
F

nffi
IMAR

PREPRI NT SER, I ES OF

] OF THE

INSTITT'TUL DE MATEMATICA
AL ACADEMIEI ROMANE

THE INSTITUTE OF M.TFIE}IA,TICS

F.OI.IAN IA.N ACADEI{Y

lssN 0250363E
'

TRANSLATI ONS B,ETI^/EEN FLOI4TCHART SCHEMES

AND PROCESS CR,APHS

by
a

.J .A. BERGSTRA AND GH. STEFAIIESCIJ

'TRANSLAT t0NS BET\^/EEN FLO\^/CUA8T SCHE',MtS

"{ND PROCESS GR.qPHS

by

J . A . B e r c s t r . a a n d G h . S t e f a n e s e u

J u n e , 1 9 9 3

I n s t i t u t e o f M a t h e m a t i c s o f t h e R o r n a n i a n A c a d e m y

P . 0 . B o x i - 7 6 4 , R 0 * 7 0 7 0 0 , B u c h a r e s t , F . o m a n i a .

Ttanslations Between Flowchart Schemes and
Process Graphs*

J.A. Bergstra and Gh. $tefinescu

Programming Research Group, University of Amsterdam
P.O. Box 41882. 1009 DB Amsterdam

and
Institute of Mathematics, Romanian Academy

P.O. Box 1-764. RO-70700 Bucharest

Abstract. In a flowchart scheme an atomic action is modelled as a vertex

(box), while in a process graph an atomic action is modelled as an edge. We

define translations between these two graphical representations. By using

these translations, we show that the classical bisimulation equivalence on

process graphs coincides with the natural extension of the classical stepby-

step flowchart equivalence to the nondeterministic caser This result allows us

to translate axiomatisation results from flowcharts to processes and viceversa.

Introduction

The main difference between a flowchart scheme and a process graph (or a finite

automaton) is the way of modelling the atomic actions: in a flowchart scheme an

atomic action is modelled as a vertex (box), while in a process graph (or in an

automaton) an atomic action is modelled as an edge.

Both models use the "one-step-further" description. For process graphs this is
'(state - action + nelv state", while for a flowchart scheme (built up rvith boxes

of actions) this is "action - state + new action". This shows that by a "half step"

we may pass from one formalisrn to the other.

Using this idea, rve define translations between these two.graphical represen-

tations. (The translation from flowcharts to processes may be defined only in the

particular case where the florvcharts are built up with one-input/one-output atoms')

Then, we show that the classical bisimulation equivalence on process graphs coin-

cides with the natural extension ofthe classical step-by-step flowchart equivalence to

the nondeterministic case and apply this result for translating some axiomatisation

results.
For deterministic schemes, this step-by-step equivalence was introduced by Elgot

in [g]. Technically, it may be defined as the equivalence relation generated by simu-

lation via functions cf. [11, 15], a definition that has a straightforward extension to

the nondeterministic case.

* This research was completed while the second author was visited the Programming Re-

search Group of the University of Arnsterdam' ::

To appoar lnl ?roeeodi-ngs I'Cf I 93

Flowchart Schernes

We briefly describe an algebraic formalismfor flowchart schemes and their.behaviour,
known as the calculus of flownomials;see [6, 8, 15, 16], for example.

Let X -
{X(*,n)}-,,.;o be a family of doubly-ranked sets. An element c €

X(m,n) represents an a.tomicscheme with m inputs and n outpuis. In the examples
g iven in F ig . 1 , s € X(l ,1) and p ,q e X(L ,2) .

Fig.1. Three flowcharts a), b) and c). In d) is given a normal form of a).

A flowchart picture may be redrawn in a normal form as it is shown in Fig.l.d

for the scheme in Fig.1.a. This shows that a flowchart F may be represented by

a pair (r,f), where u is a sequence of all the atoms of F and / is a relation

lvhich represents the connections of ,F. For example, the scheme in Fig.1.a may be

represented by the pai r (sop@s,/) , wl rere f e nte l (5,4) is the funct ion that maps

I ,2,3,4,5 in to 2,3,4,1,3, respect ive ly , or by the normal form J lownomial erpression

((/ o s o le s) . /) l t , wi th / a^s above.

For the deterministic florvchart schemes, a standard equivalence is that given by

the unfoldment, i.e., two schemes are equivalent iff they unfold into the same tree.

