unitary

equivalent.

(2.4)



Let K1 and K2 be KreYn spaces and ? € L(K,K2). Fix f.s. "Ir and "/z on K1 and

respectivetv' K,;::-;ntt-,r, 

, J1. : sgn (J2 - rJir.) (2.b)

D r : l J r -T - J r f 1 i  ,  D r .= l J r -TJ .T -1 | ,  ( 2 . 6 )

and using these elements define the space Dr =NDt considered as a Krein space

with the f.s. J7 and,, similarly, clefine the Krein space D7, --qDi with the f's.

Jy.. The I(rein spaces Dy and,D7, ara cailed the defect spl,ces of 7 and clearly

D7 : ' l t I-TtT , DT' = T(t-TTt'  Q'7)

2.3 The KreYn space K;. Let K be a I(rein space and A e L(K), A= A1. Define

.the inner prodr.rct [ ' , '1 on ,L,

'  t x ,a l4 - lAr ,y1  ,  r , yeK (2 .8 )

rvhere [., .] denotes the inner product of the KreYn space K.

Notice that ker A is the isotropic subspace of the inner product space (K' [ ' , ' ]r).

Fix J a f.s. of ,C and denote K - ,I(ker A)r. Then consider the Jordan decomposition

of  the se l fad jo in t_operator , /A wi th  respect  to  the I l i lber t  space (K,( ' ' ' ) . r ) ,

J A = (J A)*  -  (J A)- ,  (2.9)

and denote K+:W and K- 
:U*rl^-tn"n 

we have

K = K + + K , - .

\o t ice rhar  ( f ,1 , [ . , . ] . . r )  and ( t r - , -1 . , . ] . r )  u . .  pre- l { i iber t  spaces anci  denote b l ' / ' i

and Ka their completions to Hilbert spaces. Define

Kd - Kil+)Ki, (2.10)

where the inner product is the extension by continuity of the inner product [',']r.

Then (Ko,1.,.]r) ir a Krein space and (2.10) is a fundamental decomposition of. Kt.

Let ra denote the quotient mapping K * K .o*por"d with the embeding of rc ittto

, K.n. Then ra € L(K,,C,a) and
r \ r a :  n .  ( 2 . 1 1 )

The next result is a clirect consequence of the clefinitions.
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Lemma 2 .1  I f  K  isa l i re inspace,  A€L(K, )  i sase l fad jo in t  opera tor  and,J  i sa f .s .
of K used in the definition of the lirein spaces T{a and, K1, then the linear operator

Ka) k > *--  lJAl*r  e R(lJel i )  gXo

ertends uniquely to a utt i tary operator Kt - T{s. In addit ion

lt e1* o.n = s.,tlJ Al* (2.1g)

The definition of the Krein space Ka is indepenclent on the f.s. J, mociulo unitary
equivalence (see [21]).

2.4 Operator signatures. Let K be a Krein space and A e LW) be a selfadjoint
opr,'rator. Tlre .srgnalur,"s of , '1 arc. bi 'defirrit iori. thc r:ardinal nr-imbers

x " ( .41  : c= l f , a ]  .  nn ( , ' i )  =c i i n rke r ( , "1 ) .

As a consequence of Lemma 2.1 it follorvs

(2 .  i , r  )

o*(A)  :  n*(? l .a) . ( 2 . 1 5 )

Let K1 and K2 be Krein spaces and consider ? € L(Kr,Kz). The cardinal nurnbers
x*( I  -TtT) .K+( I  -TTr) .^o( I  -  ?17)  anc l  Ka( l  -  7?d)  are ca l lec l  the.s fqnatr rces of
defect of 7. Thcse signatures verif l '  the fol lorving equali t ies (see [21])

* t t  m l l m r  l rn-(1 -  TIT) + o-[Kr]  _ rut(1 -  TT!)+,r+[ , f l ] , (2. l6)

(2 .1  i )n o ( I  - T t T l - o o ( / - T T t ) .

2.5 Some spectra l  proper t ies.  Let  11be a Hi lber t  space and A e L( t l ) ,A:  A- .
, - l  lea l  t r t tn lbr : t '  i  is  i ' ' -o la lcd on thr  le f t  (on thc r ight )u ' i th  respect  tb  thc s l rccr . r . r r r r r
o f  A.  here denoted b) '  o(A) ,  i f  there ex is ts  s  > 0 such that  ( t  -  e ,  t )  )  o(A)  :  g
(respecti 'u'ely. (r. t  + e) n o(A) - g).

Lef norv Al be a Krein space and A € r(/L), A: At. I f  for some f.s. J of. K,0
is isolated on the left (on the right) with respect to o(JA) then the same is true for
anv other f.s. of K.

Let Kr and Kz be Krein spaces and ? € L(Kr,rc2). with respect to fixed f.r. J,
and J2 on K1 and, respectively on K2, we introduce the spectral properties:

(o)* 0 is isolated on the right uith respect to o(J1- T"JzT),

(o)- 0 is isolat,ed, on tlte telt uith respect to o(J1 - T- JzT).

The properties (a)1 and (a)- do not depend on the f.s. ,/r and Jz. Moreover, if Z
has the propertl' (o)..,. or (a)- then 7'd shares the same properry (see [21]).

(2.r2)



2.6 Indef in i te factor izat ions.  Let Ae. L(Kr) ,A= Ai l  and C e L(K2),C -Ctbe

given. We are interested in factorizations of the type

A _ BtC B, (2.18)

where B e L(Kr,Kr), Under certain conditions, this kind of factorizations produce

unitary operators acting betrveen the Krein spaces induced by A and C. Here we

recall two criteria of different type. The first one is a consequence of a rvell-known

extension lemma [29], [33] , 135], [23].

Lemma 2.2 Let B e L(K1,,K) be surjectiue and satisfy (2.18). Then:

(i) B induces a unitary operator in L(Kn,Kc).

(ii) I/ J1 and, J2 are f .s. aith respect to which'11.q and ?lc are defined, there eilsts a

uniquely r leternined uni tory opert t tor  l ' '  e L1Tln, 'Hg1 such that

vlhAl i  -  lJ2cl* B.

For the proof of the second criterion see [2i].

Lemma 2.3 Let B e L(Kr,K2) haae dense range and satisfy the equality

A :  B t B .

Nloreouer, assunre that for some (equiualently, for all) f.s. Jr of Kt, 0 is isolated'

either on the left or on the right with respect to o(J1A). Then:

(i) B ind,uces a unitary oper.ator on L(Kn',Kz).

(i i) If Jy i.; a f.-*. of Kr 'u..td in l l tt t lefinit ion of Tl,4 thtn l ltere err,sl 's u tLttir lrLtlu

dt termined operator \ -  e L(H.q.L2) sucl t  t l tut

\,' lJrAli = B.

