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summary. Continuing our papers [14]-[16] and [6]-[g], where we have given
an axiomatic approa., 

_\ t?, generalized conjugation theory, we introduce and Judy
dualities A , Ex ----- E* associated to a binary operation * on E, where X and
W are two arbitrary sets and E= [-m,*-], which encompass, as particular cases,
conjugations, V-dualities and l--dualities in the sense of [1aJ and [?]. We show that
this class of dualities can be extended so as to encompass also tire *-dualities A :
Ax ---.Aw in the sense of [B], where Z is the.urrooi.ul enlargement of a complete
totally ordered group.
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0. Introduction

Since various concepts of conjugation have importani applications to duality in
optimization theory, an axiomatic approach to generalized conjugation theory was
started in [1a] and continued in [15], [16] and [6]-[9]. Let us recall rhar if X and, W
are two sets (which we shall assume non-empty throughout the sequel), a mapping
A : Ex ---. R* (where Ex denotes the family of all functions f , X - E =

[-*, +*]) is called

a) a duality ([16], [6]), if for any index set .I we have

(i2f n)" :',:l /'" ({,f ,}r.r g E*), (o.t)



wltcrc 
i : l  l ,  eRr 

" t , l  
t :? I f  eR* arc dcf i r rccl  pointwisc on X and I4l  rcspr:ct ively

( i  . ,  ( l i f  / ,X t )  =  
i l l  f  ( r )  fo r  a l l  c  €  X) ,  w i th  the  usua l  convent ions

i n f  0 = * m ,  s u p 0 - - o o ;  ( 0 . 2 )

b) a conjugation [14J, if we have (0.1) and

U + a Y - f ^ + - d
_ Y

U e n^ ,d e R),  (0.3)

where we identify each d € rt with the constant function taking everywhere the va.lue

d, the operations i and + on Ex (respectively,R*) are defined pointwise, and the

binary operations * and * on E are the "upper addit ion" and "lower addit ion"

def ined ( [10] ,  [ l t ] )  by

a I U -  a * b =  a +  6 i f  R f l  { . a , b }  + . 0  o r  o  =  6 =  * c o ,  ( 0 . 4 )

a * b - *oo, @ * b : -oo if  a = -b= *oo;

c) a V-duali ty [7], i f  we have (0.1) and

( / v d ) "  -  7 ^  n - d

where V and A stand for (pointwise) sup and inf, tnff and Ew respectively;
d) a L-duality l7l, i f we have (0.1) and

( / r d ) " : . f ^ T - d .  (0. i)

. _ v

U e n^ ,,d e R), (0.6)

,nd Ew respectively;

_ v

U e n ^ , d € R ) ,  ( 0 . i )

where l- and T are the binary operations defined [6] on E UV

o f i : I  o  i f  a < b

t  + -  i f  o > b ,

I  o  i f  o > b
a t o =  

i  
- *  i f  a 1 b ,

(0. s1

(0.t1

and extended pointwise to Ex and Ew.

Lbt us also recall (see e.g. [16], [6]) that if A : Ex --E* is a duality, then so is
the dual mapping L' :Ew -----f defined by

eo' = inf lz- 
teFx
f,o sg



-- ) '  --r {.,
arr<l ir ,r any f e I l ." a.nd l l  € l l" rvr: har. 'c t irr:  r:r luivalcrrct:

l o < g < = + g ^ ' < f . ( 0  1 1 )

In  thc above mcn[ ioncd papers,  among o lher  resul ls ,  var ious " rcprescntat ion the-

orr r lp5t '  have been g iven for  dual i l ies (wi th  the a id of  func l ions G :  X xW xR - - - - -  R1,

conjugat ions,  V-dual i t ies and l - -dual i l ies (wi th  the a id of  "coupl ing funct ions"  f rom

X x W into E) A , ,?-x ---, E* and for their duals L' : Ew ----- n", as well as

for the "second dual" foo' = (,fo)o' e Rx of a function /
- Y

R
been shown there that the dual A' :  .Rw

.R- '  o f  a  funct ion f  e  R" .  A lso,  i t
_ Y  _ y

---+ R" of a conjugation A '. R" ------t
has

n'
is a conjugation, but the dual of a V-duali ty is a l-duali ty (actually, this was the

main motivation for introducing in [6] the operations l- and T and the concept of

l--duali [ ies) and the dual of a I-duali ty is a V-duali ty.

Furthermore, in the recent,paper [8], we have generalized the theory of conjuga-

t ions (0.1) ,  (0 .3)  to  cer ta in  mappings A, :Ax - - -A*  ,ca l led ( in  [8 ] )  * -dual i t ies,  where

A:  (4, ( , * , * )  is  the "canonica l  en largement"  o f  a  complete to ta l ly  ordered group

A : (A,(, *), which contain, as part icular cases, the conjugations A '  Ex ----. R*

and various kinds of known polarities (e.g., polarities A r E{ ----- El i" the sense of

Moreau [10J, p. 92, formula (14.4), Rockafel lar [13], p. 136, Elster and Wolf [4], with

applications to fractional programming duality, etc.).

In the present paper, continuing to develop these axiomatic approaches to general-

ized conjugation theory, we shall introduce and study a kind of dualities A : Ex -*

Et, nu*"!y, d,ualities associated to a binary operation * onEsalisfying "condition
(o)" ( i .e., condit ion (1.1) below), cal led, brief ly, *-duali t ies, which encompass, as par-

t icular cases, the conjugations, V-duali t ies and l-duali t ies mentioned above. Also,

we shall show hoy this theory can be extended to the case when E is replaced by the

canonical enlargement 7 of a complete total ly ordered group A : (A,(, *), so as to

encompass also the "*-dualities" in the sense of [8], * particular cases.

In Section 1 we shall  introduce the class of binary operations * on E satisfying

condit ion (a) (defined by (1.1)), which conlain, as part icular cases, the binary oper-

ations f ,  V and I mentioned above. Also, we shall  introduce and study " the ( left)

epi-hypo-int)erse" *1 and " the (left) conjugate" i of such a binary operation x, which

wil l  be needed in the sequel.

In Section 2 we shall  introduce the concepl of a duali ty A , Ex --, Ew with

respect to a binary operation * on ,R satisfying condit ion (a), cal led, brief ly, a *-

duali ty, with the aid of a suitable "second condit ion" (besides (0.1)), namely, condit ion

(2.I), encompassing, among other part icular cases: (0.3), (0.6) and (0.7). Also, we



shal l  dr : t ,cr rn ine t l rc  dr ra l  o f  a  +-c jua l i ty ,  f rom which one rccovt_ ' rs ,  i r l

above rncnt ioncd r r :su l ts  of  I la ]  and [z ]  on Lhe duals  o[  conjugar ions,

( i r r f  6;)  * ,c =' i €  I

Remark 1.1. a) For

fr"(i9f b;)
I t s r

(b; * c)

0,  condi t ion (1. i )  y ie lds

( {br}r . ,  e E,c € E). ( 1 . 1 )

(c e n). (r  .2)

par I i cu la r ,  t he

V-dua l i t i es  and

(1 .3)

( i 6 r ) r . r e E , c € E ) ,( r .4)

I - d  u a l i t i e s .

In  Sect , ion 3 we shal l  obta in sorne resul ts  on the represenlat ions of  +-dual i t ies

L t Ex -"-- Rt'  and of their duals A,'  :  Ew ----- Rr, wit,h the aid of coupling

funclions ,b t X x W ----+ E, which con[ain, as part icular cases) Lhe results of [1a] '
and [7] on the representation of conjugations, V-duali t ies and l-duali t ies, mentioned

above.

Finally, in Seclion 4 (Appendix) we shall  show that the concept of x-duali ty of

the present paper can be extended bo a more general notion of "(*,s)-duali ty", which

encompasses, as part icular cases, also the "*-duali t ies" M ,Ax --A* , inthe sense

of [8], where A = (4,(, *, +) is the "canonical enlargement" of a complete total ly

ordered group A : (A, (, *). Thus, we shall obtain a unifying framework for the

results of the present paper and those of [S].

