

INSTITUTUL DE MATEMATICA AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS

OF THE ROMANIAN ACADEMY

ISSN 0250 3638

ON THE UNIVERSAL COMPLETION OF AN

ARCHIMEDEAN RIESZ SPACE

Бу

ILEANA BUCUR

Preprint No. 12/1994

BUCURESTI

ON THE UNIVERSAL COMPLETION OF AN

ARCHIMEDEAN RIESZ SPACE

by

ILEANA BUCUR

June 1994

- Institutul de Construcții, București.

- Institute of Mathematics of the Romanian Academy, P.O.Box 1-764, RO-70700 Bucharest, Romania.

On the universal completion of an

Archimedean Riesz space

by Ileana Bucur

1. Introduction. If (E, \leq) is a Riesz space then E is called Dedekind complete if any subset of E (or only of E_+ , the set of all positive elements of E) which is bounded from above has a supremum in E. As well-known, a Dedekind complete Riesz space is called universally complete (or inextensable Riesz space), if it is isomorphic with the space $\mathcal{C}_{\infty}(K)$ of all continuous functions $f: K \to [-\infty, \infty]$ such that the set $\{x \in K : |f(x)| < \infty\}$ is dense in K, where ${
m K}$ is an extremal, Hausdorff, compact space. As it was shown by A.G. Pinsker in 1949 a Dedekind complete Riesz space E is universally complete iff every disjoint system in E, has a supremum in E. (This is so called "Pinsker criterium for universality" and moreover it is taken now as definition for "universally complete"). A subset F of a Dedekind complete Riesz space (E, \leq) is called a foundation of E if F is an ideal of E (i.e. F is a linear subspace of E such that for any x ϵ F the order interval [-|x|, |x|] is included in F) and any x ϵ E₊ is the supremum of the set $\{y \in F_+; y \le x\}$. It is known that for any Dedekind Riesz space (E, <) there exists a universally complete Riesz space $\widetilde{\mathsf{E}}$ such that E is a foundation of E. This space (\widetilde{E}) is uniquely determined up to an isomorphysme. The well-known proof of this result makes use of Kakutany representation theorem complete which asserts that any Dedekind Riesz space (E, <) with strong unit is isomorphic with the linear ordered space of all real continuous functions on an extremal, Hausdorff, compact space.

Starting with Pinsker criterium of universality in [7] A.C. Zaanen gives a proof for the above result that does not employ any representation theory.

2

In this note we present an other criterium for universality and then, starting with it, we give also a construction for the universal completion of a Dedekind complete Riesz space which is more intuitive.

The notion of Archimedean subset that we introduce here was inspired by reding the paper [1].

The proof for our criterium of universality that I gave in [2] makes also use of Kakutany representation theorem.

2. Archimedean subsets

Let (E, <) be a Dedekind complete Riesz space. For any two non-empty subsets A, B of E we put

$$A + B := \{a + b \mid a \in A, b \in B\}$$

and for any real number r we denote

$$A := \{ra \mid a \in A\}$$

As usually, for any non-empty subset M of E we shall denote by \checkmark M (resp. \land M) the supremum (resp. infimum) of M if does it exist.

Definition. A subset M of E₊ is termed:

sup-stable if for any a', a'' \in M we have a' \checkmark a'' \in M,

solid if for any m ϵ M and any p ϵ E, with p \leq m we have p ϵ M,

closed in order from below (c.o.f.b.) if for any non-empty subset M' of M which is bounded from above we have $\bigvee M' \in M$.

<u>Remark 2.1</u>. For any family $(\overset{M}{i})_{i \in I}$ of subsets from E_{+} which are closed in order from below the set $\bigcap_{i \in I} M_{i}$ is also closed in order from below. Hence for any subset M of E_{+} there exists a smallest subset of E_{+} , denoted by \overline{M} , which is closed in order from below such that $M \subset \overline{M}$.

