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Abstract. In a flowchart scheme an atomic action is modelled as a vertex
(box), while in a process graph an atomic action is modelled as an edge. We
define translations between these two graphical representations. By using
these translations, we show that the classical bisimulation equivalence on
process graphs coincides with the natural extension of the classical step-by-
step flowchart equivalence to the nondeterministic case. This result allows us
to translate axiomatisation results from flowcharts to processes and viceversa.

1 Introduction

The main difference between a flowchart scheme and a process graph (or a finite
automaton) is the way of modelling the atomic actions: in a flowchart scheme an
atomic action is modelled as a vertex (box), while in a process graph (or in an
automaton) an atomic action is modelled as an edge.

Both models use the “one-step-further” description. For process graphs this is
“state — action — new state”, while for a flowchart scheme (built up with boxes
of actions) this is “action — state — new action”. This shows that by a “half step”
we may pass {rom one formalism to the other.

Using this idea, we define translations between these two graphical represen-
tations. (The translation from flowcharts to processes may be defined only in the
particular case where the flowcharts are built up with one-input/one-output atoms.)
Then, we show that the classical bisimulation equivalence on process graphs coin-
cides with the natural extension of the classical step-by-step flowchart equivalence to
the nondeterministic case and apply this result for translating some axiomatisation
results.

For deterministic schemes, this step-by-step equivalence was introduced by Elgot
in [9]. Technically, it may be defined as the equivalence relation generated by simu-
lation via functions cf. [11, 15], a definition that has a straightforward extension to
the nondeterministic case.

* This research was completed while the second author was visited the Programming Re-
search Group of the University of Amsterdam.

To appear in: Proceedings FCT'93
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2 Flowchart Schemes
We briefly describe an algebraic formalism for flowchart schemes and their behaviour,
known as the calculus of flownomials; see [6, 8, 15, 16], for example.

Let X = {X(m,n)}mn>o be a family of doubly-ranked sets. An element z €

X (m, n) represents an atomic scheme with m inputs and n outputs. In the examples
given in Fig. 1, s € X(1,1) and p,q € X(1,2).
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Fig. 1. Three flowcharts 2), b) and c). In d) is given a normal form of a).

A flowchart picture may be redrawn in a normal form as it is shown in Fig.1.d
for the scheme in Fig.l.a. This shows that a flowchart F' may be represented by
a pair (w, f), where w is a sequence of all the atoms of F' and f is a relation
which represents the connections of F'. For example, the scheme in Fig.1.a may be
represented by the pair (s@®p® s, f), where f € IRel(5, 4) is the function that maps
1,2,3,4,5into 2, 3,4, 1, 3, respectively, or by the normal form flownomial ezpression
(I®s®p®s)-f) 13 with f as above.

For the deterministic flowchart schemes, a standard equivalence is that given by
the unfoldment, i.e., two schemes are equivalent iff they unfold into the same tree.
An example is provided by the schemes in Fig.1.a,b,c. This equivalence characterizes
the step-by-step behaviour of the flowchart schemes cf. [5, 6, 8, 9, 12, 15] (see also
[10], for a connection with automata).

In the case of nondeterministic schemes, this definition is difficult to be used for
definining the step-by-step behaviour. A nondeterministic scheme may be easily de-
fined using the normal form representation, namely, we have to allow the connection
box f above to be an arbitrary relation. What about the unfoldment of such a non-
deterministic scheme? Since the nondeterministic choice operator A is symmetric,
idempotent and associative the unfolding tree cannot be defined in a unique way
(we may interchange the branches in some choice points, or we may delete a branch
of a choice if both branches continue with the same subtree, etc.).

There is another way to define a step-by-step behaviour for nondeterministic
schemes. In [11, 15], it is shown that in the case of deterministic schemes the equiv-
alence relation corresponding to the (input) step-by-step behaviour may be defined
using a transformation of schemes, the so-called “simulation via functions.”?