1. Inverses and conjugates of binary operations on .R

Definit ion 1.1. We shall say that a binary operation * on R satisfies conditiotz

(o), if for any index set ̂ f we have

inf
i e I

I _

* m * c = * o o

b) For each c € E, define k":E ----* E by

& " ( 6 )  - [ 1 6  ( b e E ) .

Then, condition (a) means thal for any index set .[ we have

: l€l a"(b;)

or, equiualently (see [6], lemma 2.i),  that for each c eE the function lc," is non-

decreasing and upper semi-continuous.

Lel us give now some examples of binary operalions * on E satisfying condition
(a ) .\ / ( .

Example 1.1. Let * - *. Then, by [11], formula (4.?), i  satisf ies condit ion (a).



B x a r n p l e  7 . 2 .  l , c L  t

cond i t i on  ( , r ) .

Exa rnp le  1 .3 .  Le t

cond i t i on  (a ) .

We shal l  denote by min ( respect ive ly ,  max) ,  an in f  ( respect ive ly ,  sup)  which is
at ta i  ned.

Proposit ion 1.l .Let * be a binary operation on R, sotisfying condit ion (a). Then

there erists a unique binary operotion *1 orLE such that lor any &,,b,c e E we haae

the equiualence

a ( - b * c < +  a * 1 c 1 b , ,

a * 1  c  : m i n  { 6 '  e E  l  a  l  b '  *  c } (a, c € -B).

= V.  ' l 'hen 
i l  is  wel l -known (and imrncdiatc)  that  *  sa[ is f ies

*  =  I  (o f  (0 .8 ) ) .  Then ,  by  [7J ,  f o rmu la  (1 .21 ) ,  *  sa t i s f i es

namely,

( L c J

( 1 . 6 )

P r o o f .  F o r a n y a , c € E w e h a v e i n f  { 6 ' e  E l a  1 b ' * c l : i n f  { 6 ' e  E l a < k " ( b ' ) }
(with *" of (i.3)), which is attained, since the set {6' e E I c < ,1"(b,)} is closed
(because fr. is upper semi-continuous, by remark 1.1 b)). Thus, the min in (l.o)
exists.

Let us show now that the binary operation +1 on E defined by (1.6) satisfies (1.5).
I f  o  (  6*c ,  then be  {b '  e  F la  (  6 ' *c } ,  whence,  by  (1 .6 ) ,  a*1c36.  Converse ly ,

assume now that a*1 c= min {6' e E I a 1 b' + c} ( 6, so there exists 6' € E such
that c 1 b' * c: k"(b'), b' < b. Then, since k" is non-decreasing (by remark 1.1 b)),
w e o b t a i n  a < k " ( b ' )  < & . ( b )  = b * c .

Finally, if we have (1.5), then for any c,c € E we have

a * 1 c :  m i n  { 6 ' e  E  l o * 1 c S  6 ' }  :  m i n  { b ' e  E l a  (  b ' * c } .  i l

Definit ion 1.2. Let * be a binary operation on E, satisfying condit ion (a).

Then the unique binary operation *1 on E, of proposit ion 1.1, wil l  be called the (teft)

epi-hypo-inuerse of ,r.

Remark 1.2. a) The theory of inversion of functions & : R .--. E (see e.g. [2],
pp.  208-211,  and [12] )  can be easi ly  extended to funct ions f r :  E ,8 ,  which is ,  in

fact, its riatural framework. Then, for any c € E, since &" of (1.3) is non-decreasing

and upper semi-continuous, i i  admits (see e.g. [12], proposit ion 2.6, extended to this

f ram6work) ,  a  unique "epi -hypo- inversen,  i .e . ,  a  un ique funct ion j " ,E - r  E such

that for any o,6 g E we have the equivalence

a < /c"(6) s j"(a) < 6, ( 1 . 7 )



l t A  I  l l  c l , v ,

j , ( o ) : m i n { 6 ' e E I a < k , ( b , ) i  ( a e R ) .  ( 1 . 8 )

Then,  by proposi t ion l . l ,  we have

i , ( a ) = o * , ,  ( a e B ) ,  ( 1 . 9 )

which molivates the terminology of definit ion 1.2.

b) i f  * is commutative and satisf ies condit ion (a), then, by ( l .b),

a * 1 c (  b < = +  a * 1 b ( c .  ( 1 . 1 0 )

c) For a binary operation * on E, we shall also consider the binary operation *-

on R, defined by

a  * -  c =  a  *  ( - c )  ( a , c  e  E ) .  ( 1 . 1 1 )  :

Then,  by (1.6)  and (1.11) ,  we have (* - )1 :  *1- r -__*-s ince

a ( * - ) r c : m i n  { 6 ' e  E l a < - b ' + -  c =  6 ' * , ( - c ) }  =  o * r ( - c )  ( a , c e  E ) .  ( r . r 2 )

d) If  * satisf ies condit ion (a), then so does *-. Since (*-)- = *, the converse is
also true.

If a binary operation * on E satisfies condition (a), then *1 need not satisfy it,
but we shall show that *,1 has a "dual" property.

Definition 1.3. We shall say that a binary operation * on E satisfies condition

W), n for any index set .I we have

( T p o r )  * . : s . y p ( o ; * c )  ( { o ; } i e r e E , " € E ) .  ( 1 . 1 3 )' i e t  
i € I

Remark 1.3. I f  x satisf ies condit ion (B), then, by (1.13) for .I  = 0, we have

- o o * c = - o o  ( c e E ) .  ( 1 . 1 4 )

Proposition 1.2 If a binary operation * onE satisfies cond.ition (a), then +1
satisfes condition (B) .

Proof. By (o), the minima in (1.6) are attained, and hence

( * .gg o, )  *1c=min {6 '  e  E I  s .gg a;1 b ' *c}  -  min [ - l {b '  e  E l  a ,  !  b ,*c}  -
i € /  i€ /  ;€  I

: s , gp  m in {6 ' e 'E l o , 'S  C j * c }  =s }p  ( o ; *1c )  11a r } ; e rCE ,ceE) .  i lie l  i€ I



Retnark  1 .a .  a )  Ont :  can  a lso  g ivc  the  b l low ing  a . l t , c lpa t ive  proo f  o f  p ropos i t ion
1 . 2 :  l t  e , a ' , c €  R ,  a  (  a ' ,  f h e n  { b , e  / ?  l u , (  k , ( b , ) }  q  { b ,  e  R l a  <  k . ( 6 , ) } ,  w h c n c e ,
by (1.8),  f . (a)  < l , (a ' ) ,  so 7.  is  non-decrcasing. Also,  by (1.7),  lor  each b e /? *e
have {a  €  E  I  j , (o )  <6}  :  {o  €  E  I  a  <  k " (b ) } ,  wh ich  is  a  c losed se t ,  so  j " i s  lower
semz-cort t inuous. But,  by [6] ,  lemma 2.1,  we have lhese two propert ies i f  and only i f

J. (sup ot )  :  sup 7. (o; )'  i€ /  ie t
( {or } t . r  9F, , "  €  E) , (  1 . 1 5 )

i .e.  (by (1.9)) , ' i f  and only i f  *1 sat , is f ies condi t ion (B),  f l
b) By the above, &. of (1.3) is the "hypo-epi-inuerse" of j" (of (1.9)), in the

inversion theory (of  [2] ,pp.  208-211, and [12])  extended to func[ ions k:R -  E,  and
therefore one can say that the binary operation * is the (left) hypo-epi-inuerse of *1,

in symbols,  * :  (* l ) , , :  * /u.  Indeed, f rom ( i .5)  we obtain

b * c :  m a x  { a ' e n l a ' <  b * c } :  m a x  { a ' e E l a ' * 1 c S b } (6 , c  €  E ) .  (1 .16 )

More generally, if we start with any x satisfying condition (p), then one can define,

in the obvious way, the (left) hypo-epi-inaerse *u of *, and we have * - (*")r - *ul.