Remark 2.2. For any subset M of E, we have

$$\overline{M} = \{ x \in E_+ \mid (\exists) M_x \subset M; \forall M_x = x \}.$$

Indeed, we have obviously

 $M \mathbf{c} \left\{ x \in E_{+} \mid (\mathbf{F}) M_{\mathbf{x}} \subset M : \mathbf{V} M_{\mathbf{x}} = x \right\} \subset \overline{M}.$

On the other hand if $(x_i)_{i \in I}$ is a family from the set

 $\left\{ x \in E_{+} \mid (3) M_{x} \subset M; \bigvee M_{x} = x \right\}$ which is bounded from above then we have

$$\bigvee_{i \in I} x_i = \bigvee_{i \in I} \bigvee_{x_i} W_{x_i} = \bigvee \{ \bigcup_{i \in I} W_{x_i} \} \in \{ x \in E_+ \mid (\mathfrak{P}) M_x \in M; x = \bigvee M_x \}.$$

<u>Proposition 2.3</u>. a) For any subset M of E_{+} which is solid (resp. sup-stable) the set \overline{M} is solid (resp. sup-stable).

b) For any two non-empty subsets M', M'' of E₊ which are solid and sup-stable the set M' + M'' is solid and sup-stable.

c) For any two non-empty subsets M', M'' of E₊ which are solid and c.o.f.b. the set M' + M'' is also solid and c.o.f.b.

<u>Proof</u>. a) Let M be a non-empty solid (resp. sup-stable) subset of E_{+} and let x, y be two elements of \overline{M} . We consider M_{x} , M_{y} subsets of M such that

$$x = \bigvee M_x$$
, $y = \bigvee M_y$

If M is solid and z ϵ E, is such that z \leq x we have

$$z = x \wedge z = z \wedge (\vee M_x) = \vee \{z \wedge m \mid m \in M_x\} \in \overline{M}$$

If M is sup-stable then we have

$$x \lor y = (\lor M_x) \lor (\lor M_y) = \lor \{ M_x \lor M_y \} \in \overline{M}.$$

b) If M', M'' are non-empty, solid and sup-stable we consider m' ${\tt M''}$ m'' ${\tt C}$ M'' arbitrary and x ${\tt C}$ E_+ such that

Using the Riesz decomposition property we can find x', x'' in E_{+} such that

$$x = x' + x'', x' \le m', x'' \le m^{1}$$

From the fact that M', M'' are solid we deduce $x' \in M'$, $x'' \in M''$ and therefore $x \in M' + M''$ i.e. M' + M'' is a solid subset of E_+ .

If moreover we suppose M', M'' solid and sup-stable then taking x, y two elements from M' + M'' we may consider u', $v' \in M'$; u'', $v' \in M''$ such that

$$x = u' + u'', y = v' + v''$$

The elements w' := $u' \lor v'$, w'' := $u'' \lor v''$ belong to M', respectively M'' and $x \lor y \le w' + w''$. Since M' + M'' is solid we get $x \lor y \in M' + M''$.

c) Let M', M'' two non-empty subsets of E_+ which are solid and c.o.f.b. From the proof of the preceding point b) we deduce that M' + M'' is a solid part of E_+ .

Let now $x \in E_+$ and let $(x'_i + x''_i)_{i \in I}$ be a family in M' + M'' such that

 $x'_i \in M', x''_i \in M''$ for any $i \in I$ and such that

$$x = \bigvee_{i \in I} (x'_i + x''_i)$$

Since the families $(x_i')_{i \in I}$, $(x_i'')_{i \in I}$ are dominated by x and since M' and M'' are c.o.f.b we get

 $\underset{i \in I}{\overset{\vee}{}} x_{i}^{\prime} \in M^{\prime}, \quad \underset{i \in I}{\overset{\vee}{}} x_{i}^{\prime} \in M^{\prime}, \quad x \in (\underbrace{\checkmark}{} x_{i}^{\prime}) + (\underbrace{\checkmark}{} x_{i}^{\prime})^{\prime}$ Using the fact that M' + M'' is solid we get $x \in M^{\prime} + M^{\prime}$.