2.7 Elementary r6tations. Let Kr and K2 be Krein spaces and T e L(Kr, K2). An

elementary rotation of ? is a triplet (U;rc\,,C1), where K,1 and K', ate Krein spaces'

the operator U € L(rcJ+lK'r,Ktl+1K'r) is unitary and extends ?, i'e'

Pp,UlKl - T,

and one of the following equivaient minimality conditions holds,

K2Y b K1: ,L,u l+ j f , i  ,  K,  v L: i ]Cz: f , r l - r ]Ki .
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For any operator T e L(K1, K2) there exists an elementary rotation (cf. [6]). Here

we refer to a certain elementary rotation denoted by (n(?);Dr',Dr), where

l r  D 7 .  1  1 z . r o 1ne)= l i ,  _ i i .h . ) ,
Lr. € L(Dr.,27) being a uniquely cletermined operator (see [6], [21])'

2.8 A unitary extension . Let H be a }lilbert space and consider the Krein space

lhtwll lclelined as in (2.1). Also, let K be a Krein space and T e L(71,K),L :77(T)'

In this paper we will use the follorving result (e.g' see [7]).

Lemma 2.4 In ot'd,er to et:ist a urtitary ertension U e L(lTl G ?11,K) 
"f 

T it is

n(ce.csat ' !J r tnd ,qrr ! t rc icnt  t l tot  T k in. i rct i r r  anr l  LL = L.

3. The Problem of Extending Factorizations

The problem \ve are'concerning lvith has the follorving statement:

E F ( X , Y i g , n 2 )

'lhere are given IireYn spaces 'll, 
9., and 9z and

operators X e L('17,9r),,1' € L('11,92) such that

X t X = y t y : Z e L ( j l ) .
CiveIr cardirral nutttbers l;1 and rur, it is required to

cleterrnine a cluintupl" (-t, y';9'r,9L;W) such that:

0 gi and Q', are Krein spaces and
K-19'r1= ut', .-lgil - K2'

(tt) X € L(11.91+]g't is an extension of X and

? e LQ{,/r\+)gL is an extension of Y, such that

* n * - i l Y - 2 .

i l i i l  l l '  e L(.Qtt+l7 ' r .gr i+)A|)  is  uni tarS'  st tch that

WX _ '? .

( iu)  9rY I ! / tQz:  g 'L+18t .

Before considering this extending factorization problem we need to recall a known

resul t  (e.g.  see [18]) .

Lemma 3.L Let'|{ and,9 be l{rein spaces, X e L(V1,9) and Z e L(7t),2 - Zt be

such that
KaX :  Z.

If J denotes a f 'rcd f,s, on"Il thctt X is uniquely represented by

X - lVlJ zl+ x'l (3 .1  )
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whereV : R(lJZli)tE Hz) * Q is isometric such thatVlJZll b bounded,, Xs €

[(ker Z,,Q) is such that R(Xo) is neutral and includ,ed in R(V)L. In particular

R(Xd - R(X)o (the isotropic part otR(X)).

Let X be an operator as in Lemma 3.1. In the following it will be needed to consider

a technical condition that we denote by (f )'

, , ( The operator V from the representation (3.1) edends
11)\ 

1""tquely) to an isometry in L('112,9).

Lemma 3.2 Let X be as in Lemma 3.1, Then X has the property (l) lf and' only

if xlJ(kerz)L ertends (uniquely) to an isometry in L(Kt,g). h addition, if x has

the property (l) then R(X) is a pseudo-regular subspace of Q andR(X)" -R(Xo).

Proof. The first part of the statement is a direct consequence of Lemma 2.1. For

the second one, assuming that X has the property (f ), let V denote also the isometric

extension to the whole Krein space '112 and L : V'llz. Then ,C is regular subspace

of I and, from Lemma 3.1, it follows that X has the representation

x = | v1t z1i .9 I , 
u";t 

.._' rfr

From here it follo'rvs immediately that

M=[[+]R(' \o) (3.2)

then, this Utrt is also a neutral subspace and ib follorvs that R[X) is pseudo-regular

(3.4)

such that

hence XlXt = 0, i.e.

and its isotropic part is R(Xr). I

\Ve can norv consider the problem EF(X' \ ' ; q,n2).

Lemma 3.3 Assume that both of X and \" haue th.e property 0). If EF(X' \ '1 n1, rc2)

has solutions then the follo.w.ing identity holds:

rc1 f rank(Xlker Z) + n-[R(X)t] = Kz *rank(Yl ker Z)+ rc-[R(f)r] '  (3.3)

Proof . Let (X, Y;7't,gL;VV) be a solution of the problem EF(X, Y; *r,rc2). Then

* hut the representation

.t : [X Xr]' , 7t -r g{+lg|

* r * _  X t X + X l X ,  = Z = X t X ,

R(Xt) is a neutral submanifold of gi.
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Consicler now the representation (3.1) of X and, since X has the property (l)' *"

have the decomposition (3.2), where ,4 is regular. Denoting

& = [Xo Xr|' ,ker Z -, gtl+)Q't , (3.5)

follows that
*  f ^  a r  , l n r  iR(X) :r [* ]R(xo) '

------
the subspa ce R(X) is pseudo-regular and

Y has the representation

R(Xr) is the isometric

(3.6)

Po,r rJ

it

in parlicular
of R(X).

Similarly,

i' : lY l'1ft :71 -, grl+lQ',

such lhat l'i has neutral lalrge and, taking irito account lhat l' has

and r lenot ing

% : [% Y1]t : ker Z .- grl+191,

where Yo : Ylker Z , it follorvs that
- - . : _ - - . - . - : _

. R(Y) = sl+la(ti,)
--..-T_

in particular this rlgsns that R(Y) {s a pseudo-regular subspace

isotropic part of R(Y).

Taking into account the factorization relation

WX =' i .

since 17 is unitary ',,r'e obtain wm : R6 and then, using

follorvs

f f i=wq+lm.
The identitr '  (3.3) is noii '  a consecluence ol t fre identit l '

*- ll ' l - rc- l(rv L)LI,

where the orthogonal complements are computed with respect to

l|+lq and, respectivelY, Arl+]gi.
Indeed. from (3'6) we obtain

(this time,"" .o.,,:"H":.:H:::l;, "?.:,:[[lj- (8 ,0) we.btain
n-l(W L)Ll = '- Vil + rank(Yl ket Z) + rc- [R(Y)r]

(viewing R(Y) as a subsPace of Qr),a

The main result concerning the problem EF(X.Yi*rrrc2) is the computation of

lhe minimal negative signatures ri1 and A;2'

/ r  r \
\ d ' r  i

[ ]re property (t)

(3 .8)

(3.e)
--:_

and R(li) is the

(3.6) and (3.9) i t

( 3 . 1 0  )

the Krein spaces
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Theorem 3.4 Assume that X andY satisfy the property (i a'nd, in addition,

rank(Yl ker Z) ( oo , rank(Xl ker Z) ( m' (3'11)

