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Summary. Continuing our papers [14]-[16] and [6]-[9], where we have given
an axiomatic approach to generalized conjugation theory, we introduce and study

dualities A : BX — B” associated to a binary operation * on R, where X and
W are two arbitrary sets and R = [—o0 +oo] which encompass, as particular cases,
conjugations, V-dualities and L-dualities in the sense of [14] and [7]. We show that
thlS class of dualities can be extended so as to encompass also the *-dualities A :

AY — A" in the sense of 8], where A is the canonical enlargement of a complete
totally ordered group.
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0. Introduction

Since various concepts of conjugation have important applications to duality in
optimization theory, an axiomatic approach to generalized conjugation theory was
started in [14] and continued in [15], [16] and [6]-[9]. Let us recall that if X and W
are two sets (Wthh we shall assume non-empty throughout the sequel), a mapping
By B (where R* denotes the family of all functions f : X — R =
[—o0, +00]) is called

a) a duality ([16], [6]), if for any index set I we have '

(inf f;)® =sup fA ({fikier (_:RX), (0.1)

1€l iel



. —=X —W .

where 12; i€ B andsup f® € R are defined pointwisc on X and W respectively
t i€l

(i.e., (ug Jillz) = 12§ fi(z) for all z € X), with the usual conventions

inf @ =400, sup B = —oo; B (0F
b) a conjugation [14], if we have (0.1) and
(f+d)2=r*+-d (feR,deR), (0.3)

where we identify each d € R with the constant function taking everywhere the value
d, the operations 4 and + on B (respectively, EW) are defined pointwise, and the

Y

binary operations 4 and +.on R are the "upper addition” and "lower addition”

defined ([10], [11]) by
atb=at+b=a+bif RN{a,b} #Pora=b= oo, (0.4)

a-i—b:+oo,a~i~b=—ooifa=—b=:!:oo; i (0.5)
c) a V-duality [7], if we have (0.1) and

(fvd)P =74A=d ' (feR',deR), (0.6)

where V and A stand for (pointwise) sup and inf, in B and B respectively;
d) a L-duality [7], if we have (0.1) and '
(FLDE = FoT —d ~ - (feR deR), . (07)

where L and T are the binary operations defined [6] on R by

a ifa<bd
a_Lb={ o b (0.8)

a ifa>b
aTb—-{ —-o0 ifa<gb, (09)
and extended pointwise to R and B”. - :
Let us also recall (see e.g. [16], [6]) that if A R — R isa duality, then so is
the dual mapping A’ : R — B" defined by

gl bk PRCY g (R
”:i};y A ' ” X »
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and forany f € It” and g € R~ we have the equivalence
[Ege=g <. (0.11)

In the above mentioned papers, among other results, various "representation the-
orems” have been given for dualities (with the aid of functions G : X x W x R — R),
conjugations, V-dualities and L-dualities (with the aid of "coupling functions” from
X x Winto R) A : R — B and for their duals A’ : B — ﬁx, as well as
for the "second dual” f2%" = (f%)% ¢ " of a function f € R Also, it has
been shown there that the dual A’ : R — R of a conjugation A : R — R
Is a conjugation, but the dual of a V-duality is a L-duality (actually, this was the
main motivation for introducing in [6] the operations L and T and the concept of
L-dualities) and the dual of a 1-duality is a V-duality. » '

Furthermore, in the recent paper [8], we have generalized the theory of conjuga-
tions (0.1), (0.3) to certain mappings A : A ey ZW, called (in [8]) *-dualities, where
A = (A, <, *,%) is the "canonical enlargement” of a complete totally ordered group
A = (A, <,*), which contain, as particular cases, the conjugations A : R L RY
and various kinds of known polarities (e.g., polarities A : —f—Zf — F.:Y in the sense of
Moreau (10}, p. 92, formula (14.4), Rockafellar [13], p. 136, Elster and Wolf [4], with
applications to fractional programming duality, etc.). ’

In the present paper, continuing to develop these axiomatic approaches to general-
ized conjugation theory, we shall introduce and study a kind of dualities A : B s
_RW, namely, dualities associated to a binary operation * on R satisfying "condition
(a)” (i-e., condition (1.1) below), called, briefly, *-dualities, which encompass, as par-
ticular cases, the conjugations, V-dualities and L-dualities mentioned above. Also,'
we shall show how this theory can be extended to the case when R is replaced by the
canonical enlarge\ment A of a complete totally ordered group A = (A, <, %), so as to
encompass also the ”#-dualities” in the sense of (8], as particular cases.

In Section 1 we shall introduce the class of binary operations * on R satisfying
condition («) (defined by (1.1)), which contain, as particular cases, the binary oper-
ations +, V and 1 mentioned above. Also, we shall introduce and study ”the (left)
epi-hypo-inverse” %, and "the (left) conjugate” % of such a binary operation *, which
will be needed in the sequel.

In Section 2 we shall introduce the concept of a duality A : R — R with
respect to a binary operation * on R satisfying condition (&), called, briefly, a *-
duality, with the aid of a suitable "second condition” (besides (0.1)), namely, condition

(2.1), encompassing, among other particular cases, (0.3), (0.6) and (0.7). Also, we



shall determine the dual of a #-duality, from which one recovers, in particular, the
above mentioned results of [14] and [7] on the duals of conjugations, V-dualities and
1-dualities.

In Section 3 we shall obtain some results on the representations of x-dualities
Ay R B i ol their duals A’ : R" — RX, with the aid of coupling
functions 9 : X x W — R, which contain, as particular cases, the results of [14}
and (7] on the representation of conjugations, V-dualities and L-dualities, mentioned
above.

Finally, in Section 4 (Appendix) we shall show that the concept of *-duality of
the present paper can be extended to a more general notion of ”(*, s)-duality”, which
encompasses, as particular cases, also the ”*-dualities” M : AT ZW, in the sense
of [8], where A = (A, <,*,#*) is the "canonical enlargement” of a complete totally
ordered group A = (A, <,*). Thus, we shall obtain a unifying framework for the
results of the present paper and those of [8].