For any $x \in E_+$ we shall denote by [0, x] the order interval

 $[0, x] = [y \in E_+ \mid y \le x].$

<u>Proposition 2.4</u>. Let A be a non-empty, solid, sup-stable subset of E_{+} which is c.o.f.b. The following assertions are equivalent:

a) For any x, $y \in E_+$ we have

 $A + \begin{bmatrix} 0, x \end{bmatrix} \in A + \begin{bmatrix} 0, y \end{bmatrix} \implies x \leq y$

b) There is no element $p \in E_+$, $p \neq 0$ such that $np \in A$ for any $n \in N$

c) For any p e E, we have

$$\bigwedge_{n \in \mathbb{N}^{*}} \left(\bigvee_{n \in \mathbb{N}} \left\{ p \land \left(\frac{1}{n} a \right) \mid a \in \mathbb{A} \right\} \right) = 0$$

d) For any two subsets B and C at E, which are non-empty, solid, sup-stable and c.o.f.b. we have

$$A + B \subset A + C \implies B \subset C$$

<u>Proof</u>. b) \Rightarrow c). Let $p \in E_+$ and let q be the element of E_+ defined by

11

q:=
$$\bigwedge (\bigvee \{ p \land (\frac{1}{n} a) \mid a \in A \})$$

n \in N^{*}

Obviously we have q \leq p and therefore

$$q = q_{A}q = \land (\bigvee \{q_{A}p_{A}(\frac{1}{n}a) \mid a \in A\}) = \land (\bigvee q_{A}(\frac{1}{n}a) \mid a \in A\})$$

$$n \in N^{*}$$

5

Hence for any $n \in N^*$ we have

$$q = \bigvee \left\{ q \land \left(\frac{1}{n} a\right) \mid a \in A \right\}; \quad nq = \bigvee \left\{ (nq) \land a \mid a \in A \right\}$$

and therefore A being solid and c.o.f.b. we get

Using the assertion b) it follows q = 0.

c) \Rightarrow b). If $p \in E_{+}$ is such that $np \in A$ for any $n \in N$ then we have $p = \sqrt{\frac{1}{n}} a$ $| a \in A$ for any $n \in N^{*}$ and therefore

$$p = \bigwedge (\bigvee \left\{ p \land \left(\frac{1}{n} a\right) \mid a \in A \right\} \right)$$
$$n \in N^{*}$$

Using c) we get p = 0.

a) \Rightarrow b). Let $p \in E_+$ be such that $np \in A$ for any $n \in N$ and let a be an element of A. From the relations

$$p - \frac{1}{n} = \left(p - \frac{1}{n} \right)^{\dagger} = p \wedge (np - a)^{\dagger} \leq p \wedge \left[(np - a) \lor 0 \right] \leq p$$

for any $n \in N^*$ we deduce

$$a + p < (a + p) \land (np \lor a) + \frac{1}{n} a \le a + p + \frac{1}{n} a \qquad (\forall) n \in \mathbb{N},$$
$$a + p = \bigvee_{n \in \mathbb{N}} \left[(a + p) \land (np \lor a) \right]$$

The set A being solid, sup-stable and c.o.f.b. we get

The element a \in A being arbitrary it follows that

$$A + p \in A, A + [0, p] \leftarrow A = A + [0, 0]$$

and therefore, using the assertion a), p = 0.

c) \Rightarrow d). If B and C are non-empty subsets of E₊ which are solid, sup-stable an c.o.f.b. such that A + B \subset A + C then by induction we deduce A + nB \subset A + nC for any n \in N^{*} and therefore we have

$$B \subset \frac{1}{n} A + B \subset \frac{1}{n} A + C$$

Let $b \in B$ be arbitrary and let $a_n \in A$ and $c_n \in C$ be such that $b = \frac{1}{n} a_n + c_n$. We have

6

 $b = b \wedge (\frac{1}{n} a) + (b \wedge c_n) \leq \bigvee \left\{ b \wedge (\frac{1}{n} a) \mid a \in A \quad + \bigvee \left\{ b \wedge c \mid c \in C \right\} \right\}.$

for any $n \in N^*$ and therefore

$$b \leq \bigwedge_{n \in \mathbb{N}^{*}} (\sqrt{b \wedge (\frac{1}{n} a)} | a \in A}) + \sqrt{b \wedge c} | c \in C = \sqrt{b \wedge c} | c \in C$$

The set C being solid and c.o.f.b. we get b ϵ C. The assertion d) \Rightarrow a) is obvious.

<u>Definition</u>. A non-empty <u>subset</u> A of E_+ which satisfies the condition c) from the above proposition will be called <u>archimedean</u>.

Remark 2.5. From the definition it follows that

a) If A is an archimedean subset of E_+ then any non-empty subset B of A is also arhimedean

b) If A is archimedean then the smallest subset B of E₊ which is sup-stable, solid such that A \subset B then B is also archimedean.