An example is provided by the schemes in Fig.1.a,b,c. This equivalence characterizes

the slep-Dy- step behauiour of the flowchart schemes cf. [5, 6, 8, 9, 12, 15] (see also

[10], for a connection with automata)'

In the case of nondeterministic schemes, this definition is diffcult to be used for

definining the step-by-step behaviour. A nondeterministic scheme may be easily de-

fined using the normal form representation, namely, we have to allow the connection

box f above to be an arbitrary relation. What about the unfoldrnent of such a non-

deterministic scheme? Since the nondeterministic choice operator A is symmetric,

idempotent and associative the unfolding tree cantrot be defined in a unique way

(we rnay interchange the branches in some choice points, or we may delete a branch

of a choice if both branches continue with the same subtree, etc.).

There is another way to define a step-by-step behaviour for nondeterministic

schemes. In [11, 15], it is shown that in the case of deterministic sc]remes the equiv-

alence relation corresponding to the (input) step-by-step behaviour may be defined

using a transforrnation of schemes, the so-called "sitnulation via functions."2

2 The definition of this transforrnation may be seen as an extension of the usual definition

c)a)

7

Defini t ioul . Two schemes represented by F - (t , @. . .@r*, /) and G = (gr @
...(Egr, , g) are simi larviaafunct iot t r 6lFn(rn,n) (notat ion: F *, G,or F - '+nnn G
when r has no irnportance) iff

(i) (i , i) e r + a i = y j ;
(i i) f . (I @ i (r)) = (/ o o (r)) ' s . s

Intuitively, if r is a surjection, then f' -, G lneans that we may identify the
vertices of-F corresponding to Ker(r) = {(i,i) | t(;) = r(r)} because they have
the same label and their connections became equal after identification, and G is the
resulting scheme. If r is an injection, F --, G means that F is a subscheme of G via

r, that is the part in G corresponding to the complement of the imbge of r is not
accessible from the remaining one.

Emmplel . The schemes in Fig.2.a,b may be represented by f 'o = (sOPOs,. fo),

where /o maps I ,2,3,4,5 into 2,3,4,1,3, respect ively and by J 'a = (sOp, f6), where

/6 maps L,2,3,4Lo 2,3,2,1, respect ively. Then Fo -, Fb, where r € IFn(3,2) is
the funct ion that maps 1,2,3 to 1,2,1, respect ively ' Indeed, the extension ofr to

inputs is r and to outputs is o(r) = " the funct ion that maps 1,2,3,4 to 1, 2,3,I ,

respectively". Now, one may easily check that conditions (i) and (ii) hold.

On the o ther hand, i f f i s the func t ion tha t maps 1 ,2 ,3 ,4 '5 ,6 to 2 ,3 ,2) I ,3 ,4 ,

respectively and F" - (t O p@ Q,/.), then Fb -, F", where r 6 IFn(2,3) is the
injective function that maps 1,2 to 1,2, respectively.

Simulation via functions may be defined whenever the class of connections con-

tains functions, in particular in the case of nondeterministic flowchart schemes (iu

which case this class is IRel).

Notation: We denote the equivalence relation generated by simulation via functions
by *rn. (In the case of nondeterministic schemes this equivalence may be inter-
preted as a formalization of the step-by-step behaviour, too.)

3 Process Graphs

Let .4 be a set of atomic actions. Tlte set G(,4) of process graphs built up with atoms

i1 .A consists of rooted finite directed graphs in which each edge has a label in .4 and

in which some nodes are distinguished as terminal. An example is given in Fig.4.a.

(This model was developed in [1, 2' 3], for example.)

A basic equivalence on communicating processes was introduccd by Milner using

the observable behaviour, see [13, 14]. The idea is that the equivalent processes not

only perform the same sequerlce of actions but also their branching structure is

identical.
Technically, this idea is modelled by bisimulation.

of ,,graph morphism" to the case of flowchart schernes, that are considered "hypergraphs"

built up rvith many-input/many-output atoms'
3 Here i(r) represents the "block" extension of r to inputs, i.e., if r relates two variables

o; and yr, then i(r) relates the first input of ri to the first input of gi, the second to the

second, etc,; similariy o(r) for outputs. And for a relation B, we have denoted by / O .R

the re la t i on { (1 ,1) } u { (r { - l , i + 1) I (i , j) € n i ' - i

2

Definition2, Let p and q be two process graphs and .R a relation between the

nodes of p and the nodes of q. We say Ris a bisimulationbetween p and g (notation:
p .?R.q) iff the following four conditions hold.

