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Abstract The present paper gives a procedure to determine an
optimal robust controller by using balanced realizations in the
sense of Jonckheere-Silverman[8] and an optimal solution to the
one-block Nehari problem obtained from a suboptimal one via
singular perturbations method.

our procedure is different from the ones analysed in the book
of Habets and seems to have some advantages as examples taken frbm
the book of McFarlane and Glover[9] do suggest.

1. Introduction In the last years,many papers have been
devoted to the robust stability in the gap-metric(or equivalently
with respect to perturbations in the normalized left coprime
factorization).We have in mind primarily the books of McFarlane and
Glover[9] and Habets[4] and the references therein.

The aim of this present paper is to give a procedure to
determine an optimal robust controller by using  balanced
realizations in the sense of Jonckheere-Silverman[8] and an optimal
solution to the one-block Nehari problem obtained from a suboptimal
one via singular perturbations method.

our procedure seems to have some advantages with respect to
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the ones analysed in the book of Habets.

2. Preliminary known facts
2.1. Jonckheere-Silverman invariants and balancing Consider

the minimal system (4,B,C);then the Riccati standard equations:

ATX+XA-XBBTX+CTC=0 (1)

AY+YAT-ycTcy+BBT=0 (2)

have stabilizing solutions X>0 and ¥Y>0.

According to the results of Jonckheere and Silverman(8],the
eigenvalues of the matrix X¥ are positive and invariant with
respect to any nonsingular coordinate transformation 7 in the state
space;we shall call these invariants Jonckheere-Silverman
invariants.

It is said that a realization (A,B,C) is balanced in the sense
of Jonckheere-sSilverman if the Riccati equations (1) and (2) have
the solutionS,X=Y=diag(o;r”..,cgz;) respectively,with o,>0,>..>0.>0
where I, are n,xn, unit matrices,k=1,..,r.

If we start with an arbitrary minimal realization (4,B,C) and
with the corresponding solutions X,¥ to the associated Riccati
equations,a balanced realization in the Jonckheere-Silverman sense
is obtained by the following algorithm which will represent a first
component of our procedure to compute the optimal robust
controller:

1%¢ Btep: ‘Determine the stabilizing positive-definite
solutions X and Y respectively,of the Riccati equations (1) and
(2);

27 Step: Consider a Cholesky factorization X=Z7Z;

3@ Step: Perform the singular value descomposition
ZvZT=RZ’R” with R orthogonal; o



N

4¢ Step: Define T:=% 2RTZ and compute TAT',TB,CT .

O
After such transformation we obtain a realization which is
balanced in Jonckheere-Silverman sense and we shall work further

with such realization denoted again (4,B,C).

2.2. Robustness in the Gap-Metric Given a nominal stable plant
G,the robust stabilization problem in the gap metric consists in
finding a controller K which stabilizes all the systems G,
satisfying 6(G,G,)<r,where & denotes the gap between G and G,(see
{1]) and r>0 is called robustness radius.

As it is known this problem is closely related with the
robustness with respect to perturbations in the normalized left
coprime factorization.Recall that a double coprime factorization of
the form G=M*N=NM",is normalized if M'M+N'N=I and MM*+NN* = I ; such
factorization is realised by using stabilizing solutions to the
Riccati equations (1) and (2).[4,9]1.The robust stabilization
problem with respect to perturbations in the normalized 1left
coprime factorization consists in finding a stabilizing controller

K for all perturbed systems G,:= (M+Ag 2 (N+Ag) ,where Ag Ag€RH” and
FAZ Afl.<r(see [2,4,9]).
An important result in [9] is the fact that the maximum

robustness radius 1is qu=$ﬁn where Tmm?=«1+03 with o, beeing the

largest Jonckheere-Silverman invariant. |

In the following we shall essentialy use the important result
in [9,theorem 4.3] which states that a controller K is a solution
to the . - optimal robust stabilization problemAwith respect to
normalized left coprime factorization if and only if,K=UV’ with
U, VeRH~ satisfying: '



[UT V"]T is thus a solution to the one-block Nehari problem (3).

3. Optimal solution to the Nehari problem via singular

perturbations

It is known[3] that the distance from an antistable minimal
sistem G(s):=(A,B,C,D) to the set of stable systems equals the
Hankel norm of G which is equal to the largest Moore singular value
of [A;B,C).

in this section we start with a minimal plant G(s):=(A,B,C,D)
with A4 antistable and we look for a system G,(s):=(A,,B,,C,,D,}] with
A, antistable such that | G-G,1.=§Gl,,=u, ,where p, is the largest Moore
singular value of (A,B,C),that is p, is the largest & '« . ?e%uwalue
of PQ,where P and ¢ are the Gramians of (A,B,C}) defined by the
Lyapunov equations: '

AP+ PAT-BBT=0 (4)

QA+ATQ-CTC=0 (5)

The system G, is a solution to the one-block Nehari problem
associated to G[3].

Let y?>u,” and define W:=y?Q(I-y*PQ)”".We ‘'shall show in the
following that the system:

Gl(s):=(-(A+BB™W)T,WB, -CQ, D) (6)

is a solution to the suboptimal Nehari problem te-c,.<v.

Proposition 1 The matrix W defined above is a stabilizing

pozitive-solution to the game-theoretic Riccati equation:



(A-y2PCTC) TW+ W(A-y *PCTC) + W(BBT-y 2PCTCP) W-y2CTC=0 (7)

Proof From (5) we deduce that the following equality is
verified:

I I
= ~A) (8)
o [ 1( A)

If we define the similarity transformation:

27 -
T:=[YI P}
c I

[ -4 0
[~CTC AT

we obtain from (8):
T 3 : prdep
-0, AT

[ -a+y2PCTC -AP-PAT+y 2PCTCP]
[ = G = Pelgp+at

I
Q

and thus:

(-4) (9)

sz—PQ}_HZI—PQ
o |1l o

Since ¥?I-PQ is nonsingular and -A is stable,we deduce from
(9) that wW:=Q(y’I-PQ)'=y?Qg(I-y’PQ)" is a stabilizing solution to
the Riccati equation associated to the hamiltonian first matrix in
the left side of equation (8).