Proposition 2.6. a) If A is arhimedean then \overline{A} is also arhimedean.

b) If A and B are two arhimedean subsets of E_+ then A + B and rA are also arhimedean for any real number r, r ≥ 0 .

<u>Proof</u>. a) Let $p \in E_+$ be arbitrary and let x be an element of \overline{A} . Then there exists a subset Ax of A such that $x = \bigvee Ax$. For any $n \in N^*$ we have

$$\frac{1}{n} \times = \bigvee \left\{ \frac{1}{n} a \mid a \in Ax \right\}, \quad p \land \left(\frac{1}{n} \times\right) = \bigvee \left\{ p \land \left(\frac{1}{n} a\right) \mid a \in Ax \right\},$$
$$p \land \left(\frac{1}{n} \times\right) \le \bigvee \left\{ p \land \left(\frac{1}{n} a\right) \mid a \in A \right\}$$

Hence

$$\sqrt{\left\{p \wedge \left(\frac{1}{n} \times\right) \mid x \in \overline{A}\right\}} \leq \sqrt{\left\{p \wedge \left(\frac{1}{n} a\right) \mid a \in A\right\}}$$
 (V) $n \in \mathbb{N}^*$,

. 11 .

$$\bigwedge \left(\bigvee \left\{ p \land \left(\frac{1}{n} \times\right) \mid x \in \overline{A} \right\} \right) \leq \bigwedge \left(\bigvee \left\{ p \land \left(\frac{1}{n} a\right) \mid a \in A \right\} \right) = 0$$

$$n \in \mathbb{N}^{*}$$

7

i.e. Ā is arhimedean.

b) If A and B are archimedean and p∈ E₊ we have

$$p \land (\frac{1}{n} a + \frac{1}{n} b) \leq p \land (\frac{1}{n} a) + p \land (\frac{1}{n} b)$$
 (\forall) $a \in A, b \in B, n \in \mathbb{N}^*$

Hence

 $\bigvee \left\{ p \land \left(\frac{1}{n}(a+b)\right) \mid a \in A, b \in B \right\} \leq \bigvee \left\{ p \land \left(\frac{1}{n} a\right) \mid a \in A \right\} + \bigvee \left\{ p \land \left(\frac{1}{n} b\right) \mid b \in B \right\}$ for any $n \in N^*$ and therefore

$$(\bigvee \{ p \land \frac{1}{n} (a+b) \mid a \in A, b \in B \}) \leq \land (\bigvee \{ p \land \frac{1}{n} a \mid a \in A \} + n \in \mathbb{N}^{*}$$

$$+ \bigvee \{ p \land \frac{1}{n} b \mid b \in B \}) = \land (\bigvee \{ p \land \frac{1}{n} a \mid a \in A \}) + \land (\bigvee \{ p \land \frac{1}{n} b \mid b \in B \}) = 0.$$

$$n \in \mathbb{N}^{*}$$

$$n \in \mathbb{N}^{*}$$

i.e. A + B is arhimedean.

Analogously one can prove that for any arhimedean subset A of E_+ and any $r \in R_+$ the set rA is also arhimedean.

3. Universal completenes criterium

We remember that a Dedekind complete Riesz space (E, \leq) is called <u>universally complete</u> if every disjoint system in the positive cone E₊ has a supremum (or equivalently, is bounded).

In this section we show the following assertion:

<u>A Dedekind complete Riesz space (E, \leq) is universally complete if and only</u> if any archimedean subset of E₊ is bounded.

To this porpose, first we prove

<u>Proposition 3.1</u>. Every disjoint system in the positive cone E_{+} is an archimedean subset of E_{+} .

