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0n the universal comp-Letio! of an

Archinedean Riesz space

by t leana Bucur

1. Introduction. If (E, <) is a Riesz space then E is called Dedekind

complete if any subset of E (or onli of E* , the set of all positive elements of

E) which is bounded from above has a supremum in E. As well-known,a Dedekind

complete Riesz space is called universally complete (or inextensable Riesz space),
cA

i f  i t is isomorphic with the space 6*&) of all continuous functions

f  : f i - -+ F. ,*  ]  such that  the set  I* .K :  l r (x) l  .  *  !  is  dense in K ,

wnere $ is an extremal, Hausdorff, compact space. As it was shown by A.G. Pinsken

in 194g a gedekind complete Riesz space E is universally complete iff every

disjoint system in E* has a supremum in E. (Tnis is so ca11ed "Pinsker criterium

for universality" and moreover it is taken now as definit ion for "universally

complete',). A subset F of a Dedekind complete Riesz space (E, -<) is called a

foundation of E if F is an ideal of E (i.e. F is a l ' inear subspace of E such that

for any x e- F the order interval  Fl" l ,  l * l l  is  included in F) and any xe E* is

the supremum of the set tVeF*;  y <x! .  I t  is  known that for  any Dedekind Riesz

space (E, r.) there exists a universally complete Riesz space E sucn that E is a

foundation of E. This space CEI :.r uniquely determined up to an isomorphysme.

The well-known proof of this resLllt makes use of Kakutany representation theorem

which asserts that any oeo"xiS8p*f38t space (E, r.) with strong unit is isomorphic

with the linear ordered space of all real continuous functions on an extremal,

Hausdorff , comPact space.
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Start ing wi th Pinsker cr i ter ium of universal i ty in [+t  A.C. Zaanen gives a

proof for the above result that does not employ any representation theory.'

In this note we present an other criterium for universality and then, starting

with it, we give also a construction for the universal completion of a Dedekind

complete Riesz space which is more intuit ive'

The notion of Archimedean subset that we introduce here was inspired by

reding the paper [ l ] .

The proof for our criterium of universality that I gave in [a] makes also

use of Kakutany representation theorem'

2. Archimedean subsets

Let (E, .) be a Dedekind complete Riesz space. For any two non-empty subsets

A , B o f E w e p u t

A + 8 , = [ r * b l d € A , b e B ]  t

and for any real number r we denote

, g , = f r a l a e n ]

.As usua1ly, for any non-empty subset M of E we shall denote by WM (resp'

n M) the supremum (resp. infimum) of M if does it exist'

Definit ion. A subset M of E* is termed:

s u p - s t a b l e  i f  f o r  a n y  a t ,  3 t t €  M  w e  h a v e  a ' v a t t €  M t

so1Lg! if for any m E M and any p e E* with P'< ffi we have P € M'

closed in order from below (c.o.f.b.) if for any non-empty subset M' of M

which is bounded from above we have V M'e M'

Remark_?.l. For any family (f ir)reI of subsets from E* which are closed in

order from below the set A M{ is also closed in order from below. Hence for any
i €  I  

I

subset M of E* there exists a smallest subset of E; , denoted by fr', which is

closed in order from below such that Mc il''

,  / /  .
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&:mark 2.2. For any subset M of E* we have

M  =  [ x  €  E +  I  f  + l  M * c l ' l ;  V M ,  - -  x ]

Indeed, we have obviouslY

M  c  { x  e  E *  I  ( + )  M * c M  :  V M *  -  * } c  M ' '

0n the other hand i f  (xr)reI  is  a fami ly f rom the set

{xe  
E*  I  (+ )  MxcM;  VM* =  *  }  wh ich  is  bounded f rom above then we have

X 
* ,  =  

Yr r t ,  
Mx i .  - t lY r  M* . !e {xeE*  |  (+ )  M*cM;  x  =  V  M"J '

proposition 2.J. a) For any subset M of E* which is solid (resp' sup-stable)

the set I[ is solid (resp. sup-stab]e)'

b) For any two non-empty subsets M." M'' '  of E* which are solid and

sup-stable the set Mr + Mil is solid and sup-stable.

