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On the universal completion of an

Archimedean Riesz space

by lleana Bucur

1. Introduction. If (E, <) is a Riesz space then E is called Dedekind

complete if any subset of E (or 0n19 of £, , the set of all positive elements of
E) which is bounded from above has a supremum in E. As well-known,a Dedekind
complete Riesz space is called universally complete (or inextensable Riesz space),
if it is isomorphic with the space &El(i() of all continuous functions

f : K— [, ] such that the set {xél{ E{E) <°°7} is dense in K )
where }( is an extremal, Hausdorff, compact space. As it was shown by A.G. Pinsker
in 1948 a Dedekind complete Riesz space E is universally complete iff every
disjoint system in E, has a supremum in E. (This is so called "Pinsker criterium
for universality" and moreover it is taken now as definition for "universally
complete"). A subset F of a Dedekind complete Riesz space (E, <) is called a
foundation of E if F is an ideal of E (i.e. F is a iinear subspace of E such that
for any x & F the order interval [-|x|, le} is included in F) and any xe E_ is
the supremum of the set { yefF sy s.x} . It is known that for any Dedekind Riesz
space (E, <) there exists a universally complete Riesz space’E’such that E is a
foundation of E. This space (E) is uniquely determined up to an isomorphysme.

The well-known proof of this result makes use of Kakutany representation theorem
which asserts that any Dedek%ggp%ﬁggz space (E, <) with strong unit is isomorphic

with the linear ordered space of all real continuous functions on an extremal,

Hausdorff, compact space.
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Starting with Pinsker criterium of universality in [?] A.C. Zaanen gives a
proof for the above result that does not employ any representation theory. -

In this note we present an other criterium for universality and then, starting
with it, we give also a construction for the universal completion of a Dedekind
complete Riesz space which is more intuitive.

The notion of'ArChimedean subset that we introduce here was inspired Dy
reding the paper [1].

The proof for our criterium of universality that I gave in [23 makes also

use of Kakutany representation theorem.

2. Archimedean subsets

Let (E, <) be a Dedekind complete Riesz space. For any two non-empty subsets
A, B of E we put
A+B:=§a+b|laech beB}

v

and for any real number r we denote
TA := {ra | a eA}
-As usually, for any non-empty subset M of E we shall denote by M (resp.
A M) the supremum (resp. infimum) of M if does it exist.
Definition. A subset M of E, is termed:
sup-stable if for any a', a''e M we have a'va''e M,
solid if for any me M and any p e E+ with p €« m we have p e M,

closed in order from below (c.o.f.b.) if for any non-empty subset M' of M

which is bounded from above we have v M'e M.
Remark 2.1. For any family (Mi)ie:I of subsets from £, which are closed in
order from below the set ¢\ M, is also closed in order from below. Hence for any
iel
subset M of E+ there exists a smallest subset of E; , denoted by M, which is

closed in order from below such that Mc M.
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Remark 2.2. For any subset M of E+ we have
M=ixek, | (3)MaeM VM =x}.
Indeed, we have obvicusly

Mci{xek, | (})MXCM:\/MX=X}C M.

On the other hand if (xi)ie-I is a family from the set

{x c E+ | (3) M)< c M \/Mx = X } which is bounded from above then we have

ok s\ UM =V M JefxeE, | (3) MeM; x =N M f.
iel ' iel 3 iel Xi}{ * A «J

Proposition 2.3. a) For any subset M of E, which is solid (resp. sup-stable)

the set M is solid (resp. sup-stable).

b) For any two non-empty subsets M', M"" of E_ which are solid and
sup-stable the set M' + M'' is solid and su;ﬁ—stable.

c) For any two non-empty subsets M', M'' of E, which are solid and c.o.f.b.
the set M' + M'' is also solid and c.o.f.b.

Proof. a) Let M be a non-empty solid (resp. sup-stable) subset of E_ and

let x, y be two elements of M. We consider Mx R My subsets of M such that
x = \/M_,y= \/My

If M is solid and z€ E_ is such that z € x we have
Z=XAZ= ZA‘(\/MX) =\/{zr\m | me Mx}e' M
If M is sup-stable then we have
xvy = (VMIVIVM) = M v My}g M.
b) If M', M'' are non-empty, solid and sup-stable we consider m'eM',

m''e M'' arbitrary and X € E+ such that

Using the Riesz decomposition property we can find x', x' 130 kg such that
+x'"', x'sm', x''gmt! |
From the fact that M', M'' are solid we deduce x'eM', x''e M'' and therefore
xe M' +M'' i.e. M' + M'' is a solid subset of E,-

1f moreover we suppose M', M'' solid and sup-stable then taking X, Y two

elements from M' + M'' we may consider u', vieM'; u'', v''e M'' such that



The elements w' := u'vv', w'' := u''vv'' belong to M', respectively M'' and

xvy < w' +w''. Since M' + M'' is solid we get xvyeM' + M'"',

c) Let M', M'' two non-empty subsets of E, which are solid and c.o.f.b. From
the proof of the preceding point b) we deduce that M' + M'' is a solid part of E_.