<u>Proof</u>. Let $(p_i)_{i \in I}$ be a system of elements in E_+ such that $p_i \wedge p_j = 0$ for any i, $j \in I$, $i \neq j$ and let q be an arbitrary element of E_+ . We denote by q_0 8

the element of E₊ defined by

$$q_{0} = \bigwedge \left(\sqrt{\left\{ q \land \left(\frac{1}{n} p_{i}\right) \mid i \in I \right\}} \right)$$

$$n \in N^{*}$$

Since for any n \in N^{*} we have

$$q_0 \notin \bigvee \left\{ q \land \left(\frac{1}{n} p_i\right) \mid i \in I \right\}$$

we deduce the relations:

$$\begin{aligned} \mathbf{q}_{0} \leq \mathbf{q}; \ \mathbf{q}_{0} &= \mathbf{q}_{0} \wedge (\bigvee \{\mathbf{q} \wedge (\frac{1}{n} \mathbf{p}_{i}) \mid i \in \mathbf{I}\}) = \bigvee \{\mathbf{q}_{0} \wedge (\frac{1}{n} \mathbf{p}_{i}) \mid i \in \mathbf{I}\}, \\ \mathbf{q}_{0} \wedge \mathbf{p}_{j} &= \bigvee \{\mathbf{q}_{0} \wedge \mathbf{p}_{j} \wedge (\frac{1}{n} \mathbf{p}_{i}) \mid i \in \mathbf{I} = \mathbf{q}_{0} \wedge (\frac{1}{n} \mathbf{p}_{j}) \\ (\forall) j \in \mathbf{I} \end{aligned}$$

Hence $q_0 \wedge p_j < \frac{1}{n} p_j$ for any $j \in I$ and any $n \in \mathbb{N}^*$ and therefore the linear ordered space (E, <) being archimedean it follows that $q_0 \wedge p_j = 0$ for any $j \in I$. Finally we get

$$q_0 = \bigvee \{ q_0 \land p_i \mid i \in I \} = 0$$

i.e. the set $\{p_i \mid i \in I\}$ is an archimedean subset of E_+ .

<u>Corollary 3.2</u>. If any archimedean subset of E_+ is bounded then (E, \leq) is universally complete.

Now we shall prove the converse assertion

<u>Proposition 3.3</u>. If (E, \leq) is universally complete then any arhimedean subset of E₊ is bounded.

<u>Proof</u>. If (E, <) is universally complete then (E, <) may be identified with the set $\mathcal{C}_{\infty}(K)$ of all functions $f: K \to [-\infty, \infty]$ which are continuous and densely finite where K is a Hausdorff, compact, extremal space i.e. for any open subset G of K its closure is also open. Let M be an arhimedean subset of $\mathcal{C}_{\infty}^{+}(K)$ and let $\varphi: K \to [0, \infty]$ be the function on K given by

 $\varphi(x) = \sup \{ m(x) \mid m \in M \}$

It is known that the upper semi-continuous regularization $\check{\varphi}$ of φ is a continuous function on K and the set $\{x \in K \mid \check{\varphi}(x) > \varphi(x)\}$ is nowhere dense in K.

It remains to show that $\[equal for \[equal entropy \] \in \[equal for \[equal entropy \] is empty. It remains the interior of the set <math>\{x \in K \mid \varphi(x) = +\infty\}$ is empty.

If we suppose the contrary then there exists an open-closed, non-empty subset G of K such that $\varphi(x) = \infty$ for any $x \in G$. If $g: K \rightarrow [0, 1]$ is the characteristic function of G we have, for any $n \in N^*$,

 $ng \leq \varphi$, $\bigvee \{ (ng) \land m \nmid m \in M \} = ng$

and therefore

$$g = \bigwedge (\bigvee \{g \land (\frac{M}{n}) \mid m \in M\})$$

The last relation contradicts the fact that M is archimedean.

<u>Theorem 3.4</u>. A Dedekind complete Riesz space (E, \leq) is universally complete iff any archimedean subset of E₊ is bounded or iff any non-empty, solid, sup-stable, c.o.f.b. and arhimedean subset of E₊ is bounded.

4. The universal completion

The porpose of this section is to associate to a given Dedekind complete Riesz space (E, <) an universally complete space (\widetilde{E} , <) such that E₊ is isomorphic with a convex subcone S of \widetilde{E}_+ which is solid and increasingly dense in \widetilde{E}_+ i.e every element of \widetilde{E}_+ is the supremum of its minorants from S. The space (\widetilde{E} , <) is uniquely determined up to an isomorphism of Riesz spaces and will be called the <u>universal completion of (E, <)</u>.

First we recall some definition which will be used in the sequel

A non-empty set C endowed with: an addition operation $C \times C \ni (x, y) \rightarrow x+y \in C$ and a multiplication with positive real numbers $(\mathbb{R}_+ \times C \ni (r, c) \rightarrow rc \in C)$ such that

 a_1) (x + y) + z = x + (y + z), x + y = y + z (∀) x, y, z ∈ C a_2) there exists a neutral element denoted 0_C or simply 0 i.e.