AIso, dually to proposiiion 1.2, we have that if a binary operation * onB satisf.es

condition (p), then +u satisf.es condition (a).

c) Concerning the above notalions, let us mention that I (and u) stand to indicate

the lower (and, respectively, the upper) semi-continuity of *1 (respectively, *r) in the

first component. The word "left" in the above terminology is used to indicate that
we are dealing with the first component of *1 (respectively, *,,); in the sequel, we shall

omit the word "left", since this will lead to no confusion. Note also that a binary

operation * on E satisfying both (a) and (p) (with ,r,1 replaced by *) has both inverses
*1 and *,.,  but they need not coincide.

Let us consider now some examples.

Example 1.1 (cont inued) .  I f  *  :  * ,  then *1 :  { -
(1 .5) ,  by [11] ,  formula (3.3)) .

Example 1.2 (continued). I f  * - V, then *r :  T (since these * and *1 satisfy
(1 .5 ) ,  bv  [ i ] ,  f o rmu la  ( i . 5 ) ) .

Example 1.3 (continued). I f  * - I ,  then *j = A (since these * and *1 satisfy

( i .5) ,  by [7 ] ,  formula (1.6)) .

In the sequel, for simplicity, for any binary operation * on E we shall  write -c * c

instead of (-o) * c, which wil l  lead to no confusion (with -(a * c) ).
Definit ion 1.4. Let * be a binary operation E. Then the binary operation I on

E, defined by

(since these * and *1 satisfy

a l c :  - ( - a  * ,  c ) (o ,c  € .R) , ( 1 . t 7 )



wil l  lrc cal lc:t l  t l tr :  (trf t .) conjugute of +.

I l x a r n p l e  1 . 1  ( c o r r t , i n u e d ) .  I f  *  =  i ,  t h e n  I  =  t -  ( s i n c e  _ ( _ a i c )  =  a * _ c ,
by  [11 ] ,  l o rmu la  (22 ) )

Exa rnp le  1 .2  ( con t i nued) .  I f  *  -  V r  t hen  *  -  A -  ( s ince  - ( -aVc )  =  aA-c ) .
Examp le  1 .3  ( con t i nued) .  I f  *  -  I ,  t hen , r  =  T -  ( s ince  - ( -o - l _c )  :  a f  - c ,  by

[7 ] ,  fo rmula  (1 .12) ) .

Remark 1.5.  a)  By ( l . tZ),  we have

- ( a * c ) = - a + c (o , c  e  E ) ,  (1 .18 )

(a ,c  e  E ) .  (1 .19 )a + c - - ( - a ' r c )

b)  By (1.17)(appl ied to  *  instead of  * )  and (1.19) ,  for  the "b iconjugate, '  i  :  @
of a binary operation * on E we have i : *, since

a i c -  - (  a * c )  = a * c

c) For any binary operation * on E we have

.  * - - * - ,  ( 1 . 2 1 )

Indeed,  by  (1 .17)  and (1 .11) ,

a T - " = - ( - o  * -  c ) )  = - ( - a * ( - c ) )  - a * ( - c )  = a i -  c -  ( a , c e  E ) .  0 . 2 2 )

. Proposition 1.3. a) A binary operation * onR satisf,es (a) (respectiaelg, (p)) if
and only if * satisfes (p) (respectiaely, (a)).

b) If * satisf,es (a), then for any a,b,ceE we haae the equiualence

a*c < [ 4==g -b *1 c 1 -a. (1.23)

If * is also commutatioe, then we also haae the equioalence

a l c  1 |  6 = 9  - b  * 1 - a  I  s .  ( I . 2 4 )

c) * is commutatiue if and only if * is "anti-commutatiue,,, i.e.,

a*c -  -c*  -  a  (a, ,c  eR).  (1 .2S)

Proof. a) If  * satisf ies condit ion (a), then

l '  
' l '  

r  . , : . , i r  t r .  ' i  
.

(suy oi)*c: , 
L(_,,:f 

,,). ".| 
: _ 

[ti3f (_a;))*'cJ =

(o ,c  e  E) .  (1 .20)



:  -  
i l l  ( -o t  * . )  =  t : l  [ - ( -o ,  *  c ) ]  :  sup  (o ;+c )  ( {n ' } , e r  e  8 , ,  €  R) ,

so *  sat is f ies condiL ion (P) .  Dual ly ,  in terchanging sup and in f ,  we obta in tha l  i f  *

satisf ies (B), then * satisf ies (o). Hence, i f  * satisf ies (p) (respectively, (a)) then
* = i  satisf ies (a) (respectively, (B)).

b )  Bv  (1 .17 )  and  (1 .5 )  we  have

a * c  1 6  < +  - ( - c  *  c )  (  6  + +  - a *  c >  - b  e +  - 6  \  c  1  - a .

I f  *  is  a lso commutat ive,  then, by (1.23) and (1.10),  we have (1.24).

c) If * is commutative, then

a i * c = - ( - a * c )  = - ( " * - o )  =  - c * - a

Dually, if * is anti-commutatiute, thenT is commutatiue. Hence, if * is anti-commutative,

then *-  i  iscommutat ive.  i l

Since * is defined for any binary operation * (not necessarily satisfying condition

(a)), we may consider the conjugate of the epi-hypo-inverse of a binary operation *

satisfying condit ion (c), i .e., the binary operation

aT[c = - ( -a*r  c)  -  -min {6 '  e  E |  -  a(  b ' *b}  :

=  max  { -6 '  eE l  o  2  - (b '  * c ) }  :  max  {b  e  E l  a  >  - ( -b *c ) }  :

-  max {b e E la  > 6*c}  (a ,c  e  E) .  (1 .26)

Remark 1.6. By (1.12) and (1.21) (applied to *1 instead of *), for any binary
operation * on E we have

(a ,c  e  F) .

Theorem l.1.lf a binary operation * on R satisf"es condition (a), then so does

the binarg operation *1, and we haue

(r.27)

(1 .28)

(1.2e)

(* r ) r  =  * ,

@ , - * .

Proof. By proposition 1.2, *1 satisfies condition (p). Hence, by proposition 1.3,

{ satisf ies condit ion (a), and therefore (*,),  ir  well  defined. Then, by (1.6) (applied

to *-1), (1.5) and (1.17), weobtain .
. ,":,r.S;..,: ,..

o(*r)rc= min {b'  e E I  o ( 6'r lc} = min {6'  e E I  o S -(-b'*1c)} =



= - m a x { b e  E l - a ) b * 1  c }  = - m a x { b e  B l 6 S - o * c }  =

.  =  - ( -a  ' r  c)  = a lc  (o ,  c  e /?) ,

which proves (1.28) .  F ina l ly ,  ( i .28)  and (1.29)  are equiva lent  (by (1.20)) .  I

Remark 1.7.  By the f i rs t  par t  o f  theorem 1.1,  appl ied to  q,  and by (1.29) ,  d \

satisf.es condit ion (a), then so does *.

Example 1.1 (cont inued) .  I f . *  -  i ,  so * t  =  * - r  then * l  :  - i -  (s ince - ( -o f  -c)  :

a I  c ) .  Hence ,  by  theo rem 1 .1 ,  ( * r ) , :  I  =  t - , ( - * , ) ,  
-  *  -  * .

Example 1.2 (cont inued) .  I f  *  -  V,  so *1 = T,  then d = l -  (s ince - ( -aTc)  -

a L - c ) .  H e n c e , b y t h e o r e m  1 . 1 ,  ( * r ) r  =  I  =  A - ,  ( - * r ) ,  =  *  = V .