2 The definition of this transformation may be seen as an extension of the usual definition



Definition1. Two schemes represented by F = (21 ® ... D m, f) and G = (11 ®
..®Yn, g) are similar via a function r € IFn(m, n) (notdtlon. F —.G,or F —p, G
when 7 has no importance) iff
i) (,5) €r = zi=y;;
(i) f-(I@i(r)=I®or) g°

Intuitively, if = is a surjection, then F' —, G means that we may identify the
vertices of F corresponding to Ker(r) = {(3,j) | r(:) = r(j)} because they have
the same label and their connections became equal after identification, and G is the
resulting scheme. If r is an injection, F' —, G means that F' is a subscheme of G via
7, that is the part in G corresponding to the complement of the image of r is not
accessible from the remaining one.

Ezample 1. The schemes in Fig.2.a,b may be represented by F, = (s ® p® s, fa),
where f, maps 1,2,3,4,5into 2,3,4, 1, 3, respectively and by Fy = (s®p, fs), where
fo maps 1,2,3,4 to 2,3,2,1, respectxvely Then F, —, Fj, where r € IFn(3,2) is
the function that maps 1,2,3 to 1,2, 1, respectively. Indeed, the extension of r to
inputs is » and to outputs is o(r) = “the function that maps 1,2,3,4 to 1,2,3,1,
respectively”. Now, one may easily check that conditions (i) and (ii) hold.

On the other hand, if f. is the function that maps 1,2,3,4,5,6 to 2,3,2,1,3,4,
respectively and F, = (s ® p® ¢, fc), then Fy —, F¢, where r € IFn(2,3) is the
injective function that maps 1,2 to 1,2, respectively.

Simulation via functions may be defined whenever the class of connections con-
tains functions, in particular in the case of nondeterministic flowchart schemes (in
which case this class is IRel).

Notation: We denote the equivalence relation generated by simulation via functions
by —n. (In the case of nondeterministic schemes this equivalence may be inter-
preted as a formalization of the step-by-step behaviour, too.)

3 Process Graphs

Let A be a set of atomic actions. The set G(A) of process graphs built up with atoms
in A consists of rooted finite directed graphs in which each edge has a label in A and
in which some nodes are distinguished as terminal. An example is given in Fig.4.a.
(This model was developed in [1, 2, 3], for example.)

A basic equivalence on communicating processes was introduced by Milner using
the observable behaviour, see [13, 14]. The idea is that the equivalent processes not
only perform the same sequence of actions but also their branching structure is
identical.

Technically, this idea is modelled by bisimulation.

of “graph morphism” to the case of flowchart schemes, that are considered “hypergraphs”
built up with many-input/many-output atoms.

3 Here i(r) represents the “block” extension of r to inputs, i.e., if 7 relates two variables
z; and y;, then i(r) relates the first input of 2; to the first input of y;, the second to the
second, etc.; similarly o(r) for outputs. And for a relation R, we have denoted by I & R
the relation {(1,1)JU{(i+1,7+1)]|(1,7) € R}. +



Definition2. Let p and ¢ be two process graphs and R a relation between the
nodes of p and the nodes of ¢. We say R is a bisimulation between p and ¢ (notation:
p &p q) iff the following four conditions hold.
1. The roots of p and ¢ are related via R;

2.If s 5 s’ is an edge in p and (s,t) € R, then there exists an edge ¢ S 1ing
such that (s/,t') € R;

3. Viceversa, if t —» t' is an edge in ¢ and (s,t) € R, then there exists an edge
s 5 &' such that (¢/,1') € R;

4.1f (s,t) € R then s is terminal iff ¢ is terminal.

For example, the process graphs in Figs.2 and 4.a are bisimilar. Let us notice
that the simulation relation is not an equivalence (it is not symmetrical), whilst the
bisimulation relation is.

4 Translations:

Suppose A is a set of atomic one-input/one-output actions. Denote the set of flowchart
schemes with one input and one output built up with atoms in A and connec-
tions in IRel by TFl4 re(1,1) and the process graphs built up with atoms in A
by G(A). We define here two transformations pg : Flg rei(1,1) — G(A) and
fs: G(A) — IFIA'mel(l, 1).