0 + x = x (∀) × ∈ C

 a_3) If x, y $\in C$ and x + y = 0 then x = y = 0

9

// .

 a_4) If x, y, z∈ C and x + z = y + z then x = y m_1) r(x + y) = rx + ry, (r + r')x = rx + r'x (∀) x, y ∈ C; r, r' ∈ \mathbb{R}_+ m_2) (rr')x = r(r'x), 1x = x (∀) x ∈ C; r, r' ∈ \mathbb{R}_+

will be called an abstract convex cone.

Giving an abstract convex cone C we may introduce an order relation on C which will be called the <u>specific order on C</u> in the following way

10

 $x, y \in C, x \leq y \stackrel{\text{def}}{\iff} (\exists) z \in C; x + z = y.$

Obviously the element O becomes the smallest element of C and if any subset of C has an infimum then any subset of C which is bounded from above has a supremum (in C). Moreover in this cas there exists a Dedekind complete Riesz space (E, \leq) such that the cone C may be identified with the convex cone E₊ of all positive elements of E([3]).

Let (E, \leq) be a Dedekind complete Riesz space and let E_+ be its convex cone of positive elements. We shall denote by C the set of all non-empty, solid, sup-stable, c.o.f.b. and archimedean subsets of E_+ and we shall introduce in C an addition operation and a multiplication with positive, real numbers as follows

A, B \in C, A + B = {a + b | a \in A, b \in B} A \in C, r \in R₊, rA = {ra | a \in A}.

From Propositions 2.3., 2.6. it follows that for any A, $B \in C$, $r \in R_+$ we have A + B \in C, $rA \in C$ and from Proposition 2.4. we deduce that the property a_4) from above is fulfilled.

We remark that for any $x \in E_+$ the order interval $[0, x] := \{y \in E_+ \mid y \le x\}$ is an element of C. Particularly the interval [0, 0] which will be denoted simply 0 is the neutral element of C with respect to the addition operator. The properties a_1 , a_2 , a_3 , m_1 , m_2 may be easily verified. Hence the set C endowed with the above operations is an abstract convex cone.

<u>Proposition 4.1</u>. The map $\varphi: E_+ \rightarrow C$ given by $\varphi(x) = [0, x]$ has the following properties

a) x, $y \in E_+$, $\varphi(x) = \varphi(y) \implies x = y$

. // .

b) x, $y \in E_+$, $r \in R_+ \Rightarrow \varphi(x+y) = \varphi(x) + \varphi(y); \quad \varphi(rx) = r \quad \varphi(x)$ c) x, $y \in E_+$, $x \leq y \iff \varphi(x) \subset \varphi(y)$

d) If $A \in C$ and $x \in E_+$ are such that $A \subset \varphi(x)$ then $A \in \varphi(E_+)$.

<u>Proof.</u> The properties a) and c) are obvious. If $r \in R_+$ and x, $y \in E_+$ we have $\varphi(x) + \varphi(y) = \varphi(x+y)$. For the converse inclusion we consider $z \in \varphi(x+y)$ i.e. $z \in E_+$, $z \leq x+y$ and let (from Riesz decomposition property) x', $y' \in E_+$ be such that $x' \leq x$, $y' \leq y$, z = x' + y'. Hence $z \in \varphi(x) + \varphi(y)$ and therefore the property b) is shown.

As for the last property, if $A \in C$ and $x \in E_+$ are such that $A \subset \varphi(x)$ then the element x is a majorant of A and therefore A has a supremum a in E_+ (or equaly in E) and a $\leq x$. Since A is c.o.f.b we have a \subset A and therefore A \subset [0, a]. The set A being solid we get $A = [0, a] = \varphi(a)$.

<u>Proposition 4.2</u>. a) If A, B \in C and A \subset B then there exists A' \in C such that A + A' = B. i.e the order relation on C given by the inclusion relation coincides with the specific order on C.

b) For any family $(A_i)_i \in I$ from C the subset $\bigcap_{i \in I} A_i$ of E_+ is an element of C and it is just the infimum of the family $(A_i)_i \in I$ in C with respect to the specific order.

c) If $(A_i)_{i \in I}$ is an upper directed family in C with respect to the inclusion (or equaly w.r. to the specific order of C) and if this family is dominated in C then the subset $\overline{\bigvee}A_i$ of E_+ is an element of C and it is the supremum of the family. $(A_i)_{i \in I}$ in C w.r. to the specific order.