c)  For any two non-empty subsets M" M" of  E* which are sol id and c 'o ' f 'b '

the  se t  M '  +  M"  i s  a lso  so l id  and c 'o ' f  ' b '

P r o o f . a ) L e t M b e a n o n . e m p t y s o l i d ( r e s p . s u p . s t a b l e ) s u b s e t o f E * a n d

let x, y be two elements of M. we consider M* , My subsets of M such that

x = wMx ,  y -  w*,

If M is solid and z e E* is such that z -< x we have

z = x ^ z =  2 , . .  ( V M " )  = ! { t ^ m  l m s M * } €  M

If M is sup-stable then we have

x  v  y  =  (vMr)v (vMy)  =  \ , / { t " -  t y }F  M.

b) I f  M,,  M,,  are non-empty,  sol id and sup-stable we consider m'6 M',

m" € Mt' arbitrary and x 6 E* such that

x ( f i l ' + m "

Using the Riesz decomposition property we can find X', X" in E* such that

X  =  x t  +  X t  
t ,  X '  . (  m t ,  X "  a (  m t ' !

From the fact thai M', M" are solid we deduce *'e M' , x"€ M'l and therefore

x  e  M '  +  M"  i .e .  M '  +  M"  i s  a  so l id  subset  o f  E* .

If nroreover we suppose Mt, Mt' solid and sup-stable then takiflg X, y two

elements f rom Mt + M" we may consider ut ,  vt€ Mt;  ut  t ,  Vtb Mt '  such that
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X  =  u t  +  u l t r  Y  =  V t  +  V t t

T h e  e l e m e n t s  W '  : =  U ' w V ' ,  W t '  : =  U t r V V ' b e l O n g  t O  M t t  r e s p e c t i V e l y  M " ' a n d

x v y  - <  w t  +  w r ' .  S i n c e  M t  +  M "  i s  s o l i d  w e  g e t  x v y q M '  +  M t "

c) Let M" M" two non-empty subsets of E* which are solid and c'o'f 'b' From

the proof of the preceding point b) we deduce that M' + M" is a solid part of E+'

L e t n o w x e E + a n d l e t ( x i * " i ' ) i . , b e a f a m i l y i n M . + M , ' s u c h t h a t

x l  e  M ' ,  * j . '=  M"  fo r  any  1e  I  and such tha t

x = \,/ (*.i + x.i ')
i e I

Since the fami l ies (x i ) re l  ,  (x i ' ) reI  are dominated by x and since M' and

M "  a r e  c . o . f . b  w e  g e t

i= I  " i  €  M" 
iX * i '€  M",  x  < (v-  x i )  + ( l 'z  x i ' )

Using the fact that M' + M'r is solid we get x € M' + M" '

For any x € E+ u,e shall denote by [0, *] the order interval

. [ 0 ,  * J  = f y * e *  I  v s  * ] .

Proposition 2.4. Let A be a non-empty, solid, sup-stable subset of E* which

is c.o.f.b. The following assertions are equivalent:

a) For any x , Y E E* we have

A * fo,  x]eA *  Lo,  Y]  X -< Y

b) There is no element P€ E+ , P I 0 such that npe A for any ne N

c) For any P € E* we have

A * ( V [ o n ( ] a ) | a e A ] ) = o
nE N^

d) For any two subsets B and c.. at E* which ate non-emPtY, solid, sup-stable

and c .o . f .b .  we have

A + B C A + C : )  B c C

froof. b)+ c). Let P€ E+ and let q be the element of E* defined by

q : =  n  ( \ / { p ^ ( a ) 1 " = A } )

n G  N x

. ll
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0bviously we have Q -< P and therefore

q = q l q =  n  ( \ / [ e , . , p n , ( ] a )  1 . .  A J )  =  A  
-  

( V  c " ' ( ] a )  l a e ' A J )

ne Nx ne Nx

Hence for anY n e Nx we have

q  = V { q r ( }  a )  |  a e  A l ;  n q  = V [ { n q ) n a  I  a e  A  }

and therefore A being sol id and c 'o ' f 'b '  we get

, N Q C A

Using the assertion b) it follows Q = 0'

c ) + b ) . I f P € E * i s s u c h t h a t n p e A f o r a n y n € N t h e n w e h a v e

p =Vfpn( |  a )  I  ae  A? fo r  anv  n€  Nx and there fore

p =  n  t V { P " ( } a )  l a e A } )
. n € N x

Using c) we get P = g.