Then, the set of pairs (^t,or) for uthich the problem EF(X,Y;ot,rc2) has solutions,

has a minimu,m which is simultaneously attained and giaen by

*Tin :rank(Q(/ -  P)) a max{0, K IrcV)LI- rc-[R(x)r] i ,  (3'12)

oTi" :  rank(P(/ -  AD l  rnax{0, n- lR(X)Ll -  ru-[R(y) ' ] i '  (3 '13)

where, with respect to a fired f.s. J on'fl, we denote P - PEtx6),Q - Pftrr', and

Xo : Xl kcr Z,\'o : Ylker Z'

Prctof. Let ,r1 a1{ ru2 be carcl inal nurnbers for n'hich the problem EF(-\, }";r. :1, n2)

has so l r r t ions an. . l  le t  ( . t .  i ' :g i  Ql r :11/ )  be a so l r r t ion.  T l ten t le  consic ler  t l te  represen-

tations (3.4) ancl (3.7) of * oncl Y ancl consider theoperatorr.to and i-o with neutral

ranges, introduced in (3.5) and (3.8). Restrict ing the operator identity W* -i ' to

the subspace ker z i t  fol lorvr 
,, . ,  f  _.f-i l, 'xo *'%. (3.14)

lVe fix now f.s. J, J1, J2,, J'r, Ji on 'l1,9r,gz,9l and, respectively, 9'2 and consider the

corresponclin g Hilbert sPaces.

With respect t l . these l l i lbert spaces. rve obtain from (3.11) that

R(Xo') : R(Yo')- (3'15)

Consider nos' the decomposit ion

??(.q) - R(x;) n R(vJ) }"'(P(I - 8)), (3.16)

a t td

R(Y;) - R(x;) n R(v;) @R(QU - P)), (3.17)

with the remark that the assumplions (3.11) impiy that both of P and Q have finite

ranks. Taking into account that

R(P( I  -  A) )  ̂R(QU -  P) )  :  0 ,

from (3.15) and (3.17) we obtain

ri l = t{-Lg't1>rank(X1) 2 rank(Q(I - P)) (3'18)

and similarly, from (3.15) and (3.16) we obtain

r i2:  K-WLl>rank( l ' l )  )  rank(P( I  -  QD' (3 '19)
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Let us remark now that from (3.16) and (3'17) it follows

rank(Xs) - rank(Xi) - rank(P A 8) + rank(P(/ - AD (3.20)

and
rank(Ys) - rank(Yi) : rank(P n Q) + rank(Q(/ - P))' (3'21)

where P A Q denotes the orthogonal projection onto R(X;) n R(yd). Using (3'20)

and (3.21), from Lemnra 3.3 rve obtain

rc1  grank(  P( I  -Q) )+ ' - tR(X) f  l=  o r * rank(Q( I  -  P) )+rc - [R( r ) r ]  (3 '22)

ancl f inall},, from he-re. (3.18) and (3.19) we obtain h 2 ,<T;" and rc2 > *Ti"-where

nft"  and nf i "  are introduced at  (3 '12) and (3 '13) '

L l ' r rv 'ersel ! ' ,  let  x ' f  i "  ancl  i , ! ""  be Sivcn by'  r ,he lor t t tu lae in (3.12) and (J.13) '  \ \c

rvill construct in the follorving a solution of the probiem EF(X, \'1 rcfi", *Ti")'

Let us first notice that the follorving decomposition holds,

h: Ll+l(R(xo) e J,R(xo))[+]f ',

where L:V772 is a regular subspace of f1, and

R(X)' :  R(Xo)l+lg

and, similarly,
gz: SI+)(R(Y) e J2R(Y'D [+]5"

rvhere S : U'lIz is a regular subspace of gz (U corresponds to V in the decomposition

(3 .1)  o f  ) ' )  and
'R(1 . ) '  :  R( ) 'o ) [+ i5 ' '

we consider now T(1 a cop! of the Hilbert space R(QQ - P)) and take xt the natural

embedding onto the {irst cbinponenl

Xt : R(QQ - P)) * lT{'s llrJ

Then extend xr trivialiy onto the rvhole ker z and define

& : [Xo xr]' ' ker Z -, 7tl+)Vlr O ?111.

similarly. consi<ier Tlz a copy of the Hilbert space R(PU - 0)) and take Yr the

natural embedding onto the first component

\ 1 : R(P(I - A)) * 111'6 1121,
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then extend Yr trivially onto the whole ker Z and define

% = [% Y1l' : ker Z -'9zl+lVlz@'t{z\'

With these definitions it is now easy to check that

R(Xo') - R(i 'o') 1

.  , . ,  ,  41 .  ,nr  *^ t  __ R(Yo)
I I mined) invertible operator I : /t,\'40'

hence there exists a (uniquely deter

such that'
T X o =  Y o '

- o 4 r v e e x t e n c l T t o a u n i t a r y o p e r a t o r
U s i n g  L e m m a  z "  

r  ̂ , 1 . .  r r r  r  1 [ 4 J -  :  n ]  ,
'  ^  4J 1 -  ( ' r?{ } ; )  ;  J2R(}0)) l+ l l ruz e rLz) '

t i "  :  (R( , {o)  ;  J l 'R(x0)) [+] [ th  o 'n i l  -+  \  '1" \ r0 /  '

in particular we also have 
W Xo __ yo.

\Vedef ine*eL({ l$ ' l+lF{ '3?{ '1)undYeLlrt '9 ' l+lVt 'e} l ' l )bv
x = lvlJ zli 'x'l

and i, = grll Z1i i'rl

Extending the uniiary operator W such that

W I L = U V - |  t L ' S

I l ' j  = f- 'lve have

Finally, Iet S € L(L"S') be such that

n - U - S - ( r l = m a x { 0 ' r c - [ R ( ] ' ) r l - n - [ R ( X ) r l ]

K-lI -SrSl = max{0' rc-[R(X)r)- n- [R(y)t]] '

extend W with an elementary rotation of S' say it (R(S)'Ds'''Ds)

oor,." that (3'23) siill holds' Denoting

g'r=VtrOftr l [* lDs'

gt, = l'l7zo ?l:l[*l1)s'

(3 .2 . ] )

(see (2.19)) and

n lQ't1= ^1"'  .  *- lg;= NT'nit follows tirab
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Then (* ,t;9'r,QL;17) is a solution of the problem EF(X, Y 1 rc!' i" , oTn")' l

An important particular case of the problem EF(X,Yi fi' K2) is for rc1 = rcz = 0i

in this situation we write simply EF(X, Y). Before specializing Theorem 3.4 to this

case it is worth noticing that we can state EF(X, Y) in the following equivalent form:

Incleed, t[is follows from the remark that, since 9l and 9L ate Hilbert spaces, in

this case the extended operators X and i' ur" trivial extensions of X and, respectively,

Y.

corollary 3.5 ,4ssum e that x andY satisfy the propertv (l and also that t lte con-

ditions in (3.11) hold,. Then, the problem EF(X,Y) has solutions if and, only if

R(Xi l :  R( l ' ; )  and, rc- [R(X)t ]  :  rc- [R(] ' ) r ]  ,  where Xa: Xlker Z,  Yo: Ylker Z

and, the * operation has to be understood with respect to a f'red f.t' J on T{'

Proof. Indeed, using Theorem 3.4 it follows that EF(X, Y) has solutions if and

onl l ,  i f  oTin :  KTin :0.  an<l  using formulae (3.12) and (3 '13) th is means QU - P) =

pU -  Q)  :0  a ld  n : - [R( . { ) t ]  =  n - - fR( } ' ) t ] .  I t  re rua ins  to  r to t i ce  tha t  Q(  I  -  P)  =

P(I - Q) : 0 if and oniy if R(Xd) - R(vd)' I

4. The Completion Problem

In this section rve will consider a problem of selfadjoint completing of a certain type

partial block-matrix. As a first task, rve investigate the relations betw€en the induced

KreYn spaces of a selfadjoint operator and that of a compression to a regular subspace'

without restricting the generality, we can consider the spaces onto which this block-

matrix acts to be Hilbert spaces, instead of Krein spaces, since otherwise we can use

fundanrenlal s1'mntelries.