4.1 From Processes to Flowcharts

Definition3. (definition of £s) Suppose g is a process graph in G(A). Then £s(p)
is the flowchart scheme obtained by using the following procedure:

(fs-1) Replace an edge a{ in g by the flowchart [C?]

(fs-2) Then delete the vertices in the resulting picture by making direct connec-
tions between the atomic flowcharts we have introduced, i.e.,

is transformed into

4.2 From Flowcharts to Processes

Definition4. (definition of pg) Suppose F' is a nondeterministic flowchart scheme
in IFl4 Rei(1,1). Then pg(F) is the process graph obtained by using the following
procedure:

(pg-1) Put vertices on the input arrow of the flowchart and on each output arrow
of the atoms (but before the possible choice points of the continuation);



(pg-2) Replace the atomic boxes by edges using the transformation

@ Vk : Ve - ©Vk

&y

is transformed into a a

Ve v®
(In the case k = 0, this means that the atomic box a gives zero edges.)

Note 5. Another way to define the transformation pg is by using the normal form
representation of flowcharts and the recursive specification of processes. That is, if

F_:[(I@(h@---@ak)'f] Tk

is a normal form flownomial expression representing a flowchart F', then pg(F) is
the first component of the unique solution in G(A) of the system

Ko D sy, Jov gl Bl
jes()-{1)

where J(?) denotes {j | (¢,7) € f} and d; = € if 1 € f(1), otherwise d; = é.

FEzample 2. An example for the action of £s is given in Fig.2. Clearly, the number
of the labelled edges in p is equal to the number of the labelled boxes in £s(p).

Fig. 2. From processes to flowcharts

)

Ezample 3. An example for the action of pg is given in Fi1g.3. We see that the number
of the edges in pg(F) introduced by a box is equal to the number of the incoming
arrows into that box. In this example a produces one edge, b three and ¢ zero.

(O]



pg-1

Fig. 3. From flowcharts to processes

5 Relating process and flowchart equivalences

The informal presentation of the bisimulation equivalence is closed to the intuitive
meaning of the equivalence given by the unfolding of the nondeterministic flowchart
schemes. The following proposition makes this connection precise.

Proposition6. The above transformations pg : IFlg re(1,1) — G(A) and £s :
G(A) — FFla rei(1,1) have the following properties:
(A) If F € Flg Rei(1,1), then £s(pg(F)) «wrn F.
If p € G(A), then pg(£s(p)) & p-
(B) If F,G € Fly rei(1,1) and F —pn G, then pg(F) & pg(G).
If p,q € G(A) and p & g, then £s(p) —wFn £5(q).

Regarding to property (A), we first notice that due to transformation (pg-2) we
should not expect that these transformations are inverses one to the other. Never-
theless their composites behave quite nicely:

- The effect of applying, first £s, then pg to a process graph, is the transformation
in which each vertex in p is split into a number of copies, one for each incoming arrow.
In the example given in Fig.4.a, s is split into (s, |) and (s, | @), ¢ into (¢, ] @) and
(t,1d), uinto (u, | b), v into nothing, and w into (w, | ¢). So, we get a graph bisimilar
to the original one.

- The effect of applying, first pg, then £s to a flowchart scheme, is the transfor-
mation in which each box is moved backward on its incoming arrows, making one
copy for each such an arrow. In the example given in Fig.4.b, b is split 3 times, a
one time, and ¢ zero times. So, we get a scheme similar to the original one.

In order to prove the first half of property (B) we have shown that I,G €
IFla Ret(1,1) and F —, G imply pg(F) & pg(G). In this proof, we effectivelly
used the fact that the morphism for simulation r is a function and not an arbitrary
relation !

For the second implication in property (B), we have to show that a bisimulation
between two process graphs may be modelled by a chain of simulations and inverses of
simulations. For this, it might be helpful to have a characterization of bisimulation in
terms of bisimulation via functions. The result given below is based on a construction
of a common refinement of two bisimilar processes.