a ) + b ) . L e t P g E + b e s u c h t h a t n p e . A f o r a n y n e N a n d l e t a b e a n e l e m e n t

of A. From the relations

I  1 . +  r n ( n p - r ) * < p ^ K n p - a ) v o ] < pp - n  3 r < P A n ( P - ; a J = l

for any n e; Nx we deduce

a  + p  <  ( a  * p ) n ( n p v a )  * * . * a  + P * * "  ( v )  n t  n l

a + p = \ . /  [ .  *  p)^ (np' . ra) ]
n e  N

The set A being solid, sup-stable and c'o'f 'b' we get

s  +  p s  A

The element a e A being arbitrary it follows that

A +  P € A ,  l +  [ 0 ,  P ] c  A =  A *  [ 0 ,  o ]

and therefore, using the assertion a), P = 0'

c ) = 9 d ) . I f B a n d C a r e n o n - e m p t y s u b s e t s o f E * w h i c h a r e s o l i d , s u p - s t a b } e

an. c.o.f.b. such that A + Bc A + C then by induction we deduce A + nB 6 [ + n8

for any n € Nx and therefore we have
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B . * s + B c f n . c

l-et b e B be arbitrary and 1et an€A and cn e C be such that b = 
* an * 

"n'

lrr*g bavg

'l

b  - b , r ( f i a )  *  ( n , r c n ) . . V { o , , . . ( } a )  l a e A  + v { n n c  l c e c J '

for any n g Nx and therefore

b  - <  A  . *  ( v  { n a ( f ,  a )  I  a e  A ]  )  * v f  o n c  I  c e c ]  = V { b ' r c  I  c e c } '

n €  N ^

The set c being sol id and c.o. f .b.  we get b€ c.  The assert ion d)4a) is obvious'

Definit ion. A non-empty subset A of E* which satisfies the condition c) from

the above proposition will be called archime-dean'

R e m a r k 2 . 5 . F r o m t h e d e f i n i t i o n i t f o l l o w s t h a t

a) If A is an archimedean subset of E* then any non-empty subset B of A is

also arhimedean

b) If A is archimedean then the smallest subset B of E* which is sup-stab1e,

s o l i d s u c h t h a t A c B t h e n B i s a l s o a r c h i m e d e a n .

Proposition 2.6. a) If A is arhimedean then T is also arhimedean'

b) If A and B are two arhimedean subsets of E* then A + B and rA are also

arhimedean for any real number r, r ) 0'

P r o o f . a ) L e t P e E * b e a r b i t r a r y a n d l e t x b e a n e l e m e n t o f l . . T h e n t h e r e

exists a subset Ax"of  A such that x =VAx. For any ne Nx we have

| ,  
= V { * a  l ' a e A x l ,  P A t } x )  = r l { p n ( } a )  } a e  A x }  '

p  ̂  (*  * )  - 'Vfe  ̂  (*  a)  1 '  a= A1

Hence

r . / [ n ^ ( * D  I  x e E ]  o V { o n { } a )  |  a e  A }  ( v )  n €  N x '

. // .
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n (v {  n r ( }  * )  I  *e  I ' }  )  -<  ,n ,  (V{on( f ,  a )  |  '=  n }  )  =  o

n €  N x  n e  N x

i .e.  I -  is  arhimedean.