Example 1.3 (cont inued) .  I f  *  -  I ,  so *1 -  A,  thenIT= V-  (s ince - ( -oAc)  -

aY  -c  ) .  Hence ,  by  theo rem 1 .1 ,  ( * r ) r :  * :  T - ,  ( r r ) l  =  *  =  *1 .

Start ing with *r instead of +, from example 1,2 and theorem 1.1 above we obtain

Examp le  1 .4 .  I f  *  -  - l - -  =  I [ ,  t hen  * t  =  A - , {=  V .  Hence ,  ( * r ) r  =  T ,

6;"*;* 
r.8 a) Example 1.4 diffeqs from exampr" r.r only by the minus signs,

but we shall use it in Section 3. Similarly, starting with * = V- = lt, one obtains

an example which differs from example 1.2 only by the minus sign (however, we shall

not use it  in the sequel).

b) The following table summarizes examples 1.1-1.4 above:

Example 1.1 Example 1.2 Example 1.3 Example 1.4

* + V J I -

* 1 -t- - T

q + I _ V

(x r ) r  -  * +- T - T

Each binary operation

follows. ''
* on .R can is any,set, as

.  
' j  I  ' i . ' r ] , ,  ,  ' - 1

10
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Def in i t ion  1 .4 .  I ro r  any  f  ,h  e  nx ,  l " t

( f  *  h ) ( r )  =  I @ ) , r  h ( x )  ( x  e  x ) .  ( 1 . 3 0 )

2 ,  * -dua l i t ies  and the i r  dua ls

Definition 2.1. Let X and W be two sets and let * be a binary operation on E.
A dual i ty A:Ex -----  R* (see (0.1))  wi l l  be cal led a*-d,ual i ty, i f .

( f * d ) o - j o l d .
_ 1 ,

U e n" ,d e R),  (2.1)

where we identify each d € E with the constant function ha eff defined by ha(r) -

d  ( x e x ) .
Example 2.1. Let * = * .  Then * = t- (see example 1.1), and thus condit ion

(2.1)  means that  wehave (0.3) ,  i .e . ,  that  A:Ex - - -E*  isaconjugat ion.

Example 2.2. Let x : V. Then f = A* (see example 1.2), and thus condit ion

(2.1) means that we have (0.6), i .e., that A : Ex -rE* is a V-duali ty.

Example 2.3. Let * : I. Then * : T (see e.xample 1.3), and thus condition
(2.1) means that we have (0.7), i.e., that A r Ex ----E* is a -l--duality.

Re'mark 2.L. rf A is a *-duality, then it is.also a (x-)-duality. Indeed, by (l. l l),
(2. i )  and (1.21),  we have

( / . * -  d )o  =  ( / *  ( -d ) )o  = . fa*  -  d -  f * -d .
. -  :  _ ; -  

; " . :  
-  l

' r Propopition 2.L. Let X and W be two sets and let * be a cornmutatiae binary
operation onE, satisfying condition (a). Then, a d,uality A , Ex ----, E* i, o
*-duality if (and onty if ) we haue (2.t) for all d e R.

Proof. Assume that A ,ff -----. Et i, a duality, satisfying (2.1) for all d e.R.
Then, by the commutativity of *, (1.2) and (0.1) for .[ = 0 (with the conventions
(0.2)), we have

( / **oo)a :  (+oo*, f )a  :  *ooA :  -oo _ v

u e n^ ). (2.2)

On the other hand, since * satisfies condition (0) (uv proposition 1.3 a)) we have, by
(1.25) and (1. la)  (appl ied to *) ,

.fo* + oo : -oo* -.fo = -*

Thus, by (2.2) and (2.3), we have'(2.1) for d : *oo.

(/ e Ex1. (2.3)

1 1



F ina l l y ,  by  t , l r c  r : o rnn ru l ,a t , i v i t y  o f  * ,  ( l . l ) ,  ( 0  1 ) ,  (2 . ) )  f o r  a l l  d  €  i l ,  ( 1 .25 )  and

(1 .13 )  f o r  i  ( by  p ropos i l i on  1 .3  a ) ) ,  we  ob ta in

(/ * -"")o : (-oo * /)o = tt jpfi  a; *.f)o : (;![  (d * /))^ :

:  t jpf i  t /  *  d))o =: :B U * d)o =: :H U"*d') : : :*(-ro - , fo)=

-  (rup (-d))* -  lo = *m* - /a = /a* - m (f  eE* ),
deR

so A satisfies (2.1) also for d = -m. fl
Theorem 2. l .Let  X andW be two sets and let  *  be a binary operat ion onE,

satisfying condition (o).

a)lf L ,ff -E* ,i, a *-d.uality, then its d,ual L' ,Ew ----ff is a *1-d,uality.

b)lf L,Ex -E* i, ai1-duolity, then its d,ual L' :Ew '*'Fx is a *-d,uality.

Proof. a) If A is a *-duality, then so is A'(see Section 0), and, by (0.10), (1.23),

(2 .1 ) ,  (0 .11)  and (1 .5 ) ,  we have

(gid)o' =, 
o^tlnfnoh 

= 
o^=]fl n,d)h 

= 
-ootl lr. ,oh 

=

=  i n f  h -  i n f  h -  i n f  h -
s>h^vd e2(nrd)A go '<h.d

= inf
g a t * 1 d l - h

b) If A is a Fl-duality, then, by part a) (applied to T1 instead of *) and (1.29), A'

i sa* -dua l i t y .  i l  
'

Corollary Z.L,Let X andW be two sets and let * be abinary operation onE,

satisfying condition (a). Then

a) Eaery *-duality is the dual of a *1-duality.

b) Eaery Ti-duality is the dual of a *-duality

Proof. a) If A is a *-duality, then A = (A')' (see Section 0), where A' is a
'  *1-dual i ty (by theorem 2. i  a)) .

b) If A is a Tj-duality, then A = (A')', where A' is a r,-duality (by theorem 2.1

b)). i l
Corollary 2.2 Let X, W and y be as aboae. Then

a) A mapping L t# -E* i, a *-duality if and only if A' is a Ti-duality.

b) A rnapping L,ff -E* i, a[-d,uality if and, onty if A' is a *-d,uality.

Remark 2.2. a) For * - *, V, or I, theorem 2.1 yields again that the dual

of a conjugation, or V-duality, or J--duality, is a conjugation, or a l--duality, or a

h = go' *7 d, = gA'id
_u,

k e R" ,d e R).
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V-dual i ly ,  respecl ivc ly  (see Secl ion 0) .  S i rn i lar  remarks can be made lor  coro] lar ies

2 .1  and  2 .2 .

b) One can generalize definit ion 2.1 as fol lows . Ler I( be a family of non-decreasing

, upper semi-continuous functions fr tE ----];-.  A duali ty A '  Ex ---tE* is a /(-

duality, if.

( f r " / ) o - - k o ( - / o )  ( k e t { , f e E ' ) .  ( 2 ' 4 )

Then, in particular, A is a *-d,uality if and. onty if it is a Ks-duality, where

.  
K o = { k .  l c e E } '  ( 2 ' 5 )

with , t .  o/(1.3).  Indeed, by ( i .3) and (1'30), we have

(k"  o  / ) (c)  -  , t " ( / ( r ) )  -  f  (x )* ,  =  ( f *  c) (c)  ( f  e- f  'c  eR'x  €  X) '

whence

( k " o / ) o : ( / * c ) a (f e-n", c € E), (2.6)

and, on the other hand, by (1.3), (1.17) and (1'30), we have

( - k "o ( : / o )X r )  =  - k " ( - f o ( r ) )  -  - ( - / a ( to )  * c )  =  /a ( to )xc :

= (/a*cxu,) U ef f  ,c  e  R,w e W);  (2 .7)

thus, (2.4) (for Ks of (2.5)) is equivalent to (2'1)' I

S .Representa t ionsof * -dua l i t iesandthe i rdua ls ,

with the aid of couPling functions

Definit ion 3.1. Let *, be a binary operation on E. An element e €E is called

a) a left. neutral elernent for *, if'

(c e E); (3'1)e * c = c

b) a ri.ght neutral element for *,il

c  *  e  = .  ( c  e  E ) ;  ( 3 ' 2 )

c) a neutral element for *,if it is both a left and a right neutral element for *'

Note that a neutral element is necessa'rily unique

Example 3.I-. Let * = i. Then e = 0 is the neutral element for *.