Lemma 7. (interpolation property) If p,q € G(A) and p Sp-14 ¢, with f, g func-
tions, then there exists an r € G(A) such that p Ss-1 7 and r 54 q.

6
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Fig.4. a) The result of the application of fs - pg to the process in Fig.2. b) The result of
the application of pg- fs to the flowchart in Fig.3.

Now, the other half of property (B) follows from this result and the fact that
if p,q € G(A) and p &, g, with r function, then £s(p) «>w¥n £5(9)-
All the above show that:

Theorem 8. The iranslations pg and fs give a bijection between the classes of
bisimilar process graphs in G(A) and the classes of flowchart schemes in Fla re(1,1)
which are equivalent using simulations via functions.

6 Axiomatising Flowchart / Process Behaviours

As an application of the translations we have defined and of the previous result, we
show here how an axiomatisation for the classes of bisimilar process graphs may be
obtained. By the above theorem, such an axiomatisation may be obtained by trans-
Jating an axiomatisation for the classes of «»pn-equivalent schemes in IFls rei(1,1).

First we recall some results known in the axiomatisation of abstract flowchart
schemes, see [15, 16, 17]. These abstract schemes are obtained connecting the atoms
by elements in an abstract algebraic structure, not neccessarily one of relations
included in Rel.

The core of the axioms given in Table 1 is

3.1 aa-flow = B1-B10 + R1-R3 + F1-F2

giving a presentation of abstract flowchart schemes (i.e., labelled hypergraphs), cf.
(6, 17]. For axiomatizing different types of behaviours, we use subsets of axioms in
Table 1 defined using the notation zy, with z € {a,b,c,d} and y € fo, B 0} A
few of them are recalled here:

1.1 ab-ssmc = B1-B10 + Al-A4 4+ A12-Al5;
1.2 bS-ssmc = ab-ssmc + A9 + Al6-AlT;
1.3 dé-ssmc = B1-B10 + A1-A19;



Bl fe(oh)=(fOg9)dhR
B2 hof=f=f&l

B3 f-(g-h)=(f-9)-h
B4 |a-f=f=:f-|b

Bé
B7
B8
B9

la®lo = lats

axb b X% = la+b

aXO — la

axb+c = (aXb d |C) ) (lb ®a Xc)

Bs (fof) (gog)=Ff-g0f' -4 B0 (Fog) <X ="X"(g®f)

for f:a—c,g:b—d

L. Axioms for ssmec-ies (symmetric strict monoidal categories)

Al (Va®la) Va=(la®Va)-Va
A2 °X%.Va=Va

A3 (Ta®la)-Va=la

AN L= Baal s

A9 e Li=il

A5
A6
AT
A8

A (A @la) =A% (la®A%)
AG.GXG:_AG
/\a'(-l-a@la):|a
TaoN=Ta® Ta

A10 Vo A= (A@A%) - (la®* XD la) - (Va® Va)

AV NS S = s

A12To=lo
Al3 Ta+b =Ta® T
Al4 Vo = lo

A15 Vago = (la @ X @ 1s) - (Va ® Vo) A9 A = (AT B AY) - (la @ X @ o)

II. Axioms for the additional constants T,L,V,A (without feedback)

R1f-(g1°) - h=((f@l) g-(h@®l))1°

R2f@g1°=(fD9)1°

Al6 L°=1o
AT Lot =1 1P
Al18 N lo

R3(f-(l@g)) 1°=((la®g)- /) 1?

for fra+c—b+dg:d—c

(relating “1” and ")
(relating “1” and “®”)
(shifting blocks on feedback)

I1I. Axioms for feedback

Bl b= lo
e e

B3 V. o=t

P4 nt 12T

F5 [(la®A®)-(*X® @) (la ®Va)] 1°= I
IV. Axioms for the action of feedback on constants