1. Inverses and conjugates of binary operations on R

Definition 1.1. We shall say that a binary operation * on R satisfies condition

(a), if for any index set I we have
(inf b) »e=inf (b + o (B CRee®. (L)
Remark 1.1. a) For I = 0, condition (1.1) yields
+00 * e 400 » ~ (c€R). (1.2)
b) For each ¢ € R, define k. : R — R by
bbb ' (beR). (1.3)
Then, condition (&) means that for any index set I we have

Ke(inf b) = inf ke(bi) ({bitier CR,ceR), . (14)
or, equivalently (see [6], lemma 2.1), that for each ¢ € R the function k. is non-

decreasing and upper semi-continuous.

Let us give now some examples of binary operations * on R satisfying condition

(@) |

Exér}x'ple 1.1 Lef % = 4. Thren, by [11], formula (4.7), * satisfies condition ().



Example 1.2. Let * = V. Then it is well-known (and immediate) that * satisfies

condition (a).

Example 1.3. Let * = L (of (0.8)). Then, by [7], formula (1.21), * satisfies
condition (a).

We shall denote by min (respectively, max), an inf (respectively, sup) which is
attained. ”

Proposition 1.1.Let * be a binary operation on R, satisfying condition (). Then
there erists a unique binary operation *; on R such that for any a,b,c € R we have
the equivalence

a<bxc<=axc<b, .- {1.8)

namely,
axyc=min {0’ € R|a<¥ *c} (a,c € R). (1.6)

Proof. Forany a,c € Rwehaveinf {§' € R|a < ¥'+c} = inf {¥ € R| a < k.(V)}
(with k. of (1.3)), which is attained, since the set {b' € R | a < k.(¥)} is closed
(because k. is upper semi-continuous, by remark 1.1 b)). Thus, the min in (1.6)
exists.

Let us show now that the binary operation * on R defined by (1.6) satisfies (1.5).

Ifa <bxc, thenbe {§' € R|a < ¥ xc}, whence, by (1.6), a%;c < b. Conversely,
assume now that a x;c = min {)' € R|a < V' « c} < b, so there exists & € R such
that a < ' x ¢ = k(b'), b < b. Then, since k. is non-decreasing (by remark 1.1 b)),
we obtain a < k.(b') < k.(b) = bxc.

Finally, if we have (1.5), then for any a,¢ € R we have

axyc=min {0’ € R|laxc<b}=min{¥ e R|a<b*c}. |

Definition 1.2. Let * be a binary operation on R, satisfying condition (a).
Then the unique binary operation % on R, of proposition 1.1, will be called the (left)
ept-hypo-inverse of *.

Remark 1.2. a) The theory of inversion of functions k : R — R (see e.g. [2],
pp- 208-211, and [12]) can be easily extended to functions k : R — R, which is, in
fact, its natural framework. Then, for any ¢ € R, since k. of (1.3) is non-decreasing
and upper semi-continuous, it admits (see e.g. [12], proposition 2.6, extended to this
framework), a unique ”epi-hypo-inverse”, i.e., a unique function j. : R — R such

that for any a,b € R we have the equivalence
a < k(b) = Jala) <4, (1.7)

5



namely,
Je(a) =min {¥' € R | a < k(b)) (a € R). (1.8)
Then, by proposition 1.1, we have

jeld) =gaer (a € R), (1.9)

which motivates the terminology of definition 1.2.

b) If * is commutative and satisfies condition (), then, by (1.5),
axc<be=axb<e (1.10)

c) For a binary operation * on R, we shall also consider the binary operation *—

on R, defined by -
a *— c=ax*(—c) | (a,c € R). (1.11)
Then, by (1.6) and (1.11), we have (x—); = *1—-,&_»,sinc.e
a(x=Yic=min {§' € R|a<¥t x— c=b+(~c)} =ax(~c) (a,ceR). (1.12)

d) If * satisfies condition (a), then so does *—. Since (*—)— = *, the converse is

also true.

If a binary operation * on R satisfies condition (c), then #; need not satisfy it,
but we shall show that %; has a ”dual” property.

Definition 1.3. We shall say that a binary operation * on R satisfies condition

(B), if for any index set I we have

(sup a;) * ¢ = sup (a; * c) ({a:}ier S R,c € R). (1.13)
el iel

Remark 1.3. If * satisfies condition (), then, by (1.13) for I = @, we have
—00 %€= —00 (c € R). (1.14)

Proposition 1.2 If a binary operation x on R satisfies condition (a), then %
satisfies condition (B) .

Proof. By («), the minima in (1.6) are attained, and hence

(sup a;) i c=min (' € R| sup a; < b *c} =min (J{{' € R|a; <V xc} =
iel : '

I iel
= sup min {¢' eR | S.vb’r* c} = sup (a; % c) ({ai}iecr CR,c & R).
iel iel
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Remark 1.4. a) One can also give the following alterpative proof of proposition
1.2: I a,a’,c € R, a < a', then {(VeR|d< k.(b')} C{V € Rla< k.(0')}, whence,
by (1:8);.gela) £ Jda’), s0 jais non-decreasing. Also, by (1.7), for each b € R we
have {a € R|j(a) < b} = {a € R | a < k (b)}, which is a closed set, so j. is lower
semi-conlinuous. But, by [6], lemma 2.1, we have these two properties if and only if

jc(sig) )= up je(ai) ({ai}ier € R,c€ R), (1.15)
i.e. (by (1.9)), if and only if %, satisfies condition (8). |

b) By the above, k. of (1.3) is the "hypo-epi-inverse” of j. (of (1.9)), in the
inversion theory (of [2],pp. 208-211, and [12]) extended to functions k : R — R, and
therefore one can say that the binary operation « is the (left) hypo-epi-inverse of *,

in symbols, * = (%), = *;,. Indeed, from (1.5) we obtain -
bxc = max {a' € R|d' < bxc} = max {a' € B|a'*c < b} (b,c € R). (1.16)

More generally, if we start with any * satisfying condition (), then one can define,
“in the obvious way, the (left) hypo-epi-inverse *, of *, and we have * = (%,); = *.
Also, dually to proposition 1.2, we have that if a binary operation * on R satisfies
condition (B), then *, satisfies condition (a).