Example 3.2. Let * = V. Then e = -co is the neutral element for *.
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Exarnp le  3 .3 .  [ , c t ,  *  = ' I .  ' J ' hen  
c  =  1 -cc  i s  t l r e  (un ique )  r i g ] r t  r reu t , ra l  c l e rnen t

fo r  +  (by  [7 ] ,  f o r rnu la  (1 .15 ) ) ,  bu t  t hc re  cx i s l s  no  l e f t  neu [ ra l  e len ' r cn t  f o r  * .

Def in i t ion 3.2.  Let  X be a set  anc l  lc t  *  be a b inary opera l ion on F,  wl r ich
admits a left (or r ight) neutral element e. ' Ihen, for any subset .9 of X, Lhe generalized
indicator  funct ion of  S (wi th  respect  to  e)  is  the funct ion Xs :  X -  { . ,  *oo}  def ined
by

- . / . . \  l e  i f y e . 5
X s ( V ) = t  * *  i f  y e X \ S . 6 . t )

Example 3.1 (continued). If * - 4, ro e = 0, then Xs is the usual indicator
function of .9.

Example 3.2 (cont inued).  I f  *  -  V,  so e = -oo, then x5 is the'representat ion
function" of ,5, introduced by Flachs and Pollatschek [b].

Lemma 3.1 Let X be a set andlet* be abinary operation onE, satisfying (1.2)
and admitting a Ieft neutro,l element e. Then, for any functioh f eff we haae

(3.4)

where yp1

Proof.

whence

/ = jgi {x1"1 * /(')}'
is the generalized, ind.icator function of the singleton

By (3.3), (3.1) and (1.2) we have, for any s, U € X,

x{;}(y) * f(x) = [ "* /( ').=. f( ') = ffu) if s- l + * * / ( r )  
= * o o  i f c

{ ' } '

- v
# v ,

R,
A

we recall (see [11]) that if X and w ,r" two sets, then every function {t : X x,
W ---) E is called a coupling function.

Theorem 3.1, Let X and W be two sets and let * be a binary operation on
satisfying (1.2)'and admitting a left neutral element e. Then for each *-d,uality

r E* - Ew therc ezists a coupling function ,h , X x W *--+8, fo, erample,

,b@,.) - (xt"t)a(t )

auch that we haue

/o(r)  = suP l rb(r , to)r / (e))xex
'. Moreouer, if x.is olso commutaliae, then $
coupling function for which we haue (3 6))

( r € X , w € W ) ,  ( 3 . 5 )

( vex1 .  i l

( f  e f f ,w €w) .  (3 .6)

of (3.5) is unique (i.e., the unique
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Proof .  Ry lemnra 3.1 anc l  dcf in i l ion 2.1,  for  any * -6 lxa l i t ,y  A ,  Rr  - - - .  R*  *"

have

. f  o  = ( ;pf  {x i , r  *  / (s)} )^  =: : .?{(xr , t )o* / ( " ) }

i .e . ,  (3 .6 ) ,  w i th  r /  o f  (3 .5 ) .  ,

Moreover, if e is a neutral elemen[ for *, and r e X, then, applying (3.6) to

f  =  Xp l  and us ing  (1 . i7 ) ,  (3 .3 ) ,  (3 .2 )  and (1 .2 ) ,  we ob ta in

(xt"l)o(r) - 
"' ip 

{{("', tr)*x1'1(c')} = 
:,:? {-(-d(' ', u.') * x1"1(r'))} =

= - ( -g(q t  ) )  =  ,h@,-)  (w e W).  i l

Remark 3.L. a) If * is a binary operation on E, sat,isfying (1.2) and admitting a
left neutral element e, then, by (3.3), (3.1) and (1.2), for any o,U e X and any d eE
we have

xt' l(Y) * d. : { ",* 
o - 

,o 
'. ' , '  -. o

t ' l ( v )  * d : [ * m * d  
i f . r * v .  

( 3 , 7 )

Now, by part of [6], theorem 3.1, for any duality A,Ex --.8* we have

/o(r )  = : : i  Ga,(* ,w, f  ( r ) )  ( /  e  # , ,  eW),  (3  B)

where G 6 : X,x W xB--r E is the function defined by

with p",a : X ----- E defined by

/ - \  l a  i f o - y
P t d \ ! ) = l  * *  i f  x l y .

But,  by (3. i0)  and (3.7),  we have

? x d = X 1 , 1  * d  ( r e X , a e E ) ,  ( 3 . 1 1 )

and hence, i f  A is a *-dual i ty,  then, by (3.9),  (3.11) and (2.1),

Ga(c , t r ,d )  =  (X t " )  *d )a(u)  -  (x i ,1 )a( to ) *d  ( r  €  X ,  u  €W,a e  E) ,  (3 .12)

; which, togetier with (3.8), yields again (3.6), with r/ of (3.5). ' j  -

1 5
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("f e R^ ),
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l r) One can ;r lso prove that i f  * ancl A are as in a) above, then ,r/ :  X x W ---- R
of  (3 .5)  is  the unique coupl ing funct ion sat is fy ing,  for  any index se l  1 ,

- t@,r) -  ip l  d '  = 
l?l  {-rh(r ,w) , ,  d;}  ( '  € X,w e W,{d;I ;et  e E).  (3. I3)

In  the converse d i rect ion lo  theorem 3.1,  we have

Theorem 3.2,Let  X andW be two sels ,  *  a  b inary operat ion onE,  rh ,  X xW -+

E a coupling function and A, tR' -E* th, mapping defned. by (3.6).

a) Il * is commutotiae and satisties condition (a), then A is o duality.

b). If * is associatiob, then A, satisfes (2.1).

Hence, if * is commutatiue, associatiue and satisfies condition (a), then A is a

*-duali ty.

commutativity of *, and (1.1),

(i$ n)^(,) :::i {,hb,,)ripl /,(")} -::i {-{-,!@,,) -ltl .f,(,)}} =

= 
i:i 

{-iitl i(') * -'b@,t')}} = -ipi {i2f n(') * -t(x,t')} =

: - j:l tltl {/,(') * -,b(a,,)}} : -i$ tj$ {/,(') * -$(x,,,)}} =

= ',:l {- $f {,n{x) * -g(r,,t )}} = 
i:l ::? {-(/,(,) r- $(n,,))} =

- s.yp ,yg{- Grh(r,,u.') * f (c))} - ' ', 'p {rbb,u)*/,(s)} - sup /,A(r).i e l  xeX ie  I  ;e i  
- '

b)  For  anv . f  eBx,  d  eBand t r  e  w wehave,  by  (3 .6 ) ,  (1 .g0) ,  (1 .1?)  and the
associativity of *,,

( /  *  d )o( r )  =  sup { r / (c ,u ) * ( / (c )  *  d ) }  =  
: :p  f -  { - rh ( r , , r )  x  ( / (c )  xd) } }  =

= 
::i {-(?,t@, u) * /( ')) + d)} = 

:: i { (1,(,,r,)*/(o)) * d} -

* f^(w)*d = 11^*d)(u). i l

Proof. p) For any {i};e t e 
-Rx 

and ur e W we have, by (3.6), (1.17), the
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I l -ernark 3.2.  Onc r :an a, lso I ) r 'ovc lha. t  A of  (3 .6)  is  a  dual i ty  whencvcr  y ' r  sa l is f ics

(3.13)  (evcr t  i f  *  15 not  r : r in tn ' tuLaLivc or  docs nol  sat is fy  condi t ion ( " )  )
Proposi t ion 3.1.  [Jnder  the assurrzpt ions o l  theorem 3.2 a) ,  we haue

, fo ( t )  =  m in  d
aen

- d ' t - t ( . , w ) ! l

Proof.  By (3.6) and (1.24),  for  any

- v
( f e R " , u € W ) . ( 3 . i 4 )

_ Y

f e R" and u., € I,/ we have

,fo(t,) : min d- miIr d- mtr d. i l

t"ifisa +t,i'\itso -r-,-!f[q31

Remark 3.3.  For  * :  *  and,  respect ive ly ,  * :  V,  proposi t ion 3.1 y ie lds [14] ,
proposit ion 3.1 and, respectively, [7J, corol lary 2.2.