To prove that W is positive-definite we consider a Cholesky
factorization O=R’R and we obtain:

W=y 20(I-y2PQ) *=y2RTR(I-y2PRTR) 1=y 2RT(I-y*RPRT) 'R

Since 72>RPR’(Since y?>pPQ) ,from the last equality above it
follows that wW>0.

m}
Corollary The matrix -(A+BB’X)" is stable.

Proof Write equation (7) in the equivalent form:

-(A+BB™wW) Tjy- W(A+BBTW) + WBBTW+vy 2 (IT+WP) CTC(I+PW) =0 (10)



Since the last two terms in equétion (10) are positive
semidefinite and the pair (B"W,-(A+BB'W)) is detectable
(-(A+BB"W)+BB"W=-4 is stable,since A is assumed antistable),taking
into account that W is positive definite according to

Proposition 1,we conclude that the matrix -{A+BB’X) is stable.
The Corollary shows that G, defined by (6) is stable.
Proposition 2 We have [G-G,"].<y.
Proof Consider the difference-system G,:=G-G,” obtained when

connecting in parallel G and -G.’;then using (7),a realization of

Gy de (A, Bsw ChrlDyl) subiere:

= H = H = &
g la -(a+BB™WyT|" "9 {wB] ¢
We shall prove now that the Riccati equation:
A +MAS +y2ICiC I + BB = 0 , i {12}
is verified by:
P ik
O:= (13)

Indeed,when substituting (11) and (13) in (12) one obtains the

following equations corresponding to the partitioned form of (12):

« The block (1,1) of (12): =-AP-PAT+BB"=0;
e The block (1,2) of (12): A-A-BB'W+BB'W=0;
e The block (2,2) of (12):

- (A+BBTW)TW-W(A+BB™W) + WBBTW+y™* (I+WP) CTC(I+PW) =0

The first equation above is verified because of (4),the second
is obvious and the third is Jjust equation (10) which 1is true
according to Proposition 1.Therefore we conclude that . is a

solution to the Riccati equation (12).



In order to prove that IG,0.<v,consider the adjoint system(ﬁ(@:

)2 = “AdTX s C'dTu
y=Bix
A direct calculation using the equations above and (12) shows

that if u is an L°-input then we have:

fy Ty dt = fx TR Byxdt = fxT(—AdII—]IAf—'y“ZHC‘deH) xdt =

f [(-=%T+uT€,) Mac+ 2 TIE( ~%+CJu) x-¥2x '*’IICdTC',_,lIx] dt -

-0
e

”—qu (x Tx) +y2uTu- (yu+yicllx) T("{u+"{'1CdEY)}dt

Since A, is dichotomic the term:

d T
_f”-a—f(x (£)Ix(t) ) dt

vanighes and hence we deduce that:
fyTydtsyzfuTudt

Therefore the L“-norm of (-A,/,-¢C,,B,/) is less or equal than
v;since the norm of an operator equals the norm of its adjoint,we
conclude that [G,f.<y.

O

Remark For the two-blocks Nehari problem the corresponding
formulae to (6) and argumehts are in [7].

O

In the following we are interested in studying the behaviour
of G’ as ¥-»u,.To this end we shall assume that (A,B,C,D} is a
balanced realization in the sense that P=Q=diag(u,I“..,;?1;),where
u,>..>u,>0 and I, are mxn, unit matrices,k=1,..,p.

Denote M,,:=diag(u,I.,..,u,I,) hence P=Q=diag(u,I,, M;).

Take y?:=u,/’+¢ and compute:



: A —_ 0
Wi=y2Q(I-ytpo)t=| &’ 2
0 W, (e)
where: -
T Ky
sz(e) ."dldg ﬁn_‘ (15)
Bi-pite s %

Consider the partitions af A,B and ¢ conformally with the

partition of W as follows:

A B
= 11 Alz "B= 1 ;C=[C1 Cz} (16)
A21 A22 B2
Then,we obtain from (6):
1 T 7, Mg T
A1 +=n,B,B -| a3+ —:B,B
A,;’:=—(A+BBTW)T=, (11 811-111) (21 P 12)

- (A5 +W,, (8) BBy') - (&5 + Wy, () B,B;) bl
by

Bl:=wB= 2
Wa2 (E)Bz}

1

; CYie~CPym- [0 C, —CM,) ; DYI=D

The realization above corresponds to a singularly perturbed
{(two-time-scale) system; the corresponding equations may be written

as:

gy (eA11i+plBlBlT) X~ ( ed + FlBleT) x,+p,B;u

S
[}

. HN.
1

r T . - T B TR WY 5. T ~ oy o\ ey
1 X, = - (At W, (8) BBy} X, - (A +W,, (8] BBy )2+ (e B.u (18)

=-p,C x, -CM,,x,+Du

i

<
I

According to the theory of singular perturbations this system
can be reduced if -B,B,” is stable\,that is if B,B,” is nonsingular.