¢) Concerning the above notations, let us mention that / (and u) stand to indicate
the lower (and, respectively, the upper) semi-continuity of #; (respectively, *,) in the
first component. The word "left” in the above terminology is used to indicate that
we are dealing with the first component of *; (respectively, *,); in the sequel, we shall
omit the word "left”, since this will lead to no confusion. Note also that a binary
* operation * on R satisfying both () and (8) (with % replaced by %) has both inverses
*; and *,, but they need not coincide.

Let us consider now some examples.

Example 1.1 (continued). If * = 4, then *, = +— (since these * and #; satisfy
(1.5), by [11], formula (3.3)). ‘

Example 1.2 (continued). If *x = V, then %, = T (since these * and #*; satisfy
(1.5), by [7], formula (1.5)). |

Example 1.3 (continued). If * = L, then *; = A (since these * and *; satisfy
(1.5), by [7], formula (1.6)).

In the sequel, for simplicity, for any binary operation‘ * on R we shall write —a x ¢
instead of (—a) * ¢, which will lead to no confusion (with —(a*c) ).

Definition 1.4. Let * be a binary operation R. Then the binary operation ¥ on

R, defined by S
axc= —(—ax*c) (a,c € R), (117}



will be called the (left) conjugate of «.

Example 1.1 (continued). If *+ = +. then ¥ = +— {since +{+u tc)=a + -,
by [11], formula (2.2)).

Example 1.2 (continued). If * = V, then ¥ = A— (since —(—=a V ¢) = a A —c).

Example 1.3 (continued). If ¥ = 1, then # = T— (since —(—alc) =aT —c, by
(7], formula (1.12)).

Remark 1.5. a) By (1.17), we have

—(a%c) = —axc - "~ (a,c € R), (1.18)
a*c= —(—akc) | (a,c € R). (1.19)

b) By (1.17)(applied to * instead of *) and (1.19), for the "biconjugate” ¥ = (%)
of a binary operation * on R we have ¥ = , since

axc= —(—a%c) =ax*c (a,c€R). (1.20)
c) For any binary operation * on R we have

k— = ¥ — | ‘ (1.21)

Indeed, by (1.17) and (1.11),

@i=c=~(~a %= )= ~(~ax(-c)) = ak(~) =af—c - (e,c€B). (1.2

. Proposition 1.3.a) A binary operation x on R satisfies () (respectively, (B)) if
and only if ¥ satisfies (B) (respectively, (a)). ;
b) If * satisfies (), then for any a,b,c € R we have the equivalence

axc < b= —b*c< —a. (1.23)
If % is also commutative, then we also have the equivalence

axc < b= —bx ——a.S e (1.24)
¢) x is commutative if and only if ¥ is "anti-commutative”, 1iks;

a¥c= —cx —a (a,c € R). (1.25)

°

Proof. a) If « satisﬁesb condition («), then
(sup a,-);c = — [(«— sup ai) %k le :__ _ [(12; (—a'));c] :

tel i€l



= —inf (=a; * ¢) = sup [—(~a, * ¢)] = sup (a;*c) ({a:}ies € R,c € R),
€l i€l iel

so * satisfies condition (B). Dually, interchanging sup and inf, we obtain that if
satisfies (f), then * satisfies (a). Hence, if ¥ satisfies (B) (respectively, (a)) then
% satisfies (a) (respectively, (8)).

b) By (1.17) and (1.5) we have

* =

axc b= —(—axc)<be —a*xc2 -b&= -bxc< —a.

If x is also commutative, then, by (1.23) and (1.10), we have (1.24).

c) If * is commutative, then
a¥c= —(—a*c) = —(c*x —a) = —c¥—a (a,cE_R).

Dually, if * is anti-commutative, then % is commutative. Hence, if # is anti-commutative,
then # = ¥ is commutative. '

Since * is defined for any binary operation * (not necessarily satisfying condition
(a)), we may consider the conjugate of the epi-hypo-inverse of a binary operation *

satisfying condition (), i.e., the binary operation
a¥ic=—(—axc)=—-min{ € R| —a <V *c}=

=max {0 ER|a> —(t*xc)} =max {b€ R|a> —(~bxc)} =
=max {b € R | a > bic} (a,c € R). (1.26)
Remark 1.6. By (1.12) and (1.21) (applied to % instead of ), for any binary

operation * on R we have ;
(=) =%—=(¥) —. (1.27)

Theorem 1.1.If a binary operation * on R satisfies condition (), then so does

the binary operation *;, and we have

(Il-)l = ;a (128)

(%), = *. (1.29)

-~

Proof. By proposition 1.2, ; satisfies condition (). Hence, by proposition 1.3,
*| satisfies condition (), and therefore (¥7); is well defined. Then, by (1.6) (applied
to ¥7), (1.5) and (1.17), we obtain ' :

a(¥)ic = min {b’ € R|a < b'¥ic} = min {¥ cR la < —(=b'*c¢)} =

9



=-max {bER| —a>bxc)=-max {bE R|b< —axc) =
= —(—a*c) = a%c (a,céﬁ),

which proves (1.28). Finally, (1.28) and (1.29) are equivalent (by (1.20)). f

Remark 1.7. By the first part of theorem 1.1, applied to ¥;, and by (1.29), if *;
satisfies condition («), then so does *.

Example 1.1 (continued). If ¥ = +,s0 ; = +—, then ¥; = + (since ={=at—c) =
a+c). Hence, by theorem 1.1, (¥)); = ¥ = +—, (¥), = * = i.

Example 1.2 (continued). If ¥ = V, so *; = T, then ¥ = L— (since —(—aTc) =
al —c). Hence, by theorem 1.1, (%), = % = A—, (%), = \%

Example 1.3 (continued). If * = L, so % = A, then ¥ = V— (since —(—aAc) =
aV —c ). Hence, by theorem 1.1, (])y =% = T—, (), = * = L.