1 11 2 2 1 [ ]
Let now x e E+ and let (x.1 + X3 >i€ I be a family in M' + M'' such that

@

xie M', xi'e M'' for any 1 € I and such that

x = Vv (x! +xi')
iel

Since the families (xfl) (xi')iel are dominated by x and since M' and

iel”’
M'' are c.o.f.b we get

NS ! ! <
DT EM M te M, x e (O X)) ¢ (V)
icl iel

Using the fact that M' + M'' is solid we get x & M' + M"'.
For any xe E , e shall denote by [0, x] the order interval
o, x] =[yek, | y< % |

Proposition 2.4. Let A be a non-empty, solid, sup-stable subset of E_ which

is c.o.f.b. The following assertions are equivalent:
a) For any x, ye E, we have
A+ o, xJer+ [0, y] = xs<y
b) There is no element pe E_, P # 0 such that np e A for any ne N

c) For any p & E_ we have

AL (VipaGa)laeh})=0
neN

d) For any two subsets B and C.at E+ which are non-empty, solid, sup-stable

and c.o.f.b. we have
A+BcA+C=> Bc C

Proof. b) = c). Let pe E,_ and let q be the element of E, defined by

qs= AN (\/{p/\‘(%a) lacA})
ne N
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Obviously we have g £ p and therefore

g=0qag= N (\/{quA(%a)lae AFD) = A (V q/\(%‘-a)lae'A})

ne N* ne N*

Hence for any n & N* we have
=\qa @ -\
g = {qx\(—ﬁa) | ae Ad; ng= f(hq)aa | ae A}
and therefore A being solid and c.o.f.b. we get
,ngeA
Using the assertion b) it follows gq = O.
c)=>b). If peE_is such that npeA for any ne N then we have
p =\/,pr(% a) | ae A} for any ne N* and therefore
p= /A (\/gp/\(%a) laeAd)

‘neN’E
Using c) we get p = O.

a)=>b). lLet pe E_ be such that npe A for any ne N and let a be an element

of A. From the relations

: +
p—% GSDAD(D—%3)+=pA(np—a)sp/\[(np-a)\/ 0] <p

for any n e-:-_N’E we deduce

“*%
a+p<(a+p)/\(npva)+%‘-asa+p+%a (¢¥) ne N,

a+p= N/ [(a+pn (npva)]
ne N

The set A being solid, sup-stable and c.o.f.b. we get
a+peA
The element a € A being arbitrary it follows that
A+ peh, A+[0,plc A=A+]8, 0J
and therefore, using the assertion a), p = 0.
c)=>d). If B and C are non-empty subsets of E_ which are solid, sup-stable
an c.o.f.b. such that A + B A + C then by induction we daduce A + nBc A + nC

for any n& N* and therefore we have
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1 1
8C H-A + BC E-A +C

. _ 1 ?
let b e B be arbitrary and let anérA and c, € C be such that b = =a_ * Cqe

We bave
b = bA(% a) + (bac)) s\/{bA(Fl"a) | ac A +V{bac | ceC}.

for any ne N* and therefore

bs AN (\/{b»\(-rl; a) | acA}) +Vfbac | ceC} =\fbac | ceC¥§.
ne N

The set C being solid and c.o.f.b. we get be C. The assertion d) =a) is obvious.

Definition. A non-empty subset A of E_ which satisfies the condition c) from
the above proposition will be called archimedean.

Remark 2.5. From the definition it follows that

a) If A is an archimedean subset of E_ then any non-empty subset B of A is
also arhimedean

b) If A is archimedean then the smallest subset B of E, which is sup-stable,
solid such that Ac B then B is also archimedean.