( There are given Krein spaces Tt,]r, and 9z

| '  und operators X e L( ' t1,9t),  Y e L(71,92)

I such that:
I  X t X : \ ' i l Y = Z e L ( 1 { ) .

I tt it requirecl to determine a triplet (g't,91;VV)
I such that :

EF(X. v) {' 
I (i) g', ail Q', are Hiibert sPaces'
I

I  ( t i )  I1-  ,7 t l+ lQ|  - '  gr l+)QL is  a  un i tarv '

I operator such that

I  W . { - } .
[  1 ; ; , y  gvwt7z-g{+)g l .
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Let} . { " tand 'T lzbeHi lber tspacesandsel fac l jo in toperator l /eL(} l t6 , t { , )g iven

by the following block-matrix:

n = [ !" 
o^\ (4'1)

-  
l B -  c  l

Consicler a linear operator Xn'c € L('l("2'?lr) defined by

X u , c l t = l i l l i h ,  
h € T l z '  $ ' 2 )

Then, it is easy to show that 
r n (4.3)

Xh'cXn'c = v

hence.us ingLemma3. lw i th respec t to thedecompos i l ion , |12=(T |zokerC)ekerC
lve have the rePresentation

xrr .c  = tY lCl ;  lH,s lkerCl '

rvhere V : R(lcli1$'Ilu) -' ' l{u isisometric'

By clefinition' *= 'uf 
'thu' 

the Krein space T"("c \s canonically

Krein space 
'llu \f'the isometry V is bounded and' in this case ?ls

rvith the regular subspace yl{s of'}{u'

consicler norv the opcra.ror pu,c € L\T{z,Ks) de{rncd by

-  P H , s h = r H h  '  h e ' l { z '

(1 '6)Then we also have 
iu,cpu,c = c

a n d f r o m h e r e i t f o l l o l r , s t h a t t h e l i n e a r o p e r a t o r p u , c \ , | l z o k e r C : T { z g k e r C ( e
r.,;I;J,';l[:'L,.'n 

spa:e K6 is canonicary en$ertd.ed,in Kn ir trre isornerr-v

pg,c |T lzokerC isbound"g : i l th iscasetheKre inSpaceK6.be ing ident i f iedrv i th the

regular subsPace Pa,cKc of Kir'

Lemma 4.L 7{c is canonicallg embed'd'ed' in ?ta if and' only if Kc is canonically

embedded' r 'n Ks' 

H,cand xs'6r we have
Proof ' From the definitions of P'

YlCl |  h = \Hl i  PHph '  h '  € 7{z aket C '

Taking into accounr that lcl} e LlKc,?lc) and'1gli e L(Ku'Hg) are unitary oper-

ators, it fororvs that the isornetric op"ruto* v ancl ps,c\17'zOker c are siurultaneously

bounded' t

(4 .4)

embedded, into the

has to be identified

(4.5)

I

I

1
'r1
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Also as a consequence of Lemma 3.I, R(ys,clker0) is the isotropic part of

R(Xu,c) and similarly, R(ps,6lkerC) is the isotropic part of R(ps,c).The dimen-

sions of these isotropic parts can be computed in terms of the data of the selfadjoint

block-matrix H.

Lenrma 4.2 rank(Xa,cl ker C) : rank(Blker C) : runk(pr,rlker C)'

Proof . Let us denote Bz = Blker C' Then for h € ker C, h €'llt and h2 € Ttz we

have

lxa," h, lH l+ (h\ @ hz)ls, : (H h,, h @ hz) - (Brh, h @ hz) - (H PR@;)h' h @ hz)

- lxnpPe@-ith,l{li(n' e hr)ls*.

This implies the first equality. The second one follorvs in a similarr rvav. I

\ ! 'e presenL now nvo cri leria, of di i lelerrt characler, lvi t ich insure t l te existt, ' t tce oi '

the canonical embedings. For this purpose it is convenient to introduce [he notation

Bt = Bl'112 Qker C ,, Bz = Bl,ker C.

Then, the selfadjoint operator .[/ in (a.1) is represented by

(4.7)

l A B r n r l
H t l B i  c  0 l .

L B ;  0  0  J
(4 .8 )

Lemma 4.3 Assume that Bt : fC for a certain I e L(?{rO ker C,T{t). Then Kq

is canonically embedded in Ks and, in addition,

Proof .

of -Fl as

*+lR(pr,")t ]  = n*(Pu,o B;@ - fC r.) l  ker Bi).

I f  B1 = IC thcn r - rs ing the rcprese 'ntat , ion ( .1 .8)  rve obta in thc far : tor izat ior t

r
I
0

@ llz

unitary operator

,  Ku.

Defining R e L(

o l  I  A - f c r -  o  B , l  | .  1  o  o l

? i L  i ,  ' o  s i L ; i ? l
) b v

l r
l 0
Lo
7{t

I  I  o  o l
f t -  |  r*  1 o I

L  o  o  I J

it follows that .R-1 induces a

,rcf+l,c 
f a _ rC f- Br 1
I  B ;  o l

and using Lemma 2.2.
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Since this unitary operator is an extension of ps,cl?lz O kerC, it follows that Kc is

canonically embedded in Ks. lvloreover,

and the proof is finished. I

i"**r 4.4 Assume that. fu - AlClt for a certain A e L(?{zO ker CTII), and,

aildition, assurne that 0 is isolated either on the left or on the right with respect

o(H). Then Ttq is canonically embedded in'lls and'

n*| . (Ru.c ' ) t ]  -  ^*(  Pu,,  n i (A -  lsc l - ) lker Bi) '

Proof . lVe consicler the decompositions

r : ker B; C (11r Q ker ̂ Bi),

ker C - (ker C e ker Br) @ket 82,

ant{, rvith respect to the first rlecomposition let d be represented by 4 = ldt Arl'

Then (-t.E) becomes

(-t.e)

:  K wi th

** lR(pa,c) ' l  : "* ,  
lo-rcr* ?] ,

: n*(Pr",.8,(A - rC r-)lker 82),

in

to

l l r r - J l . sc l i l i  o  0  0  0
0  /  0 0  0

Azt -.t256,Jj llAr, - )2ScA;) B, 0 0 .
ScJ i  , sc i i  o  o l c l t

\\'e consider no

the specified f.s

Define the oper

r
I

T -  |- l

I
L

I  e,,  Ar, o o dt lcl l  I
I o^ A* 82 o Arlcl+ I

n : l  0  B ;  0  0  0  I
I  o  o  o o  o  I
l_tct l r ;  lc l la;  t l  ct  c I

rv the I{rein space HAtt-a,scr;[+1[R(Br) O A1r;11171c

I s g n ( A 1 1  
- J l s c d i )  0  0  0 l

I  o  0 /  0  |/ - l  o  I  o  o  I
L  o  o  o  s c 1

ator ? e L(T{L @'}12,K) by :

(4.10)

( 4 . 1 1 )



T 7

Using (4.g)-(4.11) it is easy to verify that the following factorization holds

H =T*JT.