Definition 3.3. We shall say that a binary operation * on E satisfies condition

(r), if * is commutative, associative and admits a neutral element e.

From theorems 3.i  and 3.2, we obtain

Theorem 3.3,Let  X andW be two sets  and le t  *  be a b inary operat ion onE,

satisfying condition, (o) and (r). For a mapping A t Ex '---- E*, the following

statements are equiualent:

1o .  A  i sa * -dua l i t 11 .

2o. There erists a coupling function rh, X xW ----+R., such that we haue (3.6).

Moreouer, in this case tfs of 2o is unique, namely, it is the function (3 5).

Remark 3.4. a) One can prove that the equivalencs lo <+ 2o also holds for

an associative binary opdration * on E satisfying (1.2) and having a neutral element

(instead of satisfying condit ions (a) and (r) ).  Under these assumptions, i f  A is a

*-duali ty, then r/ of (3.5) is the unique coupling function satisfying (3.13) and such

that we have (3.6).

b) BV theorem 3.3 and a) above, for * satisfying conditions (e) and (r) (or,

alternatively, being associative, satisfying (1.2) and having a neutral elemen[), we

have a one-to-one correspondence between x-dualities A rEx ---- Ew und coupling

functions ,h , X xW ----- E. We shall  cal l  A - A(*, r i  ) of (3.6) (respectively, rb - ,ho,.

of (3.5)) the *-duali ty associated to the coupling function rp (respectively, the coupling

funclion associated to the *-duali ty L ).

c) In part icular, for r, -- i  and, respectively, * = V (which satisfy condit ions (a)

and (r) ), from theorem 3.3 we obtain again the results of [la] and [7] on the relations

between conjugations, respectively, V-dualities, and coupling functions ([14], example

2.1 and theorem 3.1 and, respectively, [?], example 2.1 and theorem 2.1).
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d)  BV  (3 . i ) ,  one  can  rep lace  (3 .a )  o f  l emma l . i  bV

/  : , , , r1 ! [0 ,  
v {x1 '1  

*  41 '

where  Ep i  / :  { ( r ,d )  e  X  x  n  l  f@)  S d} ,  the  ep ig raph o f  / .  Then,  by  ihe  above

arguments,  using (3.15) and (0.1) wi th /  = Epi  /  (which is 0 for  / '= 1m ),  we

ob[ain, for any *-duality A and any f €R' ,

(3  t5 )

(3 . i 6 )

(3 .1  7 )

(3 .18)

Jo :  sup i (x t " l )o*d i  :  lup .  . { tba(r , t r ) *d i .
(c,d)€Epi I 

'  '  
(x'd)eBPit

Let us consider now the dual mappings A' (defined by (0.10)).

Theorem 3.4,Let X and, W be two sets, * a cornn'Lutatiae binary operation onR,

satisfying condition (o), rlr: X xW ---rE a coupling function, and A , Fx -"nE*

the mapping defined bV Q.6). Then

g^ '  (x)  :  sup { -g( tu)  *1 - r l ( i ,  u) }
w€W

( g  eE*  , x  e  X ) .

( g e E  ) ,

k eE* ) .

(c  e  X) ,

Proof.

go'

whence

By (0.10), (3.6) and (r.24), we have

= i n f  h =  i n f  h -  i n f  h
[o Ss {(.,.) ihSs -9*1-ry'( ', ')( lr

go'  > suP {-g *r  - / ( ' , r ) }
vte,W

(3.1e)

On the other hand, for any g €E* , the function ho defined by

nr(") = 
;5ff, {-g(t) *1-rl(r,tr)}

belongs to the set {h € Ex _g*r-rb(.,.) S h}, whence, by (3.18), we obtain g^' S ho,

which, together wi th (3. i9) ,  y ie lds (3.1?). '  I

Under the assumptions of theorem 3.4, A of (3.6) is a duality (bV theorem 3.2),

and hence so is A' of (3.17); however, we do not know whether A is a *-duality. In

the next result we obtain the same conclusion (3.17), with different assumptions on

* and A.

Theorem 3.5,Let X anilW be two sets, * a binary operation onE satisfying

conilition (a) and, ad,mitting a left neutral elernent e, L,,E^ -R* o *-d,uality and

,h: x xw ---+R the coupling function (3.5). Then we haae (3.17) (and, by theorem

3.1, we haae also (3 6)).
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Proof .  By par t  o f  [ ( ; ] ,  theorem 3.5,  for

s^ '@) = 
; ; r8 ,  

Gr ' ( r ,z ,g(?r ) )

where

any dirali l , y L ,Ex ---- E* *"

( g  e E *  , x  €  X ) ,

have

(3.20)

G  o , ( r , u ,  b )  -  m i n  a
"€EG6 (c,ra,a)(6

( w € W , r € X , O e E ) , (3 .21 )

with Ga of  (3.9),  (3.10).  But,  s ince now * sat isf ies (1.2) and admits a lef t  neutral

element e, and since A is a *-duality, we have (3.12) (see remark 3.1). Thus, by

(3.21),  (3.12),  (L24) and (3.5),  we obtain

Gt,(* , r , ,b)  -  -b *1 -$(a,w) (w € W,t  e X,b € T')  ,  (3.22)

which, together with (3.20), yields (3.i7). I
Theorem 3,6,Let X andW be two sets, * a comlnutatiae binary operation on

E, and L t 
-Rx 

-t E* a d.uality for which there erist a unique coupling function
,b:  rha,, , :  X x W --- .8 such that

/o(r) = 
::p {/o,,1", u)*/(c)} (f eE' ,w € w), (3.23)

and. a coupling function t , X xW -----+E such that L' ,E* -ff safisf,es (9.17).

Then 1., of (9.17) is unique, namely, we haue

,h = r/d,,.. (3.24)

Proof. By A : (A') ', (0.10) (applied to A' instead of A), (3.17) and (1.24), we

have

/o(r) = inf..9(u.') = inl. g(u,) -
ceEw 

- 
ceEw

so'S!  supr€x{O(r , r r ; ) i / ( r ) }Ss

-  sup  { rb ( r ,u )x / ( r ) }
xex

which by our assumption of uniqueness of ,ha,* in (3.23), implies (3.24). i l
From theorems 3.1, 3.4 and 3.6 we obtain

Theorem 3.7 Let X andW betwo sets andlet*  be acommutat iuebinary opera-

tion onE, satisfying conditio" (o) and admitting a neutral element e. Then, for eaeh
--- R* there edsts a unique coupling function $ : X x W "-'- E

- Y
*-duality A : ,R"

l 9



su(:h th(il we houe (3 t7) Namcly, $ coincirJcs urillr tlt,e unique cctupling ftmction t'or

wlticlt we haue (3 6), i.r., rb is the lunction (g 5)

Remark 3.5,  In  par l icu lar ,  for  *  = t  and * :  V,  f rom theorern 3.7 we obta in

again the results of I ia] and [7] on the representation of conjugations, V-duali t ies and

thei r  duals ,  wi th  the a id of  coupl ing funct ions '

Let  us consider  now,  for  a  * -dual i ty  A,  Ex - - -E* ,  the "second dual"  (ca l led

also the A'A-hul l)  f  
oo'-  ( . fo)a'  enx of a funct ion f  e Ex '

Theorem 3.8, [Jnder the assumptions of theorern 3.7, for any *-duali ty L :

Ex ---- Ew *, ho*

, foo ' ( " )  =  sup { - /o ( r )  * ,  - rh@,r ) }  =
u€W

= ;:ff, T'# b
{ (c 'u r ) -O<141t ;

with $:  X xW -" )R of  (3 .5) .