Assume that B,B,” is nonsingular and perform the usual
reduction,by taking:



x, = - (B,B,") "*(B,B,’x, - B,u) (19)
Hence we obtain the reduced order system G,. of G,':

{ Ky = Asrxz + Bsru

y 5 CBI'XZ +Dsru

where:

A, :=[A%+W,, (0)B,B") (B,B) BB, - A5 -W,, (0) B,B;
B, :=-[A5+W,,(0) B,B) (B,B;") +1,,(0)B,

C..i=W,C (B,B") 1B,B - C,M,,

D, .:=-p,C, (B,B) 1B, +D

A useful result concerning G, is stated in the following
theorem:

Theorem The system G, defined above 1s a solution to the
optimal Nehari problem for G. ‘

Proof When writing equation (10) in a partitioned form
according to (1i4) and (17),we obtain:

« The block (1,1) of (10): :

2 \ 2 2
| Pa,r, Ba i _| M Ba |, B T 1 T
[TAI“FB’“BlJ [TA11+—32 B, By ]+-——ezBlBl + p?+g(cl c,+

L

2 2 4
i Ci:r'c.1 ) Bi C1C1T+ Ha QTCJ il
e e g2 )

and hence:

pi (BlBlT— ClTC1) +te (PlAﬁ tpdg, - ClTCl) o

When writing the Lyapunov equation (5) in the partitioned form
with ¢@=diag(u,I,;,M.,),one obtains u,A;,"+H;A;;~C,"C,=0,therefore the
equation above gives B,B,"=C,"C,.0On the other hand it is known[8] that
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for a balanced realization B,B,"=C,”C,;we conclude that the relation

above gives no new information.

« The Block: (31,2) of ~(10)3

' "
-(AZ%%BlBJ) o (8) = L2 [2,,4B,5,7W,, (¢) 1 + L2B, BTy, (2) +
) .
1| ere e Pote vofem, m,, (o) + P olem i, (e) | = 0
p2+612_8_12 SR iga Mo e g g e B |5

From the expression (14) of w it results that
W,(e)=M,,(vy’I-M,,°)" therefore: .

I+M,, Wy, (8) = T+M (Y2I-Myp) ™t = (Y2I-M5) (21)

Using (21),after some algebraic manipulations in the equation

corresponding to the block (1,2),we obtain:
wo[A,+B,B W, (2) ] +eA W, (e) -CC, [ (pi+e) I-Mp]1 1 =0
and hence,for £=0 it follows that:

A, +B.BSW,, (0) =pi &G (p3T-M5) 2 (22)

o« The block (2,2) of (10):

% [A22+BszTwzz (&) 17W,, (&) — Wy, (&) [Azz"'BszTsz (€) 1 +W,, (¢) BszTwzz (e) +
1

pive

[ T+M,,W,, (&) 17C,C, [ T+M,,W,, (€)1 = 0

Using (21),from equation above we obtain:

Ay, () + Wy, () Ay, = 21 [(pi+e) T-ML1 2GTC, [ (pive) I-M3p] 2 -
Bite

W,, () B,B, W,, (€)

therefore,for e=0 it follows that:

10



A2T2W29. (0 bl (0) 8 = p‘f (U-il'_M'zgz) 71(:'22'(:‘2 (p'il"Mzzz) B ( )
23
W,,(e) (0) B,B, W,, (0)

We shall prove now that A, is stable;using (20) and (23) it
follows that:
AgrWy (0) + W, (O)Asq; ] (ALTZ + Wy, (0) BzBlT) (B1BlT) —1BleT”A2€ It
W, (0) B,B, ] Wy, (0) + 1, (9) [B,B (B, B") *{&,,+B, B, W,,(0)) ~2,,-
B,B; H,,(0)] = [AS +#,,(0) B,B") (B,B,) B,B;H,, (0) + (24)
Wy, (0) BB, (B,B,") Y[4,,  +B.B, W,,(0)] ~W,,(0)B,B; W, (0) -
B (RII-M5) GG, (piT-M5,)
We have also from (22):
(4, +B1BZTW22 (011 T(B1BlT) - [A12+B1BZTW9.9. (0)1 =
B (nir-M3) -1CZTCJ. (B,B,) —1012‘02 (pir-Mi) 1
Since B,B,"=C,"C,,from equation above and from the inequality
c (e, e, ) ¢C,, ST we: .obtain:
[A,, +B,B; W,,(0) 17(B,B,) 2 [A,,+B,B; W,, (0) ] <
pi? (pIT-05) GG, (RIT-255)
therefore,taking into account the expression (20) for B, ,from (24}
it follows that:
ASIWZZ(O) +W22(0)A-:;'$—BSIBSIJ‘: (25)

From (20) we deduce that A,.+B,B,”=-A,,7;since (A,B,C) 1is a
balanced realization with A antistable it follows that A,, is
antistable too (see[3,theorem 4.2]).From the equality above we
conclude that the pair (A,.,B,.) is stabilizable.Since W,,(0)>0 from
the inequality (25) we conclude that A, is stable.

We shall prove now that G,. satisfies the inequality:

11



egele i KR

for all w>pu, .
Let define the difference system G, :=G-G,., which has the

realization (A, Bj..CorB,) ;Where:

A O

B
0 Asz 7 Bdr‘

B

8x

Adr =

$ L= 10 ~Cyp ) 3 Dy, = D~D (26)

Sr sr

Consider now the Riccati inequation:
Adrnr +]:[rAdZ; i (Hrc‘dl; +Berd2.;‘) (YzI—DﬂdeL;) i (Cdrﬂr +DdrBdIJ':) *

By Ba <0

(27)

We shall show now that this inequation is satisfied by:

I
!
N ©
[S——

;= bl | (28)

where the dimension of I equals the number of columné of A,, and
p=diag(ul M,,).