Since ? has clense range ancl 0 is isolated either on the left or on the right with respect

to o(f/), using Lemma 2.3it follows that there exists a uniquely determined unitary

operator U e L(1ln K) such that

UIIII+ - r'
!,

Taking into account the defnition of ? it follorvs that

U-r lC1;6 = XH,ch, h e?{z O ker C,

hence Hc is canonicalll' embedded in ?7u. Also, using the unitary operator [/ it

follorvs
**lR(xn,")tJ : 

"+(A,r 
- ysc Ai)

The proof is finished. I

Remark. Just from the definitions of pp.6 and Xn,c it follolvs

l/I,li P''" = XH'c'

Consider.ing lHl,! as a unitary operator in L(Ks,,Tis) (see Proposition 2.1) it follorvs

thaf R(ps,6:)r and R(Xap)t and unitary equiralent, hence their signatures are the

same. I

We are norv in a position to formulate the completion problem.
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This is

C ( h  :  n r . i i z )

\ \ Ie rvi l l  f i rst shorv that the problem C(1(:h'r,r i2) can be restated into the framework

of a problem of ty'pe EF(X: Y;11. a:2).

To this end, let (F;9'r,91) be a solution of the problem C(/(; rcr. r;z). 81' definit ion,

there exist unitary operators as : K6*, -* Ks[*]9{ and u6 : Ksgl -* Kcl+\Ql such

that *lr l  is an extension of the canonicai ernbecling o[ f , ;1 into K6'1pi anci similarl l ' .

* ' ; l  is an extension of the canonical ernbeding of ,(c into,t.61p1. Define the unitarl '

operator ll/ e L(Ku[+]9i, Kcl+19) bv

Let 7lr. ?/z allcl 'lh be lirein spaces and,

rvith respect to the I{rein st)ace Tlt l+lTl2l+1'}13,

let be given the selfacljoint partial block-matrix

I i : l B ' c  D  I
I  D ' E )

Denote

a : l  ! .  q l a n c r G = f  9 "  ? 1 ." - l B ' C l  - L D ' E  
l '

Given cardinal ttuntbers rc1 and rc2, it is required
to determine a t r ip let  (F:8i .91).  u 'here
F e L(Hs. 'Hr) .  and'A' t .  q i  are l t re in spaces.
s u c l i  t h a t :

(t) r-[9i] - ru1. *- lgLl= ̂ r.

( i i)  considering the selfadjoint completion oi K,

f . ' t  B  r l
/ t ' ( r )  = l B ' -  c  D  I

L r  D r  E J
rve have. modulo canonical embedings, that

,frrrr : K.ui+19i ancl f,.61py : Kcl+192.

W = uc*-nt ,

and then define the operatot * e L(l&r,fn[+]9i) by

X : ruoxfl l?{2,

and, similarly, let ? e L(11z,KGftW) be defined by

t = rcoxqlvtz.

(4 .12)

(4 .13)

(4.14)

proposition 4.5 Let (F;gi,gi) be a solution of the problem c(K;q,n2) and, let

*, i '  ond,\V be defned as in (/ .12)-(/ t .14). Then (X,?,7'r ,gl ; lV) is a solut ion of

the problem EF(Pn,c, Pc,c; KL, Kz)-

,,/.
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Proof. Let us first remark that from (4'6) it follows

xi lx  -YtY :  C

rvhere X': pu,c and Y : PG,c, hence the problem EF(X,Yio"rc2) makes sense'

It remains to prove that the quintuple (X,?;9i,9L;W) constructed as indicated in

(4.12)-(4.14) is a solution of the problem EF(X, Y; q, n2)'

Condition (i) in EF(X,Y;^r,rc2) is clearly satisfied since it coincides with the

condition (i) in C(/{ir '1,K2).

In orcler to prove that the condition (ii) holds, let us first note that * = u)H pK(F\,c

hence 
xt* -- p\i1q,6px1r1,c: c.

Similarly we obtain
iti/ - c.

L e t  h  € T { z , h  e ? L  a n d  h 2  € H r T h e n

[Xh, h,  @ hz]a -  lasr6g\h' ,ht@ hzia:  [T 'x(r)h ' ' } r (ht  e / 'z) ] r t r l

: fufsrsh,r!(h, e hz)lrtn - lorh,h @ hzla = lxh',h @ hzln,

rvhich proves that * is an extension of X. Similarly one proves that Y is an extension

of Y and thus the.condition (i i) also holds'

Taking into account the definitions of W")t and i we hate

W X = Wanr xV)lT{2 : ucTr K(F)l'17, :'? '

: .

Finally,
Kn Y WtKc -  Ku v osa[K6 -  uv(urrK11v u[K6)

= un(trx4l(?lr @ tlr) v nxg)(772 O fts))

:  eHrK(Fl( f t r  O t lz@Tls):  raKxg):  Kal* l?t '

We proved that (*, ' i ;9'r,9'r;W) is a solution of the problem EF(X, Y; h,or)' !

Lemma 4,6 Assume that Kc is canonically embedded in both of Ka and Kc' If the

. probtem c(Ii;f l l ]K2) is solaable then the following equality holds

. rcr * rank(Bl ker C) + *-lR(Pn,c)tl

= Kz * rank(Dl lker C) + o- lR(pc,c) ' ] .
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prooJ. As before, we take x = pr,, a,nd Y = pc,c.Just from the definitions it

follows that X has the property (f) if anci only if. Kc is canonicaily embedded into

Kn. Thus, assuming that Kc is canonically embedded into Ka and Kc if follows

that X and Y have the property ('y) hence we can apply Lemma 3'3' via Proposition

4.6, and get the required ecluaiity. I

For the choice X = pu,, and Y : pc,c, we have norv to show how the solutions

of the problem EF(X, Yircr,rc2) procluce solutions of the problem c(/{;rc1,rc2)' we

neecl first two preliminary results.