b) If A and B are archimedean and P € E+ we have

, L  1  ' l  1

p  ̂ \ F u  - * b )  - <  p "  ( * a )  *  p  
" < f i  

u l  ( v )  a e A '  b e B '  n e  N x

Hence

V{  p  n  ( }a*n) )  I  aeA,  bcB J  {V{na( }  a )  |  acA}  *V{p"C}  u l  I  nesJ

for any n e Nx and therefore

n (Vf  nnfoa*u)  I  aeA, beB] )  - '  n  *  
(V{n^}  a I  aeA} +

n e N x  
b  "  n e N x

* V { p a } o  l u e a } )  =  A  _ ( v { e , . } a  l a e A } ) * A  _ C q o ^ } u l u e B } ) =  
0 .

n e N *  n e f f

i . e . A + B i s a r h i m e d e a n .

Analogously one can prove that for any arhimedean subset A of E* and any

r e, R* the set rA is also arhimedean'

J. Universal completenes criterium

llle remember that a Dedekind conplete Riesz space (E, -<) is called

.uniyersallv complete if every disjoint system in the positive cone E* has a

supremum (or equivalently, is bounded)'

I n t h i s s e c t i o n w e s h o w t h e f o l l o w i n g a s s e r t i o n :

E, ..) is universallv oorlplete i:F and onlv

if anv archimedean subset of E* is bounded'

To this Porpose, first we Prove

Proposition l. l. Every disjoint system in the positive cone E* is an

archinedean subset of E*.

Proof. Let (Oi)1eI be a system of elements in E* such that pr6Pi = 0

for any i, je I, L I J and let q be an arbitrary element of E*' We denote bY Qo

. //
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the element of E- defined bY

Q ^ =  n  ( V { q " ( } n 1 ) l i c t J )
-  

n e  N x

Since for anY n e Nx we have

q o ' <  V { q , . ( *  P i )  l i e  i }

we deduce the relations: .

q o ( q ;  e o  =  Q o , r ( v / e ' ^ ' ( | n i )  l i e r l )  = V { q o ^  t } n 1 )  l i e  r }  '

Q o r  p 3  = V { c o n n 3 , . ( } n r )  I  i c  I  =  o o r ( } n 3 )  ( v )  i e  r

Hence Qo n p3 . * Oi for any i e I and any n - Nn and therefore the linear ordered

space (E, -.) being archimedean it follows that Qo^Pj = 0 for any je I '  Finally

we get

Q o  = V { Q o , r P i  I  i e  t J  =  s

i.e. the set [0, I ie f ] is an archimedean subset of E*'

Corollarv 1.2. If any archimedean subset of E* is bounded then (E, .<) is

universallY comPlete.

Now we shall prove the converse assertion

Prgposition ].]. If (E, *.) is universally complete then any arhinedean

subset of E* is bounded.

Proof. If (E, <) is universally complete then (E, <) may be identif ied with

the set f^Cfl of all functions f :{(-+ l-*'"ol which are continuous and

densely finitAwhere K is a Hausdorff, compact,extremal space i 'e' for any open

subset G of l( its closure is also open. Let M be an arhimedean subset ot (jtK)

and let ? ,K-+, F,- l  ne tne funct ion on K given uy

Y ( l )  "  s u P  {  m ( x )  |  m e  M }

rt is known that the upper semi-continuous.regularizat'ion { of I is a

continuous funct ion on $ ano the set {xeK I dt*> t  9(x)} is nowhere

dense in K

, // .



It remains to show that d t V*(kl o' equivalently that the interior of

t h e  s e t  { x e K  I  P < * l  =  * o o J i s  e m P t Y '

If we suppose the contrary then there exists an open-closed, non-empty

s u b s e t G o f  K  s u c h t h a t  I ( x ) = o o  f o r a n y ' x e G ' I f  g : k - t  [ 0 ,  t J i s t h e

character ist ic funct ion of  G se have, for  any ne N*,

n 9  - <  9 ,  V  {  
( n g ) n '  m  }  m =  M J  -  n g

and therefore

s =  n  t v { o " ( * ) l m e M J )
n €  N x

The Last relation contradicts the fact that M is archimedean'