Starting with %7 instead of *, from example 1.2 and theorem 1.1 above we obtain

Example 1.4. If x = 1L— = V|, then x, = A—, % = V. Hence, ()i = T,
(:“;1—51 =1l-. : : . '

Remark 1.8. a) Example 1.4 differs from example 1.3 only by the minus signs,

*
I

but we shall use it in Section 3. Similarly, starting with * = V— = 1L, one obtains
an example which differs from example 1.2 only by the minus sign (however, we shall
not use it in the sequel).

b) The following table summarizes examples 1.1-1.4 above:

Example 1.1 Example 1.2 ‘Exa.mple 1.3 Example 1.4
* + ' Vo L 1-
% - 95 e f
* - 1- Vi v
W= - A T= ik

Each binary operation * on R can be extended to _RXV, where X is any set, as

follows.

10



Definition 1.4. For any f, h € _l?X, let

(f *h)(z) = [(z) * h(z) (e o) - (a0

2. x-dualities and their duals

Definition 2.1. Let X and W be two sets and let * be a binary operation on R.
A duality A: R — R (see (0.1)) will be called a *-duality, if

(f+d)® = fo3d (f e BX,deR), (2.1)

where we identify each d € R with the constant function k4 € R" defined by hd( o=
d (z € X).

Example 2.1. Let * = +, Then % = = +- (see example 1.1), and thus condition
(2.1) means that we have (0.3), i.e., that A : oy - conjugation.

Example 2.2. Let ¥ = V. Then ¥ = A— (see example 1.2), and thus condition
(2.1) means that we have (0.6), i.e., that A B* R isa V-duality.

Example 2.3. Let * = 1. Thens =T (see example 1.3), and thus condition
(2.1) means that we have (0.7), i.e., that A Tl 5l L-duality.

Remark 2.1. If A is a *-duality, then it is also a (*—)-duality. Indeed, by (1.11),
(2.1) and (1.21), we have :

U*~) =(f*(=d)? =% —-d=fx=d , UER ,d€R).

Prop051t10n 2 1. Let X and W be two sets and let * be a commutatwe bmary
operation on R, satisfying condition (a). Then, a duality A : T o
*-duality if (and only if) we have (2.1) for all d € R.

Proof. Assume that A : BX — R” isa duality, satisfying (2.1) for all d € R.
Then, by the commutativity of %, (1.2) and (0.1) for I = @ (with the conventions
(0.2)), we have

(f*400)% = (+oo* f)® = +00® = —00 (f e _RX) (2.2)

On the other hand, since ¥ satisfies condition (8) (by proposition 1.3 a)) we have, by
(1.25) and (1.14) (applied to *),

2% 4+ 00 = —coF — f4 = —co (Fel ) ()
Thus, by (2.2) and (2.3), we ha,vé'(2.1) for d = +o0.

11



Finally, by the commutativity of =, (1.1), (0.1), (2.1) for all d € R, (1.25) and
(1.13) for * (by proposition 1.3 a)), we obtain

_(f*—oo)A:(—oo*f)A:((igg d)*f)A:(j (d*f))A:

th
= (5212 (f *d))® =sup (f +d)® =sup (f®*d) = sup(—d* - [%) =
deR deR deR

= (sup (—d))F — f® = +ook — f4 = f2% — 0 (el ),
deR

so A satisfies (2.1) also for d = —c0.

Theorem 2.1.Let X and W be two sets and let * be a binary operation on R,
satisfying condition (a).

a)If A A SR s *-duality, then its dual A': BY B e *i-duality.

b)If A - B R s ¥;-duality, then its dual A’ R e m ey *-dualily.

Proof. a) If A is a *-duality, then so is A’ (see Section 0), and, by (0.10), (1.23),
(2.1), (0.11) and (1.5), we have

(ghdt = auf “h="inf = h= nf b=

 hA <gxd h& <—(—g=id) ~hA>—gxd

= inf h= inf- k= inf h=
g>hA%d 92 (hxd)A 98" <hxd

= inf h=g¢% % d=g%d (gel_%w,dE_R).

98" % d<h

b) If A is a ¥;-duality, then, by part a) (applied to ¥ instead of %) and (1.29), A’
is a *-duality. S

Corollary 2.1.Let X and W be two sets and let * be a binary operation on R,
satisfying condition (a). Then

a) Evéry *-duality is the dual‘of a *;-duality.

b) Every ¥,-duality is the dual of a *-duality. o

Proof. a) If A is a *-duality, then A = (A’)" (see Section 0), where A’ is a
#;-duality (by theorem 2.1 a)).

b) If A is a ¥;-duality, then A = (A'), where A’ is a *-duality (by theorem 2.1
o

Corollary 2.2 Let X, W and * be as above. Then

a) A mapping A : g R e x-duality if and only if A is a ¥]-duality.

b) A mapping A : B - R s ¥;-duality if and only if A’ is a x-duality.

Remark 2.2. a) For * = 4, V, or L, theorem A2,'1"yields again that the dual

of a conjugation, or V-duality, or L-duality, is a conjugation, or a L-duality, or a

12



V-duality, respectively (see Section 0). Similar remarks can be made for corollaries
Zalamd: 2.2

b) One can generalize definition 2.1 as follows. Let K bea famlly of non- dccreasmg
upper semi-continuous functions k : R > R Advality & : B e
duality, if

(ko f)2 = —ko(—f) el fe R (2.4)
Then, in particular, A is a *-duc.zlity if and only if it is a ‘Ko—duality, where
Ko = {k. | c€ R}, (2.5)
with k. of (1.3). Indeed, by (1.3) and (1.30), we have
(keo )(@) = klf(2)) = f(z) x e = (f+<)(a) (feR',ceRzeX),
whence |
(keo ) = (f x)® (feR",ceR), (26)
and, on the other hand, by (1.3), (1.17) and (1.30), we have
(=ks 0 (= f2))(w) = —ke(=FA (@) = ~(=F4(w) * ¢) = * (w)*e =
= (f*%¢)(w) (feRS,ce RweW);, (27

thus, (2.4) (for Ko of (2.5)) is equivalent to (2.1). i

3. Representations of *-dualities and their duals,

with the aid of coupling functions

Definition 3.1. Let * be a binary operation on R. An element e € R is called

a) a left neutral element for *, if

ek —c : (c € R); } (3.1)
b) a right neutral element for , if

che —c (ce R); (3.2)

c) a neutral element for x, if it is both a left and a right neutral element for *.
Note that a neutral element is necessarily unique.
Example 3.1. Let * = 1. Then e = 0 is the neutral element for *.