<u>Proof</u>. For any A \subset C we consider the "projection" operator on A defined on E₊ , x \rightarrow x_A given by

 $x_{\Delta} = \bigvee \{a \mid a \in A, a \leq x \} = \bigvee \{x \land a \mid a \in A\}.$

The following properties of this operator are almost trivial

1) $x \in E_+$, $x \in A \iff x_A = x$

2) x, y
$$\in E$$
, x \leq y \Rightarrow x_A \leq y_A and x_A = x \wedge y_A

3) x, y
$$\in E_1 \implies (x \land y)_A = x_A \land y_A; (x \lor y)_A = x_A \lor y_A$$

11

4) x, $y \in E_+$, $x \leq y \Rightarrow x - x_A \leq y - y_A$ 5) x, $y \in E_+ \Rightarrow (x - x_A) \lor (y - y_A) = x \lor y - (x \lor y)_A$; $(x - x_A) \land (y - y_A) = x \land y - (x \land y)_A$ 6) t, $x \in E_+$, $t \leq x - x_A \Rightarrow (\exists) y \in E_+$, $y \leq x$; $t = y - y_A$.

12

For example the assertion 4) may be derived as follows:

 $\begin{array}{l} x\leqslant y\Rightarrow x+y_{A}=x\ ,\ y_{A}+x\ ,\ y_{A}=x_{A}+x\ ,\ y_{A}\leqslant x_{A}+y;\ x-x_{A}\leqslant y-y_{A}.\\ \mbox{ The inequality }(x-x_{A})\ ,\ (y-y_{A})\leqslant (x\ ,\ y)-(x\ ,\ y)_{A}\ \mbox{in 5) follows from}\\ \mbox{ the assertion 4). On the other hand we have $x_{A}\leqslant (x\ ,\ y)_{A}$, $y_{A}\leqslant (x\ ,\ y)_{A}$ and therefore } \end{array}$

 $x - x_A \ge x - (x \lor y)_A , y - y_A \ge y - (x \lor y)_A , (x - x_A) \lor (y - y_A) > (x \lor y) - (x \lor y)_A$ Hence the relation 5) is verified.

As for the assertion 6) let t, $x \in E_+$ be such that $t \le x - x_A$. We consider the element y of E_+ , $y = t + x_A$. We have $x_A \le y \le x$ and therefore, using the assertion 2) we get

 $y_A = x_A$ $y = x_A$, $t = y - x_A = y - y_A$.

We prove now the assertion a). Let A, B \in C be such that A \subset B and let D be the subset of E_ given by

$$D = \{ b - b_{\Delta} \mid b \in B \}$$

From the above properties 5), 6) we deduce that D is a non-empty solid, sup-stable subset of E_+ . It is also archimedean since D \subset B. The relation A + D = B may be shown as follows: for any $b \in B$ we have $b = b_A + (b - b_A) \in A + D$ i.e. $B \subset A + D$. For any $a \in A$ and $b \in B$ the element $a \lor b$ belongs to B and we have, using the above properties 3), 1)

 $a + (b - b_A) \le a + (a \lor b - (a \lor b)_A) = a + a \lor b - a = a \lor b; a + (b - b_A) \in B$ Hence $A + D \subset B$ i.e. A + D = B. The assertion a) follows now from the relation $B = \overline{B} = \overline{A + D} = \overline{A} + \overline{D} = A + \overline{D}$ and from the fact that $\overline{D} \in C$.

The assertions b) and c) may be derived directly from the assertion a) and using Propositions 2.3., 2.6.

11

<u>Proposition 4.3</u>. Any archimedean subset M of the cone C is bounded w.r. to the specific order of C.

13

<u>Proof</u>. Let M be an archimedean subset of C with respect to the specific order i.e. for any A \in C we have

$$\bigwedge_{n \in \mathbb{N}^{*}} (\bigvee \{ A \land (\frac{1}{n} B) \mid B \in M \}) = [0, \delta]$$

where for any subset H of C we have denoted \checkmark H (resp. \checkmark A) the infimum (resp. the supremum) of H in C with respect to the specific order.