Tleorem l'4' A Dedekind complete Riesz space (E' 
") 

is universally complete

iff any archimedean subset of E* is bounded or lff any non-emPtY, solid, sup-stable,

c.o.f.b, and arhimedean subset of E* is bounded'

4. The universal conpletion

The porpose of this section is to associate to a given Dedekind complete

Riesz space (E0..) an universally complete space (t, ' .t) such that E* is isomprphic

with a convex subcone S of i which is solid and increasingly dense in ?* i'e

every element of E- is the suprenrlm of its minorants from S' The space (E' '") it

uniquely determined up to an isomorphism of Riesz spaces and will be called the

universal .comPletion of (E. '<) '

First we recall some definition which will be used in the sequel

A non-empty set C endowed with: an addition operation C x C E (x, y)-ex+i€f

and a muttiplication with positive real numbers B* * C > (r' c)->fc 'f

such that

a r )  ( x  +  y )  +  z = x +  ( Y  +  z ) r  x  + Y  = Y  + z ( v )  x ,  y ,  z e  C

ar) there exists a neutral element denoted 0, or simply 0 i.e'

0 + x = x ( v )  x s  C

'  ^ t ) I f  x ,  Y  e C  a n d  x  +  Y  =  0  t h e n  x  =  Y  =  0

/ /
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( * r )  x ,  y  e C ;  r r . r ' e  l R *

m r )  ( r r ' ) x  =  r ( r ' x ) ,  l x  =  x  ( v )  x e C ;  r '  r ' e l R *

wiLl be called an abstract convex cone'

Givtng an abstract convex cone c we may intcoduce an order relation on c

which will be called the specific order on c in the following way

X ,  Y € c ,  X - < Y  i g  ( + )  z e c ;  x  + z = Y '

'bviousry the erement 0 becomes the smarrest element of c and if any subset of c

has an infimum then any subset of c which is bounded from above has a supremum

(in C). Moreover in this cas there exists a Dedekind complete Riesz space (E, -<)

such that the cone c may be identified with the convex 6one E* of all positive

elements of  E( le]1.

L e t ( E , - < ) b e a D e d e k i n d c o m p l e t e R i e s z s p a c e a n d l e t E * b e i t s c o n v e x C o n e

o f p o s i t i v e e ] - e m e n t s . W e s h a l l d e n o t e b y C t h e s e t o f a ] l n o n - e m P t Y , s o l i d '

sup.stable, c.o-.f.b. and archimedean subsets of E* and we shall introduce in C an

addition operation and a multiplication with positive' real numbers as follows

A ,  B e C ,  A + B = f a + b  I  a e A '  b € B l

A  e C ,  , e  R *  ,  f , A  = { r a  I  a e  A } '

From Proposi t ions 2.3. ,  2.6.  Lt  fo l lows that for  any A, Be C, r  e R* we

have A + Bec, rAgc and from Proposi t ion 2.4 '  we deduce that the property ao)

t'* 

1:":"::,:;.:tr:; any xe E* the order intervar [0, *] ,={ve E* I v -'*?

is. an element of C. Particularly the interval [0, O] which will be denoted simply

0 is the neutrar element of c with respect to the addition operator. The properties

a,), a,), .]), *1), *2) may be easily verif ied. Hence the set C endowed with the

above operations is an abstract convex cone'

ProPosition 4.1. The map ? : E* * C given py ? (x) = [0' x] has the

following ProPerties

a ) x ,  Y G E + ,  9 ( x ) =  9 ( Y ) a +  x = Y

ao)  I f '  x ,

mr )  r (x  +

y ,  z € C  a n d  x  +  z -  Y  +  z  t h e n  x  =  Y

y )  =  r x  +  t Y r  ( r  *  1 t ) x  =  r x  +  f ' x
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b )  x ,  y €  E + ,  f €  R * $  c P ( x + y )  =  ? ( x )  *  ? ( v ) i  ? ( r x )  =  r  P ( x )

c )  x ,  y  € E *  r  X  (  Y € ) ? ( x )  < P ( v )

d )  I f  A  €  C  a n d  x e  E *  a r e  s u c h  t h a t  A c P  ( x )  t n e n  A C  9 ( E * ) '