1. The roots of p and q are related via .R;
2.lf s 3 s' is an edge in p and (s,t) € -R, then there exists an edge t 3 t' in q

such that (s ' , t ') € R;
3. Viceversa, if t 5 l/ is an edge in q and (s, t) € R, then there exists an edge

s 5 s ' such that (s ' , t ') € R;
4. If (s, r) € .R then s is terminal iff l is terminal.

For example, the process graphs in Figs.2 and 4.a are bisimilar. Let us notice

that the simulation relation is not an equivalence (it is not symmetrical), whilst the
bisimulation relation is.

4 Tbanslations'

Suppose -A is a set of atomic one-input/one-output actions. Denote the set of flowchart
schemes with one input and one output built up with atoms in A and connec-

tions in IRel by lFla,pul(1,1) and the process graphs built up with atoms in ,4

by G(,a). We define here two transformations pg : IFla,p"1(1,1) -* G(,'t) and

f s : G(A) ' t r I1 ,n61(1 ,1) .

4.1 FYom Processes to Flowcharts

DefinitionS. (definition of fs) suppose g is a process graph in G(,4). Then fs(p)

is the flowchart scheme obtained by using the following procedure:

(fs-l) Replace an edge
4

in e by the flowchart
+

(fs-2) Then delete the vertices in the resulting picture by making direct connec-

tions between the atornic flowcharts we have introduced, i.e',

is transformed into

4.2 FYorn Flowcharts to Processes

Defilition4. (definition of pg) Suppose F is a nondeterministic flowchart scheme

in IFla,x61(1,1). Then pg(F') is the process graph obtained by using the following

procedure;
(pg-1) Put vertices on the input arrow ofthe flowchart and on each output arrow

of tire atoms (but before the possible choice points of the continuation);

4

(In the case ft = 0, this means that the atomic box a gives zero qdges.)

Note 5. Another way to define the transformation pg is by using the normal form
representation of flowcharts and the recursive specification of processes. That is, if

r = [(t @ 0 1 o . . . @ a r) . f J I r

is a normal form flownomial expression representing a flowchart ,F , then pg(.F) is
the first compouent of the unique solution in G(,a) of the system

X ; = I a i a X i * d ; , f o r i = 1 , . . . , & + l
j € J (d) - { 1 }

where /(i) denotes {j l(i,j)€ /} and d; = e if 1 € /(i), otherwise di = 6.

Erample 9. An example for the action of f s is given in Fig.2. Clearly, the number
of the labelled edges in p is equal to the number of the labelled boxes in f s(p).

I

{

N
t I ; J F I t r-r -l-
{ r - L l

T ; l l l a l I
I- - - - f

Fig.2. From processes to flowcharts

Eramltle 9. An example for the action of pg is given in Fig.3. \Ve see that 'the number
of the edges in pg(f) introduced by a box is equal to the number of ihe incoming

arrows into that box. In this example a produces one edge, 6 three and c zero.

(pg-z) Replace the atomic boxes by edges using the transformation

is transformed into

I

ffi-fr-'
J- ,;- T
H L L E I
3

ur O (cak

\ / tr
I
?

t ' c

"
o \

/ t oo

" \ l "
\ /
t t

t , |o

I
{

tQ. s
a l r N-,\\

rs-r
r r e \ \ +
. l r - ? t \ "

l ; \ J It u o * +

fs-2

t;

pc-l pc-2

Fig.3. From flowcharts to processes

5 Relating process and florvchart equivalences

The informal presentation of the bisimulation equivalence is closed to the intuitive
meaning of the equivalence given by the unfolding of the nondeterministic flowchart
schemes. The following proposition makes this connection precise.

Propositionl. The aboae transformalions pg : IFll,pl(l, t) * G(A) and ts :

G(A)---.lPla,p.s(1, l) haae the followittg properlies:
(A) If F € IFl,a,n61(l,l), then ts(pg(f')) €Fn F'

If p e G(A), then Ps(ts(P)) E P.
(B) I f F,G € lFle,n"r(I , l) and F *n.n G, then PC(f) s pg(G).

I f p,q € G(A) and P 6 8, then rs(p) '*n n ts(g).