Lenrma 4.7 Let 6,?;9 ' r , ,gL; \V) be a solut ion of  the problem EF(X,Y;x1,n2),

where X: pa,c andY = PG,c.  Def ine F e L( '11t ,17r)  by

F = PurrLPprwtr6lT{s,, (4 .15)

Ta : lorl?lt X WNrcl'lli.

has rlense range and satisf'es the follouing equality

I  A  B  f ' l

L;l s, il=r!'r,
From -1he definition of the operator Tu we have

R(Ta) - RUralTt,) + n(,t) *R(wtr6l1fi) '

(4 .16)

(4.17)

and rs € L(11r1+11'hl+171',Knl+)?'r) bv

Then Tu

Proof.

Since X it un extension of X : rslllz it follows that

7nv!n) )-R(rs)'

Since i' i, on extension of l' = rcl'llz ancl i!'ii = * it follou's that

. R(Ta) f ( l ' lzi lr6) '

Taking into account the minimality condit ion ( iv) in the problem EF(X,Y;x1,rc2)'

*'e obtain thus that R(Tn) is dense in Kri[+]9i'

In order to prove the equality (a.17) rve compute the entries olT[Tp regarded as

a block-matrix with respect to the decomposition

?{{+1}{21+l}h.

To t l r is  end let  h; ,k;  €, ' l { ; , i  :  1,2,3 '  Then

l f f i frnr,k] - l trpfu,rak|1n - lHfu,k1l : [Ah1, k1]'
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Since it it on extension ol X = rslHz we have

ITLT H h2, ktl - l* hr, r n krln - ln sh 2, r u krln - fH h2, kl - lB h2, k1l'

Also. since Xl* : C it follorvs

lTLrHh2,k2l : lxhz, xkrla - lkt xhz,k2l - lch2,,k2l'

Using the definit ion of f l  in (a.12) we have

ITLT Hh, k1l - lwt r 6h3, t sklf : lF h, kl'

Taking into account that * -- Wn? and i is an extension of rcl'l{z', it follows

lrfirrnr,k2] - lwtr", *krl,

- loohr,W Xkzlc - ln"hr,?ttrl" 
- ln"hr,rokz)c - lDh,k2l

and finally

lTITHh,fu] - lWtn6h3,Wtr6kr7a :lo"hr,rckz)c - lEh,hl'

We proved thus the equality (4.i7). I

Lenrma 4.8 Let (* ,y;  Q'r ,7 ' r ;W) be a solut ion of  the problem EF(X'Y' ;q,rc2),

where X: pr,"  andY = pc,c.  Del ing F bV 0'15) and then def ine

T 6 e L (',l{ rl+)tlzl+l't (.'. K ol+lQ L)

by

Then To has dense

T6 = lWrslT{ i' rcl'}lzl'

range and satisfy the follouing equality

(4 .18)

I  e  B  F l
l r o c  D l : r [ r c .
L r o  p t  E )

The proof of this iemma is similar with that of Lemma 4.8 and will be omitted'

Proposition 4.9 If F e L('172,' l7r) i 'defned' as in ('11'15)' where (*'y; 7' ' 'gL;W)

is a solution of the problem EF(X,Y;q,n2) with X = pH,c andY - pc,c and'

a,ssuming that the operatorTs in (1,.16) (equiaalentty the operatorTc in (l '18)) has

the property (i, then (F;91,9) is a solution of the problem C(K; q'n2)'

(4.1e)
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Proof. Let us first remark that from (4.16) and (4.18), it follows

WTU : TG,

hence 717 anc) ?6 have simultaneouslS, 11'r" property (1). Assuming that these hold,

since [r ancl Tc have clense ranges. i t  fo] lows using Lemma2.3 and (4.17) thatTu

uniquely induces a unitary operator u11 : Kyg' l  * K'[*]9i and, similarly, from

(4.19), ?6 u4iquelf induces a unitary operator a6 : K61p1 - '  rc"|+l?|

On the othcr |and, from (.1.16) i t  fol lorvs that ?nl11tl+)112 is an extension of zi-rr

hence r'|, is an extension of the canonical embedding of' Kn into K61p1' Simiiarly one

proves that cu[ is an extension of the canonical embedding of Kc into K61p1' Thus

we proved that (.F';  g'r. ,9) is a solution of the problem C(/{; q,n2)' l

Rentark. Assume thaf ftr , ]12,] ls are Jinite dirnensiona/ I{ i lbert spaces. Notice that

i r r  t i r is  t : ; t -<e, .  r , , ' i r i r  rc) i . , ( 'cL t t . r  l l ic  dccui r t1 . r , . r - i t iur r  
' l lz  -  l i t ' t 'C -  ( ' l1 t  - ,  l i t rL  C' ) '  i l t '  l t ; t " ' i '

the representaLions
,  B = lB, Ar lc1|1,

and

D = lDz lcli arl"

and denote
Azz: Pk",Bi(A -  AtScdl) lker Rr '

- ' 
Ezz = Pk",Dz(E - A;ScA2)lket D2'

Also,let P and Q be the orthogonal projections of kerC onto R(B;) and, respec-

t i ;e l - r ' ,  R(Dr).Using Prc. ,posir ion-1.6,  I t roposi t ion"t . l0 and Thcorern 3 ' ' t r  $ 'e gel

m i n { x - ( 1 { ( F ) )  l F  e  L ( 7 1 t . } 1 t }

:  n-  lC) *  rank(P) *  rank(Q( I  -  P))  *  max{r-  (Arr) ,  n-  (Ezz)} '

(con-rpare rvith 120], Theorem 4.i).

5. The Extension Problem

In [1g] it rvas considered the follorving extension problern rvith prescribed negative

signatures of defect.
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E(7,,7"; n\, n'r)

There are given Krein spaces Kr,Kz,Kl,K,
and two linear operators T, e L(Ktl+lK't,Kr)
and 7" e [.(Kr,Ktl+]Kr) such that

T)Kt:  PK,T"-
Given cardinal numbers rc', and rc', it is required
to determine an operator

fr e LWi+l,Ci, Krl+lci)
such that:

U) fWL - ?" and PK,f - 7,.

(ii) n-(I -_f'f): rc- ancl
n-g -TTr) -  n'r .

Ilotivatcd b1,' the approacir adopted in lhis paper, rve forrnulate a modified r:xten-

sion problcnr as fol lon's

E^(7,,7"; f i ,  xz)

Assume that Kr ,K'1,Kz,K', are KreYn spaces and
T, e L(Kt[+]fi, f,2) and T" e L(Kr,Krl+)rci)
are operators such that

T,lKt = PKrT"'

Given cardinal numbers ri1 and n2. it is required

to determine a triple V;A't,9i) such that

f e L(K'[+]K|, Krl+)K,'r) satisfies

U) fW4 - ?" and PK,f = 7,,

(i i) n-lg'r): n1 and K-lgil: Kzt

(iii) modulo canonical embedings, we have
Rr-i, i :  Kr-rlr,[+]9r, K r-tt,  = Kr.t,r i t+)gi '

I t  is  c lear that  i f  €;9 ' r ,gL) is a solut ion of  the problem E^(7, ,7",Kt,rc2) then T

is a solution of the problem E(f", 7", K't, rc'r) where

n\=  Kr* rc - ( /  -T :7" )  ,  K t=  nz*  * - ( I  -T ,T : ) .