When substituting (28) into (27) we obtain,using .(20) and
(26): '

» The block (1,1) of (27):

-AP-PAT+BBT=0
s The block - (1,2) of (27):
0
+
Ag

» The block (2,2) of (27):

Alz

+B¢BL =
AZZ




AW (0b AN, (Or A w10 =W, (0) G ~ BB BB ScFTL -

rooIn \_. ~ T
arag \U) G LB By

by
]
i =3
[ N1
)-ar)
tr
o
Ry
i
A
£,
iy
b}
i
(‘ b

y e E s o 128

In order to prove (29),we compute first,using (20),(22) and

Ag W, (O 41, (O)Asr M1 (F?{I_Mzzz) -1C2TC1 (B1BlT) —lB1BZTW22 (0) +
& " AN =1 ATy 2 ¢ nr =1~y . 3
i, W,,{0) B,B; (ulan, 1L.1TL,2(iJ.1J. m22) o, \pl.l. 1»:1222\) 1‘L.'2T(..'2‘ (30)
( 2 A 2 ‘—1__ T
(Wi I-M;) Wys (0) ByBa Wy, (0)
A direct calculation using (20} shows that:

O =Wy, (0) Cop— 1, BarBy (BB = (piT-My) o7 [ I-C, (B,B,) TCy]

and hence,since B,B,"=C,”C, .and v’>u,”,we have:

[ & -W,,(0) Cor ~ 1, BaxBy (B, B) 21 [y2I-pic, (B,BT) -
LG =€ W (0 = G (BB ) 2B TR, | = ApiT-Mn 2T et
[F=g e e iR i toTe) 2e e ~gieTcy 2e -
G, (wiT-Md) "t s p? (u3T-ME) G [T-G (CTC)) G 6, (piT-ME)
For the last two terms in the left side of (29),we obtain with
{20)-and (22): :
By Bs; = ~B1" (WII-M55) GG, (BB 201G, (piI-2,) 72 -

=1, » e nTy-1m Ty 1 R
pt(pir-m2) efe C BB} BB W (0) ~li; wzz(u) 4 (321}

~

B,B."(B,B") 1C{C, (niT-M;) "t +W,, (0) BB, W,, (0)

.When replacing (30),(31) and (32} in (29) one can directly
verify that this inequality is true.

Consider now the adjoint of G,.,i.e.

13



)’( = ‘AdTIX* CdTIu
¥ = BgX+DazU

A direct calculation using (27) gives for an arbitrary

UeL? (-, ) :
[vyde = [ (x™By +uTDy,) (Bix+DEu) dt < - [xT (2,1, +
Wals (N 67 rB, Do) (92 T=-D., D) S 0. +D. B ) ] %4
(34)

uTDdIBdI;x+xTBdID£u+uTDer;;u)dt=f [ =% T sce01 7€ M~

XTI % +x T Cqy - x T (M, Ch + By Day) (Y2I-DyDgy) ™

(C, M_+D, Ba) x+uTDy BLx+x B, D +uTDyDiul dt
Since A, is dichotomic,the term:
s I >
:/;(xTIIIXer"IIIx) dt = !75 (xTIx) dt
vanishes,then from (34) it follows that:
fyTydts—f [xT(-I,C5 + By D&) (Y2I-DyDg) —ul (Y2I-DyDa)
- —-aa = (35)
[(Y*T-DgDg) (-Cypll, +DyBat) x-uT) dt+y? [uTudt
From (35) we deduce that:
fy?ydtsyzfuTudt
for all usL’(-w,®),therefore the L"-norm of (-A&,/,-C,,B,,D,}) is less

or equal than y.Since the L"-norm of a system equals the L°-norm of

its adjoint,it follows that:

14



ﬂGdr L < Y

The inequality above holds for all y>u,;according to Glover's
theorem(3],lG,. .=l G-G. . J.>2u,,then we obtain JG-G,.§.=u,,therefore @G,
is a solution to the optimal Nehari problem.

0

We summarize the steps leading to the optimal solution to the
Nehari problem:

i Step: Compute the Gramians P and ¢ associated to (4,B,C);

2" Step: Perform the balancing transformation 7 in the sense
of Moore;this transformation can be obtained using the algorithm
described in Section 2.1 in which X and ¥ must be replaced by ¢ and
P respectively.

Replace Ae¢TAT ' ;BeTB; CeCT?;

379 Step: Perform the partitions (16) conformally'with W given
by (14); '

4% Step: Compute the realization (A,.,B..,Cs,D,.}) of the optimal
solution G.. to the Nehari one-block problem,using (20).

O

Remark The above procedure is described for the case when B,B,”
is invertible. ‘

From (13) it follows that if B,=0,then there are no singular
perturbations and letting £=0 we get directly the optimal Nehari
apfoximation.

If B,B,” is singular,by an orthogonal transformation it takes
the form:

85870
0 0

where Eiﬁf is nonsingular.After the corresponding transformation

we obtain a singularly perturbed system for which the fast
component has the dimension equal to the rank of B,B,” and we may

procede as in the generic situation when B,B,” is invertible.