Regarding to property (A), we first notice that due to transformation (pg-2) we

should not expect that these transformations are inverses one to the other. Never-

theless their composites behave quite nicely:
- The effect of applying, first f s, then pg to a process graph, is the transformation

in which each vertex in p is split into a number of copies, one for each'incoming arrow.
In the example given in Fig.4.a, s is spl i t into (s, f) and (t ,1o), t into (f ,Ja) and
(t, I d), u into (u, I b), u into nothing, and tr into (r, l t). So, we get a graph bisimilar

to the original one.
- The e{Iect of applying, first pg, then f s to a florvchart scheme, is the transfor-

mation in which each box is moved backward on its incoming arrows, making one

copy for each such an arrow. In the example given in Fig.4.b, b is split 3 times, o

one time, and c zero times. So, we get a scheme similar to the original one.

In order to prove the first half of property (B) we have shown that 1, G €

IFla,p"1(l,1) and F *, G imply p8(J7) *'pg(G). In this proof, we effectivelly

used the fact that the morphism for simulation r is a function and not an arbitrary

relation !
For the second implication in property (B), we have to show that a bisimulation

between trvo process graphs may be modelled by a chain of simulations and inverses of

simulations. For this, it might be helpful to have a characterization of bisimulation in

terms of bisimulation via functions. The result given below is based on a construction

of a common refinement of two bisimilar processes.

LernmaT. (interpolalion property) If p,C e G(A) and p i3y-,.g 9, wilh f ,g func-
t ions, then there er is ls an r €G(A) such that p €3y-t r and r 6g g.

; i-c_t { , '
l o
t
9 a z, \ l ,')ir),

I
o trr- - - - r - - l

r i l l
L-J

Et ?,, I
,,9-llrr i

t-rt I I
o P l- - - - f - -

?t-\

t r l
P
I

6

(r , l b)

o6-ssmc - B1-B10 + A1-A4 * A12-A15;
b6-ssmc = o6-ssmc + Ag + A16-A17;
d6-ssmc - 81-810 * A1-A19;

a)

F ig '4 .a)The resu l t o f t heapp l i ca t i ono f f s .pg to thep rocess inF ig ' 2 .b)The resu l t o f
the application of 'pg' f s to the flowchart in Fig'3'

Now, the other half of property (B) follows from this result and the fact that

if p,q eG(,A) and p ar Q,with r function, then f s(p) *nnn f s(q)'

All the above show that:

Tlreorem 8. The lranslalions pg and. fs giae a bijection belween the classes of

bisinri lar prorr* grofh, i" Cgf i"a the classes of f lowchart schemes in IFln,6"1(1, 1)

whiih ore equiualent using sitnulalions aia functions'

6 Axiomatising Flowcirart / Process Behaviours

As an application of the translations we have defined and of the previous result, we

show here how an axiomatisation for the classes of bisimilar Process graphs may be

ot tuin"a. By the above theorem, such an axiomatisation may be obtained by trans-

lating an axiomatisation for the classes qf FIp^-equivalent schelnes in lFl'a,p"1(1' 1)'

First we recall some results known in the axiomatisation of abstract flowchart

schemes, see [15, 16, 17]. These abstract schemes are obtained connecting the atoms

by elements in an absiract algebraic structure, not neccessarily one of relations

included in IRel.
The core of the axioms given in Table 1 is

3.1 oq-f low - 81-810 + R1-R3 + Fi-F2

giving a presentation of abstract flowchart schernes (i'e., labelled hypergraphs), cf'

[6 ,17] .Forax iomat iz ingd i f fe ren t typesofbehav iours)weusesubsetso fax ioms in
Table 1 def ined using the notat ion ry, with r €" {a,b,c,d} and y € {a,8,1,6} ' A

few of them are recalled here:

t . 1
T,2
1 .3

''t
i

8 1 / O (s O h) = (f O s) @ i 8 6 l o @ l u = l o + o

B; i ' o i = 7' : i e lo- ' B? aXb '6;1o : lo+o

;; i .\i .ul'= (i . i l- h Bt "f, ' = lo
;; i" . 'f ='f ='i . t; Be ovi'*c - ("40 e l:)' (J'o".x")
; ; 'G * r ' i (obn' i = r 's@ r ' 's ' t t ' l i ,?1), ' Io",o", l :y*t)

I. Axiorns for ssmc-ies (symmetric strici monoidal categories)

A 1 (V " C I l ") . V o = (l o o V o) ' v o A 5 A : ' w O l ") - 1 " ' (1 " o A ")

A Z ; X " , V a = V 6 A 6 n o ' o X o = A o

ei t i . o t l) .v" = t" A? n" '(r" o l") = l"
. q . a v " . L o = I " O J . . A 8 T " ' A o : T o 0 T o

A 9 T o ' I o = l q

A10 Vo .Ao = (n" o A") ' (1 " o" X" o l ") ' (vo 6 v ")