To show that M is bounded we may suppose, using Proposition 2.5. that M is a non-empty solid, sup-stable, c.o.f.b. and archimedean subset of C. Since M is sup-stable and solid in C we deduce that the subset M_0 of E_+ defined by

$$M_0 = \bigvee_{A \in M} A$$

is also solid and sup-stable. We want to show that $\rm M_{_O}$ is an archimedean subset of $\rm E_+.$ Let a be an element of $\rm E_+.$ From the relation

$$\bigwedge (\bigvee \{[0, a] \cap (\frac{1}{n} B) \mid B \in M \}) = [0, 0]$$

and from Proposition 4.1, d) we deduce that for any $n \in N^*$ and any $B \in M$ there exists an element b(n, B) in the set $\frac{1}{n}$ B such that

 $[0, a] \cap (\frac{1}{n} B) = [0, b(n, B)], b(n, B) \leq a.$

The set M being sup-stable it follows that for any $n \in N^*$ the family { b(n, B) | B $\subset M$ } is upper directed and dominated by a.

Using Proposition 4.2., c) we get

$$\bigvee \left\{ \begin{bmatrix} 0, a \end{bmatrix} \cap \left(\frac{1}{n} B\right) \mid B \in M \right\} = \bigcup_{\substack{B \in M \\ B \in M}} \begin{bmatrix} 0, b(n, B) \end{bmatrix} = \begin{bmatrix} 0, b_n \end{bmatrix}$$

where $b_n = \bigvee \{ b(n, B) \mid B \in M \}$. One can easily see that

$$b_n = \bigvee \{a \land (\frac{1}{n} b) \mid b \in M_0 \}$$

and since $\bigcap_{n \in \mathbb{N}^*} [0, b_n] = [0, 0]$ we get $\bigwedge_{n \in \mathbb{N}^*} b_n = 0$ i.e. M_0 is an archimedean $n \in \mathbb{N}^*$

subset of E₊. From the above considerations $\overline{M}_0 \in C$ and $B \subset M_0 \subset \overline{M}_0$ for any $B \in M$. Hence M is bounded. <u>Theorem 4.4</u>. For any Dedekind complete Riesz space (E, \leq) there exists a universally complete space (\widetilde{E} , \leq) such that (E, \leq) may be identified with a linear subspace of \widetilde{E} and E_+ is a solid convex subcone of \widetilde{E}_+ such that any element of \widetilde{E}_+ is the supremum in (\widetilde{E} , \leq) of the set of its minorants from E_+ .

<u>Proof</u>. With the above notations we consider the Dedekind complete Riesz space (\tilde{E}, \leq) such that \tilde{E}_+ may be identified with the abstract convex cone C constructed in this section. It remains only to identify E_+ with $\varphi(E_+)$ where φ is the map defined in Proposition 4.1. and to apply Theorem 3.4.

References

- Boboc N. and Bucur Gh.: Archimedean measures, Preprint Series in Math. 33 (1981) 1-21 or Anal. Univ. Craiova 11(1983), 21-30.
 - Dilation operator in H-cones; existence and unicity. Preprint Inst. Math. Roumanian Academy, 9 (1994).
- [2] Bucur Ileana: On maximal spaces 11-16. Séminaire d'espaces linéaires ordonnés topologiques. Univ. de Bucarest No. 14(1993). Editeur: Romulus Cristescu.
- [3] Cornea A., Licea Gabriela: Order and Potential Resolvent families of kernels. Lecture Notes in Math. Springer-Verlag 494(1975).
- [4] Cristescu Romulus: Spații liniare ordonate și operatori liniari. Editura Academiei, 1970.
- [5] Pinsker A.G.: Extention of partially ordered groups and spaces. Uch. zap. Len. pedag. 86(1949), 235-284.
- [6] Vulikk B.Z.: Introduction to the theory of partially ordered spaces 1967 (translated from the Russian). Walters-Noordhoff scientific publications Groningen.
- [7] Zaanen A.C.: The universal completion of an Archimedean Riesz space. Proc.
 Kon. Ned. Akademie v Wet A 86, 435-441 (1983) Indagationes Mathematicae
 45, 435-441 (1983).