S] Ta'f=Tb

S3

f'J.b=_La

S2 Ve -f=(fOf)-VeS4 F-N=A-(fOF)
V. The strong axioms (f:a —b)

FUNCp:  f-(lb®y)=(la®y)-g implies £ T°=g 1%

where E is a class of abstract relations (i.e., of terms written with

@, -, 1, X and some constants in T,1L,V,A),y:c—disin E
and f:a+c-—>b+c,g:a+d-+b+d are arbitrary
VI. The functoriality rule

Table 1. Algebra for flownomials

o)



91 ab-ssmc with feedback = bf-ssmc + R1-R3 + F1-F3;
2.2 bé-ssmc with feedback = aé-ssmc with feedback;
9.3 dé-ssmc with feedback = B1-B10 + A1-A19 + R1-R3 + F1-F5;

3.9 ab-flow? = ab-ssme with feedback + S1-52 + FUNCapstract functions
3.3 bé-flow = bé-ssme with feedback + S1-S3 + FUNCabstract partial functions>
3.4 dé-flow® = db-ssmc with feedback + S1-S4 4 FUNCabstract relations-

Theorem 9. (aziomatisalion of finite relations, cf. [7, 17])
1. Ifn is the free ab-ssmc;
2. IPfn is the free b6-ssmc; with feedback, it is the free b6-ssms with feedback;
3. Rel is the free d6-ssmc; with feedback, 1t is the free d6-ssmc with feedback.

Theorem 10. (the meaning of the equivalence «— g generated by simulation via a
class of relations E, cf. [17, 15])

1. Two delerministic flowchart schemes (i.e., over IPfn) are —pq-equivalent iff
they have the same step-by-step computatlion sequences.

9 Two deterministic flowchart schemes are —pim-equivalent iff they have the
same input-oulput step-by-step computalion sequences.

3. Two nondeterministic flowchart schemes (i.e., over IRel) are —Rel-equivalent
iff they have the same inpui-output slep-by-step computalion sequences.

Theorem 11. (aziomatising flowchart behaviours) Let X be a family of doubly-
ranked variables. Let « a5, b5 and < ds denote the equivalences generated by sim-
ulation via abstract functions, abstract partial funclions and abstract relalions, re-
spectively.

1. If T is an ab-flow, then Flx 1/ <as is the ab-flow freely generated by adding
Xito T (cfi [15]).

2. If T is an bS-flow fulfilling a technical condition IP?, then Flx 1/ s is the
b6-flow freely generated by adding X to T (see [17]).

9. If T is a zero-sum-free dé-flow “with intersection” (cf. [16]), then Flx [ <>as
is the d§-flow freely generated by adding X 10T (see [16]).

Theorem 8 shows that the study of the classes of «pp-equivalent flowcharts over
IRel is of interest at least for the case when we have only one-input/one-output
atoms. From the above results (Theorem 9.3 and Theorem 11.1 for T' = IRel), we
get the following corollary:

Corollary 12. The classes of s pn-equivalent flowchart schemes over Rel and A
form the structure freely generated by A in the category of the ad-flows which are
also dé-ssme-ies with feedback .

4 This aa-flow structure is equivalent to the “strong iteration theory” structure in [15].

5 In [16], this was called “repetition theory”.

6 That is: “if y» : p — ¢ and y1 are abstract surjections and f € T'(m,n + p) is such that
flyn®y2) =90 Ty then f = f(In® LPTp)". It is related with the “zero-sum-free”
condition on semirings.



This means, the axiomatisation is given by all the axioms in Table 1, except for
$3-S4, and using Funcapstract functions- By translating this result to the case of process
graphs, we get an axiomatisation for the classes of bisimilar graphs analogous to the
one given in [4]. Many axiomatisation results in process algebra use axioms implying
that a guarded system of equations has an unique solution. Here we have used the
functoriality rule. This rule gives another way to connect two equivalent systems,
namely by changing the variables, e.g., we may delete certain variables (which are
not used in the construction of the solution), or identify certain variables (providing
that the terms that define them became equal after identification).
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