A11 A" 'Vo = l o

Al2 To = lo A16 lo = lo

A13 T"+o : To @ Tu A17 I "+b : I " O Ib

Al+ vo I lo A18 no = lo

; i ; ; ; : 1t" ou X' o lu) '(v" o vb) Ale no*b = 1n" q nb). ' (l ' CI- ' Xb o la)

II. Axioms for the additio'al constante T, I,V,n (without feedback)

Rl I .k 11' h = ((/ @ l") 'g ' (h @ l")) 1" (relat ing "1" t1d " ' ")

nz'f e;-c 1;= U O gi t" (relating "Tn and- ue)")

nl iy . if , e ojj l":'(it" e g) ./) ld (shiftins blocks on feedback)

Ior f : a* c + D *riil
;k;s for reedback

Fl lo 1"= lo
F2 "X" 1"= lo

F4 A" f " : To
F3 Vo t"= J.o

F 5 [(1 " @ A ") ' (" X " O l .) ' (1 " @ v ")] 1 " = l "

IV. Axioms fot' the action of feedback on corrstants

5 1 T o ' f = T 6 5 3 f ' J - b = I o

s z v " . i = (/ o - f) . V u s 4 f ' n o = ̂ " ' (f e t)
V. tftL strong axioms (/: c * D)

F U N C B : 1 ' (l o O v) : (l " O v) ' g i m p l i e s f I " = s I d '

whe reE isac lasso fabs t rac t re la t i ons (i ' e ' ' o f t e rmswr i t t enw i th
O , ' , l , X a n d s o m e c o n s t a n t s i n T , I ' V ' A) ' g : c * d i s i n E

and / : a * c' b + c,g : a * d - b + d are arbitrary

VI. The functorialitY rule

Table 1. Algebra for flownomia^ls

il

5

2.1 o6-ssmc with feedback = bd-ssmc + RI-RB * F1-F3;

2.2 D6-ssrnc with feedback = o6-ssmc with feedback;

2.3 d6-ssmc with feedback - 81-810 + A1-A19 + R1-R3 * Fi-F5;

A.2 od-flowa = o6-ssmc with feedback + S1-S2 * FUNC"u'tractfunctionsi

3.8 66-flow = b6-ssmc with feedback + S1-S3 * FUNC.u.tractpartialfunctionsi

g.4 d6-flow5 = d6-ssmc with feedback + S1-S4 * FUNC"u.tractrelations'

Theorem 9. (atiomutisalion of fnite relations, cf' ft' 171)

/. IFn is the free a6-ssmc;

2.IPfn is the free b6-ssntc; with feedback, it is the free b6-ssms with feedback;

3. IRel is the free d6-ssmci,; wilh feed,back, it is the free d6'ssmc wilh feedback'

T h e o r e m L o . (t h e m e a n i n g o f | h e e q u i a a l e n c e < . + E g e n e r & l e d b y s i m u l a l i o n a i a a
class of relations E, cf. [17, 15])

1. Two determiniitii nortiort schemes (i.e., ouerlFfn) are r+r',-equiaalent iff

they haae lhe same slep'by-step computalion sequences'
p. Two determinislic-Towihort irhr*rs ar€ epfn'aguiaalent iff they haae the

same input- oulput step-bg'step computalion sequences'

S. Two nond,eler*inlsf;c 1towcharl schemes (i.e., ouer IRel) cre <"+v16'equiaalenl

ifi they haae lhe same inpul'output slep'by'step compulation sequences'

Theorem lL. (ariomalising flowchart behauiours) Let .X -be
a family of doubly'

ranked aariables. Lel +-o6, Li6 o"d t-66 denole lhe equiualences generaled by sim-

ulalion uia abslract funclions, abstracl partial funclions and abslracl relalions' re-

specliuely.'
l. if is an a6'flow, lhen Flv,7f *. o6 is the a6'f|ow freely generated by adding

X to T (rf [15]).
2. If f is anb;-flow fulfilting a lechnical condition IF, then FIx,rl '-+66 is the

bl-flow freely generated bv adding X to T (see [17])'

S. If T is a zero-sum-irred;-flou
uwilhintersection" (-cf. [16]), then Fl.,7f *-66

is rhe il-flow freelg gene'rated bv adding X to T (see [16])'