Proposition 2.6. a) If A is arhimedean then A is also arhimedean.

b) If A and B are two arhimedean subsets of E+ then A + B and rA are also

arhimedean for any real number r, T > 0.
Proof. a) Let p e»E+ be arbitrary and let x be an element of A. Then there

exists a subset Ax of A such that x = \/ Ax. For any n e N* we have
1. sl 1.y - 1
Ex—\J{naIaeAx}, pA%x)-\Mpﬁ%a)}aéAX},

DA(%X)S\/{DA(%a) lae A}

Hence

\/gpA(%X)lxeK} 6\/{DA(—}]—a)|ae A3 (v) ne N,
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A (NV{pAGED [xeBE)s A (VipnGa) | aeh}) =0

ne N* ne N*
i.e. A is arhimedean.
b) If A and B are archimedean and p& E+ we have

p/\(%‘-a+-rl—]b)\<pl\(%a)+p/\(%b) (v) achA, beB, ne N*

Hence
NV pa (%(a+b)) | aeAh, bGB}é\/{pA(% a) | acA} +\/{p/\(-ln- b) | beB}
for any ne N* and therefore

A (V[pA-rlT(a+b) | ach, beBY) < A (\/{p/\% alachAl} +
ne N* n e N*

+\/pr%b | beB}) = A (\/{p/\%{a | acA}) + A (V{DA%U | beB}) = 0.
ne N* ngN*
i.e. A + B is arhimedean.
Analogously one can prove that for any arhimedean subset A of E_ and any

re R+ the set rA is also arhimedean.

3. Universal completenes criterium

We remember that a Dedekind complete Riesz spacé (E, <) is called

universally complete if every disjoint system in the positive cone E+ has a
supremum (or equivalently, is bounded) .
In this section we show the following assertion:

A Dedekind complete Riesz space (E, ) is universally ocomplete if and only

if any archimedean subset of E+ is bounded.

To this porpose, first we prove

Proposition 3.1. Every disjoint system in the positive cone E,_ is an
archimedean subset of E_.

Proof. Let (pi) be a system of elements in E,_ such that Pj APy = 0

iel

for any i, je I, 1 # J and let g be an arbitrary element of E+. We denocte by a,
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the element of E_ defined by

a = A (agaGp)lieI})

0 3
ne N

. %
Since for any ne N” we have

qos'\/{q,\(% p,) | ie I

we deduce the relations:

q < a, = GACaa Gy |11 Vi A tpp lietl,

]
_ 1 . 1 :
Oy A Dj -\/{Qolxpjl\(ﬁ pi) \ iel = QOA(‘H' pj) (Y) je 1
Hence Q5 A pj < %-pj for any j e I and any ne N* and therefore the linear ordered
space (E, <) being archimedean it follows that qo,;\pj = 0 for any je I. Finally
we get

o, =\Vfa ap; | i1} =0

i.e. the set é;pi | ie I } is an archimedean subset of E+.

Corollary 3.2. If any archimedean subset of E, is bounded then (E, <) is
universally complete.
Now we shall prove the converse assertion

Proposition 3.3. If (E, §) is universally complete then any arhimedean

subset of E_1is bounded.

Proof. If (E, <) is universally complete then (E, <) may be identified with
the set tzo(Ei) of all functions £ :‘Ei—:a E—aa,oo‘] which are continuous and
densely finitg where f( is a Hausdorff, compact,extremal space i.e. for any open
subset G of J{ its closure is also open. Let M be an arhimedean subset of %;:(k()
and let ¢ K——» [0,227] be the function on K given by

p(x) =sup §m(x) | me M¥

It is known that the upper semi-continuous regularization e; of ¢ is a
continuous function on K and the set {xe K ] (F(x) > ¢ (x) # is nowhere
dense in f( "
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It remains to show that Qge %i°(§<5 or equivalently that the interior of
the set {xeK | P (x) = + 00} is empty.

If we suppose the contrary then there exists an open-closed, non-emply
subset G of K such that ¢ (x) =e@ for any-x & G. If g : k- o, l] is the
characteristic function of G we have, for any ne N*,

ng <% , \/{(ng)/\ m}meM} = ng

and therefore
A (Mfga@ ImeM})

ne N*

g:

The last relation contradicts the fact that M is archimedean.
Theorem 3.4. A Dedekind complete Riesz space (E, ) is universally complete
iff any archimedean subset of E+ is bounded or iff any non-empty, solid, sup-stable,

c.o.f.b. and arhimedean subset of E+ is bounded.