Example 3.2. Let * = V. Then e = —00 is the neutral element for *.
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Example 3.3. Let » = L. Then ¢ = 400 is the (unique) right neutral element
for + (by (7], formula (1.15)), but there exists no left neutral element for *.

Definition 3.2. Let X be a set and let » be a binary operation on R, which
admits a left (or right) neutral element e. Then, for any subset S of X, the generalized
indicator function of S (with respect to e ) is the function xs : X — {e, +00} defined

by

e ifyes$S
XS(y)={ o iszX\S. (3.3)

Example 3.1 (continued). If + = J, so e = 0, then xg is the usual indicator
function of 5.

Example 3.2 (continued). If * = V, so e = —o0, then xs is the "representation
function” of S, introduced by Flachs and Pollatschek [5].

Lemma 3.1 Let X be a set and let * be a binary operation on R, satisfying (1.2)
and admitting a left neutral element e. Then, for any function f € B we have

f = inf {x¢=) * f(2)}, : (3.4)

where x(z) 15 the generalized indicator function of the singleton {z}.
Proof. By (3.3), (3.1) and (1.2) we have, for any z,y € X,

X{:‘}(y) + f(z) = { igﬁxf)(;f:(xl; ol :gi ; z ~

whence

inf {x(0) * f(2)} = inf {f(y), 400} = fl) (e X). |
We recall (see [11]) that if X and W are two sets, then every function ¢ : X x_
W — R is called a coupling funqtion.
Theorem 3.1. Let X and W be two sets and let * be a binary operation on

R, satisfying (1.2) and admittiﬁg a left neutral element e. Then for each *-duality
A:R* — R theré ezists a coupling function 1 : X x W — R, for ezample,

Y(z,w) = (x(=3)* (w) (zeX,weW), (3.5)

such that we have

Fo(w) = sup {i)(z, w)f(z)) (e R well 305

Moreover, if x is also commutative, then 1 of (8.5) is unique (i.e., the unique

coupling function for which we have (3.6)).

14



Proof. By lemma 3.1 and definition 2.1, for any *-duality A : B i R owe

have
7% = (inl {xy * @D = sup{(x)*3f(2)) (f e B),

i.e., (3.6}, withw of (3.5). :
Moreover, if e is a neutral element for * and z € X, then, applying (3.6) to

[ = X{z) and using (1.17), (3.3), (3.2) and (1.2), we obtain

(i) 1) = s0p (W= )0} = sup (=(=(2"0) 0=} =

= -(~¢(z,w)) = gb(x,w) (w = W) ﬁ

Remark 3.1. a) If * is a binary operation on R, satisfying (1.2) and admitting a
left neutral element e, then, by (3.3), (3.1) and (1.2), for any z,y € X and any d € R

we have

X{z}(y)*d={ iij*:dd ii;z (327)
Now, by part of [6], theorem 3.1, for any duality A : B s BY we hove
f4(w) = sup Ga(z,,/(2)) PER ol (85)
where Gp : X'x W x R — R is the function defined by
Ga(z,w,d) = (pz.4)" (w) (z € X,we W,d € R), . (3.9)
with ¢, 4 : X — R defined by
ot = { S H230
B byl e
Prd = X{z) * d (re X,de R), (B:11)

and hence, if A is a *-duality, then, by (3.9), (3.11) and (2.1),
Galz,w,d) = (xz3 *4)% (W) = (x(21)* (w)*d (z € X,we W,d€R), (3.12)

‘which, together with (3.8), yields again (3.6), with % of (3.5).
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b) One can also prove that if * and A are as in a) above, then ¥ : X x W — R

of (3.5) is the unique coupling function satisfying, for any index set I,
—(z,w) * ng dyi= 12; {—=(z,w) x d;} (z€ X,we W,{d}iecs CR). (3.13)

In the converse direction to theorem 3.1, we have

Theorem 3.2.Let X and W be two sets, * a binary operation on R, 1 : X xW —
R a coupling function and A : BX — R” the mapping defined by (8.6).

a) If * is commutative and satisfies condition (a), then A is a duality.

b). If x is associative, then A satisfies (2.1).

Hence, if * is commutative, assoctative and satisfies condition (), then A is a
*-duality.

Proof. a) For any {fi}iesr C R” and w € W we have, by (3.6), (1.17), the
commutativity of *, and (1.1),

(inf £:)*(w) = sup {$(z, w)*inf fi(z)} = sup {~{-¥(z,w) *inf fila)}} =

= sup {~{inf fi(z) * ~(z, w)}} = — inf {inf fi(z) * —(a, )} =

= — inf {inf {£i(2) * ~$(z,)}} = ~inf {inf {fi(z) * ~(z,w)}} =

zeX 1€l "zeX

= sup {~ inf {fi(2) x —¢(z,w)}} = sup.oup {=(fi(z)* = d(z,w))} =

Y

= sup sup{—(=t(z,w) * fi(z))} = sup {p(z,w)fi(z)} = sup fP(w).
icl iel

el zeX

b) For any f € R, d € K and w € W we have, by (3.6), (1.30), (1.17) and the

associativity of x,

(f * d)%(w) = sup {y(z,w)*(f(z) * )} = P {={-3(z,w) * (f(z)  d)}} =

z€X

z€X

= sup {~((~4(z,0) + f(@)) * d)} = sup {($(z,0)7/(2)) *d} =



Remark 3.2. One can also prove that A of (3.6) is a duality whenever v satisfies
(3.13) (even if * is not commutative or does not satisfy condition (a) ).
Proposition 3.1. Under the assumptions of theorem 3.2 a), we have
fAw)=  min d (fe X, we W) (3.14)

d€R
—do =Y w)<f

Proof. By (3.6) and (1.24), for any f € " and w € W we have

el min.d=  mip d= ot SRS R
d€R d€R deR
8 (w)<d (- w)*f<d —du—y(w)< S

Remark 3.3. For * = + and, respectively, * = V, proposition 3.1 yields [14],
proposition 3.1 and, respectively, [7], corollary 2.2.