15



We deduce that the dimension of the optimal Nehari

approximation obtained by our procedure equals n-rank(B,B,”).
4 .The optimally robust controller

~ We shall apply the procedure 1in the previous section to
determine the solution to the optimal robust stabilization problem
with respect to normalized left coprime factbrization.
Recall that the normalized 1left coprime factorization is
obtained by using the stabilizing sclution to the Riccati equation
(2),and if the realization (A,B,C) is balanced in the Jonckheere -

Silverman sense,then we shall have:
o T
~B ],I (36)
G

Taking into account the structure of the system (36),the
optimal solution to the Nehari problem (3) has the form:

] (37)

Since a realization of V7 is (8,~-B.D.; CossBDs s =i CounrDas™} ;
the optimal controller K=Uv’ has the following state space
representation:

(—ﬁ’ e }:.—_(— (A-ECTq) 7, -CT,
M* (s)

D ol
Doz

ol

C
U(S) }::{Ao' BC’

s

Vis) “02

% = (A ~B . DeC. )% 4B, Do
%, = A X, +B,{ ~Doy CopX, + Dozl (38)
¥ = C,%,+D,, ( ~DitC,.x, +Dyiu)
When substracting the first two equations (38) one obtains:
2 =% =A% ~X,)
Since A, is stable (because‘(37) is a stable solution to the

optimal Nehari problem) we conclude that (38) has an uncontrollable
stable part;after removal of this part we obtain the following

16



equivalent realization of (38):

Bai= A B D BDy O DI, BBy (39)
89 3 o 0D02 o2 oDOZI o2 o2 OlDOZ')

A direct calculation based on the fact that ¥ verifies (1) and
(2) shows that the controllability and observability Gramians
associated to the system (36) are X(I+X°})”’ and Z respectively.

1
A further transformation defined by T=(I+X?*)*? leads to a

balanced realization (A, B, C Dy of (36) with the Gramians

ol

P=f=2(T+82)

when performing the partition Z=diag(o,I,,Z%,,},we obtain:

“r Capdiae T Btt S o RN . (40)
A’Zl A22 B2
where:
> T = 2\ 3 -2
Ayy = —Ay1+0, ClTC1 ; A, = (1+07) & (‘Azzi*ClTngzg FT+B0) %9

(||

A, =(1+0%) 4<r+222)?( -A5+0, c2C)
1

A= (T+35) 3 (-A5+GFE) (1+3E) & (41)
B =-0,07: B, =-8,,C;
ek ] s
il RE 1 e T
G = 5 i G = " s
-6, (I+23) % «{EsDi ) Tem.

since (A,B,8,0) is balanced we can apply the procedure
described in the previous section to get the solution to the
optimal Nehari problem associated to (36) .Let us remark the fact
that the partition (40) generated by the partition of % is the same
to that induced by the partition considered for the Nehari problem;

R

indeed, since P=0=2%(I+5%) % ,we obtain fid =02/ (T+08) ,i58, 00,0,

therefore the degrees of multiplicity of fI, and a,respectively,are

equal.Hence,the partition (40) can be applied in formulae (20)
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which give:

1 S
B, =g g ST e RS ) Cea, R ot e Y G ) g+
ﬁzz(o)zmcfrc Lot e =l

(1+Gl) [ *a101 C]_ bll 101 CZ“ZZ +BZTZ"?22]

1 ’

AR e el el v 3] G

-1
s ~fi, (1+03) *ey Bl(CC) e

et A defo yicter

where:

-1
f,=0,(1+03) 2
3 ; o\/ 1+0
Mm(0)=(l+of)dﬁag[ 1y i] (43)

et |
122,001
oot
= disg{os(1vod 3},
Since:

A0=As.r"Bo=§s.r"Co=_~sz'"Do=—ﬁsr (44)

using the expressions above and (39) we obtain the realization of
the optimal controller K. |

We present now the global algorithm to get an optimal robust
controller for a minimal plant (A,B,CJ) in the gap metric(or

equivalently with respect to normalized left-coprime
factorization): :

1°¢ Step: Determine a balanced realization of (A,B,C) in the

sense of Jonckheere-Silverman,applying the procedure described in
Section 2.1;

2°¢ Step: Compute an optimal solution (A,,B,,C,,D,) to the Nehari

18



problem (3) using the formulae (42),(43),(44);

3°? Step: Determine an optimal robust controller K with the

realization (39).

We suppliment this algorithm with a testing procedure;we know
that a controller is optimal if when it is coupled to a fictious
plant[9,eq.(4.31)],one obtains a system whose H-norm equals the
optimal robust radius given by formula r,.=(1+0,°)?7.0ur testing
procedure consists in performing the H'-norm of the system obtained
by coupling the controller obtained by using the above algorithm to
the fictious plant.We use in the algorithm for computing the

H-norm a procedure described in [5].

5.Examples

We shall apply the algorithm described in the previous section
to compute robust controllers for some examples detailed by
McFarlane and Glover in[9,chapter 7].The examples given in [9] are
loop-shaping problems which are solved by determining a shaped
plant G.=WG,where W is a shaping function,adequately choosen and G
is the nominal given plant;the the suboptimal controller denoted K.
for G, is determined with respect to left coprime factorization and
the solution to the loop-shaping problem is obtained when taking
K=WK.. ‘

Although we have used a tesfing procedure which consists in
computing the H-norm of the resulting system obtained when
coupling the optimal robust controller to the fictious plant,it is
desirable to make other tests as are:

« the calculation of the eigenvalues of the resulting system
obtained when coupling the optimal controller to the given plant;

e the calculation of the .stability radius structured or

unstructured in the sense of Hinrichsen and Prichard according to
the formula =r=(}|E(sI-A,)*Dj,)* [6],where A, is the matrix

corresponding to the closed-loop system GK(I-GK)? and the matrices

19



D and E are chosen in order to introduce the affine perturbations
of the form A,+DAE with A unknown.

In the following we present the results obtained when applying
the method of optimal controllers described in Section 4, for

examples 2 and 3 from [9,chapter 7].

_ Example 1 It is a loop-shaping design example for the attitude
control of a flexible space platform.The nominal plant G is given
in Appendix and it has 10 states,4 inputs and 5 outputs[9,p.193];
the shaping function considered is W=diag{4200W.;4200W,;4200I,}
where W,:=(s+0.1)/s [9,p.145];thus a shaped system G, with 12 states
has been obtained.