Proof. The properties a) and c) are obvious' If r G R+ and x' Y e E* we have

cp(x) + ? (y)c ce (x*y).  For the converse inclusion we consider z € 9(x+y)

L.e,  z€ E* ,  z (  x+y and let  ( f rom Riesz decomposi t ion property)  X" Y'6 '  E* be

s u c h  t h a t  x , <  x ,  y , (  y ,  z  =  x t  +  y ' .  H e n c e  z e t ( x )  *  V  ( y )  a n d  t h e r e f o r e  t h e

propertY b) is shown'

A s f o r t h e l a s t p r o p e r t y , i f A e C a n d x e E * a r e s u c h t h a t A c ? ( x ) t h e n

the element x is a majorant of A and therefore A has a supremum a in E* (or equaly

in E) and a < x.  Since A is c.o. f  .b we have a c A and therefore Ac'  L0'  a] '  The

set A being sol id we get A = [0,  " ]  
= 9(a) '

Proposition 4.2. a) If A, B e c and Ac B then there exists A' e c such that

A + A, = B. i.e the order relation on c given by the incrusion relation coincides

with the specific order on C'

b) For any family (Ai)i 
. , from c the subset 

;l, 
of of E* is an element

o f C a n d i t i s j u s t t h e i n f i m u m o f t h e f a m i l y ( A i ) i € . I i n C w i t h r e s p e c t t o t h e

specific order

c) It (Ai)i.I i , an upper directed family in C with respect to the inclusim

(or equaly w.r. to the specific order of C) and if this family is dominated in C

then the subsetlZi of E* is an element of C and it is the supremum of the family'

(A i ) i= I  in  C.w ' r '  to  the  spec i f i c  o rder

Proof. For anY Ae' C we

E* ,  X->xA given bY

consider the "projection" operator on A defined on

* R = V { a  l a e A , 6 s x J  
= \ l { x a a  l t =

The following properties of this operator are almost

l )  x  e  E*  ,  X  e  A  d* "A =  X

z )  x r y  €  E + ,  X  (  Y  = 9  x A . l  Y o  d n d  x o  =  x a Y A

J)  x ,  y  €  E+ =5 (x r ry )R =  XA  ̂  Yn;  (x " ' yh  =  xA v  VA

//

A l .

t r iv ia l
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4 )  x ,  Y € E * ,  X  {  Y = +  x  -  * A (  Y  -  Y R

5 )  x ,  v e E + +  ( x - x O ) v ( v - y A )  = x v Y -  ( x " v ) g ;  ( x - x O ) "  ( y - Y 4 )  - x * Y  '  ( x " v ) p

5 )  t ,  x  e [ - u ,  t - (  x  -  x A  ; +  ( : )  y e  E * '  Y - <  X ;  i  =  Y  -  Y R '

For example the assert ion 4) nay be der ived as fo l lows:

x  r (  Y = )  X  +  Y A  =  X  ̂ y A  X v y A  -  X A  *  X v y A  (  X A *  y ;  x  -  
" A S  

y  -  Y 4 '

The inequal i ty (x -  xo) v (y -  yn) < (xv y)  -  (x. ,  v)o in 5) fo l lov ' rs f rom

t h e  a s s e r t i o n  4 ) .  0 n  t h e  o t h e f  h a n d  w e  h a v e  x O - <  ( x t y ) A ' Y n - <  ( x : " V ) O  a n d

therefore

x - * A > , x - ( x v y ) o , Y - Y 4 ) Y - ( x " Y ) 6 ' ( x - x o ) w ( v - v g ) > ( x ' ' v ) - ( x " y ) o

Hence the relat ion 5) is ver i f ied'