Definition 3.3. We shall say that a binary operation * on R satisfies condition
(r), S commutative, associative and admits a neutral element e.

From theorems 3.1 and 3.2, we obtain

Theorem 3.3, Let X and W be two sets and let * be a binary operation on R,
salisfying conditions (a) and (r). For a mapping A : B s RW,‘ the following
statements are equivalent:

1°. A is a *-duality. :

2°. There ezists a coupling function ¢ : X x W — R, such that we have (%:0):

Moreover, in this case ¢ of 2° is unique, namely, it is the function (8.5).

Remark 3.4. a) One can prove that the equivalence 1° <= 2° also holds for
an associative binary operation * on R satisfying (1.2) and having a neutral element
(instead of satisfying conditions («) and (r) ). Under these assumptions, if A is a
*-duality, then 1 of (3.5) is the unique coupling function satisfying (3.13) and such
that we have (3.6).

b) By theorem 3.3 and a) above, for * satisfying conditions (a) and (r) (or,
alternatively, being associative, satisfying (1.2) and having a neutral element), we
have a one-to-one correspondence between *-dualities A : RX — R” and coupling
functions ¢ : X x W — R. We shall call A = A(x,1) of (3.6) (respectively, ) = 1a .
of (3.5)) the *-duality associated to the coupling function v (respectively, the coupling

function associated to the x-duality A ).

¢) In particular, for * = 4 and, respectively, * = V (which satisfy conditions («)
and (r) ), from theorem 3.3 we obtain again the results of [14] and [7) on the relations
between conjugations, respectively, V-dualities, and coupling functions ([14], example

2.1 and theorem 3.1 and, respectively, [7], example 2.1 and theorem 2.1).
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d) By (3.7), one can replace (3.4) of lemma 3.1 by

= ] f (¢ *d s 315
I (r‘d;QEpij{k{} } (3.15)

where Epi f = {(z,d) € X x R| f(z) < d}, the epigraph of f. Then, by the above
arguments, using (3.15) and (0.1) with J = Epi f (which is @ for f-= 400 ), we
obtain, for any *-duality A and any f € _RX,

fA = sup {(X{I})A;d} = sup {d)A(x,w)id}. (316)
(z,d)€Epi f (z.d)€Epi f
Let us consider now the dual mappings A’ (defined by (0.10)).
Theorem 3.4.Let X and W be two sets, * a commutative binary operation on R,
satisfying condition (a), Y : X x W — R a coupling function, and A B s o

the mapping defined by (8.6). Then

g (z) = sup {=g(w) % ~9(z,)] (ge B,z € X). (3.17)

Proof. By (0.10), (3.6) and (1.24), we have

A i . o = —W
el e Gove o LA
whence
' i —W
g > s {—g* —¥(-,w)} (geR ). (3.19)

On the other hand, for any g € —R—W, the function h, defined by

by(e) = sup {=g(z)n —(z,w) (= € X)
belongs to the set {h € —R—X]-—g*,—zj)(-, \) € h}, whence, by (3.18), we obtain g&" < g,
which, together with (3.19), yields (3.17). Rk

Under the assumptions of theorem 3.4, A of (3.6) is a duality (by theorem 3.2),
and hence so is A’ of (3.17); however, we do not know whether A is a *-duality. In
the next result we obtain the same conclusion (3.17), with different assumptions on
* and A.

Theorem 3.5, Let X and W be two sels, * a binary operation on R satisfying
condition (@) and admitling a left neutral element e, A : R *-duality and
% : X x W — R the coupling function (3.5). Then we have (8.17) (and, by theorem
3.1, we have also (3.6)). .
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Proof. By part of [6], theorem 3.5, for any duality A B R we have

g% (z) = S Gar(w, z, g(w)) (g € _RW,I € X), (3.20)
we
where
Gaplmab) = mig e (w € W,z € X,b€ER), (3.21)
GA(;,EwFTa)Sb

with G of (3.9), (3.10). But, since now # satisfies (1.2) and admits a left neutral
element e, and since A is a *-duality, we have (3.12) (see remark 3.1). Thus, by
(3.21), (3.12), (1.24) and (3.5), we obtain

Gar(w,z,b) = —=b* —(z,w) (w € W,z € X,b€ER), (3.22)

which, together with (3.20), yields (3.17). |
Theorem 3.6.Let X and W be two sets, ¥ a commutative binary operation on

R, and A : B — R o dudlity for which there exist a unique coupling function
h =1han: X x W — R such that

FA(w) = sup {a.(z, w)Ef(z)} (f e BX,we W), (3.23)

and a coupling function i : X x W — R such that A" : R — RX satisfies (8.17).
Then v of (8.17) is unique, namely, we have

P =Pa. (3.24)

Proof. By A = (A’), (0.10) (applied to A’ instead of A), (3.17) and (1.24), we

.have

Folw) = inf glw)= inf g(w) =
ser"” 9eRY
g8'<f sup,ex {¥(z.w)%f(z)}<g
P -.—X "
=D {tb(z,w)*f(z)} (feR ,ze W),

which by our assumption of uniqueness of ¥4 . in (3.23), implies (3.24).

From theorems 3.1, 3.4 and 3.6 we obtain

Theorem 3.7 Let X and W be two sets and let * be a commutative binary opera-
tion on R, satisfying condition () and admitting a neutral element e. Then, for each

x-duality A : BY — R” there exists a unique coupling function p: X x W — R
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such that we have (3.17). Namely, 1 coincides with the unique coupling function for
which we have (3.6), i.e., 1 is the function (3.5).

Remark 3.5. In particular, for * = 4 and * = V, from theorem 3.7 we obtain
again the results of [14] and [7] on the representation of conjugations, V-dualities and
their duals, with the aid of coupling functions.

Let us consider now, for a *- duahty Ao ml the "second dual” (called
also the A’A-hull) f22' = (f4)* X of a function f € R .