4. The universal completion

The porpose of this section is to associate to a given Dedekind complete
Riesz space (E, <) an universally complete space (E: <) such that E_ is isomorphic
witﬁ a convex subcone S of‘E; which is solid and increasingly dense in'E; i.e
every element of E; is the supremum of its minorants from S. The space (E, <) is

uniquely determined up to an isomorphism of Riesz spaces and will be called the

universal completion of (E, €).

First we recall some definition which will be used in the sequel
A non-empty set C endowed with: -an addition operation C x C 3 (x, y)—=» x+ye(
and a multiplication with positive real numbers R X C>s(r, c)»reel
such that
al)(x+y)+z=x+(y+z),x+y=y+z () x,y,zeC
az) there exists a neutral element denoted DC or simply O i.e.
0+x =X (v)xeC

4 83) If x, yeCand x +y =0 then x =y = 0

//



aq) If x,y, zeCandx+z=Yy+Z then x =y
ml) r(x +y) = x +ry, (¢ + r')x = rx + 'x (v) x, yeC;r,r'eR,
mz) (rr')x = r(r'x), 1x = X (v)xeC;r, ' e R,

will be called an abstract convex Cone.

Giving an abstract convex cone C we may introduce an order relation on C

which will be called the specific order on C in the following way

x, yel, x gy <,d__—e—f>> (3)zeC;x+z=Y.

Obviously the element O becomes the smallest element of C and if any subset of C
has an infimum then any subset of C which is bounded from above has a supremum
(in C). Moreover in this cas there exists a Dedekind complete Riesz space (E, <)
such that the cone C may be identified with the convex cone E+ of all positive
elements of E([3]). |
Let (E, <) be a Dedekind complete Riesz space and let E, be its convex cone
of positive elements. we shall denote by C the set of all non-empty, solid,
sup-stable, c.o:f.b. and archimedean subsets of E_ and we shall introduce in C an
addition operation and a multiplication with positive, real numbers as follows
A,BeC, A+B=§a+hb | ac A, beBY
AeC,reR_, TA ={ra | ac AY.
From Propositions 2.3., 2.6. it follows that for any A, B& C, reR,_we
have A + Be C, rA ¢ C and from Proposition 2.4. we deduce that the property 34)
from above is fulfilled. _
We remark that for any xe& E+ the order interval [0, x] :=€’y c E+ | y < x}
is an element of C. _Partioularly the interval [0, D] which will be denoted simply
0 is the neutral element of C with respect to the addition operator. The properties
al), 82)’ 83), ml), m2) may be easily verified. Hence the set C endowed with the
above operations is an abstract. convex cone.

Proposition 4.1. The map @ : E,— C given by @ (x) = (o, x] has the

following properties

a) x, yek, , )= P& x=Y

/.



b) x, ye E, s Te Ry > ¢ (x+y) = P(x) + ely); G(x) =t e (x)
c) x, yek, , x< y & P (x) < Py)
d) If A ¢ C and x € E_ are such that Ac ¢ (x) then A& P (E,).

Proof. The properties a) and c) are obvious. If T« R, and x, ye E,_ we have

w(x) + ¢ (y)= @ (x+y). For the converse inclusion we consider z &€ (x+y)

i.e. zekE, , ZSX¥y and let (from Riesz decomposition property) x', y'e E_De
such that x' < x, y' £y, z=x"+ y'. Hence z& ®(x) + < (y) and therefore the
property b) is shown.

As for the last property, if Ae C and xe E_ are such that Ac % (x) then
the element x is a majorant of A and therefore A has a supremum 3 in £, (or equaly
in E) and a < x. Since A is c.o.f.b we have a < A and therefore Ac [0, a]. The

¢ (a).

set A being solid we get A = [0, a]
Proposition 4.2. a) If A, Bg Cand Ac B then there exists A'e C such that

A + A' = B. i.e the order relation on C given by the inclusion relation coincides

with the specific order on Cs

b) For any family (A;); _ 1 from C the subset if;l A of E, is an element

of C and it is just the infimum of the family (Ai>ie'I in C with respect to the

specific order.

c) If (Ai) is an upper directed family in C with respect to the inclusion

iel
(or equaly w.r. to the specific order of C) and if this family is dominated in C
then the subset \/Ai of E, is an element of C and it is the supremum of the family.