Conversely, if (5.1) holds uttd f is a solution of the problem E(?', T"i R\,rc/r) then

f produces a solution of the problem E^(T,,,T"iKr,rc2) if. and only if Kr_1, and

Kr-r,rl are canonically embedded in Kptoi and, respectively, Kuiin and rcr and

rc2 coincide with the negative cosignatures of Kr-rr" and, respectivel], K;-1rr with

respect to these canonical embedings'

The follorving resuit illustrates a situation when the two extension problems do

coincide.

(5 .1  )
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Lemma 5.L Assurne that

n \ - n - ( I - f l T " ) ( o o ,  r c ' r :  n - ( I  - T , T l ) ( o o '  ( 5 ' 2 )

Then any solutionf of the problemu(7,,,7"; n'1, rc'r) produces a solution of the problem

E ^ ( 7 , , 7 " ; 0 , 0 ) .

proof . Let f be a solution of the problem E(7,, T"; K\,rci). Then f it u totu

extension on 7", hence
f  = lT,  * ]

and this produces a representation

r  - f t f  : l  I  -TIT"  -  I- t  *  * J
where *.e have denoteci b)' " * " the operalors entlies lvhich are of no itttPortanccr

lc re  .  
' l ' a l i i r rg  

i r r tu  r i r : c r . r i r r r t  l l r c  [ i r s t  c r , t r< l i t io t r  i t t  ( ' ' r .? )  i t  f t - ' l 1< ,w 's  l l t ; r l  l ] t r :  t t r ; ' 1 r1 - ' i t ' ' i

ppi , , , r_r l r"  (see (.1.5) for the def ini t ion) induccs a densely def ined isometr ic opela-

tor acting-betrveen Pontryagin spaces of the same negative signature hence, using a

Pontrl .agin Lemma tvpe argument (e.g. see [18], Corol lary 1.3) i t  fol lorvs that this

isometric operator is bounclecl, i.e. Kt-r:r. is canonically embedded into Kt-ior'

Also, there exists a Hilbert space 9i such that, modulo the canonical embeding,

K r -t,i = K t -r:r.l*1?'t'

similarly, using the second condition in (5.2) we prove that there exists a Hilbert

space 9i such that, modulo the canonical embeding,

K r -ii, : K r -r"r!l+lg'r.

Thus (7;  g ' r ,gL) is a solut ion of  the problem E^(7, ,7. ,0,0) '  I

\Ve *,i l l  norv embed the probiem E^(7,,7, Kt ru2) into a conlpietiotr pt'c'biettr its

the one stuclied in Section 4. For this reason iet us denote

T ) K r :  P K , T , : T  €  L ( K r ' K 2 ) '

Then there exist uniquely determined operators B e L(K|,K'r), D e

that
T" = lT B]t, T, - lT D).

using these objects we consider the seifadjoint partial block-matrix

Krein space,C;[+]rcr[+]rcl[+],(i and defined bv

I  I  o , B  I'r, 
I o I T D t^ - l  B t  7 t  I  o  I
I  n o 0  / l

L(K't. ,K2) such

(5.3)

/( acting on the

(5.4)
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Also, let us remark that ? e L(Kt [+]rci, Ktl+)K''r) satisfies

'  
6 t r

1,uy - T", PrcrT : T,

if ancl only if foi some F e L(K't,,K'r) rve have

;  l r  D lt : l , n  r l

Proposition b.2 Thc lorntuta (5.5) establishes a bijectiue corcespondence betu'een

the set. of solutions (f ;/',r,9L) of the problemW^(T,,T"i Kr, n2) anil the set of solutions

(F;9'r,91) of the problem C(1f; \,Kz) where I{ is d'ef'ned as in (\ ' i l '

pyo6f. I.et F €. L(K'l.,( i) be arbitrarl ' . consirlcr f os in (5.5) an.,l clcfine the

selfacl joint operator

/((F) - (5.6)

Then,

/  0  l t l '
O  /  T D
B t T t l 0
F t p r 0 /

f  r  i l= l f r r  r l
L '  J

r
I

L

( o . D /

(5.8)

/((r')

and the fol lorving factol ization holds

r . , n \  |  I  o l  l I  o  I  I l  f  IK \ r ' ) = L f o / . | ' I o  / - i o f  . l ' I o  r . | '

Then, using Lemma 2.2,, ftom (5.7) rve obtain a unitary operator

f,x(r) -* ,\.i[+lA;r[+],L r-' i, i.

In accordance with the notation in Section 4 we denote

, r = i i  ?  f l l
L s o 7 i l  / J

(5.7)

I  r  r  D 1
,  G = l T o  1  0  |

L D r  0  / J

( r . 9  )

(5.10)

(5 .11 )

\\:e notice that the follorving representation holds

n  - l  ! ,  1 1 ._ L T J  I  J '

arid using a fac[orization of .F/ similanuiih that in (5.7) rve ob[airr a unitary operator

Krt - ,Ci[+],fr[+]K r_r!r.
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By definition, we have a
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solution of the problem C(I{; h, Kz) and define f as in (5.5).

unitary operator

rcnl+i?'t -* Kr(r), (5.1 2)

which extends the canonical embeding of Ks into K61py. Using this operator and the

unitary operators in (5.S) and (5.10) rve obtain a unitary operator

rc rl+lK zl+lK, - r,, "l*lg'' 
- K rl+lK zl+lK r - i, r .

This unitary operator maps K'rl+lrcz onto itself and extencls the canonical embeding

of Kr_7t7"into K1_i27, hence, modulo this canonical embeding, we have

,t  t - i  i .  :  t r :  , - . r ' r " l * lQ'r '

Simiiarly we prove that [r-r;T,, is canonically ernbeddecl into f,,r-7.i, and rtioclulcr

this embeding we have
Kr-ir, = Kr-r,rlt+191.