As for the assertion 5) let t, 1e E+ be such that t -( x - xO' !{e consicier

t h e e l e m e n t y o f [ + , y = t + x O ' f ' j e h a v e x O - < y S x a n d t h e r e f o r e ' u s i n g t h e

assertion 2) we get

y A =  x A  y  = x A ,  t  = Y - x A  = Y  - Y A '

We prove now the assertion a)' Let A' B e C be such that Ac B and let D be

.the subset of E* given bY

o = { . b - b a l o e a J

From the above properties 5), 5) we deduce that D is a non-empty solid'

sup-stable subset of E*. It is also archimedean since D c' B' The relation

A + D = B mav be shown as fo l lows: for  any b e-B we have b = bA * (O -  nO)eA + 0

i . e . B c ' A + D . F o r a n y a e A a n d b g B t h e e l e m e n t a v b b e l o n g s t o B a n d w e h a v e ,

using the above ProPerties J), 1)

a  +  ( b  -  b n )  - (  a  +  ( a v b  -  ( a . r U ) O )  =  a  +  a v b  -  a  =  a v b ;  a  +  ( O  -  O O ) e A

Hence A + D c. B i.e. A + D = B, The assertion a) follows now from the relation

t s  = E  =  g  a  3  =  E  * D  -  A  + D  a n d  f r o m  t h e  f a c t  t h a t D e  C

The assertions b) and c) may be derived directly from the assertion a) and

us ing  ProPos i t ions  2 .3 ' ,  2 '5 '

//
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Proposi t ion 4. ,?.  Any archimecjeatt  subset 14 of  the cone c is bounded w'r '  to

the speci f ic  order of  C.

Proof. Let M be an archimedean subset of c with respect to the specific

order  i .e .  fo r  anY Ae C we have

n 1v{ a,r c} el I s e r' l | ) =[0,01
n 6  N *

where for any subset H of C we have denoted A H (resp' V A) the infimum (resp'

the supremum) of H in c with respect to the specific order.

T o s h o w t h a t M i s b o u n d e d w e m a y s u p p o s e , u s i n g P r o p o s i t i o n 2 . 5 . t h a t l " , i i s

a non-empty so1id,  sup-stable,  c.o. f .b.  and archimedean subset of  c '  s ince M is

sup-stab1-e ancj scl-id j-n c v;e deduce that the subset t4o of E* defined by

ro  =  
Ho

is also solid and sup-stable. l*Je want to show that Mo is an archimedean subset

of E*. Let a be an element of E*' From the relation

, 't .( V {[0, .] nr] al I sera J ) = [0, ol

and from ,:;:;.r"";.1, d) we deduce that for anv n e Nx and anv B<- M there

exists an element b(n, B) in the set f i B such tnat

[0,  , ]  ^  r ]  a l  = fo,  b(n,  B)] ,  b(n,  B) t< a '

The set M being sup-stable it follows that for any n e Nn the fami-ty

lU{n,  A) I  g €-}a t  is  upper directed and dominated bv a '

Using ProPosi t ion 4.2 ' ,  e)  we get

v [ [ 0 , . ] n c ] a l  I a e r " r J = m  =  [ o '  o J

where bn =V{b(n,  B) |  ge Uf '  one can easi ly see that

bn =V{a a tfi nl 1 u 6-Mo }

and since n [0, bJ = [0, O] we Set bn = 0 i 'e' Mo is an archimedean

n e N x  n G N x

subset of E*. From the above considerations Mo e C and B c Moc' illo for any B C M'

Hence M is bounded.

.  / /
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Theorem 4.4.  For any Dedekind complete Riesz space ( t ,  S) there exists a

v

universally complete space (f, {) such that (E, -<) may be identif ied with a l inear

, * t u

subspace of E and E- is a solid convex subcone of f. such that any element of E*

is the supremum in (i, () of the set of its minorants from E*'

Proof. vJith the above notations we consider the Dedekind complete Riesz

space (fl, r.) such that E* may be identif ied with the abstract convex cone C

constructed in this section. It remains only to identify E* with P (E+) where I

is the map cjefined in proposition 4.1. and to apply Theorem J./t.
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