(Ai>ic-l in C w.r. to the specific order.
Proof. For any A< C we consider the "projection" operator on A defined on

E, , x->x, given by

xA=\/{a | ac A, a <x3 \fxana|aeAj¥.
. The following properties of this operator are almost trivial
_l)er+,xeA<=>xA=x

2) x, yeE, , xsy=> xAéyAandxA=x,\yA

3) x, Ye E+ = (XAY)A

Xp A Yp3 (xvy)A = Xp Vv Yp

//



4) x, yet X Sy = X=X &Y = Yp

4 2

5) x, ve £, = (x-xA)\/(y—yA) =xvy = (xvydys (x = %) A (y - yy) = xa y = (xa ¥y

6) t, xeE,, tsx-x3 = (3)yek, ,ysx; L=y -V

+ +

For example the assertion 4) may be derived as follows:
X £y=» X+ Yy = X AYy * XN Yy 7 XA + X VY < Xp * y; X = Xp LY = Yy
The inequality (x - XA)‘V (y - yA) < (xvy) - (x\qy)A in 5) follows from
the assertion 4). On the other hand we have X, < (x\/y)A » Yp S (x\/y)A and

therefore

X = Xp 2 X~ (xvy)A s Y Yy 2Y - (xvy)A , (x—xA)\/(y-yA) > (xvy) -(XVY)A

Hence the relation 5) is verified.

As for the assertion 6) let t, x e £, be such that t € x - X,. We consider
the element y of E+ , Yy =T+ Xp - We have Xp Y < x and therefore, using the
assertion 2) we get

Yo =X Y T Xas t=y-%Xy =Y - Vg )

We prove now the assertion a). Let A, B e C be such that Ac B and let D be

-the subset of E_ given by |
D={b-by|beB]

From the above properties 5), 6) we deduce that D is a non-empty solid,
sup-stable subset of E_. It is also archimedean since D < B. The relation
A + D = B may be shown as follows: for any D € B we have b = by + (b - bA)e A+D
i.e. Bc A+ D, For any ac Aand D < B the element avb belongs to B and we have,
using the above properties 3), 1)

a+ (b - bA) <a+ (avb - (a\/b)A) =a+avb-a=avb;a+ (b- bA)e:B

Herce A + DeBi.e. A+ D= B. The aséertion a) follows now from the relation

3 -F-A+D=A+0=A+0and from the fact that D e C.
The assertions b) and c) may be derived directly from the assertion a) and

using Propositions 2.3., 2.6.
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Proposition 4.2. Any archimedean subset M of the cone C is bounded w.T. to

the specific order of C.
Proof. Let M be an archimedean subset of C with respect to the specific

order i.e. for any A& C we have

A (Viard e [ Bem}) =(0,0]
ne N*

where for any subset H of C we have denoted A H (resp. “V A) the infimum (resp.
the supremum) of H in C with respect to the specific order.

To show that M is bounded we may suppose, using Proposition 2.5. that M is
a non-empty solid, sup-stable, c.0.f.b. and archimedean subset of C. Since M is
sup-stablz and solid in C we deduce that the subset MO of E, defined by

MO=vA
Ae M

is also solid and sup-stable. We want to show that MD is an archimedean subset

of E+. Let a be an element of E+. From the relation

A (W 4[0, d ~GEB) | BeM ) = [0, 0]

nec N*
and from Proposition 4.1, d) we deduce that for any ne N* and any Be M there

exists an element b(n, B) in the set %-B such that

[0, d~ &8 = [0, b0, 8, b0, B)<a
The set M being sup-stable it follows that for anyrwe-N* the family
g‘b(n, B) | BeM } is upper directed and dominated by a.

Using Proposition 4.2., c) we get
e
v {, dA&Ee) | Beny= [0, bln, 8] = [0, b ]
BeM
where b =\J{Tb(n, B) | B& M} . One can easily see that
- 1
b =Vfa A(b) | beM?

and since /7 \ [0, bé] = [O, d] we get /N bn =0 i.e. MO is an archimedean
| ne N* n € N*

subset of E+. From the above considerations F&]e-c and B c-MOC; Mﬁ for any B & M.

Hence M is bounded.
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Theorem &4.4. For any Dedekind complete Riesz space (E, <) there exists a
universally complete space (E: <) such that (E, <) may be identified with a linear
subspace of E and E+ is a solid convex subcone of E; such that any element of]§+
is the supremum in (E, <) of the set of its minorants from E,.

Proof. With the above notations we consider the Dedekind complete Riesz
space (E, <) such that E+ may be identified with the abstract convex cone C
constructed in this section. It remains only to identify E, with ¢ (E,) where ¢

is the map defined in Proposition 4.1. and to apply Theorem 3.4.
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