Theorem 3.8. Under the assumptzons of theorem 8.7, for any *-duality A :

R == ﬁw we have

28" (z) = sup {=f%(w) 1 —¥(z,w)} =

weW

= sup min b (f e ﬁx,:f: €X), (3.25)
L w w bER
P(z,w)Rb< f4 (w) '
with: X x W — R of (3.5). .
Proof. The first equality follows from (3.17) applied to g = f2. Furthermore, by

(1.6), the commutativity of * and (1.17), for any f € -Rx, z € X and w € W we have
— f3(w) *; —(z,w) = min {b € R| — f4(w) < b* —y(z,w) = —p(z,w) * b} =

=min {b € R| f3(w) > —(—%(z,w) *b) = P(z,w)xb},
which yields the second equality in (3.25). i |
Theorem 3.9. Under the assumptions of theorem 8.5, for any *-duality A :

R — R we have

)= oosup b~z (feR s X (325

b*l—‘d)(',w)sf
with ¥ : X x W — R of (3.5).
Proof. By [6], theorem 3.6, for any duality A : R — R wehave

; —=X
4% (=)= sup Ga(w,z,b) (feR ,zeX), (3.27)
weW,bER
Gar(wr0)<Sf

with Gar of (3.21), where Ga is that of (3.9), (3.10). But, by the above proof of
theorem 3.5, we have now (3.22), which, together with (3.27), yields (3.26). i
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Remark 3.6. a) Theorem 3.9 shows that, under the assumptions of theorem 3.7,
; =X —W . :
for any #-duality A : B© — R~ the A’A-hull of [ coincides with the "¢ -convex

hull” of f, in the sense of [3], where
® = {b* —p(-,w) |we W,be R}, (3.28)

or, in other words, that for any *-duality A : Jri— R—W, the "elementary functions”,
in a sense similar to that of ‘[11], are the functions v, = b* —p(-w) € B* (we
W,b € R).

b) In particular, for * = 1 and * = V, from theorems 3.8 and 3.9 we obtain again
the main results of [14] and [7) on the representation of second conjugates and second
V-duals of f, with the aid of coupling functions.

Let us observe now that the above results can be ”dualized” as follows: Let X
and W be two sets, * a binary operation on R, satisfying condition (a), and A :
B — R”. Then % satisfies condition (o) and A’ : RY — R is a %-duality (by
theorems 1.1 and 2.1 a)). Hence, replacing the assumptions of the above results by
the same assumptions on ¥, and using (1.20), (1.28), we obtain representations of A’
and A = (A") with the aid of the coupling function W' : W x X — R defined by

P(w,z) = (x(w})A'(z) (we W,z € X), (3.29)

or, equivalently, with the aid of the coupling function % : X x W — R defined by

P(z,w) = ¢'(w,z) = (x{w})A'(x)  (zeX,weW). (3.30)

For example, dualizing in this way theorem 3.1, we arrive at

Theorem 3.10.Let X and W be two sets and let * be a binary operation on
R, such that %] admits a left neutral element e, A : B — R a *-duality, and
b : X x W — R the .coupling function (8.30). Then we have

gAl(x) = sup {¥(z,w)* g(w)} (g € -RW,:E € X). . (3.31)
weW

Moreover, if ¥ is also commutative, then ¥ of (3.30) is the only coupling function
for which we have (3.31). \

Similarly, dualizing theorem 3.7, we arrive at

Theorem 3.11, Let X and W be two sets and let x be a binary operation on R,
satisfying condition (a) and such that %] is commutative, satisfies condition (a) and

admits a neutral element e. Then for each *-duality A : B — R there eists a
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unique coupling function ¥ X x W — R, namely, 1 of (3.30), such that

[ (w) = sup (= [(2)% = Pz, w)) (fe B we W) (3.32)

Moreover, the same i is the unique coupling function for which we have (3.31).

Remark 3.7. In particular, let ¥ = L—. Then satisfies condition () (by remark
1.2 d)) and ¥ = V (see example 1.4), so %] satisfies the assumptions of theorem 3.11.
Also, * = T and *, = A— (see example 1.4). Hence, for * = 1 —, from theorem 3.11,
combined with remark 2.1, we obtain again the results of [7] on the representation of
I -dualities and their duals, with the aid of coupling functions. However, note that
in 7] we have also obtained another expression for the coupling function ¢ of (3.30)
(see 7], formula (3.9)), by exploiting the special properties of L and T, and this has
also implied another expression for the coupling function ¥ occurring in theorem 3.1,
i.e., for 9 of (3.5) (see [7], formula (4.10)).

Proposition 3.2. Under the assumptions of theorem 3.11, we have (8.14).

Proof. By (3.32) and (1.23), for any f € EX and w € W we have

fA(w)= min d= min d= min d |}
deR deR © deR
fA(w)<d —fi-y(-w)<d —de =9 w)<S

Remark 3.8. For x = L— we have ¥, = A= (see example 1.4), so proposition
3.2, combined with remark 2.1, yields again 7], corollary 3.1.
Finally, let us consider the second duals f22".
Theorem 3.12. Under the assumptions of theorem 3.11, for any x-duality A :

-R'X

o~

—W
— R we have

A% (z) = sup {$(z,w)* f°(w)} = sup min b (feR ,zeX),
weW weW bER
bz w)< S5 ()
7 (3.33)
with ¥ : X x W — R of (3.30).
Proof. The first equality follows from (3.31) applied to g = f%. Furthermore, by
proposition 1.3 ¢) (applied to ), *x = % is anti-commutative. Hence, by (1.6) and
(1.19), |

Bz, w) # fA(w) = —Fo(w) % (e, w) = min p€ R| - f2(w) < bx —h(z,w)} =

— min {be R|—f(w) < —(=bF—y(z,w))} f.min {beR| fP(w)2 —bx—y(z,w)}, -

which yields the second equality in (3.33). i
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Theorem 3.13. Under the assumplions of theorem 3.11, for any *-dualily A -
=X W
" — It we have

PP = s {Blmuw)nb)  (fER,weW)  (334)
Wb

with ¢ : X x W — R of (8.30).
Proof. Since A’ is a ¥-duality (by theorem 2.1 a)), we have, by (3.12) (applied
to A’ and ¥; ), (1.20) (for %, ) and (3.30),

Gar(w,z,b) = (xw))® (&) 1 b=p(z,w)xb  (weWzeX,be R), (3.35)

which, together with (3.27), yields (3.34).