When applying for G, the algorithm described in Section 4 we

obtain the optimal robust controller K..We use for this controller
the test described at the end of the previous section; the optimal
robustness radius equals for this example 0.26320135805525,while
the A-norm of the system obtained when coupling the controller to
the corresponding fictious plant equals 0.26320135805398.
] We remark that our optimal robust controller K, has 11 states,
while the one obtained in [9] after reductions has only 10 states,
but we mention the fact that the matrices describing our final
controller K=WK. has the largest coefficient 2.7703-10* while for
the suboptimal controller given in [9,p.195] these value is
6.3086°10°.A realization of the final optimal controller X and the
eigenvalues of the closed-loop s&stem obtained when coupling this
controller to G,are given in Appendix.

The unstructured stability radius in the sense of Hinrichsen-
Prichard,computed for D=E=I,,.,, is 0.2999.107*.

Figures 1a and 1b show 1/ (o (GK(I-GK) 1)) and

1/ (o (K(I-GK) ™)) respectively,détermined with the optimal robust

- controller.
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10

Example 2 This example is a loop-shaping problem for an
aircraft having a nominal model given in Appendix(see also Lo,
p.198]),for which a shaping function wW=diag{24w,, 12W,, 24w} with
W.=(s+0.4)/s has been chosen ([9,p.163]),obtaining thus a shaped
system G,=WG with 8 states,3 inputs and 3 outputs.The optimal
stability radius for this system is 0.378609629856518.

Using for G, the algorithm described in Section 4,it results
a robust optimal controller K.;after coupling it to the fictious
corresponding plant one obtains a resulting system which A" -norm
equals 0.37860962986501. -

The final optimal controller K=wK, has 10 states,while the one
obtained in [9,p.199] after reduction has 9 states.The largest
element in the realization of our optimal controller K is
3.1745-10°,while for the suboptimal controller given in [9,p.199]
this value is 9.1670-10°.

The realization for the final optimal controller X determined
by applying the algorithm from Section 4,and the eigenvalues of the
resulting system obtained when coupling K to & are given in
Appendix.

The unstructured stability radius in the sense of Hinrichsen-

Prichard, computed for D=E=I,,.,, is 0.1304.

Figures 2a and 2b show 1/ (0 (GK(I-GK) 1)) and

1/ (o (K{(I-GK)™*)) respectively,determined with the optimal robust
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controller.
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Appendix

Example 1

Columns 1 through 5

OO QOO OO

.0000e+000
.0000£+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.00006e+000

OO0 oOoO0CoOO0CoOo

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

Columns 6 through 10

OO O0OO0O I, OOOO

WONOFROMROQKREO

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.9000e-003
.0000e+000
.0000e+000
.0000e+000
.0000e+000

.0000e+000
.7000e-003
.0000e+000
.8000e-003
.0000e+000
.3000e-003
.0000e+000
.8000e-003
.0000e+000
.8000e-003

OONOOODOOOO

9
=il
0
8t
0
5
0
3
0

=7

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.8190e-001
.0000e+000
.0000e+000

.
0
.
B
.

.
]
o
a
.

0000e+000
0000e-003
0000e+000
1000e-003
0000e+000
0000e-004
0000e+000
0000e-004
0000e+000
5000e-003

OO0 OO0 OO0 OO

i |
OO R OQOODOOO

NOUVOKRROOO KO

25

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0600e-002
.0000e+000
.0000e+000

.0000e+000
.3100e-002
.0000e+000
.4000e-003
.0000e+000
.1400e-002
.0000e+000
.8000e-003
.0000e+000
.5000e-003

MOOQOCOO0OOO OO

1

O WOWMOO MO

OO0 OO OQOH OO

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

-~ -~

.0000e+000
.8050e-001

.0000e+000
.0000e~-004
.0000e+000
.7000e~-003
.0000e+000
.8000e~-003
.0000e+000
.8000e-003
.0000e+000
.3000e-003

0000 RO 00 OO

R O0O0O0OO0OO O

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.1870e-001
.0000e+000
.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.5200e-002



=

Columns 1 through 5

QOO R

.7000e-003
.0000e-003
.0000e+000
.0000e+000
.0000e+000

o - OO

.0000e+000
.0000e+000
.7000e-003
.0000e-003
.7000e-003

Columns 6 through 10

o= O O

(=N ol el e

.0000e+000
.0000e+000
.3000e-003
.0000e-004
.4000e-003

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

QOO WN

Lso B o B =5 T o B <

.8000e-003
.0000e~-004
.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

T N OO OO O = =

<2 [ e 8 > B con Q<0

.8000e-003
.1000e-003
.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.8000e-003
.0000e-004
.0000e-004

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

24

QOO W Ho O O

OO OO0

.0000e+000
.0000e+000
.8000e-003
.1000e-003
.8000e~-003

.8000e-003
.5000e-003
.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

O O

U o O

.3000e-003
.0000e-004
.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.8000e-003
.5000e-003
.5000e-003



K(s}:=(AK,BK,CK,CK) where

AK=
Columns 1 through 5

0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
-4 ,4423e+002 -7.2311e+002
-8.2733e+001 1.8843e+002
8.9876e+002 4.6327e+002
-5.5275e+002 4.6051e+002
-1.289%e+003 -7.620%e+002
1.6463e+002 -3.5450e+001
-2.0593e+003 -2.0885e+003
1.2136e+003 1.3760e+003
-2.7703e+003 ~1.7457e+003
-5.5711e+002 -1.9642e+003
7.1383e+002 -6.5693e+002
Columns 6 through 10
0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
-6.8791e~-002 -5,0108e-002
-1.0430e~-001 -1.1510e-001
-2.4760e~-001 1.3240e-002
-3.8758e-002 -1.7637e-001
9.3811e~-002 -9.2973e~002
3.0854e-001 9.3368e-002
-1.3899%9e~-001 -2.7186e-001
-9.7531e-002 2.4729e-001
-6.5077e-002 1.7765e-001
5.4588e~002 =-1.0373e-001
1.7608e-001 2.347%9e-001