Proof. The f irst equali ty fol lows from (3'17)

(1.6), the commutativity of * and (1.17)' for any

applied to g
- Y

f e R " , x e

(3.25)

- f^. Furthermore, bY

X and w €'W we have

- / " ( . )  * t - t h ( x , @ )  : m i n { b e  E l  - / o ( r )  S  b * - $ ( a , w ) - - { : @ , u ) * b }  =

= min {6 e E I /o(r) >- -(-rb@, tr)  * b) -  rp(x,ur)*a},

which yields the second equality in (3.25). il

Theorem 3.9. (Jnd,er the assurnptions of theorem 3.5, for any *-duality L :

ff -----Ew ,, ho*
_ Y

. foo ' ( r )  :  sup _ {6  *1 - r l ( r ,  to) }  ( f  eR ,n  e X) ,
v e W , b Q R

byt ! ( ' ,u) l t

with th : X x W'----E of (3-5).

Proof. By [6], theorem 3.6, forany duality A rEx --.8* we have

(/ e Ex ,r e X), (3'27)

But, by the above Proof of

(3.27),  y ie lds (3.26).  I

"foo'(r) 
:  sup _ G6(r.r. ' ,  c, b)

G"if5fti

with G6, of  (3.21),  where Ga is that  of  (3 '9) '  (3 '10) '

theorem 3.5, we have now (3.22), which, together with

(3.26)

_ Y

U e n " , x e . X ) ,
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Reprark 3.6.  a , )  ' f l r t :or r : rp  3.9 shorvs t .hat ,  undt : i  Lhe i i -ss i t t t tp t ions of  l , l rcoru:m 3 '7,

for  any * -dual iLy L t 'Rx - - - - -  R" '  the A 'A-hul l  o f  /  co inc ides wi th  thc "O -convex

hul l "  o f  / ,  in  the sense of  [3 ] ,  where

O =  {b  * t  - rh ( . , . r )  l ,  e  W,b  e  E } , (3.28)

or,  in other words,  thal  for  any *-dual i ty A :  Er -"-  Ew, [h""elementarY funct ions",

in a sense simi lar  to that  of  [11] ,  are the funct ions ^ lu,b = b *1 -$( 'w) eE* (u,  €

w,b €n).
b) In part icular, for * = i  and * = V, from theorems 3.8 and 3.9 we obtain again

the main resul[s of [1a] and [?] on the representation of second conjugates and second

V-duals of / ,  with the aid of coupling functions'

Let us observe now that the aboae results can be "dualized" as follows: Let X

and W be two sets, x a binary operation on E, satisfying condition (c), and A :

Ex 
'----E*. 

Th"n n satisfies condition (a) and L' :Ew -r# is a *J-duality (by

theorems 1.1 and 2.1 a)). Hence, replacing the assumptions of the above results by

the same assumptions on Tl, and using (1.20), (1.28), weobtain representations of A'

and A - (4,), with the aid of the coupling function ,h' , w x x '--- E defined by

,b ' ( . , " )  = (X{-})o ' ( t ) ( w e W , t € X ) ,

or, equivalently, with the aid of the coupling function ,h, X xW *t E defined by

,h@,*) =rh' (w,t)  = (X{. , } )o ' ( t ) ( x  e  X , w  e W ) . (3.30)

For example, dualizing in this way theorem 3'1, we arrive at

Theorem g.10. Let X and W be two sets and let * be a binary operation on

R, such that1 adrnits a teft neutral element e, A : f f  --tE* o *-duali ty, and

{ t X xW -"-+E the.coupling function (3.30) Then we haae

go '  ( r )  -  sup  { { ( " ,  tu )  *1  g ( to ) }
ue vv

( g  e E *  , c  €  X ) . (3 .31)

Moreoaer, if a is also comntutatiue, then{., of (3.30) is the only coupling function

for which we haae (3.31).

Sirnilarly, dualizing theorem 3.7, we arrive at

Theorem g.11, Let X and. W be two sets and. let * be a binarg operation onE,

satisfying condition (a) and such that \ is cornrnutatiue, satisf'es cond'ition (a) and

ailmits a neutral element e. Then for each *-duality L,, E * E* th"' eilsts o

(3.2e)
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1t.n,iqlle collpling ftmcl'iort tl ' " 
X x lM , R, narneltl, l' of (3'30), such I'hat

Moreouer, tlte same lt is the unique coupling function for which we haue (3'31)

Remark 3.7. ln parl icular, let * = r- '  Then + satisf ies condil ion (") (bv remark

1.2 d)) and I :  V (see example 1.4), so *l  satisf ies the assumptions of theorem 3'1i '

A l s o ' * = T a n d * t = A _ ( s e e e x a m p l e l ' 4 ) ' H e n c e , f o r * = I - , f r o m t h e o r e m 3 . 1 l ,

combined with remark 2.1, we obtain again the results of [7] on the representation of

I-duali t ies and their duals, with the aid of coupling functions. However, note that

in [7] we have also obtained another expression {or the coupling function t/ of (3'30)

( s e e [ 7 ] , f o r m u l a ( 3 . 9 ) ) , b y e x p l o i | i n g t h e s p e c i a l p r o p e r t i e s o f - l - a n d T ' a n d t h i s h a s

also implied another expression for the coupling function ry' occurring in theorem 3'1'

i .e., for r/ of (3.5) (see [7], formula (4'10)) '

Proposit ion 3.2. [Jnd,er the assumptions of . theorern 
3,11, we haue (3.1|).

Proof. By (3.32) and (1'23), for any f eR* and u; € W we have

/o(r )  = min d- mi! d- * l l  d '  I
aeI deF der

1"ji,j5a -/.-'lj ',.)S d -d*t-'l '(' ' ')Sl

3.2,

Remark 8.8. For x - I- we have *t = A- (see example 1'4) '  so proposit ion

combined with remark 2.1, yields again [?],.corol lary 3'1'

Finally, let us consider the second duals 'foo"

Theorem 3,L2,under the assumptions of theorem 3.11, for any *-duali ty L:

---rE' we haae
-Rx

/o( ' )  = 
: : i  i - / ( ' ) ;  -  { ( ' ' ' ) }

- /o ( t r l )  <  - ( -b* - { ( " '  r ) ) } "

e second equal i tY in (3.33) '

U eE '  ,w  €  W) .  ( 3 ' 32 )

,foo'(") :;:f;, {rh@,,tr) *r,fa(.)} = 
iE$ _u,_rffi.r^,",,b 

(/ ef f , r € X ) '

with $ : X x l\/ '- '-+R of (3'30)'

proof. The first equality follows from (3.31) applied to g -

proposition 1.3 c) (applied to *l), +t = fi is anti-commutative'

(  1 . 1 9 ) ,

,b@,-)  * r  /o( r ) - -/^(rr,') *t -$(r,u.') = min tb € n I

(3.33)

/A. Furthermore, bY

Hence;  bY (1 '6)  and

- / " ( r )  < b * - $ ( r , . , , ) ) =

E l , fo(r) 2 -b*-t l ' (r 'ur)) '
= m i n { b e E l

which yields th

=, min {6 e

It
I
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' I l reorepr  3 .13 .  ( ln ,1 , r r  l . l r c  rLss tLr rq t l . io t ts  o f  I .h , r : r t , ' r :n  3 ' l t ,  lo r  ony  * - t luu l i l y  L '  :

:.\" -;rll '
l(. ---+ lt ' tDc l ltuc

. f o o ' ( t )  :  s u p  { , h @ , t o )  * 1  b }  U  e E r  , w  e w ) '  ( 3 ' 3 4 )

,r(i$'j,12t

with lt : X x W --+R. of (3.30).