Remark 3.9. a) One can make an observation similar to remark 3.5, with @ of
(3.28) replaced by : :
& = {1p(-,w) ¥ b| w e W,be R}, (3.36)

and with the "elementary functions” 7y, = %(-,w) * b (we W,be R).
b) In particular, for ¥ = L— we have x = A— (see example 1.4), and thus
theorems 3.12 and 3.13, combined with remark 2.1, yield again the main results of [7]

on the representation of second L-duals of f, with the aid of coupling functions.

4. Appendix: A Unifying framework for the above results
and those of 8]

Let us first recall some concepts from [8]. ,

Let A = (A, <,*) be a complete totally ordered group, i.e. (see e.g. [1], Ch. 14) a
set endowed with a total order < such that (A, <) is a conditionally complete lattice
(that is, every non-empty order-bounded subset of A admits a supremum and an
infimum in A) and with a binary operation * for which (A, %) is a group, such that
all group translations are isotone; then, by a result of Iwasawa (see e.g. [1], Ch. 14,
theorem 20), * is commutative. In the paper (8], assuming that A is not a singleton,
we have adjoined to it a greatest element 400 and a least element —o0, i.e., we have
considered the set

A= AU {+oo} U {—o0}, (4.1)

with the order < extended to A by

—o<a< oo (a€A), . (4.2)
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and we have extended the binary operation * on A to two different binary operations

+ and * on A (called upper and lower composition, respectively), by the rules

axb=axb=axb (a,b € A), (4.3)
+oo*a=a*+4oo=+00 (a € A), (4.4)
—coka=a%—00=—00 (a € AU {—00}), (4.5)
+oo*a=a*+00=+00 (a € AU {+o0}), (4.6)
—co*a =a%—00=—00 (a € A). (4.7)

Then, A = (A, <, %, %) has been called (in [8]) the canonical enlargement of (A, <, *).
Furthermore, a mapping M : 7% 5 A" has been called ([8], definition 2.3) a

+-duality, if for any index set I we have
(inf fi)* =sup £ ({f:Yer SAY), (48)

(fFa) = M ya” (fe A" ac ), (4.9)
where inf, * (in ZX) and sup, * (in A" ) are defined pointwise on A, eacha € A
s identified with the constant function fi(z) = @ (z € X), and if a € A, then o™l
denotes the inverse of a in the Abelian group (A, *), while the "inverses” of a € A\A
are defined by (+o00)™' = —o0, (—c0)™! = +oo. In particular, clearly, for A = R,
with the usual total order < on R and with * = +, the usual addition on R, *
and * are nothing else than the upper and lower addltxons (0 4), (0.5) on R and the
«dualities are the conjugations (0.1), (0.3).
Now we can give the following unifying framework for the results of the present
paper and those of [8].
Definition 4.1. Let (A, <) be a complete chain (i.e., a complete lattice, where
< is a total order on A ), and let s (A, <) — (A, <) be a bijective duality (i.e., a
bijective mapping $ : A — A such that S(I‘E; a;) = Silelg) s(a;) for every index set [
and every family {a;}ies € A ). Given a binary operation * on A, we define a new

binary operation *° on A, called the s-conjugate of *, by
a*’ c=s(s(a)*c) (a,c € A). (4.10)

Remark 4.1. a) If A = R, endowed with the usual total order < and if s: (R, <)
—+ (R, <) is the mapping defined by

s(a) = —a | . (ee®), (4.11)
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then s is a bijective duality and, by (4.10) and (1.17), for any binary operation * on

R we have
a*’c=—(—axc)=axc (a,c € I). (4.12)

b) If A = (A, <,%, %) is the canonical enlargement of a complete totally ordered
<

group A = (A, <,*) and if s: (A, L) — (A, <) is the mapping defined by

s(a) =a”! (A€ A), (4.13)

then s is a bijective duality (by [8], lemma 1.1) and, by (4.10) with * being now the

binary operation % of (A, <, %) and [8], lemma 1.3, we have

axc=(atie)  =axc (a,c € A). (4.14)

Deﬁmtlon 4.2. Let (A,<), s and + be as in definition 4.1. A mapping A :
75 . AV is called a (,s)-duality, if it is a duality (in the sense (0.1), with R
replaced by A ) and if

(f*a)=f2+"a - (feAFacd),  (419)

where each a E 7 is identified with the constant function fo(z) = a (z € X) and
where * (in A~ ) and *° (in A’ ) are defined pointwise on A.

Remark 4.2. a) If (A,<), s and * are as in remark 4.1 a), then, by (4.6) and
(4.3), A: B — R isa (%, 5)- duahty if and only 1f it is a *-duality in the sense of
definition 2.1. : :

b) If (A <), s and * are as in remark 4.1 b), then, by (4.15) and (4. 14), A :
A% — A" is a (%, s)-duality if and only if it is a *- duality in the sense of (8] (i.e
in the sense of (4.8), (4.9) above, with M = A). |

By remarks 4.1 a) and 4.2 a) and by our assumptions on (A,<) and s, the results
of the present paper can be extended to results on (¥, s)-dualities, which, by remarks
4.1 b) and 4.2 b), encompass, as particular cases, also the results of [8] on *-dualities
(in the sense of [8]); indeed, note that if A = (A, <, %,%) is the canonical enlargement
of a complete totally ordered group A = (A, <, *), then, by (8], lemma 1.4, the binary
operation % on A satisfies condition (a) (i.e., (1.1) with x replaced by * and with inf
taken in A ), so the "extended” definition 1.2 (of *; ) can be applied to (A, <), s and
« of remark 4.1 b), and one obtains (by (1.6) and 8], lemma 1.5)

a¥c=axc’ | | (a,c € A). (4.16)
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