Columns 11 through 13

0.0000e+000 0.0000e+000
0.0000e+000 0.0000e+000
2.4341e-001 5.,0341e-002
2.2427e-002 4.1548e~002
-2.5811e-001 1.7033e~-002
8.8794e-002 2.4726e-001
5.3335e-002 1.8972e-001
=1.4321e~-001 3.8285e~001
9.6883e~-001 -6.1123e~-003
-4.,7508e-001 5.8928e-002
4.3500e-001 2.3561e-001
4.9252e-001 -9.5093e~-001
-2.4277e-001 3.4038e-002

NN oW = OO

.0000e+000
.0000e+000
.9339e-002
.9489e~002
.7633e~-002
.0429e-002
.5626e-002
.4700e-002
.9983e-002
.6166e-017
.9758e-016
.5075e-016
. 0325e-017

.0000e+000
.0000e+000
.1755e~002
.9941e-002
.0844e-001
.5821e~001
.0440e-001
.3697e-004

.9045e-002

.3793e-001
.1029e-001
.5718e-001
.6317e~-002

.0000e+000
.0000e+000
.7475e~-001
.1069e~-001
.6494e-001
.2356e-001

.3203e-001

.8339e-001
.9552e-003
.6894e~-002
.0744e-001
.8025e~-001
.0045e+000

25

N = Ok 0ooWwNoo o

.0000e+000
.0000e+000
.7054e-003
.4569e-002
.8062e-002
.0291e-002
.1879e-002
.4877e-002
.2393e-003
.5624e-018
.3374e-017
.6571e-017
.8992e~017

.0000e+000
.0000e+000
.7776e-001
.8912e-002
.6827e-001
.5028e-002
.0522e+000
.4968e-002
.3960e+000
.2887e+000
.7160e+000
.3137e+000
.1729%9e-001

P NWR S 2O N -2 OO

i
WeeHEOnFOO

I
N Ww

.0000e+000
.0000e+000
.4304e-002
.0956e-004
.4314e-002
.6429e-001
.0754e-002
.0510e-001
.2556e-002
.2854e-016
.0887e-016
.2189e~-016
.1645e-018

.0000e+000
.0000e+000
.5690e-001
.1666e-003
«2539e-001
.4054e-001
.8228e-001
.7269%e-001
.9675e-001
.9903e-001
.5947e-001
.1364e~-001
.2197e-002
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1.06000e+000 0.0000e+000 0.0000e+000 O
0.0000e+000 1.0000e+000 0.0000e+000 O
-4.4423e+003 -7.2311e+003 -1.7725e+003 -1
-8.2733e+002 - 1.8843e+003 ~-3.3685e+4+002 5
8.9876e+003 4.6327e+003 3.2704e+003 1
-5.5275e+003 4.6051e+003 -1.8249e+4003 1
-1.2899e+004 -7.6209e+003 -5.1733e+003 -1
1.6463e+003 -3.5450e+002 -4.2136e+4002 -9
-2.0593e+004 -2.0885e+004 -7.4044e+003 -4
1.2136e+004 1.3760e+004 3.7456e+003 2
-2.7703e+004 -1.7457e+004 -1.2703e+004 -3
-5.5711e+003 -1.9642e+004 -1.9256e+4+003 -5
7.1383e+003 -6.5693e+003 2.2709e+003 -1
CK=
Columns 1 through 5
-4.,1999e+002 5.0018e+4002 -1.0345e-016 -5
1.1883e+002 -1.4152e+002 -8.1845e~019 -4
8.0881e+002 -9.6324e+002 -1.5302e-016 2
-2.0888e+001 2.4877e+001 8.1637e-018 -3
Columns 6 through 10
-7.0704e-017 5.7432e-017 3.9681e-017 2
~-7.4593e~-018 -3.2266e-017 1.2065e-018 =2
~3.4196e-018 -2.4608e-017 1.4207e~017 7
-1.2702e~017 -2.5984e-017 2.8386e-018 -9
Columns 11 through 13
2.2621e-001 -9.6133e-002 5.1731e-001
-2.4585e-002 7.6900e-002 -1.5260e-001
1.1143e~-001 -4.9132e-002 ~1.0961e+000
7.2327e-002 4.024%9e-001 1.8911e-002
DK=
-4.,199%e+003 .5.0018e+003 -2.0122e+003 1
1.1883e+003 -1.4152e+003 5.6934e+002 -4
8.0881e+003 -9.6324e+003 3.8752e+003 =2
-2.0888e+002 2.4877e+002 -1.0008e+4+002 7
The eigenvalues of the closed-loop system
-0.1230+0.73651;-0.1230~0.73651;-0.1485+40.
-0.0750+0.53031;-0.0750-0.53031;~0.0947+0
-0.3383+0.21551;-0.3383-0.21551;-0.0612+0.
-0.0824+0.24441;-0.0824-0.24441;-0.1933+0
~0.6967;-0.5231;~-0.3089;-0.1064;-0

.0000e+000
.0000e+000
.5054e+003
.9055e+002
.2341e+003
.1422e+003
.5072e+003
.3721e+001
.4034e+003
.9929e+003
.6122e+003
.5549e+003
.4744e+003

.6453e-017
.9640e-018
.1010e-017
.4491e-017

.0051e-017
.1292e~017
.1293e-017
.5545e-018

.5312e+003
.3324e+002
.9488e+003
.6157e+001

PN W W O O O

| T (|
= W

-6

1

.0000e+000
.0000e+000

.5980e+003
.4267e+002
.6722e4+002
.2623e+003
.4121e+003
.4991e+002
.7160e+003
.1757e+003
.1964e+003
.4891e+003
.1848e+003

+3653e=017
.2589e~018
.5160e-017
.2560e-017

.3205e-004
.4213e-003
.8709e~-004
.2554e~004

4373e+002

.8214e+002
1.
=3

2397e+003
2017e+001

G coupled with K:

70984 ;-0.1485~0,70981;

. 51981 ;-0.0947-0.51981i;

22401;-0.0612-0.22401;

«22381;=-0:1933-0.22381 ;
«10065=0.998; -0.09897.