Proof.  Since A' is a *1-dual i ty (by theorem2.I  a)) ,  we have, by (3.12) (appl ied

to  A 'and x1  ) ,  (1 .20)  ( fo r  *1  )and (3 .30) '

G 6 , ( w , r , 6 )  -  ( x 1 . 1 ) o ' 1 " )  * 1  6  -  $ ( x , w )  * 1 b  ( w  e  W , t  e  X , a  e  E ) '  ( 3 ' 3 5 )

which, together with (3.2?), yields (3'34)' i l

Remark 3.9. a) one can make an observation similar to remark 3'5, with Q of

( 3 ' 2 8 ) r e p l a c e d b v  '  
,  - { ' b ( . } r . , )  * 1  6 l w e w , b e i l } ,  ( 3 . 3 6 )

and with the "elementary functions" ht,b : $(',w) *1b (w e W,b g E)'

b) In particular, for x : I- we. have r.1 - A- (see example 1.4), and thus

theorems 3.12 and 3.13, combined with remark 2.i, yield again the main results of [7]

on the representation of second l-duals of /, with the aid of coupling functions'

{.Appendix: A unifying framework for the above results

and those of [8]

Let us first recall some concepts from [8]'

Let A: (A,(, x) be a complete totally ordered group, i.e. (see e.g. [ i], ch. la) a

set endowed with a total order ( such that (A, S) is a conditionally complete lattice

(that is, every non-empty order-bounded subset of A admits a supremum and an

infimum in A) and with a binary operation * for which (A, *) is a group, such that

all group translations are isotone; then, by a result of Iwasawa (see e'g' [1]' Ch' 14'

theorem 20), x is commutative. In the paper [8], assuming thai A is not a singleton,

we have adjoined to it a greatest element *m and a least element -oo' i.e.' we have

considered the set
A - -  eu  {+oo}  u  { - * } ,  (4 ' l )

with the order ( extended to 7 bY

- m ( o ( * o o (4.2)
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and wc have t :x t ,c l t< lc r l  l , l r c  b inary  opcra l ion  *  on  4

i  ancl  r  on A (cal lcd '14)per ar ld iou- 'cr contposit ion,

a i b = a * b = a * b

* m * a = a i + c o = * o o

- o o i a : a i - o o : - c o

+ o o t a : e t + o o : * o o

- O ' O * A = O , * - O O = - @

(inf f;)M - suP /,Y' ; e I  i € I

( f i o ) ' - f M t o - '

a * '  c :  s ( s ( o )  *  c )

Remark 4.1. a) Tf.A - F, endowed

--- (8, <) is the maPPing defined bY

to  l rvo d i f fercnL b inary opera ' t ions

rcspecI ive lY) ,  bY lhc ru les

( o €

( o €

_ Y

( { / ' i t . r  g  A^) '

(f eAx ,a eA),

( a , 6  e  A ) ,

@ eA),

,  A  U  { - o o i ) '

:  A u {+oo}) '

(a eA).

(4 .3)

(4.4)

(4 5)

(4.6)

(4.7)

Then, A = (A,(, i, t) has been called (in [8]) the canonical enlargement of (A, S, *)'

Furtherrnor", u n.,uo p\ng M , Ax -- A* has been called ([8], definition 2'3) a

*-dualiiy, if for any index set 'I we have

(4.8)

(4.e)

where inf, i  ( in 7x) and sup, t $nVw ) are defined pointwise on 7, each u e A

is identif ied with the constant function f^(a): a (c e X), and if  a € A, then c-1

denotes the inverse of o in the Abelian gloup (4,*), while the' inverses" of o € 7\A

are defined by (+oo)=, _ _co, (-*)-' = *oo. In particular, clearly, for A : R,

with the usual total ordel ( on R and with * = *' the usual addition on 'R' i

and 1 are nothing else than the.upper and lower addii ions.(0'4), (0'5) on E and the

x-duali t ies are the conjugations (0' i) '  (0'3) '

Now we can give the following unifying framework for the results of the present

paper and those of [8].

Definition a.f . l,et (7, S) be a complete chain (i.e., a complete lattice, where

S is a total order on 7 ), and let s : (7, S) * (7, S) be a bijective duality (i'e', a

bi jective mapping , ,A' 7 such that s(inf a;): t l? t(o') for every index set /

and every family to,),.r g A ). Given a binary operation * on 7, we define a new

binary operation *" on.7, cal led the s-conjugate of * 'by

(a ,c  e  7) .  (4 .10)

with the usual total order S and if s : (E' <)

s ( o )  -  - c
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t h e n . s  i s  a  b i j t : c t , i v c  r l t r a l i t . , v  a n d ,  b y  ( 4 ' 1 0 )  a n d  ( i ' 1 7 ) ,  l o r

1l wr: hzruc

a + t c = - ( - a * c ) = a - * c

b)  I f  7  -  (A ,< , i , 1 )  i s  t he  canon ica l  en la rgemen l

g roup  A :  (A , ( , * )  and  i f  s  :  ( 7 ,  < )  - -+  (7 ,  S )  i s  t he

s (a )  =  a - t

any l t i r ra rY oPrc la t , io t t  *  o r l

(a ,  c  e  E) . ( 4  1 2 )

of a comPlele toballY rordered

mapping defined bY

@ eA), ( 4 . 1 3 )

rhen s is a bijecrive duality (bv [8], lemma 1.1) and, by (a.10) with * being now the

binary operation i of (7, (, i, t) and [8], lemma 1'3' we have

a * '  c =  ( o - t  i  r ) - t  =  e f  c - r @,c e A) . (4 .14)

Definit io n 4.2. Let (7, (), s and x be as in definit ion 4'1' A mapping A :

A* -, A* ircal led a (*;s)-du al i ty, i l  i t  is a duali ty ( in the sense (0'1) '  with E

replaced UV 7 ) and if

( /  *  o)o :  . fA *"  ( /  eAx ,a eA),  (4 '15)

where each a e 7 is identified with the constant function /"(") = a (c € X) and

where * (in 7x ) and *" (in A* ) are defined pointwise on 7.

Remark a.2. a) If (7,(), s and * are as in remark 4.1 a)' then, by (a.6) and

(4.3), A : Ex --E* is a (*, s)-duality if and only if i t is a ' i-duality in the sense of

definit ion 2.1. 
;

b)  I f  (7,  ( ) ,  ,  and * are as in remark 4 '1 b),  then'  by (4 '15) and (4 '14) '  A t

A* -,A* ia (*,s)-dualiry if and only if i t is a x-duality in the sense of [8] (i.e.'

in the sense of (4.8), (4.9) above, with M : L )'

By remarks 4.1 a) and 4.2 a) and by our assumptions on (7,J) and s,the results

of the present paper can be ertended, to results on (*, s)-dualities, which, by remarks

4.1 b) and 4.2 b), encompass, as particular cases' also the results of [8] on *-dualit ies

(in the sense of [8]); indeed, note that if A = (7, (, *' *) is the canonical enlargement

of a complete totally ordered group A = (A,S, *), then, by [8], lemma 1'4, the binary

op"rut ion i  on Z sat isf ies condi t ion (a) ( i .e. ,  (1. i )  wi th *  replaced 
l t ; .TO 

with inf

taken in 7 ), so the "extended" definit ion 1.2 (of *1 ) can be applied to (7, (), s and

* of remark 4.1 b), and one obtains (by (t '6) and [B]' lemma 1'5)

a * t c = o \ " - '
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