Ihus ( f ;  9 ' r ,92) is a solut ion of  the problcm E^(7, ,?. ;x1,  r ' :2) '

Conversely, if (f; g'r,g) is a solution of the problem E-(?,, T"i Kt,r2) then (5'5)

uniquely determines F e L(K'r, f,i). We use again the unitary operators in (5;8) and

(b.10) to procluce a unilarl.extension of the canonical embecling of Kn in K51p1 as

in (5.11). Similarly we get a unitary extension of the canonical embeding of f,16 into

Kr(r), with the complementary Krein space 9i. Thus (F;9r,9)it a solution of the

problem C(K; ft, K2). I

As it was pointed out during Section 4, the problem C(/{; KbK2) is stated into

the framework of a problem EF(X,Y;q,n2). In accordance rvith the notation in

previous sectiols. rve consiclel the selfadjoint operators /1 arrd G as in (5.9) and' irt

addit ion
( 5 . 1 3 )

Lemma 5.3 .lssume that either rcr * rc- g -flT") or K2* *-(I -T,TI) are f,nite,

If (*, ' i ;9'r,9'2;14r1 is a solution of the problem EF(X, Y; K1, K2) ' with X - ps,6 and

Y = pc.c, then, letting F be defined ba G.12) and T as in (5'5)' (T;9't '9') is a

solution of the problem E-(4, T; q, x2)"

proof. Assume that rc1+ K-(I -flT") is finite. We first prove that if f is obtained

from a solutiol (*, Y; 9',.,9L;!7) as indicated in the statement of the lemma, then

K-(I  - f l f )  i t  f in i te.
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To this end, let us consider the unitary operator in (5.8) and denote by 5 the

regular subspace of K66.1l which is mapped by this unitary operator ortto K'rl*!K2,

in particular we have
K- ( I  -  f t f )  = o- [s ' ] .  (5.14)

Fiom (b.7) it foilows that 5 = nx@)(KiL+lKr) ! R(t'rtrl)'

We consider now the operat or Ts e L(Kil+lKrl+lKrl+]rci, Kal+l]t) defined by

Tn-l"rW' i  *  \utrclK1) (o .  ro /

and using Lemma 4.8 we obtain that Ts induces an isometric operator u.rs wilh

domain R(nx,r.) and clense range ln Kn[+]9i. Ao argument of Pontryagin Lemma

t1 ' ' c  sho* ' s  t ha t  

o - l s r l  S  r - [ ( * r i s ) r l .  ( 5 .16 )

Let us consicler rron'the representation (3.{) of X. Remark that R(X1) is a neutral

subspace of gl, hence it has finite dimension. From (5.14) it follorvs

. , .yS *R(lo) = r11(K'r l* l f , r )  + R(* '  )  2 "n(Kz[+] f r ) '

Making use of the unitary operator in (5.10), this yields

.  
r i - [ (ou5 + R(f l ) )u]  < ru1 * r ; -  ( l  - ' f :7")

and finally, from here, (5.13), (5.15) and the fact that R(Xt) is f inite dimensional'

we conclude that N-(I - inf) it finite.

Since K-(l -|rf)it f inite it follorvs that f has either the property (o)+ or l i le

property (")-. Taking into account thefactorization (5.7), it follows that the hypoth-

es is  o f  Propos i t ion . l . l0  a re  fu l f i l l ed .  hcnce ( l ' ;Qr ,9 i )  i t  a  so lu t io t i  o i  C(1 i ; i "1 '  r ' ;2 )  and

using Proposi t ion 5.2 we conciucler that  ( f ;  g ' r ,gL) is a solut ion of  E-(?l" ,  J. ;n, ,  oz).  E

We focus now on determining the minimal negative signatures for rvhich the ex-

tension problem is solvable. For this purpose we need to fix f.s. h, Jl, J2 and J',

on K1, K'r,K, and respectively fi. With respect to these f.s. we consider the defect

operators D1 and D1. (see (2.6)) .

There erist uniquely determined operators '12 : Ji9lker D1 and ]-z : R(D7) -*

Kl such that
JiB - lA2 fzDr7, (5.17)

and similarly. there exist uniquely determined operators ul1 = Pk.D' J2D : K\ '

kerD7. and {: R(Dr.) * Ki such that

(  5.1 s)p- 1r: l , t i  f i .Dr,).
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Lerrima 5.4 Assu,me that the operators f2 and fl, defined, in (5-16) and (5.17)

are bound,ed, and denote \ : fl* € L(Kl,Dr')' Then' in ord'er for the problem

E^(T,,T"i Kr,n2) to be soluable, the following equality must hold

rc1 f rank( Ar) * n- (Pu* qQi - rrJrr;)lker 
"li)

= rc2 * rank(/,) * rcr(PL.,a, (Jl - riJr'4)lker zt1)'

Proof. Using Lemma 4.3, since fi and 12 arc bounded' we obtain that K6 is

canonically embedded into both of. Ks and K6, equivalentlY, PH,c and p6,s have the

property (1) (see section 3). In adition, also from Lemma 4.3, we obtain

*- lA(pc,c)t ]  = rc-(Pr".a, Ai -  | iJr. f i ) lkerz11),

*- lR( p s.c) t I : o - ( Pr"..r; U ; - fzJ r l;) | ker rti ).

We apply norv Proposition 5.2 and Lemma 4.7, taking into account the formulae

(5.18), (5.19) and the definil ions of .,11 and ,12 and get the required formula. I

Theorem 5.5 Assunre that the hypothesis of Lemma S,y' are fulfiIled and, in addition,

that h and, A2 haae f.nite ranks and also that n- (I -TlT") and x- Q -T,r:) are finite.

Then, the set of  pairs (or,n:)  for  which the problemE^(7' , , ' I , iKt , rc2) is soluable has

a minimum, simultaneously attained, uhich is giuen by the Jollowing Jormulae

ancl

and

(5.1e)

(5 .20)

( 5  2 1 )

(5 .22)

*fi" = rank(Q(/ - P)) * max{0, rc-(Pr.",,t, Ai - fiJr'[)lker.'11)
-E- (Pr."..r :(l!, * f2,lr f)lker -1i)]

o| i"  :  rank(. f ' ( /  -  a))  {  max{0,  r . : - (Pr." , ,1;  lJ i  -  l '2J11i) l  ker, l i )

-/{- (Pr,"..t, Qi - l i  Jr.[)l ker, '11 )

where we haue denoted P - Pnet) and' Q = Pnrn4;).

Proof. First recall the considerations during the proof of Lemma 5'4' Then notice

that since .,11 and ,12 have finite ranks and r;- g - f:7") and r;- g - f,T!) are finite,

in order to determine the minimal sig.natures of the problem E^(T,,T"i Kr, rc2), taking

into account Lemma 5.4, it follows that we are interested only in those pairs (rc1,rc2)

such that either ri1 or ri2 is finite. Thus, Lemma 5.3 works in this case and we can

apply Theorem 3.4. It remais only to notice that the orthogonal project,ions P and
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Q can be considered as

in (5.a) gives the same

in the statement

bound for rc1 and

29

matrix 1(of the theorem,

rc2 as the partial

B
O D

I  _ T I T  _ T I D
_D'T  I

since'the partial

matrix .I(
't
I

I
I
I
I

K , = (,5.23)

t a r k e P : P J r T , R ( h )  a n d

(5.22) the partial block-

(5 .2+ )

and let n', and,

if and only if

(5.25)

and

E-(Pr".,r, Qi - t; Jr. tl)l ker,,tr) :

rc-(Pr,".,ri Qi - fzJrf)l ker.ai). (5'26)

Proof. This is a consequence of Lemma 5.1 and Theorem 5.5 I

We conclude by noticing that Corollary 5.? is a generalization of [18, Theorem

5.1] (see also Remark 5.6 in [19] ancl Remark 5.7 in [20]).
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