Theorem g shows that the study of the classes ef exrn-eeuivalent flowcharts over

IRel is of interest at least for the case when we have only one-input/one-output

a t o m s ' F r o m t h e a b o v e r e s u l t s (T h e o r e m g . 3 a n d T h e o r e m l l . l f o r ? = I R e l) , w e
get the following corollarY:

corollary L2. The closses of *-B,n-equiualenl flowcharl schemes oaer [Iel and' A

form the slructure freely generntii uy- L in lhe calegory of lhe a|-flows which are

also d6-ssmc-ies with feedback '

;Thtr ,"-11"- structure is equivalent to the "strong iteration theory" structure in [tS]'
5 In 1t01, this was called "repetition theory''
6 T h a t i s : * i f y 2 i p * q u r r d g r o r . a b s t r a c t s u r j e c t i o n s a n d / € T (y , n + p) i s s u c h l h a - t

/(v, o sr) = s@ Tr, ;;";; = f(I'O IoT")"' It is related with the *zeto-sum-free"

condition on semirings'

9

This means, the axiomatisation is given by all the axioms in Table 1, except for

S3-S4, and using Funcu6"s.'"g functions' By translating this result to the case ofprocess

Srrpt r, we get J"
"*i"*"lir.ii""

for the classes of bisimilar graphs analogous to the

irr. giu.n iri [+1, tUany axiomatisation results in process algebra use axioms implying

that a gua.dld system of equations has an unique solution' Here we have used the

functoriality rule. This rule gives another way to connect two equivalent systems,

namely by changing the variables, e.$.r we may delete certain variables (which are

not used in the construction of the solution), or identify certain variables (providing

that ihe terms that define them became equal after identification).

References

1. J. Baeten and w. weijland. Process algebra. cambridge university Press, 1990'

;: ;;.-*;;ri.o
"na

r.w. xtop. Algebra of communicating processes with abstraction'

Theoretical C omputet S cience, 37:77-121' 1985'

3. J.A. Bergstra, J.W. Klop,
"ni

n.R. Olderog. Readies and failures in the algebra of

communicating plocesses. SIAM Journal o| Camputing, '17:1134-1177, 1988.

4. S.L. Bloom, Z. Esik, and D. Taubner. Iteraiion theory of synchronization trees' /n/or-

mation and Computation, 103:l-55' 1993'

5. B. Courcelle. Fundamental properties of infinite ttees. Theoretical Computer science'

r. irlfl;tfr';#il'".u Gh. stefxnescu.'Towards a new algebraic foundation of flowchart

scheme theory. Fundamenta Informaticae, 13:1?l-210' 1990'

T.V.E.Ctrzf ,nescuandGh,stef ln"scu.Classesof f in i tere lat ionsasin i t ia labstractdata
types L Discrete Mothemat ics, 90:233-265' 1991' '

S. V.E. C6ztrnescu and Gh. StefXnescu. A general result of abstarct flowchart schemes

with applications to the study of accessibiity, reduction and minimization' Theoretical

Co^pii", Science,gg:1-63, 1992' (Fundamental Study)'

g. c.c. Elgot. Manadic computation and iterative algebraic theories' ln P.roceedin,gs

Log i cCo l l oqu ium ' l l , pages1?5 -230 'No r th - I l o l l and '19?5 'S tud ies inLog i cand the
Foundations of Ir{athematics, Volume 80'

10, c.c. Elgot. Finite automata from the a flowchart schemes point of view ' ln Proceedings

MFCS'77. Springer, 197?' Lecture Notes in Computer Science'

l l .C .C .E lgo t .Somegeomet r i ca l ca tego r i esassoc ia tedw i th f l owcha r t sche rnes . l nP ro .
ceedingi FCT'77, piges 256-259. springer, 1g??. Lecture Notes in computer science.

12. c.c. ilgot, S.L. ntolo*, and R. Tindell. on the alslbrll structure of rooted trees'

Journol of Computet and System Sciences, l6:362-399' 1978'

13, R. Milner. A calculus oJ communicating systems. Springer, 1980.

14. R. lvlilne r. communication and concufrency, Prentice llall International, 1989'

15. Gh. Steflnescu. On florvchart theories I: The determinisitc case' Journal of Cornputer

and Sgstem Sciences, 35:163-191, 1987'

16. Gh. steflnescu. on flowchart theories II: The nondeterministic case' Theoretical Com'

puter Science, 52:307-340, 1987'

17. Gh. steff,nescu. Determinism and nondeterminism in program scheme theorg: algebraic

aspects' PhD thesis, University o{ Bucharest' 1991'

This article was processed using the IATpX macro package with LLNCS style

10