.0000e+000
.0000e+000
.0000e+000
.0000e+00G0
.0000e+000

.0000e+000
.2000e-001
.0000e+000
.4190e+000
.5750e+000

.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.0000e+000

N O 0 O

QO = O QOO = O

oo O

.0000e+000
.3800e-002
.0000e+000
.8500e-002
.9090e-001

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.0000e+000

= OO

.1320e+000
.7120e-001
.0000e+000
.0000e+000
.0000e+000

.0000e+000
.0000e+000
.0000e+000
.6650e+000
.3200e-002

.0000e+000
.0060e+000
.0000e+000

.0000e+000
.0000e+000
.0000e+000

27

= o= O Q

.0000e+000
.0000e+000
.0000e+000
.5560e-001
.0532e+000

0000e+000
0000e+000

0.
0

.0000e+000
.0500e-002
.0000e+000
.0130e+0060
.8590e-001

0.0000e+000 0.0000e+000
0.
&

0000e+000
0000e+000



AK=

K{s):=(AK,BK,CK,DK)

Columns 1 through 5

= O oOQ

=1
=3
=5

o Oy

.0000e+000
.0000e+000
.0000e+000
.2952e+001
.429%e+001
.5898e~-001
.1044e+002
.5445e+002
.3553e+001
.6080e+001

= O O O

-4
=9
=7

N &

.0000e+000
.0000e+000
.0000e+000
.6424e-001
.5280e-001
1122e=003
.8016e+001
.7923e+001
.3998e+001
.6076e+000

Columns 6 through 10

i 1 1
H e WWwhNhoo oo

1
-

o)
=~
I

wWwoOor

.0000e+000
.0000e+000
.0000e+000
.5670e-005
.4541e-002
.7152e-001
.0918e-002
.1010e-001
.3572e+000
+5172e=001

.0000e+000
.0000e+000
.0000e+000
.2379e+001
.5747e+001
.9746e-001
.2761e+003
.1361e+003
.5888e+002
.6520e+002

|
NSINWRE RO OO

= O = O

.0000e+000
.0000e+000
.0000e+000
.2292e+000
.8436e+000
.9480e-001
.9657e+002
.2280e+002
.7031e+001
.5562e+000

.0000e+000
.0000e+000
.0000e+000
.1606e+000
.1320e+000
.4280e-002
.5039e+001
.9808e+001
.0999e+002
.5191e+000

|
RN R RO 0O

where

.0000e+000
.0000e+000
.0000e+000
.0074e+001
.5746e+001
.6848e+000
.5694e+002
.2698e+003
.1478e+002
.3006e+000

.0000e+000
.0000e+000
.0000e+000
.4016e+000
.4814e+000
.5686e-001
.0518e+001
.0366e+001
.4885e+000
.9017e-001

.0000e+000
.0000e+000
.0000e+000
.0186e+001
.9366e+001
.2119e+000
.8923e+003
.1745e+003
.8694e+002
.8251e+001

Z8

.0000e+000

.0000e+000

.0000e+000

-9202e=-001

. 9510e-002

.2943e-005

.1812e-001

.9060e-015

«6373e-015

.8272e~-016

.0000e+000

.0000e+000

.0000e+000

.3309e~-002

.9970e-001

.3824e-001

.3737e+000

.8226e+000

.0426e+001

.4963e+000

MNONERE WO OO

NNV OO =R OO0 0O

.0000e+000
.0000e+000
.0000e+000
.4827e~-004
.7092e-001
.1136e-002.
.3896e-001
.6184e-003
.8901e-002
.6479e-001

.0000e+000
.0000e+000
.0000e+000
.9048e+000
.1678e+000
.3866e-001
.3289%e+001
.0216e+002
.1730e+000
.3467e+000



EK=

Columns 1 through 5

1

-6

4535e+000

.4976e-001
1

9540e+001

3
=303
4,

0591e-0072
3675e-002
14:25e=-001

Columns 6 through 10

1
=

El
=~
i

The eigenvalues of

=7.6840+%7 . 711071 ;=7.
=0.3995+0.00231;=0.
=3.3435;=-0.3962:-0:

.1164e-016
.4730e-016
.4142e-016

.6337e+000
.6244e+000
.8850e+001

+9207e-016
1 130e=-017
.9031e-018

.6477e~-002
.4188e-002
.0281e+000

N

]
W = N

.5448e-001
.2669e-001
.2832e+001

.5088e+000
+1918e=001
.5265e-002

.3862e+000
.0667e+000
.2079e+001

29

g W

NN

.5807e~-016
:9251e~017
.4518e-016

.9914e-001
.0573e+000
.6525e-002

il
=8,
2

W N

5312e-016
9574e-017

.3765e-016

.8630e-002
.9882e-002
.5460e+000

the closed-loop system G coupled with K:

6840=7.71071;~2.37304%2.34774;~2:.383730-2.3471i;
3895-0.,00231;~98,7302;-17.2173;=11.8992;~12.0501;
4000;~0.3994;-0,3999;



